
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

1995

DartCVL: The Dartmouth C Vector Library DartCVL: The Dartmouth C Vector Library

Thomas H. Cormen
Dartmouth College

Sumit Chawla
Dartmouth College

Preston Crow
Dartmouth College

Melissa Hirschl
Dartmouth College

Roberto Hoyle
Dartmouth College

See next page for additional authors

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Cormen, Thomas H.; Chawla, Sumit; Crow, Preston; Hirschl, Melissa; Hoyle, Roberto; Kotay, Keith D.;
Nelson, Rolf H.; Nieuwejaar, Nils; Silver, Scott M.; Taylor, Michael B.; and Wickremesinghe, Rajiv, "DartCVL:
The Dartmouth C Vector Library" (1995). Computer Science Technical Report PCS-TR95-250.
https://digitalcommons.dartmouth.edu/cs_tr/238

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/238?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Authors Authors
Thomas H. Cormen, Sumit Chawla, Preston Crow, Melissa Hirschl, Roberto Hoyle, Keith D. Kotay, Rolf H.
Nelson, Nils Nieuwejaar, Scott M. Silver, Michael B. Taylor, and Rajiv Wickremesinghe

This technical report is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/cs_tr/238

https://digitalcommons.dartmouth.edu/cs_tr/238

Dartmouth College Computer Science

Technical Report PCS-TR95-250

DartCVL: The Dartmouth C Vector Library

Thomas H. Cormen,1 Sumit Chawla,2 Preston Crow,3

Melissa Hirschl,2 Roberto Hoyle, Keith D. Kotay,2

Rolf H. Nelson,4 Nils Nieuwejaar,5 Scott M. Silver,

Michael B. Taylor, Rajiv Wickremesinghe

Dartmouth College

Department of Computer Science

Abstract

As a class project, we implemented a version of CVL, the C Vector Library, on a DECmpp
12000/Sx 2000, which is equivalent to the MasPar MP-2 massively parallel computer. We
compare our implementation, DartCVL, to the University of North Carolina implementation,
UnCvl.

DartCVL was designed for the MP-2 architecture and UnCvl was designed for the MP-1.
Because the MasPar MP-1 and MP-2 are functionally equivalent, both DartCVL and UnCvl
will run on either. Di�erences in the designs of the two machines, however, may lead to di�erent
software design decisions. DartCVL di�ers from UnCvl in two key ways. First, DartCVL uses

hierarchical virtualization, whereas UnCvl uses cut-and-stack. Second, DartCVL runs as much

serial code as possible on the console, whereas UnCvl runs all serial code on the Array Control
Unit (ACU). The console (a DECstation 5000/240 at Dartmouth) has a signi�cantly faster
serial processor than the ACU.

DartCVL is optimized for the MP-2, and our timing results indicate that it usually runs
faster than UnCvl on the 2048-processor machine at Dartmouth.

Authors' address (unless otherwise stated): 6211 Sudiko� Laboratory, Hanover, NH 03755. Send electronic mail

inquiries to Tom Cormen, thc@cs.dartmouth.edu.
1Supported in part by funds from Dartmouth College and in part by the National Science Foundation under Grant

CCR-9308667.
2Supported by a Dartmouth College Graduate Fellowship.
3Supported by NASA Graduate Student Researchers Program Fellowship NGT-51160.
4Currently with Digital Equipment Corporation. Work performed while at Dartmouth College.
5Supported in part by the NASA Ames Research Center under Agreement Number NCC 2-849.

1

1 Introduction

As a class project, the authors implemented CVL, the C Vector Library, on a DECmpp

12000/Sx 2000. CVL is an interface de�ned by Blelloch et al. [BCH+93] to a group of simple

functions for managing and operating on vectors. Our implementation, DartCVL, embodies the

many functions de�ned in [BCH+93]. The target machine is equivalent to the MasPar MP-2, a

massively parallel SIMD computer.

We had two goals in this project. The educational goal was to give the students (undergraduate

and graduate students at Dartmouth) experience in programming a massively parallel machine and

an understanding of the tradeo�s in ease of programming and performance. The engineering goal

was to produce a fast implementation of CVL.

This paper focuses on the engineering goal. We were aware of the UnCvl project [FHS93],

which is an implementation of CVL for the MasPar MP-1. Although the MP-1 and MP-2 are

code-compatible, their architectures are su�ciently di�erent that design decisions that work well

on one machine may not perform as well on the other. Consequently, some of the fundamental

design decisions we made for DartCVL di�er from those made for UnCvl. DartCVL bene�tted

from these di�erences in most, but not all, cases.

CVL

The best pocket description of CVL comes from its manual [BCH+93]:

CVL is a library of low-level vector routines callable from C. This library presents

an abstract model of a vector machine suitable either for stand-alone use or as the

backend of a high-level language system. CVL includes a rich set of vector operations

including both elementwise computations, and more global operations such as scans,

reductions, and permutations. The library also includes segmented versions of these

global operations; segmented operations are crucial for the implementation of nested

data-parallel languages.

CVL vectors may be of any nonnegative length, and segmented vectors may have any segmen-

tation that conforms to the length. Scalars are indistinct from vectors in CVL; that is, a scalar is

simply a vector of length 1.

All CVL function names are three letters followed by an underscore followed by three more

letters, e.g., add_wuz. Each name has four components:

1. The �rst three letters are a mnemonic for the root function to be applied, e.g., add (addition),

sub (subtraction), and cpy (copy).

2. The �rst letter following the underscore is a consonant denoting the class the CVL function

belongs to, e.g., w (elementwise), s (scan), and p (permute).

3. The second letter following the underscore is a vowel indicating the kind of vector to which

the function is applied; the choices are u (unsegmented), e (segmented), and o (non-vector

operation).

4. The third letter following the underscore is a consonant giving the type of the individual

elements, e.g., z (integer), b (boolean), d (double), and s (segment descriptor).

2

Thus, the CVL function add_wuz performs elementwise addition on unsegmented vectors of integers.

Most parameters to CVL functions are either integers giving vector lengths or numbers of

segments, or of the type vec_p, which is an abstract handle for accessing vector memory. In

DartCVL, the vec_p type is de�ned by

typedef plural void *vec_p;

which, in MPL1 terminology, is a \singular pointer to plural." That is, a vec_p is a pointer to the

same location across the local memories of all the processing elements. The CVL function add_wuz

has the prototype

void add_wuz(vec_p d, vec_p s1, vec_p s2, int len, vec_p scratch);

whose parameters are a handle d for the result (or destination) of the elementwise vector addition,

handles s1 and s2 for the source vectors, the number len of elements in either of the operands or

the result, and a handle scratch to scratch space, should it be needed to perform the function.

CVL functions are divided into seven classes, each of which has an associated letter that follows

the underscore in function names:

elementwise (w): Perform an operation on every element of the vector operands.

reduce (r): Combine all elements of a vector together under an associative function such as ad-

dition or maximum.

scan (s): Create a vector whose ith element is the reduction of the �rst i � 1 elements of the

operand.

permute (p): Rearrange the elements of a vector according to an index vector.

vector-scalar (v): Convert vectors to scalars and vice versa.

facilities (f): Perform needed system functions and create vectors and segment descriptors.

library (l): Functions that may be implemented in terms of other CVL functions.

Outline

The remainder of this paper is organized as follows. Section 2 describes the DECmpp 12000/Sx 2000

architecture and its e�ect on some of the design decisions we made in DartCVL. Section 3 discusses

some other design decisions. Section 4 presents and analyzes timing results of DartCVL andUnCvl

functions. Finally, Section 5 presents some concluding remarks.

2 Machine architecture

In this section, we describe the DECmpp 12000/Sx 2000 [Dig92], which is identical to the Mas-

Par MP-2. For concrete examples, we will use the 2048-processor machine (named \cascade")

installed at Dartmouth.

The DECmpp 12000/Sx 2000 is a massively parallel processing system, made up of a console

system and a data parallel unit (DPU). The console is a workstation providing standard I/O

devices. For cascade, the console system is a DECstation 5000/240.

1MPL is the programming language based on C used to program the MasPar MP-1 and MP-2. It is tied to the

machine architecture described in Section 2.

3

The DPU is made up of an array control unit, or ACU, an array of processor elements, or PEs,

and a PE communication system. The number of PEs is a power of 2 in the range 1K to 16K. We

denote the number of PEs by nproc; in cascade, nproc = 2048. The ACU is a serial processor in

its own right, and it acts as a controller for the PE array. All parallel processing takes place within

the DPU.

Code can execute in any one of three places:

� All code operating on parallel (or, in MPL terminology, plural) data executes on the processors

of the PE array.

� Code operating on singular (i.e., non-parallel) data within modules of parallel code executes

on the ACU.

� Modules of singular code may execute on the console.

The console is signi�cantly faster than the ACU, and the ACU is signi�cantly faster than the indi-

vidual PEs. The MPL programming environment includes library functions to copy data between

the console and the ACU and between the console and the PE array; these copying functions incur

a slight overhead. In general, therefore, long stretches of singular code are best run on the con-

sole, short stretches of singular code within parallel code are best run on the ACU, and inherently

parallel code is best run within the PE array.

All CVL functions are called from the console. Both DartCVL and UnCvl implementations

call functions in the DPU as necessary to run parallel code. Most DartCVL functions compute

some simple scalars in the console prior to calling DPU functions.

Each PE has its own processor and data memory; cascade has 64K bytes per PE, which is

the maximum supported by the DECmpp 12000/Sx 2000 architecture. When the ACU sends an

instruction to the PEs, each PE carries it out only on data that reside physically in that PE. If

a computation requires data from two or more PEs, the PE communication system must send the

data to a common PE so that the PE can perform the operation.

The DECmpp 12000/Sx 2000 contains two networks for routing data among the PEs:

� The X-Net connects each PE to its eight immediate neighbors in a two-dimensional mesh in

which the PEs are arranged.

� The global router routes data in arbitrary communication patterns.

Although the X-Net is signi�cantly faster than the global router, CVL does not include mesh-

oriented permuting functions. DartCVL uses the X-Net whenever possible for its internal operation,

but its permuting functions are forced to use the global router.

The DECmpp 12000/Sx 2000 includes an I/O subsystem as well, but it is not used by DartCVL.

Virtualization

When a vector has more elements than there are PEs, each PE acts as a number of virtual processors.

We can think of each element as having its own virtual processor. IfN elements are spread as evenly

as possible across the PEs, the PE with the most elements contains dN=nproce, which we refer to

as the virtual processor ratio, or VPR.

Figure 1 shows two ways to organize data under virtual processing. In either case, we can view

the data as a two-dimensional array with the column corresponding to the PE number and the

row as the o�set within the PE. In cut-and-stack virtualization, the ith element (indexing from 0)

4

Cut-and-stack Hierarchical

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

0 3 6 9 12 15 18
1 4 7 10 13 16
2 5 8 11 14 17

Figure 1: Vector layout of 19 elements on 8 PEs for cut-and-stack and hierarchical virtualization. Blanks
indicate unused positions. In both cases, the VPR is 3. With cut-and-stack, each PE has either 2 or 3
elements. With hierarchical, PEs 0 through 5 have 3 elements, PE 6 (the pivot) has 1 element, and PE 7
has none.

resides in PE i mod nproc and has o�set bi=nprocc. In hierarchical virtualization, the ith element

has o�set i mod VPR and resides in PE bi=VPRc. Cut-and-stack corresponds to row-major layout,

and hierarchical corresponds to column-major.

UnCvl uses cut-and-stack virtualization, but we decided to use hierarchical for DartCVL. Cut-

and-stack has two advantages. First, it distributes vector elements as evenly as possible across the

PEs. For many operations, this even spreading makes no di�erence, but we found that it helps

in permute operations. Second, because the number nproc of processors is a power of 2 and the

VPR might not be, positional calculations can be performed slightly faster than with hierarchical

virtualization. Hierarchical virtualization has the advantage that scan operations are signi�cantly

faster than with cut-and-stack. With cut-and-stack, scan operations are performed row by row.

Each row is a scan across all PEs, and so VPR scans across all PEs are required.2 With hierarchical,

a scan operation is performed by scanning within each PE, then performing just one scan across

all PEs to distribute scan information, and then another scan within each PE. Because scans

across all PEs are relatively expensive, hierarchical virtualization yields much faster scans than

cut-and-stack.

3 DartCVL design decisions

In addition to the design decisions for DartCVL discussed above|using hierarchical virtualization

and running certain scalar computations on the console|there were other interesting facets to the

DartCVL design. This section discusses some of them.

Vector organization and access

As Figure 1 shows, unlike cut-and-stack, hierarchical virtualization can produce a highly unbalanced

load on the PEs. With cut-and-stack, each PE has either VPR or VPR�1 elements of each vector.

With hierarchical virtualization, however, some PEs have VPR elements, some have 0 elements,

and one PE has between 0 and VPR elements.

To describe vector organization, most of the DartCVL functions that run on the DPU take as

an input a structure with three pieces of information:

� the vector's VPR,

2Prins [Pri93] reports that a sophisticated pipelined algorithm improves the scan performance with cut-and-stack
virtualization.

5

� the number of the pivot PE, which is the one PE with between 0 and VPR elements, and

� the number of elements in the pivot PE, which we (inaccurately) call the \last VPR."

Our original MPL code to step through vector elements used a plural index, as in the following

example to perform elementwise integer addition of vectors with base addresses S1 and S2 into a

result vector with base address D:

struct vpr_struct {

int vpr;

int pivot;

int lastvpr;

} Vpr;

plural int *S1, *S2, *D;

plural int vpr_per_pe;

plural int i;

vpr_per_pe = (iproc <= Vpr.pivot) ? Vpr.vpr : 0;

proc[Vpr.pivot].vpr_per_pe = Vpr.lastvpr;

for (i = 0; i < vpr_per_pe; i++)

D[i] = S1[i] + S2[i];

Here, Vpr is a structure with the three �elds described above. The plural integer vpr_per_pe

holds the number of vector elements in each PE. The plural variable iproc is builtin to MPL and

contains each PE's number, between 0 and nproc� 1. The proc[] construct in MPL indicates an

action occurring in just one PE. In this case, we are assigning the value in the lastvpr �eld of the

Vpr structure to the variable vpr_per_pe in the PE whose number is the pivot �eld.

This approach proved to be relatively slow because the for-loop index i is plural. Loops with

plural conditions entail an implicit test requiring communication among the PEs. In this case, the

loop continues iterating as long as any PE has a value of i less than its value of vpr_per_pe. The

machine must execute a global-OR operation to determine if any PE satis�es this condition. We

found that this communication exacted a heavy performance cost in an otherwise simple operation.

We devised a faster method by avoiding loops with plural indices. Because plural if-statements

in MPL require no communication, we use them instead to mask o� PEs once we have exhausted

their vector elements. The resulting code is more complex but runs faster. Our �nal MPL code for

elementwise integer addition, which follows, has two further optimizations: putting variables into

registers and using pointers rather than array indexing.3

3These optimizations would normally be performed by a good optimizing compiler.

6

struct vpr_struct {

int vpr;

int pivot;

int lastvpr;

} Vpr;

register plural int *s1 = S1, *s2 = S2, *d = D;

register int i;

if (iproc <= Vpr.pivot)

for (i = 0; i < Vpr.lastvpr; i++, d++, s1++, s2++)

*d = *s1 + *s2;

if (iproc < Vpr.pivot)

for (i = Vpr.lastvpr; i < Vpr.vpr; i++, d++, s1++, s2++)

*d = *s1 + *s2;

Fundamentally, cut-and-stack allows slightly faster virtual processor looping, because only one

for-loop is required. The following code performs the same elementwise integer addition for cut-

and-stack on a vector whose length is given by len with just one for-loop:

register int steps = len / nproc;

register int leftover = len % nproc;

register int i;

register plural int *s1 = S1, *s2 = S2, *d = D;

for (i = 0; i < steps; i++, d++, s1++, s2++)

*d = *s1 + *s2;

if (iproc < leftover)

*d = *s1 + *s2;

Segment descriptors

Many CVL operations use segmented vectors, and they are a key part of the implementation of

Nesl [Ble92], a nested data-parallel language. In aNesl implementation of Quicksort, for example,

a single vector is repeatedly segmented into smaller segments, each of which represents a partition

of the data. Segmented operations treat each segment as though it were a separate vector.

CVL implementations must have an internal representation of how a vector is segmented. A

further complication is that segments may have zero length. (To see why, consider that Quicksort

may generate zero-size partitions.) A vector with n elements and m segments may therefore have

m < n, m = n, or m > n. CVL de�nes the functions mke_fov, which converts a vector of

nonnegative segment lengths into the internal representation, and len_fos, which converts the

internal representation into a vector of segment lengths.

DartCVL's internal representation for segmentation has three parts, which for a vector with n

elements and m segments are as follows:

� A vector of n nonnegative start counts. The ith start count is nonzero if and only if the ith

position is the �rst position in a segment. The start count is 1 plus the number of consecutive

zero-length segments immediately preceeding this segment.

7

� A vector of n nonnegative end counts. The ith end count is nonzero if and only if the ith

position is the last position in a segment. The end count is 1 plus the number of consecutive

zero-length segments immediately following this segment.

� A vector of m start indices. The jth start index is the position in the data at which the jth

segment starts.

For example, a vector with segment lengths 0 3 0 0 2 3 would have the following representation:

index

0 1 2 3 4 5 6 7

start count 2 0 0 3 0 1 0 0

end count 0 0 3 0 1 0 0 1

start index 0 0 3 3 3 5

Only one set of DartCVL functions|segmented reductions|uses the start and end counts as

integers. All other DartCVL functions that use the start and end counts only need to know whether

they are nonzero; that is, they treat the start and end counts as booleans.

Permuting functions

There is little leeway for optimizing the permuting functions of CVL in MPL. All CVL permut-

ing functions allow arbitrary communication patterns; there is no function exclusively for grid

communication, which would permit the implementer to use the X-Net.

The only signi�cant optimization that DartCVL performs in the permuting functions is to com-

municate via the MPL router construct for VPRs of 2 or less and the MPL function sp_rsend()

for VPRs of 3 or greater. We found by experimentation that these methods were the best available

for these VPR ranges. In either case, we send the data row by row to the appropriate destination

PEs. Although this method is simple when using sp_rsend(), it is a little more complicated when

using the router construct. The address that the data goes to within the receiving PE is com-

puted within the receiving PE in sp_rsend(), but it is computed within the sending PE|which

would produce the wrong address|in the router construct. When using the router construct

in DartCVL, we use a nested loop, running through all the receiving rows for each sending row.

Because this approach adds signi�cant overhead, we found it to be e�ective only for VPRs of at

most 2.

We also tried implementing the permutations as several faster routes through the X-Net rather

than one slower call to sp_rsend(), but even with conditions as favorable as possible to the X-net

method, the sp_rsend() call was 30% faster than the required sequence of X-Net calls, and so we

abandoned this line of research.

As we shall see in Section 4, DartCVL sometimes permutes slightly slower than UnCvl. When

DartCVL is slower, it is typically for lengths just above a multiple of nproc. At �rst, we hoped

that hierarchical virtualization would be better in such cases, for the following reason. Consider a

vector whose length is one greater than a multiple of nproc. Under cut-and-stack, this vector would

have VPR� 1 elements in PEs 1 through nproc� 1 and VPR elements in PE 0. With hierarchical

virtualization, the same vector would have VPR elements in PEs 0 through nproc=2 � 1 and 1

element in PE nproc=2. The �rst VPR � 1 rows send nproc elements with cut-and-stack but at

most only nproc=2+1 elements with hierarchical virtualization. The last row sends only 1 element

with cut-and-stack and nproc=2 with hierarchical. We hoped that each of the �rst VPR � 1 row

8

sends would be faster with hierarchical, since they infuse fewer elements into the global router. We

were wrong; they are not faster. Moreover, the last row send is much faster with cut-and-stack,

since it sends only 1 element. Overall, cut-and-stack appears to be a bit faster for permuting.

Miscellaneous features

Here, we note a few miscellaneous features of the DartCVL design.

Boolean representation: CVL includes a boolean type cvl_bool, which is up to the CVL im-

plementation to de�ne. At �rst, we de�ned cvl_bool as a char so that it would occupy only

one byte. We found certain incompatibilities with this de�nition, however, so we eventually

changed cvl_bool to int, occupying 32 bits. Although this de�nition seems to waste space,

it works. UnCvl uses essentially the same approach.

Memory e�ciency: CVL converts C arrays to CVL vectors via the c2v_fuz, c2v_fub, and

c2v_fud functions. For these functions, DartCVL is able to handle larger arrays than UnCvl.

Rank functions: We implemented the ranking functions via Jan Prins's virtualized bitonic sort.

4 Timing results

To evaluate our implementation of DartCVL, we timed all the CVL functions on cascade (nproc =

2048) using both the DartCVL and UnCvl implementations. We achieved our goal|beating

the UnCvl running times|in most cases, particularly for large vectors. This section presents a

representative subset of our timing results.

We timed each function over a speci�c set of vector lengths. For each length, we performed

ten timing tests, using randomly-generated data in each test. Unfortunately, the timer of the

MasPar MP-2 often gives erroneous results. These outliers are so glaring, however, that they are

easy to spot and remove, which we did.

The graphs that follow show the ratio of DartCVL to UnCvl running times over selected

functions. DartCVL is faster when the ratio is below the dotted line at y-coordinate 1. Each data

point represents the average over the ten runs (with outliers removed) for a speci�c vector length.

We tested the set of lengths 1; 1024; 2048; 2049; 3072; 8192; 8193; 9216; 30720; 30721; 31744; 61440;

61441; 62464. (Note that the horizontal point spacing for each function is not proportional to the

vector length.) Each length is either an integer multiple of nproc, an integer multiple of nproc

plus nproc=2, or an integer multiple of nproc plus 1. We expected that DartCVL would perform

relatively well on vector lengths that are an an integer multiple of nproc and not as well on the

other lengths. We have graphed ratios only for functions that operate on vectors of integers; results

for vectors of doubles or booleans are essentially the same.

Figures 2 and 3 show the relative speeds of DartCVL and UnCvl on scan and reduce func-

tions for addition, maximum, and logical-and. The scan (both unsegmented and segmented) and

segmented reduce functions (which calls a segmented scan function) are where we expected the

advantages of hierarchical virtualization to be most prominent, and this was indeed the case. For

long vectors, scans are over �ve times faster in DartCVL than in UnCvl, but UnCvl times beat

DartCVL for short vectors. For the unsegmented reduce functions, UnCvl is consistently slightly

faster than DartCVL. We believe that this behavior is due to virtual processor looping under

cut-and-stack being slightly faster than with hierarchical virtualization, as discussed in Section 3.

9

and sezand suzmax sezmax suzadd sezadd suz

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 2: Ratio of DartCVL to UnCvl times for add, max, and logical-and scan functions. In this and all
of the following graphs, DartCVL is faster when the ratio is below the dotted line at y-coordinate 1.

and rezand ruzmax rezmax ruzadd rezadd ruz

3

2.5

2

1.5

1

0.5

Figure 3: Ratio of DartCVL to UnCvl times for add, max, and logical-and reduction functions.

not wuzeql wuzdiv wuzmul wuzmax wuzadd wuz

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

Figure 4: Ratios for add, max, multiply, divide, equality, and logical-not elementwise functions.

10

bck pezbck puzdpe pezdpe puzsmp pezsmp puz

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Figure 5: Ratio of DartCVL to UnCvl times for permute functions without ags.

bfp pezbfp puzdfp pezdfp puzfpm pezfpm puz

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Figure 6: Ratio of DartCVL to UnCvl times for permute functions with ags.

rep vezext vezdis vezdis vuz

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

Figure 7: Ratio of DartCVL to UnCvl times for distribute, extract, and replace functions.

11

pk2 lezpk2 luzpk1 levpk1 luvind lezind luz

7

6

5

4

3

2

1

0

Figure 8: Ratio of DartCVL to UnCvl times for index and pack library functions.

len fosmov fovmke fovv2c fuzc2v fuz

8

7

6

5

4

3

2

1

0

Figure 9: Ratio of DartCVL to UnCvl times for facilities functions to convert between vectors and C
arrays, convert between segment descriptors and length vectors, and move vectors.

Figure 4 shows the relative speeds of DartCVL andUnCvl on six elementwise functions. Again,

UnCvl is faster for short vectors (we believe due to the extra for-loop overhead in DartCVL) but

DartCVL is faster for long vectors. If UnCvl had used the optimizations of DartCVL|register

variables and incrementing pointers|it probably would have been consistently faster, although the

relative di�erence would diminish with increasing VPRs.

Figures 5 and 6 show the timings for unsegmented and segmented permute functions. Figure 5

includes functions for simple permutes, permutes with default values, and back permutes (i.e.,

gather operations). Figure 6 includes functions that take ags indicating which elements are to be

permuted in simple, default, and back permutes. DartCVL is faster than UnCvl for most, but not

all, vector lengths. Almost all cases in which UnCvl beat DartCVL were for vectors lengths equal

to one greater than a multiple of nproc, as discussed in Section 3.

Figure 7 shows the timings for functions that distribute a scalar over an unsegmented vector,

distribute a di�erent scalar to each segment of a vector, extract a scalar from each segment of a

vector, and replace a value in each segment of a vector. DartCVL was usually faster than UnCvl,

12

although UnCvl was a bit faster for some vector lengths.

Figure 8 shows the timings for the library functions that create index vectors and pack vectors.

Library functions are those that may be implemented solely by calls to other CVL functions but may

have alternate, faster implementations. Both DartCVL and UnCvl implement the unsegmented

index function ind_luz directly, but DartCVL is faster because the for-loops are better optimized.

Both implementations perform the segmented index function ind_lez by calls to dis_vez, add_sez,

and add_wuz; DartCVL's advantages in these functions give it a marked advantage in ind_lez.

The pack functions pk1_luv and pk1_lev merely return counts of how many items are to be

packed, and so they are simply reduce functions to add up nonzero ags. DartCVL is faster on

segmented vectors for the same reason as for add_rez; we are not sure why the behavior for pk1_luz

di�ers from the similar add_ruz. The functions that actually perform the packing are pk2_luz and

pk2_lez. DartCVL and UnCvl implement these functions rather di�erently. DartCVL generates

indices using add_suz and then calls a ag permute function to move the data. UnCvl moves the

data directly, performing a monotonic route row by row. For each row, each PE sends at most one

item and receives at most one item, and so the routing is particularly fast on the MasPar MP-2.

Finally, Figure 9 shows timings for various facilities functions. Functions c2v_fuz and v2c_fuz,

which convert between C arrays and CVL vectors are quite a bit faster in DartCVL due to hier-

archical virtualization. DartCVL uses the MPL functions blockIn() and blockOut() to perform

aggregate transfer data between the console and PE memories in hierarchical order. UnCvl trans-

fers data between the console and ACU memories via the MPL functions copyIn() and copyOut(),

but it also has to serially move the data between the ACU and PE memories. DartCVL is faster

for large vectors in mov_fov, which copies a vector, because it uses the MPL function p_memcpy()

whereas UnCvl copies a row at a time. UnCvl is faster than DartCVL for the functions mke_fov

and len_fos, which convert between vectors of segment lengths and segment descriptors. We be-

lieve this di�erence is due to the relatively complex structure of the DartCVL segment descriptors.

We would like to improve these two functions in DartCVL, because they are invoked fairly often.

5 Conclusion

We believe that our implementation of DartCVL maximizes the advantages of hierarchical virtual-

ization. Moreover, by careful optimization, we have minimized the disadvantages.

We have measured the individual CVL functions in isolation, rather than as they would be

executed in actual code. We do not know whether DartCVL would be faster than UnCvl in actual

code generated from, for example, Nesl source. We plan to measure which implementation is faster

in practice once we assemble a test suite of Nesl code.

The DartCVL software should become publicly available via anonymous ftp sometime during

the spring of 1995. We plan to continue tuning it.

Acknowledgments

Radu Bacioiu, Lin Chen, Xiangyang Liu, and Georgi Vassilev participated in the design and imple-

mentation of DartCVL while they were at Dartmouth. We are grateful to Rik Faith and Jan Prins

of the University of North Carolina at Chapel Hill for supplying us with UnCvl source code (which

the students refrained from examining while implementing DartCVL) and for helpful discussions

about the design. Thanks also to Guy Blelloch and Jay Sipelstein of Carnegie Mellon University

for technical support. The purchase of cascade was made possible in part by National Science

Foundation Grant CDA-9222806.

13

References

[BCH+93] Guy E. Blelloch, Siddharta Chatterjee, Jonathan C. Hardwick, Margaret Reid-Miller,

Jay Sipelstein, and Marco Zagha. Cvl: A C Vector Library Manual, Version 2. Techni-

cal Report CMU-CS-93-114, School of Computer Science, Carnegie Mellon University,

February 1993.

[Ble92] Guy E. Blelloch. Nesl: A nested data-parallel language. Technical Report CMU-CS-

92-103, School of Computer Science, Carnegie Mellon University, January 1992.

[Dig92] Digital Equipment Corporation, Maynard, Massachusetts. DECmpp Programming Lan-

guage (ANSI) User's Guide, December 1992.

[FHS93] Rickard E. Faith, Doug L. Ho�man, and David G. Stahl. UnCvL: The University of

North Carolina C Vector Library. Technical Report TR93-063, Department of Computer

Science, University of North Carolina at Chapel Hill, May 1993.

[Pri93] Jan Prins. Private communication, June 1993.

14

	DartCVL: The Dartmouth C Vector Library
	Dartmouth Digital Commons Citation
	Authors

	tmp.1600279121.pdf.KbPw_

