
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

5-1-1996

DartFlow: A Workflow Management System on the Web using DartFlow: A Workflow Management System on the Web using

Transportable Agents Transportable Agents

Ting Cai
Dartmouth College

Peter A. Gloor
Dartmouth College

Saurab Nog
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Cai, Ting; Gloor, Peter A.; and Nog, Saurab, "DartFlow: A Workflow Management System on the Web using
Transportable Agents" (1996). Computer Science Technical Report PCS-TR96-283.
https://digitalcommons.dartmouth.edu/cs_tr/132

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/132?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

DARTFLOW: A WORKFLOW MANAGEMENT SYSTEM ON THE
WEB USING TRANSPORTABLE AGENTS

Ting Cai, Peter A. Gloor, Saurab Nog

Department of Computer Science

Dartmouth College

Hanover, NH 03755

{tcai,gloor,saurab}@cs.dartmouth.edu

Technical Report PCS-TR96-283

Abstract

Workflow management systems help streamline business processes and increase productivity.

This paper describes the design and implementation of the DartFlow workflow management

system. DartFlow uses Web-browser embedded Java applets as its front end and transportable

agents as the backbone. While Java applets provide a safe and platform independent GUI, the

use of transportable agents makes DartFlow highly flexible and scalable. This paper describes

the design and implementation of DartFlow, as well as a workflow application that exploits

DartFlow’s agent-based design.

1. Introduction

Rising costs, international competition, and rapidly changing boundary conditions require fast and

flexible adaptation to a quickly evolving business environment. While earlier improvement efforts left

the internal business organization intact, business process reengineering (BPR) [Ham92] places its

whole emphasis on rebuilding the corporation. As enabling technology for BPR, workflow

management has experienced tremendous growth in the last few years. Workflow management deals

with the specification and execution of business processes. General workflow specifications include

the actions to be performed, routing information and policies that describe the organizational

environment. By computationally supporting business processes, workflow management systems

reduce reaction time to changing requirements and the emergence of new organizational concepts.

 The authors are listed in alphabetical order.
This research is partially supported by ONR contract number N00014-95-1-1204 and AFOSR contract number
F49620-93-1-0266.

Cai, Gloor, Nog: DartFlow May 14, 1996- 2

Workflow management systems allow one to dynamically define, execute, manage, and modify

business processes. It is irrelevant whether these are business-critical processes such as opening a bank

account, buying insurance, applying for credit, or company-internal processes such as job

applications or procurement of new office supplies.

From a software engineering perspective, workflow management systems are particularly attractive:

The use of workflow management systems isolates the control flow of an application from the

domain-specific business logic. Permanent data and operations on this data, such as bookkeeping, are

much more stable than the business process itself. By logically separating the process control flow

from the data, it is much easier to modify the business process without having to change the

application and data structure. Workflow management systems are also particularly well suited for the

integration of existing application modules into new applications. This makes it much easier to

reengineer legacy applications so that old and new application components can be integrated easily.

For widespread acceptance of workflow management systems, particularly between different

companies, adherence to interface standards is of paramount importance. While the Workflow

Management Coalition (WfMC) reference model (Figure 1) tries to define a general framework, it still

falls short of assuring interpretability between different workflow management systems.

Process
Definition

Tools

Administration
&

Monitoring
Tools

Workflow
Client

Applications

Invoked
Applications

Workflow
Engine(s)

Workflow API & Interchange formats

Workflow Enactment Service
other Workflow
Enactment Service

Workflow
Engine(s)

Figure 1 WfMC Reference Model

A different approach to assure interpretability pursued by most workflow vendors today is to use the

World Wide Web [Ber92] as the least common denominator. Unfortunately, WWW integration is

mostly limited to offering a web browser interface to different proprietary workflow engines. In this

paper we propose a different approach using open and portable Web technology not only as a front

end for the workflow client applications, but also for the implementation of the workflow enactment

service and for administration and monitoring. Section 2 surveys related work and identifies the main

Cai, Gloor, Nog: DartFlow May 14, 1996- 3

research problems. Sections 3, 4 and 5 introduce the design and implementation of our agent-based

DartFlow workflow management system. Section 6 illustrates the use of DartFlow on a sample

process, the account opening process for a bank. We conclude by identifying topics for further

research.

2. Related Work and Issues Addressed

Although workflow management systems still have a long way to go until they can be considered

mature technology, the first generation of commercial systems has started to find wide acceptance.

To name a few, systems such as IBM’s FlowMark, Action Technology’s Action Workflow System,

Staffware’s Staffware and Wang’s OPEN/Workflow [The95], offer usable solutions today.

Nevertheless, all of these commercially available systems exhibit common weaknesses. Commercial

workflow systems lack transactional properties that have been addressed in database systems research;

such as concurrence, availability, performance, scalability, and fault-tolerance [Alo96]. While

addressing most of these issues, our work also tackles additional problems that are inherent in the

nature of workflow systems:

• Extendibility:

A few systems such as DEC Linkworks [Dec95] allow the user to dynamically modify a

particular process instance by rerouting the work item in the worklist to additional users. But

most workflow systems are currently limited to executing canned processes that have been

previously defined and are stored in the internal process database of the workflow enactment

engine.

• Flexible organization structure:

Current workflow systems have a built-in database of the organizational structure that defines

the recipients for each work item. This mechanism does not scale well for large workflows in

large organizations. It is also hard to keep up to date for rapidly changing processes and

organizations. There have been some proposed solutions, most prominently language-based

approaches such as the one by DEC [Bus94]. Unfortunately most of these approaches currently

exist only on paper.

• Structured and unstructured processes:

Workflow systems are well suited to support structured processes (Figure 2). Unfortunately,

complex real-world processes frequently have an unstructured as well as a structured part. For

example, a “new product approval process” consists of informally collecting opinions of

colleagues as well as a predefined approval process within the company hierarchy. Commercial

workflow systems are poorly equipped for handling such semi-structured processes. IBM is

working on a possible solution by combining its workflow system FlowMark with the

Cai, Gloor, Nog: DartFlow May 14, 1996- 4

groupware system Lotus Notes [The95]. Obviously this approach provides only the

technological infrastructure; it is still up to the workflow programmer to implement interfaces

to unstructured workflows.

Workgroup

Process Type unstructured

(ad-hoc) processes

support of

teamwork

Number of "short" processes in

Participants small team

per Process

few participants per

process

User Interaction Users decide when

and what information

they want to receive

Emphasis Sharing Information

structured processes

productive

business processes

company-wide

 many different

 participants

 Users are presented

with information on

which they have to

make decisions

Routing Information

Workflow

Figure 2 Workgroup and Workflow Processing

In the remainder of this paper we describe the design and implementation of our agent-based

DartFlow system. DartFlow is particularly well suited to address the three problems raised above.

3. Workflow by Agents

Various approaches to workflow management systems have been explored in the past. Most existing

systems have been based on transaction-processing systems, extended e-mail systems, or rule-based

systems. Our solution to an efficient, flexible and robust workflow management system is to use

transportable agents. A transportable agent is a program that can migrate under its own control from

machine to machine in a heterogeneous network. In other words, the program can suspend its

execution at an arbitrary point, transport to another machine, and resume execution on the new

machine. These agents may have certain advantages. First, they may reduce network traffic, because

they eliminate intermediate data transfer by moving to the network location of the user or resource.

Second, they support systems such as mobile computers that have unreliable or non-permanent

network connections, because they can travel into the network and act autonomously even if their

home machine, e.g., a laptop, has been disconnected.

Transportable agents are particularly suitable for workflow management systems. Each business

process can be handled by an agent. The agent follows the steps in a previously defined process,

Cai, Gloor, Nog: DartFlow May 14, 1996- 5

migrates to each site and gathers information. While traveling, an agent carries process-specific code

and data; there is no need to consult the central database server at every step.

Since each business process instance is controlled by a transportable agent, an agent-based workflow

system allows dynamic modification of a particular process. If, for example, an exception occurs

during a process, the agent can contact an exception handler server. The rules stored on the server

modify that particular process instance without affecting the general process definition. An agent can

also acquire knowledge during a business process, such that there is no need to contact the exception

handling server again the next time a similar exception occurs. Also, intelligent routing can be

implemented efficiently by transportable agents. If one user is busy or absent, the agent can jump to

the next candidate.

During a business process, some information from a remote site may be needed, such as the credit

history of an applicant from a central credit bureau. Instead of transferring all the data to the

requesting site, a small agent can travel to the remote site, eliminating intermediate traffic and

improving data integrity, since the data never leaves the repository. In addition, the remote site only

needs to provide a primitive query interface. There is no need to build a application-specific high

level interface at each remote site, since agents can implement the best interface for themselves and all

intermediate communication are local.

Since agents are full programs, they include the potential to explore parallelism. Each process can be

regarded as a collection of tasks, the ordering and scheduling of which are subject to dependence

constraints. Data dependence exists when tasks produce data that are needed by other tasks.

Traditional compiler techniques, such as dependency graphs analysis could be used to identify

spurious or nonessential dependencies and executes independent tasks in parallel. For example, in an

unstructured process, such as informally collecting opinions of colleagues, several child agents can

be created to collect data independently, then join together.

interal
state

logic
(methods)

logic interpreted
at each node

each agent in the workflow
carries specific knowledge
about how it needs to be processed

Autonomous
Agent

node

Figure 3 Transportable Agents for Workflow Management

Cai, Gloor, Nog: DartFlow May 14, 1996- 6

The transportable agent knows where within the workflow process it needs to travel (Figure 3). It also

stores some basic knowledge about its internal state and behavior. When an agent arrives at the user’s

workstation, it acts according to the information it is carrying within itself. The agent stores a process

map (routing information) and generic object information that can be used at various steps in the

workflow, consisting of state variables to store the application-specific data and methods for the

particular object’s class. This means that each agent executing a workflow process has detailed

knowledge about how to execute its task, i.e., it stores the business rules for the successful execution

of each step of the task.

In short, transportable agent-based workflow management systems can be more efficient, flexible and

fault tolerant.

4. The Agent Tcl System

For our research we are using a transportable agent system called Agent Tcl. Agent Tcl [Gra95,

Gra96] is a system for transportable agents currently being developed at Dartmouth College. Agent

Tcl extends the standard Tool Command Language (Tcl) [Ous90], a high-level scripting language

that was developed in 1987 and has enjoyed enormous popularity. Agent Tcl addresses four main

goals:

• Reduce migration to a single instruction and allow the instruction to appear at arbitrary points,

and, once the instruction is called, transparently capture the current state of the agent and transmit

this state to the destination machine. The programmer should not have to explicitly collect state

information. The system should handle all transmission details, including the possibility of the

destination machine being disconnected or having a new network address.

• Provide transparent communication among agents. The communication primitives should be

flexible and low-level, but should work identically regardless of whether the agents are on the

same or different machines, and should hide all transmission details.

• Provide a simple scripting language as the main agent language, but support multiple languages

and transport mechanisms, and allow the straightforward addition of a new language or transport

mechanism.

• Provide effective security in the uncertain world of the Internet.

Figure 4 shows the architecture of Agent Tcl. The agent server keeps track of the agents that are

running on its machine, accepts and authenticates agents arriving from other hosts and restarts these

agents in their own interpreter, and provides inter-agent communication facilities. All other services

Cai, Gloor, Nog: DartFlow May 14, 1996- 7

are provided by agents. Such services include navigation, network sensing, group communication,

fault tolerance, and access control. The agents themselves are separate processes running the

appropriate language interpreter, which has the capability to capture the agent’s state and send this

state to a remote agent server.

Traffic
Monitor

Access
Control

Navigation
 Agent

Agent Tcl
 Server

Traffic
Monitor

Agent Tcl
 Server

Access
Control

Navigation
 Agent

AgentAgent

Migration

Host X Host Y

Figure 4 The server-based architecture of Agent Tcl. The agent server coordinates the activities of all

local agents and accepts new agents that are arriving from other machines. All other services are provided

by specialized agents such as the navigation agent and access control agent

There are various advantages of using Tcl for implementing agents. Tcl is easy to learn and use due

to its simplicity and its familiar imperative style. Tcl is interpreted so it is highly portable and easier to

make secure, and, in fact, the existing Safe Tcl package already supports the secure execution of

untrusted Tcl scripts [Bor]. Tcl can be embedded in other applications, allowing these applications to

implement part of their functionality with mobile Tcl agents. Finally, Tcl can be extended with user-

defined commands, which makes it easy to tightly integrate agent functionality with the rest of the

language.

A set of special commands was added to Tcl to create Agent Tcl. An agent uses these commands to

migrate from machine to machine and communicate with other agents. The most important

command is agent_jump, which migrates an agent from one machine to another. The

agent_jump command captures the internal state of an agent, encrypts and digitally signs the state

image, and sends the state image to the agent server on the destination machine. The destination

server restarts the agent from the exact point at which it left the previous machine.

An alternative to agent_jump is mobile_jump, another Agent Tcl command for migration if

the network connection is not constant. mobile_jump uses a support system of dock machines

Cai, Gloor, Nog: DartFlow May 14, 1996- 8

[GKN96] to ensure that agents that want to jump to or from a mobile machine, like a laptop, can do

so at the earliest opportunity.

The Agent Tcl system also provides various communication mechanisms (message passing, direction

connections, and remote procedure calls (RPC) [Nog96]) for agents to interact efficiently and

effectively. Other details about Agent Tcl can be found on the Web1.

5. Design of DartFlow

DartFlow is composed of four salient components.

• The user interface.

• Transportable process-agents that carry the data and flow control information.

• Agent servers that implement major functionality like information routing, error-handling etc.

• The worklist server to communicate the results from the process-agents to the user interface.

Process
Description

(Tcl)

Administration

Monitoring

Agent Tcl-Tools

Workflow Client

Netscape

Java Worklists

Agent Server
Agent-Tcl

Workflow API & Interchange formats

Workflow Enactment Service
other Workflow
Enactment Service

Workflow
Engine(s)

Worklist Server

Figure 5 DartFlow System Architecture in the WfMC framework (cf. Figure 1)

Figure 5 illustrates the overall system architecture and implementation of the DartFlow system. This

section discusses the four main components as depicted in Figure 5.

1http://www.cs.dartmouth.edu/~agent.

Cai, Gloor, Nog: DartFlow May 14, 1996- 9

5.1. User Interface

DartFlow’s user interface employs Java-enabled [Sun94] web browsers. Though not strictly required

(alternatives are Tk [Ous94] or X11 programming), the web browser based UI is very useful because

it provides a platform independent user interface. DartFlow’s UI also employs Netscape frames,

which are quickly becoming a standard feature of all web browsers. A snapshot of the user interface

is shown in Figure 6. The top frame consists of a series of buttons, which link to the appropriate

forms. Thus, if users wish to fill in a bank account application form, they click on the appropriate

button and a new form appears in the bottom frame of the browser.

 Figure 6 Initial screen of the on-line Figure 7 Worklist applet

 bank account opening process (cf. section 6)

The middle frame displays the user’s worklist (Figure 7). The worklist applet gets information about

the items waiting in the worklist from the worklist server (see 5.3). When the applet starts, it brings up

a login screen asking for the username and password (Figure 6). This provides the standard

password-based security mechanism for DartFlow and ensures that users can only look at their

worklist after they have been authenticated. After successful authentication, the applet establishes a

socket connection to the worklist server which resides on the same machine as the HTTP Web server.

This is a limitation imposed by the security features of Netscape; a Java applet running inside

Netscape can only open a connection to the server from which it was loaded. The applet then sends

the user name to the worklist server. The worklist server, on receiving the request, sends the contents

of the worklist for that user to the applet where it is displayed. At any given point in time, users may

Cai, Gloor, Nog: DartFlow May 14, 1996- 10

have many concurrent applets accessing their worklist. The worklist server takes care of keeping all of

them synchronized and up to date.

Clicking a worklist entry brings up that particular form on the user’s web browser. At this point, users

can fill out or modify parts of the form and resubmit it.

5.2 Process Agents

The submission of a modified form by any user invokes a CGI script. The script either spawns a new

to carry the data or wakes up an old agent if the form was modified and not submitted for the first

time. A single transportable agent is responsible for taking care of a process instance from start to

finish (hence the name process-agent). A unique ID is attached to each new form (which is also

treated as the ID of the process-agent) in the system. These IDs are never reused so as to enable each

submitted form to be uniquely identified. The agent parses the contents of the form into its

constituent fields and then proceeds to complete its task with the help of Agent Servers (see 5.3)

which provide the business logic in DartFlow. The process-agent jumps to the machine where the

intended agent server is and then either initiates a meeting or uses the higher level Agent RPC

[Nog96] to communicate with the appropriate server. The server, after processing the request, sends

the results back to the agent. Tcl allows these results to be Tcl scripts which the agent can evaluate to

dynamically modify its behavior or its content. This mechanism provides certain distinct advantages:

• Adaptation and Specialization:

Since each transportable agent contains its own process description, DartFlow has the capability

to adapt each instance of a task to its specific needs. Each of the tasks grows and evolves

independent of the other tasks in the system allowing DartFlow to deal flexibly with events as

they unfold.

• Extendibility

Tcl, being an interpreted language, provides many advantages like enhanced portability that are

not available to programs written in standard programming languages like C or C++. Tcl agents

can send or receive Tcl procedures and evaluate them. Thus a running agent can overwrite its

existing procedures or create new ones on the fly. This is one way in which agents can "learn"

things. It also makes the task of writing the agent servers much easier because the servers can

send scripts to agents that, when evaluated, make the agents do the right things depending on

their individual constitution (variables, declared functions etc.). This script evaluation way of

passing information is used by the organization server (see 5.3) to convey activity trajectories

to newly created process-agents.

Cai, Gloor, Nog: DartFlow May 14, 1996- 11

Each step in a process (“task”) might consist of many task steps (“activity”). Thus the process-

agent performs arbitrarily complex processing (like accessing databases or devices like printers etc.)

to accomplish each task. When the task has been completed and it needs the attention of another

human being in the system, the agent jumps to the worklist server (see 5.4). There it saves the data it

has been carrying to the disk and sends a message to the worklist server requesting it to add an entry

to the worklist of the next recipient (the process-agent knows who the next person in the hierarchy

is). The form appears in the Java worklist of the target person and the process repeats from here on.

The agent then saves itself to disk in a form that can be restarted when the next user submits the

modified form.

5.3 Agent Servers

The agent servers2 contain the core functionality of DartFlow. They contain and protect vital

organization and process specific knowledge, while making relevant parts of it available to the agents

as and when necessary. As an agent progresses towards its goal of successfully completing the

business process, it talks to various servers that provide it with the information and functionality that it

needs to accomplish the individual tasks.

Presently we have implemented two agent servers, that provide the flexible base structure around

which DartFlow is built. These are the organization hierarchy server and the tracking server.

• The company's chain of command is encapsulated inside the organization server. The server

contains generic process flow information for each type of process as well as information about

the structure of the company. A newly created process-agent has no knowledge of the

organization except that its first step needs to be to query the organization server. The process-

agents thus bootstrap themselves by querying the organization server with their type (the process

they are implementing) and their source (the user-ID of the person who generated the form). The

organization server returns the task list (ordered list of tasks) to be followed by the process-agent

to complete its mission. This task list is computed by mapping the generic process flow

information to the particular instance that the agent is implementing. Thus, the organization

server implements information routing within the DartFlow system.

Since the server is a separate entity, it can implement arbitrarily complex models of organization

without increasing the complexity of an individual process-agent. A company may decide to

modify the organization server at any time (organizations are changing all the time) and the

2 DartFlow agent servers are agents acting as servers. They are different from the agent server which is part of Agent
Tcl architecture.

Cai, Gloor, Nog: DartFlow May 14, 1996- 12

changes will be apparent as soon as the server has been updated. This design thus provides a

flexible organization structure without placing additional complexity and processing load on the

rest of the workflow system. There are also various advantages in letting each process-agent carry

its complete routing information. While it reduces server interaction and performance bottlenecks

substantially, it also allows the process-agent to perform intelligent routing. The agent can take

advantage of the inherent parallelism in the process in a way best suited to the present

circumstances.

• Allowing process-agents to carry their complete task list has many advantages. However, it

increases the response time of the system to changes because the process-agents that have already

been launched are self contained and hence to do not interact with agent servers on a regular

basis. Thus changes made to the knowledge base of the servers is not immediately reflected in the

behavior of process-agents. The tracking server solves this problem in DartFlow by coordinating

with the worklist server (see 5.4). Each process-agent in the system has to contact the worklist

server at the end of each task it accomplishes to display the results to the next person in the

hierarchy.

Each newly created agent, after getting its task list from the organization server, goes and registers

itself with the tracking server using the 3-tuple <agent_ID, process_type, task list>. The tracking

server thus keeps track of all alive agents and their sequence of activities. When something

changes in one of the agent servers it notifies the tracking server about the affected parts. So if

the organization server changes, the tracking server is informed about the affected activity

trajectories. The tracking server, using the information it has about all live process-agents, figures

out the list of affected agents and sends it to the worklist server. When that process-agent comes to

the worklist server to display the updated forms, it is notified to return to the appropriate server

(only the organization server presently). Thus the process-agent is informed that the system has

been modified and it can get the modified information from the appropriate server.

Changes take effect at the end of a process-agent's current task. Hence all affected agents will be

modified before they begin their next task. This is pretty good response behavior and coupled

with the fact that the tracking server generates minimal network traffic (it does not keep track of

where an agent is presently) makes the solution even more attractive.

The last thing a process-agent does before it exits, having completed its task, is to jump to the

tracking manager and inform it that it is no longer running. This helps in keeping the

information available to the tracking server updated.

Figure 8 gives an overview of the way the various components of DartFlow interact with each other.

Cai, Gloor, Nog: DartFlow May 14, 1996- 13

ormal Process:

. Process-agent sends the process type and source
D.
. Organization server returns the task list.
. Process-agent registers with the tracking server.
. At the end of each task, process-agent informs the
orklist server.
. Worklist server updates the display.
. Users submit new data, returns to step 4.

Process
Agents

Organization
Server

Tracking
Server

Worklist
Server

Java-enabled
Web GUI

1

2

3

4
6

5

C

A

B

D

E

Dynamic Changes :

A. In case of any changes in the organization chart, the
organization server informs the tracking server of the
affected users and processes.
B. Tracking server informs the worklist server of the
affected agents.
C. Next time process-agent contacts the worklist server,
the worklist server checks if that agent is affected.
D. Process-agent contacts the organization server.
E. Organization server returns the new work list.

Figure 8 Overview of DartFlow

The agent servers thus form the backbone of DartFlow and provide its flexibility. They make the

system very easy to modify and maintain while protecting the domain-specific business logic. Since

the system consists of functionally independent agent servers it makes DartFlow scale well while

allowing for graceful degradation in case of failures.

We are currently in the process of implementing an error-handling server for DartFlow. The error-

handling server will be contacted in case a running process-agent encounters an error condition. The

error-handling server may initially try some simple solutions like redirecting the agent to another

server or, in case of a problem, alerting the system administrator. This method allows for flexible on

the fly error handling, an elusive feature in most of the commercial workflow systems, and relieves

the process designer of having to anticipate complex error conditions.

5.4 Worklist Server

The worklist server performs a couple of major functions. It maintains the worklists and updates

information on active clients and also informs process-agents that they have been recalled by some

agent servers(s) (based on the information sent by the tracking server). The worklist server has been

Cai, Gloor, Nog: DartFlow May 14, 1996- 14

written in C because of the amount of list management required. Because of Netscape’s socket

security features for downloaded Java applets, the worklist server has to reside on the same machine as

the web server (httpd). Each process-agent, once it successfully completes a task from its task list and

requires human attention, sends a message to the worklist server, adding itself to the worklist of the

next user.

Forms
Agent Tcl

Worklists Java

Worklist-Queue

Client (Netscape browser) Worklist Server

submit form

request

display worklist

C Sockets

display form
Tcl

Java Script

worklist

update worklist

Figure 9. Communication protocol between worklist server and GUI

The Java GUI maintains a socket connection with the worklist server and whenever anything is added

or deleted to the worklist of the user, the Java applet is immediately notified and updates the client

(Figure 9). A user logged in from multiple places simultaneously will see the same worklist.

6. A Sample “Real World” Process: Opening a Bank Account

DartFlow has been successfully used for implementing some simple but real-life business

applications. We present here a hypothetical bank account-opening process “on the Web”.

Figure 10 displays the outline of our bank account opening process. The arrows indicate flow of

information. Customers log into the DartFlow system as new-user and fill out the HTML form

presented to them by the browser. The form asks for general information like name, social-security

number, address, yearly income, initial deposit amount, etc.

When users have filled out all the details, they press the “Submit Form” button and the associated

CGI script generates a process-agent to take care of the new application. The process-agent, first gets

its task list from the organization server and then registers itself with the tracking server. Using the

information provided by the organization server the process-agent goes to a Credit-History database.

This database may be in-house or provided by some other independent credit-rating agency. There

the process-agent meets with the database agent (which guards access to the actual database and

prevents misuse) and forwards its query to it. The database agent performs the query and returns the

result to the process agent. The result contains either a credit-history report or an error condition like

Cai, Gloor, Nog: DartFlow May 14, 1996- 15

Customer Representative Supervisor Back Office

Name

Social Security #
Address

Initial Deposit
Occupation
Yearly Income

Information Form

Submit Form

Credit
History

Database
DatabaseDatabase

DocumentAccounts

Information
Form

Credit History
Report

ACC REJ REF

Information
Form

Credit History
Report

ACC REJ

FORM +

Account #

Letter of
Rejection

Signature Card

Contract

Initial Deposit

Mail

ATM Card

& Cheque

Book

Sign

Form

Process

Deposit

Receipt

Sign Contract & Card
Fill Deposit Form

Data-
 base

Agent

Data-
 base

Agent

Data-
 base

Agent

Figure 10 Sample opening of an account over the Web

• The name and social-security number do not match.

• The database has no record for this social-security number.

The process-agent,, at this point, may decide to query other databases. Eventually, when enough

credit-history information is available, the process-agent decides to jump to a customer representative

or a manager depending on the amount of initial deposit and the type of deposit. This is an internal

check mechanism built to prevent the bank from being involved in money laundering. In our case, if

Cai, Gloor, Nog: DartFlow May 14, 1996- 16

the deposit is greater than $2000, the form is routed to a manager, otherwise to a customer

representative. Depending on the credit history report the customer representative may decide to

accept, reject, or refer the application to the manager. The manager decides on these referred cases as

well as on high-deposit (> $2000) cases.

If the application is rejected, the process-agent meets with a document database agent and gets the

template of a standard rejection letter. It then fills in the appropriate information like the name,

address, and the address of the credit-history provider. The letter is printed, probably on the printer in

the manager's office, and thus appears on the manager’s desk. At this point the DartFlow process-

agent has completed its task and exits. The manager signs the letter (as a good PR exercise and to

provide the user with a person to whom to address complaints) which is then mailed to the user.

If the application is accepted, the process-agent meets with the accounts database agent, sets up the

account information, and gets an account number for the new account. It then retrieves the welcome

letter, appropriate contract forms, the signature card, and the initial-deposit form from the document

database. The process-agent fills in the appropriate information and either prints the documents in

the back office to be mailed to the user, or allows the user to print the documents on the local printer.

The user signs the contract and signature card, fills in the initial deposit form and mails everything to

the bank. The documents are received and handled by the back-office. The deposit is made and the

user is mailed a receipt, an ATM card and a check book.

DartFlow offers major advantages over traditional workflow systems even when implementing a

simple process like the one described here:

• There is a thread of control attached to each submitted application. Thus, a process-agent can

take individual actions depending on how it progresses. For an applicant with excellent credit

history the process may be shortened while additional databases might be consulted for an

applicant who either doesn't have an extensive credit history or is a borderline case.

• While an agent carries its routing information with itself, the general “role to specific user”

mapping is done for each case individually. So, if on a particular day a customer representative

is not available, the system will directly reroute new applications to other customer

representatives’ worklists.

• Agents can deal intelligently with unexpected error conditions that occur during the process. If,

for example, a particular social-security number does not exist in the regular database, the

agent can decide to consult alternate databases. If it fails there, too, it may decide to log an

error report and ask for human intervention.

Cai, Gloor, Nog: DartFlow May 14, 1996- 17

7. Summary and Future Work

In this paper we have discussed the design and implementation of DartFlow, a workflow management

system, using two emerging technologies: the world wide web and transportable agents. The emphasis

was on ameliorating some of the nagging problems like lack of flexibility, adaptation, specialization,

and intelligent error handling that plague commercial workflow systems. We still have a long way to

go for our stateless agent-based workflow system to reach the level of reliability and performance

required for real business processes of real companies. Nevertheless, we are convinced that our

approach offers new and extremely promising solutions to general workflow problems that are hard

to solve with conventional systems.

We plan to implement a real time on-line connection to a large repository of generalized business

processes, the MIT process handbook [Mal93]. The idea is to use the process handbook as a rule base

of organizational knowledge for the agent that can be consulted in case unanticipated situations arise.

Another concept that can be nicely supported by agent based workflow is to enable agents to learn in

order to improve process quality. To improve the quality of the workflow process, the autonomous

agent could be made capable of learning during its lifetime by augmenting or modifying its own

functionality as well as improving a persistent knowledge base of organizational knowledge.

On a more practical and implementation oriented level we are exploring options to make the

DartFlow system more scalable and more easily distributable by getting rid of a dedicated socket for

worklist management.

Acknowledgments

Thanks to Bob Gray for helping us with Agent Tcl and letting us borrow the section on Agent Tcl

design from his original paper [GKN96]. We are also thankful to Professors George Cybenko, Fillia

Makedon, and David Kotz and Bob Gray for their help in reviewing this paper.

Bibliography

[Alo96] G. Alonso, H. Schek. Database Technology in Workflow Environments. Informatik,
2/1996, February 1996.

[Ber92] T. Berners-Lee, R. Cailliau, J. Groff, B. Pollermann. World-Wide Web: The Information
Universe. CERN, Geneva, Swizerland. 1992.

[Bor] N.S. Borenstein, M. Rose. Safe Tcl. Available at
ftp://ftp.fv.com/pub/code/other/safe-tcl.tar.Z.

Cai, Gloor, Nog: DartFlow May 14, 1996- 18

[Bus94] C.J. Bussler. Policy Resolution in Workflow Management Systems. Digital Technical
Journal. vol 6, no 4, fall 1994.

[Dec95] Digital Equipment. LinkWorks White Paper. 7/9/95. (www.digital.com/info/linkworks/)

[GKN96] R. Gray, D. Kotz, S. Nog, D. Rus, G. Cybenko. Mobile Agents for Mobile Computing.
Technical Report: PCS-TR96-285, Department of Computer Science, Dartmouth College,
1996.

[Gra95] R. Gray. Agent Tcl: A Transportable Agent System. Proceedings of the CIKM Workshop
on Intelligent Information Agents, Fourth International Conference on Information and
Knowledge Management (CIKM), James Mayfield and Tim Finnin, editors, December
1995.

[Gra96] R. Gray, D. Rus, D. Kotz. Transportable Information Agents. Technical Report: PCS-
TR96-278, Department of Computer Science, Dartmouth College, 1996.

[Ham93] M. Hammer, J. Champy. Reengineering the Corporation. HarperCollins, New York. 1993.

[Ley95] F. Leymann, D. Roller, E. Vogt. White Paper: Workflow Management. IBM Software
Solutions Division, German Software Development Laboratory, Boeblingen. March 8,
1995.

[Mal93] T. Malone, K. Crowston, J. Lee, B. Pentland. Tools for inventing organizations: Toward a
handbook of organizational processes. Sloan School Technical Report WP # 3562-93.

[Nog96] S. Nog, S. Chawla, D. Kotz. An RPC mechanism for Transportable Agents. Technical
Report: PCS-TR96-280, Department of Computer Science, Dartmouth College, 1996.

[Ous90] J. Ousterhout. Tcl: An Embeddable Command Language . Winter 1990 USENIX
Conference Proceedings. 1990.

[Ous94] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Professional Computing Series,
Addison-Wesley, 1994.

[Sun94] Sun Microsystems. The Java Language: A White Paper. Sun Microsystems,1994.

[The95] L. The. Workflow Tackles the Productivity Paradox. Datamation. August 15, 1995.

[WfM95] Workflow Management Coalition, International Orgnization for the Development and
Promotion of Workflow Standards. Glossary. Workflow Management Coalition, Avenue
Marcel Thiry 204, 1200 Brussels, Belgium. 1995.

	DartFlow: A Workflow Management System on the Web using Transportable Agents
	Dartmouth Digital Commons Citation

	DartFlow-TR

