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Abstract

Recently, there has been a growing interest in automating
the process of neural architecture design, and the Differen-
tiable Architecture Search (DARTS) method makes the pro-
cess available within a few GPU days. In particular, a hyper-
network called one-shot model is introduced, over which the
architecture can be searched continuously with gradient de-
scent. However, the performance of DARTS is often observed
to collapse when the number of search epochs becomes large.
Meanwhile, lots of “skip-connects” are found in the selected
architectures. In this paper, we claim that the cause of the
collapse is that there exist cooperation and competition in the
bi-level optimization in DARTS, where the architecture pa-
rameters and model weights are updated alternatively. There-
fore, we propose a simple and effective algorithm, named
“DARTS+”, to avoid the collapse and improve the origi-
nal DARTS, by “early stopping” the search procedure when
meeting a certain criterion. We demonstrate that the proposed
early stopping criterion is effective in avoiding the collapse
issue. We also conduct experiments on benchmark datasets
and show the effectiveness of our DARTS+ algorithm, where
DARTS+ achieves 2.32% test error on CIFAR10, 14.87% on
CIFAR100, and 23.7% on ImageNet. We further remark that
the idea of “early stopping” is implicitly included in some ex-
isting DARTS variants by manually setting a small number of
search epochs, while we give an explicit criterion for “early
stopping”.

1 Introduction

Neural Architecture Search (NAS) plays an important role
in Automatic Machine Learning (AutoML), which has at-
tracted lots of attention recently. The neural architectures
searched by NAS have achieved the state-of-the-art results
over handcrafted neural architectures in various tasks, in-
cluding object classification [4, 20, 21, 25, 26, 40], object
detection [7, 36], semantic segmentation [19], recommender
systems [14], etc.

The common practice of NAS first derives an architec-
ture search space, and then finds the best architecture in the
search space with a specific search method. Early works of
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NAS usually adopt the REINFORCE method [25, 40] and
evolutionary algorithms [26] for searching effective archi-
tectures. However, obtaining state-of-the-art architectures
with such methods involves huge computational cost (e.g.,
thousands of GPU days [40]), because a large number of
architectures need to be trained and evaluated. Recently,
one-shot methods [2, 3, 20, 25, 34] are proposed to re-
duce the search cost. Among the one-shot methods, Liu, Si-
monyan, and Yang [20] propose the Differentiable Archi-
tecture Search (DARTS) method to relax the search space
to be continuous, so that one can search architectures and
learn model weights directly with gradient descent. In par-
ticular, DARTS encodes the architecture search space with
continuous parameters and performs searching with bi-level
optimization, where the model weights and architecture pa-
rameters are optimized with training data and validation data
alternatively. DARTS can reduce the search cost from thou-
sands of GPU days to a few GPU days while keeping com-
parable performance.

Despite the efficiency of DARTS, a severe issue under-
lying DARTS has been found [4]. Namely, after a certain
searching epochs, the number of skip-connects increases
dramatically in the selected architecture, which results in
poor performance of the selected architecture. We call the
phenomenon of performance drop after a certain number
of epochs the “collapse” of DARTS. To tackle such is-
sue, Chen et al. [4] propose a search space regularization
in their P-DARTS, where dropout [29] is used to allevi-
ate the dominance of skip-connects during the search pro-
cedure, and the number of skip-connects is manually con-
trolled after the search procedure. However, this approach
involves more hyper-parameters like dropout rate and the
number of skip-connects, which need to be carefully tuned
by human experts. Moreover, Stamoulis et al. [30] propose
Single-Path NAS using the one-level optimization instead of
the bi-level optimization in DARTS, where the architecture
parameters and model weights are updated simultaneously.
However, the search space of Single-Path NAS is carefully
designed. If searching is done in the original search space of
DARTS, one-level optimization will perform worse than bi-
level ones [20]. In summary, the mechanism of the collapse
of DARTS is still unknown and needs to be addressed.
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In this paper, we first show the cause of the collapse
of DARTS is that there exist cooperation and competition
in the bi-level optimization in DARTS, where the archi-
tecture parameters and model weights are updated alterna-
tively. In particular, we give an explanation of why lots
of skip-connects are involved in the selected architectures
in DARTS and why they hurt the performance. To avoid
the collapse of DARTS, we add the simple and effective
“early stopping” paradigm to the original DARTS, named
“DARTS+”, where the search procedure stops by a cer-
tain criterion, illustrated in Fig. 1(a). We remark that re-
cent progresses of DARTS, including P-DARTS [4], Auto-
DeepLab [19] and PC-DARTS [37], also adopt the early
stopping idea implicitly where fewer search epochs are man-
ually set in their methods.

Moreover, we conduct sufficient experiments on bench-
mark datasets to demonstrate the effectiveness of the pro-
posed DARTS+ algorithm. Specifically, DARTS+ achieves
the state-of-the-art 2.32% test error on CIFAR10 and
14.87% test error on CIFAR100, while the search time is
less than 0.4 GPU days. When transferring to ImageNet,
DARTS+ achieves the state-of-the-art 23.7% top-1 error and
impressive 22.5% top-1 error if SE-Module [12] is intro-
duced. DARTS+ is also able to search on ImageNet directly
and achieves 23.9% top-1 error.

In summary, our main contributions are listed as follows:

• We study the collapse issue of the DARTS method, and
point out the underlying reason is the cooperation and
competition in the bi-level optimization.

• We introduce an efficient “early stopping” paradigm to
DARTS to avoid the collapse, and propose an effective
criterion for early stopping.

• we conduct extensive experiments on benchmark datasets
to demonstrate the effectiveness of the proposed algo-
rithm, which achieves the state-of-the-art results on all of
them.

2 Collapse of DARTS

There is a severe issue underlying DARTS [20], that lots
of skip-connects tend to appear in the selected architecture
when the number of searching epoch is large, making the
performance poor. The phenomenon of performance drop is
called the “collapse” of DARTS in our paper. In this section,
we first give a quick review of the original DARTS, and then
point out the collapse issue of DARTS. Moreover, we will
discuss the cause of the collapse issue.

2.1 Preliminary: DARTS

The goal of DARTS is to search for a cell, which can
be stacked to form a convolutional network or recursively
connected to form a recurrent network. Each cell can be
regraded as a directed acyclic graph (DAG) of N nodes

{xi}
N�1
i=0 , where each node represents a network layer. We

denote the operation space as O, and each element is a can-
didate operation, e.g., zero, skip-connect, convolution, max-
pool, etc. Each edge (i, j) of DAG represents the informa-
tion flow from node xi to xj , which consists of the candidate

operations weighted by the architecture parameter α(i,j). In
particular, each edge (i, j) can be formulated by a function

ō(i,j) where ō(i,j)(xi) =
P

o2O p
(i,j)
o ·o(xi), and the weight

of each operation o ∈ O is a softmax of the architecture

parameter α
(i,j), that is p

(i,j)
o =

exp(α(i,j)
o )

P
o02O

exp(α
(i,j)

o0
)
. An in-

termediate node is xj =
P

i<j ō
(i,j)(xi), and the output

node xN�1 is depth-wise concatenation of all the intermedi-
ate nodes excluding input nodes. The above hyper-network
is called one-shot model, and we denote w as the weights of
the hyper-network.

For the search procedure, we denote Ltrain and Lval as
the training and validation loss respectively. Then the archi-
tecture parameters are learned with the following bi-level
optimization problem:

min
α

Lval(w
⇤(α),α),

s.t. w⇤(α) = argmin
w

Ltrain(w,α).

After obtaining architecture parameters α, the final

discrete architecture is derived by: 1) setting o(i,j) =

argmaxo2O,o 6=zero p
(i,j)
o , and 2) for each intermediate

node, choosing two incoming edges with the two largest val-

ues of maxo2O,o 6=zero p
(i,j)
o . More technical details can be

found in the original DARTS paper [20].

2.2 Collapse Issue

It has been observed in DARTS that lots of skip-connects are
involved in the selected architecture, which makes the archi-
tecture shallow and the performance poor. As an example,
let us consider searching on CIFAR100. The alpha value of
skip-connects (green line in Fig. 2(c)) becomes large when
the number of search epochs is large, and thus the number of
skip-connects increases in the selected architecture as shown
in the green line in Fig. 2(a). Such shallow network has less
learnable parameters than deep ones, thus it has weaker ex-
pressive power. As a result, architectures with lots of skip-
connects have poor performance, i.e., collapsed, indicated
as the blue line in Fig. 2(a). To be more intuitive, we draw
the selected architectures from different search epochs on
CIFAR100 in Fig. 1(b). When the number of search epochs
increases, the number of skip-connects in the selected ar-
chitecture also increases. Such phenomenon can also be ob-
served on other datasets, such as CIFAR10 and ImageNet.

To avoid the collapse, one might propose to adjust search
hyper-parameters, such as 1) adjusting learning rates, 2)
changing the portion of training and validation data, and 3)
adding regularization on skip-connects like dropout. Unfor-
tunately, such methods would only delay the collapse as the
choice of hyper-parameters is not the essential cause of col-
lapse.

The underlying reason of the collapse issue is that there
exist cooperation and competition in the bi-level optimiza-
tion in DARTS, where the architecture parameters and
model weights are updated alternatively. Intuitively, the ar-
chitecture parameters and model weights are well optimized
at the beginning, and then gradually turn to compete against
each other after a while. Since the model weights have more
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Figure 1: (a) Illustration of the early stopping paradigm. (b) Selected architectures at different search epochs on CIFAR100.
With a proper early stopping mechanism, we may obtain better architectures, or we may end up with collapsed architectures
with lots of skip-connects.

advantages than the architecture parameters in the compe-
tition, (e.g., the number of the model weights is far more
than the number of architecture parameters, the architecture
parameters are not sensitive to the final loss in the bi-level
optimization, etc.), the architecture parameters cannot beat
the model weights in the competition. As a result, the per-
formance of selected architecture will first increase and then
decrease (See blue lines in Fig. 2(a)).

In particular, at the initial state of the search procedure,
the one-shot model underfits the training data. Thus, archi-
tecture parameters α and model weights w, which are learn-
able parameters of the one-shot model, will get better to-
gether at the beginning of the search procedure. This is the
cooperation period. Note that the first cells in the whole one-
shot model can touch the fresh data information, while the
data that feed to the last cells are much noisier. If we al-
low different cells to have distinct architectures in the one-
shot model, the first cells will learn features more quickly
than the last cells. Since the feature representation learned
by the last cells is relatively worse than the one learned by
the first cells, the last cells are more likely to select more
skip-connects to obtain the good feature representation di-
rectly from the first cells.

Fig. 3 shows the learned normal cell architectures at dif-
ferent layers if we allow different architectures at different
stages1. It can be seen that the algorithm tends to select deep
architectures with learnable operations (namely, operations
with parameters to be learned such as convolutions) in the
first cells (Fig. 3(a)), while architectures with many skip-
connects are preferred in the last cells (Fig. 3(c)). If differ-
ent cells are forced to have the same architecture, as DARTS
does, skip-connects will be broadcasted from the last cells

1Stages are split with reduction cells, and each stage consists of
a number of stacked cells.

to the first cells. With the increase of searching epochs, the
number of skip-connects in the selected architecture will
largely grow. During this period, the architecture becomes
bad, thus the competition of architecture parameters α and
model weights w occurs, making the performance collapse.

Moreover, the cooperation and competition phenomenon
can also be observed in other bi-level optimization problems
(e.g., GAN, meta-learning, etc.). Take GAN as an example,
it is proved that a good learned discriminator is essential for
training the generator [8], which is the cooperation between
generator and discriminator. However, if the input data (fake
or real) lies in low-dimensional manifold and the discrimina-
tor is over-parameterized, the discriminator will easily sepa-
rate the generated fake data from the real, and the generator
will suffer from gradient vanishment and fail to generate real
data [1], which is the competition.

3 The Early Stopping Methodology
Since the collapse issue of DARTS is caused by the co-
operation and competition in the bi-level optimization as
pointed out in Sec. 2.2, we propose a simple and effec-
tive “early stopping” paradigm based on DARTS to avoid
the collapse. In particular, the search procedure should be
early stopped at a certain epoch, when DARTS starts to col-
lapse. Such paradigm leads to both better performance and
less search cost than the original DARTS. We remark that
in this paper, we still follow the architecture sharing mech-
anism among cells used by DARTS2. We use DARTS+ to
denote the DARTS algorithm with our early stopping crite-
rion, which is stated as follows.

Criterion 1 The search procedure stops when there are two
or more than two skip-connects in one normal cell.

2In future work, we may relax this constraint and allow different
cells or stages to have different structures.
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Figure 2: The collapse issue of DARTS. (a) The performance
of architectures at different epochs on CIFAR10, CIFAR100
and Tiny-ImageNet-200, respectively (in blue line), and the
number of skip-connects in the normal cell (in green line).
(b) The change of α in the deepest edge (connecting the last
two nodes) of one-shot model. We omit the α of none op-
eration as it increases while α of other operations drops. (c)
The change of architecture parameters α in the shallowest
edge. The dashed line denotes the early-stopping paradigm
introduced in Sec. 3, and the circle denotes the point that the
α ranking of learnable parameters becomes stable.

The major advantage of the proposed stopping crite-
rion is its simplicity. Compared with other DARTS vari-
ants, DARTS+ only needs a few modifications based on
DARTS, and can significantly increase the performance with
less search time. As mentioned in Sec. 2.2, too many skip-
connects will hurt the performance of DARTS. On the other
hand, an appropriate number of skip-connects is helpful for
transferring the information from first layers to last layers
and stabilizing the training process, e.g., ResNet [10], which
makes the architectures achieve better performance. There-
fore, stopping by Criterion 1 is a reasonable choice.

Criterion 1 is motivated by P-DARTS [4], where the
number of skip-connects in the cell of final architecture is
manually cut down to two. Although both DARTS+ and
P-DARTS keep two skip-connects in the cell of their final ar-
chitectures, DARTS+ is essentially different from P-DARTS
in dealing with the skip-connects. P-DARTS does not in-
tervene the number of skip-connects during the search pro-
cedure, but only replaces the redundant skip-connects with
other operations as a post-processing after the search pro-
cedure finishes. In contrast, our DARTS+ ends up with de-
sired architectures with a proper number of skip-connects to
avoid the collapse of DARTS. It controls the number of skip-
connects more directly and also more effectively (See Ta-
ble 1 for a performance comparison between DARTS+ and
P-DARTS).

Now we give some intuition for Criterion 1 in Fig. 2. The
red circles in Fig. 2(a-b) denote the points that the ranking
of architecture parameters α for learnable operations (e.g.,

(a) First Cells

(b) Middle Cells

(c) Last Cells

Figure 3: The selected architecture of normal cells at dif-
ferent layers when searching distinct cell architectures in
different stages (stages are split with reduction cells). The
searched dataset is CIFAR100. The first cells contain mostly
convolutions, while the last cells are shallow with numerous
skip-connects.

convolutions) becomes stable on CIFAR10, CIFAR100 and
Tiny-ImageNet-200, respectively. Note that only the oper-
ation with the maximum α value is chosen in the selected
architecture. When the ranking of α becomes stable, the op-
erations to be selected are nearly determined, which implies
that the search is almost saturated. The experiments also ver-
ify that after the point that the ranking of α becomes stable
(red circles in Fig. 2(a)), the validation accuracies of selected
architectures on all datasets (blue lines) tend to decrease,
i.e., collapse. It can be seen that this point is close to the
stopping point when Criterion 1 holds (the red dash line in
Fig. 2(a)), thus stopping by Criterion 1 can prevent the col-
lapse of DARTS.

Since the stable ranking of architecture parameters α for
learnable operations indicates the saturated search procedure
in DARTS, we can also use the following stopping criterion:

Criterion 1* The search procedure stops when the ranking
of architecture parameters α for learnable operations be-
comes stable for a determined number of epochs (e.g., 10
epochs).

We remark that Criterion 1 is much easier to operate, but
if one needs stopping more precisely or other search spaces
are involved, Criterion 1* could be used instead. We further
remark that our early stopping paradigm solves an intrinsic
issue of DARTS and is orthogonal to other tricks, thus it
has potential to be used in other DARTS-based algorithms
to achieve better performance.

We note that recent state-of-the-art differentiable architec-
ture search methods also introduce the early stopping idea in
an ad hoc manner. To avoid the collapse, P-DARTS [4] uses
1) searching for 25 epochs instead of 50 epochs, 2) adopting
dropout after skip-connects, and 3) manually reducing the
number of skip-connects to two. Auto-DeepLab [19] uses
fewer epochs for searching the architecture parameters and
finds that searching for more epochs does not bring benefits.
PC-DARTS [37] uses partial-channel connections to reduce
search time, and therefore more epochs are needed for con-
vergence of searching. Thus, setting 50 training epochs is
also an implicit early stopping paradigm.
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Architecture
Search Test Err. (%) Param Search Cost Search
Dataset CIFAR10 CIFAR100 (M) (GPU days) Method

DenseNet-BC [13]1 - 3.46 17.18 25.6 - manual

NASNet-A [40] CIFAR10 2.65 - 3.3 1800 RL
AmoebaNet-B [26] CIFAR10 2.55± 0.05 - 2.8 3150 evolution

PNAS [18]1 CIFAR10 3.41± 0.09 - 3.2 225 SMBO
ENAS [25] CIFAR10 2.89 - 4.6 0.5 RL

NAONet [21] CIFAR10 3.181 15.67 10.6 200 NAO

DARTS [20] CIFAR10 3.00 17.76 3.3 1.5 gradient
SNAS (moderate) [34] CIFAR10 2.85 - 2.8 1.5 gradient

ProxylessNAS [3]2 CIFAR10 2.08 - 5.7 4 gradient
P-DARTS [4] CIFAR10 2.50 16.55 3.4 0.3 gradient
P-DARTS [4] CIFAR100 2.62 15.92 3.6 0.3 gradient

ASAP [24] CIFAR10 2.49± 0.04 15.6 2.5 0.2 gradient
PC-DARTS [37] CIFAR10 2.57± 0.07 - 3.6 0.1 gradient

DARTS+ CIFAR10 2.32(2.50± 0.11) 16.28 3.7 0.4 gradient
DARTS+ CIFAR100 2.46 14.87(15.42± 0.30) 3.8 0.2 gradient

DARTS+* CIFAR10 2.20(2.37± 0.13) 15.04 4.3 0.6 gradient
DARTS+* CIFAR100 2.46 14.87(15.45± 0.30) 3.9 0.5 gradient

DARTS+ (Large)3 - 1.68 13.03 7.2 - gradient

Table 1: Results of different architectures on CIFAR10 and CIFAR100. 1 denotes training without cutout augmentation. 2 de-
notes using a different search space from others. 3 denotes results of the best architecture searched from the corresponding
dataset, and training with more channels and more augmentations. DARTS+* denotes using stopping Criterion 1*.

4 Experiments and Analysis

4.1 Datasets

In this section, we conduct extensive experiments on bench-
mark classification datasets to evaluate the effectiveness
of the proposed DARTS+ algorithm. We use four popular
datasets including CIFAR10 [16], CIFAR100 [16], Tiny-
ImageNet-2003 and ImageNet [6]. CIFAR10/100 consists of
50K training images and 10K testing images and the resolu-
tion is 32× 32. Tiny-ImageNet-200 contains 100K 64× 64
training images and 10K testing images. ImageNet is ob-
tained from ILSVRC2012 [27], which contains more than
1.2M training images and 50K validation images. We fol-
low the general setting on the ImageNet dataset where the
images are resized to 224× 224 for training and testing.

4.2 Architecture Search

Unless specified, we use Criterion 1 as the stopping condi-
tion for DARTS+ in the experiments. Note that the stopping
points by Criterion 1 and 1* are almost the same in the pro-
posed search space, and we will discuss the two criteria in
detail in Sec. 4.4.

Implementation Details. We have similar experimental
settings as DARTS. The experiments are carried out in two
stages: architecture search and architecture evaluation. The
search space is the same as DARTS which has 8 candidate
operations including skip-connect, max-pool-3x3, avg-pool-
3x3, sep-conv-3x3, sep-conv-5x5, dil-conv-3x3, dil-conv-
5x5, zero, and the structure of each operation is exactly the
same as DARTS.

For CIFAR10 and CIFAR100, we use the same one-shot
model as the original DARTS in which 8 cells (i.e. 6 nor-
mal cells and 2 reduction cells) with 16 channels are trained

3https://tiny-ImageNet.herokuapp.com/

Architecture Test Err. (%) Params (M)

ResNet18 [38] 47.3 11.7
DenseNet-BC [17] 37.1 -

NASNet 29.8 4.5
DARTS 30.4 3.8
DARTS† 46.1 2.1

SNAS 30.6 3.4
ASAP 30.0 3.3

DARTS+ 29.1 4.2
DARTS+†

28.3 3.8

Table 2: Results of different architectures on Tiny-
ImageNet-200. † denotes directly searching with Tiny-
ImageNet-200, otherwise transferred from CIFAR10.

for searching. We use a half of the training data to train the
model weights and the other half to update the architecture
parameters. We search for a maximum of 60 epochs with
batch size 64. We use SGD to optimize the model weights
with initial learning rate 0.025, momentum 0.9 and weight
decay 3× 10�4. Adam [15] is used to optimize architecture
parameters with initial learning rate 3 × 10�4, momentum
(0.5, 0.999) and weight decay 10�3. Early stopping is ap-
plied at certain epoch when Criterion 1 introduced in Sec. 3
is met.

For Tiny-ImageNet-200, the one-shot model is almost the
same as CIFAR10/100 except that a 3× 3 convolution layer
with stride 2 is added on the first layer to reduce the input
resolution from 64 × 64 to 32 × 32. Other settings are the
same as those used in CIFAR10/100, including the “early
stopping” criterion.

For ImageNet, following [37], the one-shot model starts
with three 3 × 3 convolution layers with stride 2 to reduce
the resolution from 224 × 224 to 28 × 28, and the rest of

5
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Architecture
Test Err. (%) Params ×+ Search Cost

Search Method
Top-1 Top-5 (M) (M) (GPU days)

MobileNet [11] 29.4 10.5 4.2 569 - manual
MobileNet-V2 (1.4×) [28] 25.3 - 6.9 585 - manual
ShuffleNet-V2 (2×) [22] 25.1 - 7.4 591 - manual

NASNet-A [40] 26.0 8.4 5.3 564 1800 RL
AmoebaNet-C [26] 24.3 7.6 6.4 570 3150 RL

PNAS [18] 25.8 8.1 5.1 588 225 SMBO
MnasNet-92 [33] 25.2 8.0 4.4 388 - RL

EfficientNet-B0 [32] 23.7 6.8 5.3 390 - RL

DARTS [20] 26.7 8.7 4.7 574 4.0 gradient
SNAS (mild) [34] 27.3 9.2 4.3 522 1.5 gradient

ProxylessNAS [3]† 24.9 7.5 7.1 465 8.3 gradient
P-DARTS (CIFAR10) [4] 24.4 7.4 4.9 557 0.3 gradient

ASAP [24] 26.7 - - - 0.2 gradient
XNAS [23] 24.0 - 5.2 600 0.3 gradient

PC-DARTS [37]† 24.2 7.3 5.3 597 3.8 gradient

PC-DARTS∗† 23.8 7.3 5.3 597 3.8 gradient

DARTS+ (CIFAR100) 23.7 7.2 5.1 591 0.2 gradient

DARTS+† 23.9 7.4 5.1 582 6.8 gradient

SE-DARTS+ (CIFAR100)‡ 22.5 6.4 6.1 594 0.2 gradient

Table 3: Results of different architectures on ImageNet. ⇤ denotes re-implementing the result. † denotes directly searching on
ImageNet. ‡ denotes using SE-Module and training with more augmentations (AutoAugment, mixup, etc.).

Normal Cells

Reduction Cells

Figure 4: The cell of best structures searched on different datasets.

the network consists of 8 cells. We select 10% data from the
training set for updating model weights, and another 10% for
updating architecture parameters. We search with batch size
512 for both training and validation sets. SGD is used for
model weights training with initial learning rate 0.2 (cosine
learning rate decay), momentum 0.9, and weight decay 3 ×
10�4. The architecture parameters are trained with Adam
with learning rate 3 × 10�3, momentum (0.5, 0.999) and
weight decay 10�3.

For all the datasets, the one-shot model weights and ar-
chitecture parameters are optimized alternatively. The cell
structure is determined by architecture parameters, follow-
ing DARTS [20].

Search Results and Analysis. The proposed DARTS+
needs less searching time as “early stopping” is adopted. For
CIFAR10, the search procedure requires 0.4 GPU days with
a single Tesla V100 GPU, and stops at about 35 epochs.
For CIFAR100, the searching time is 0.2 GPU days and
the search procedure stops at about 18 epochs. For Tiny-
ImageNet-200, searching stops at about 10 epochs. For Im-
ageNet, the search procedure involves 200 epochs, and it re-

quires 6.8 GPU days on Tesla P100 GPU.

The selected architectures are shown in Fig. 4. We ob-
serve that the cells searched by DARTS+ contain most con-
volutions and a few skip-connects.

It should be noticed that DARTS+ succeeds in search-
ing with all three datasets including CIFAR10/100, Tiny-
ImageNet-200 and ImageNet. However, the original DARTS
fails to search on CIFAR100 as the selected architecture is
full of skip-connects [4], and most previous works on differ-
entiable search [4, 20, 34] do not search on ImageNet.

4.3 Architecture Evaluation

For each selected architecture, we follow the configurations
and hyper-parameters of the previous works [4, 20] for eval-
uation on different datasets.

Results on CIFAR10 and CIFAR100. We use network
of 20 cells and 36 initial channels for evaluation to ensure a
comparable model size as other baseline models. We use the
whole training set to train the model for 2000 epochs with
batch size 96 to ensure convergence. Other hyper-parameters
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are set the same as the ones in the search stage. Following
existing works [18, 25, 26, 41], we also add some enhance-
ments including cutout, path dropout with probability 0.2
and auxiliary towers with weight 0.4.

The evaluation results are summarized in Table 1. For
each selected cell from either CIFAR10 or CIFAR100, we
report the performance on both datasets. With the simple
“early stopping” paradigm, we achieve the best results with
2.32% test error on CIFAR10 and 14.87% test error on
CIFAR100. The results are much better than the original
DARTS, which gets 3% test error on CIFAR10 and 19.5%
test error on CIFAR100 (See Fig. 2(a) with large epochs).
The proposed DARTS+ is much simpler and better than
other modified DARTS algorithms like P-DARTS and PC-
DARTS. ProxylessNAS uses a different search space, and
it involves more search time. Moreover, DARTS+ is much
easier to implement than other modified DARTS variants
including ASAP. We point out that “early stopping” can
be used in many other differentiable search algorithms and
search spaces to obtain better architectures.

We further increase the initial channel number from 36 to
50, and add more augmentation tricks including AutoAug-
ment [5] and mixup [39] to achieve better results. Table 1
shows that DARTS+ achieves impressive 1.68% test error
on CIFAR10 and 13.03% test error on CIFAR100, demon-
strating the effectiveness of DARTS+.

Results on Tiny-ImageNet-200. The network is similar
as CIFAR10/100 where 20 cells and 36 channels are in-
volved, except that an additional 3×3 convolution layer with
stride 2 is inserted in the first layer. We transfer the architec-
tures searched from other algorithms to Tiny-ImageNet-200
and evaluate the performance for fair comparison. Other ex-
perimental settings are the same as CIFAR10/100.

The results are shown in Table 2. DARTS+ achieves the
state-of-the-art 28.3% test error, which is much better than
other baselines. Note that architecture searched on Tiny-
ImageNet-200 with DARTS+ performs much better than
DARTS and its parameter size is much larger than DARTS,
because DARTS suffers from collapse and the architecture
searched with DARTS contains lots of skip-connects. De-
sired architectures are more likely to be generated with the
“early stopping” paradigm.

Results on ImageNet. We use the architecture searched
directly from ImageNet for evaluation, and the architecture
from CIFAR100 to test the tranferability of the selected ar-
chitecture. We follow DARTS such that the number of cells
is 14 and the initial number of channels is 48. We train the
model for 800 epochs with batch size 2048 on 8 Nvidia Tesla
V100 GPUs as more epochs can achieve better convergence.
The model is optimized with the SGD optimizer with an ini-
tial learning rate 0.8 (cosine decayed to 0), momentum of 0.9
and weight decay 3×10�5. We use learning rate warmup [9]
for the first 5 epochs and other training enhancements in-
cluding label smoothing [31] and auxiliary loss tower.

The experimental results are shown in Table 3. Note that
we re-implement PC-DARTS and the results are reported.
When searching on ImageNet with the proposed DARTS+,
the selected architecture achieves impressive 23.9%/7.4%

top-1/top-5 error, and the architecture transferred from CI-
FAR100 achieves state-of-the-art 23.7%/7.2% error. The re-
sults imply that DARTS with “early stopping” succeeds in
searching a good architecture with impressive performance
on large-scale datasets with limited time.

We also adopt SE-module [12] in the architecture trans-
ferred from CIFAR100, and introduce AutoAugment [5] and
mixup [39] for training to obtain better model. The results
are shown in Table 3, and we achieve 22.5%/6.4% top-
1/top-5 error with only additional 3M flops, showing the ef-
fectiveness of the selected architecture.

4.4 Effectiveness of Early Stopping

To further verify the effectiveness of DARTS+, we conduct
extensive experiments on selected architectures at different
epochs. The classification results on CIFAR10, CIFAR100
and Tiny-ImageNet-200 are shown in Fig. 2. We also point
out the time to “early stop” under two criteria, marked as
“red dashed line” and “red circle” respectively. We observe
that the selected architecture performs worse with larger
epochs, implying that the original DARTS suffers from the
collapse issue. In contrast, “early stopping” is able to gener-
ate good architectures at both stopping criteria, regardless of
the type of datasets.

We also compare “early stopping” Criterion 1 and 1* in
Table 1 and Fig. 2. We observe that both criteria achieve
comparable performance on all datasets as the stopping
points are very close.

5 Conclusion

In this paper, we conduct comprehensive analysis and ex-
tensive experiments to show that DARTS suffers from the
collapse problem, which is mainly caused by the coopera-
tion and competition problem in the bi-level optimization
in DARTS. We propose the “DARTS+” algorithm, in which
the “early stopping” paradigm is introduced to avoid the col-
lapse of DARTS. The experiments show that we succeed in
searching on various benchmark datasets including large-
scale ImageNet with limited GPU days, and the resulting
architectures achieve the state-of-the-art performances on
all benchmark datasets. Moreover, it should be noticed that
many recent progresses of DARTS could use “early stop-
ping” to achieve better results, and the proposed “early stop-
ping” criteria could be applied to many other types of search
spaces, including the RandWire search space [35], mobile
convnets search space [30], etc.
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