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ABSTRACT
Mobile ad-hoc networks are deployed under the assumption
that participating nodes are willing to forward other nodes’
packets. In reputation-based mechanisms cooperation is in-
duced by means of a threat of partial or total disconnec-
tion from the network if a node is non-cooperative; how-
ever packet collisions and interference may make coopera-
tive nodes appear selfish sometimes. In this paper we use
a simple network model to first study the performance of
some proposed reputation strategies and then present a new
mechanism that we call DARWIN (Distributed and Adap-
tive Reputation mechanism for WIreless ad-hoc Networks).
The idea is to avoid a retaliation situation after a node has
been falsely perceived as selfish so cooperation can be re-
stored quickly. We prove that our strategy is robust to im-
perfect measurements, is collusion-resistant and can achieve
full cooperation among nodes.

Categories and Subject Descriptors
C.2.0 [Computer - Communication Networks]: Gen-
eral—security and protection; C.2.1 [Computer - Com-
munication Networks]: Network Architecture and De-
sign—distributed networks, packet-switching networks, wire-
less communication

General Terms
Algorithms, Design, Security, Theory

1. INTRODUCTION
Mobile ad-hoc networks have been a topic of intense re-

search for the last several years. Such networks consist of a
set of mobile nodes that are self-configuring and do not rely
on an infrastructure to communicate. Typically, a source
communicates with distant destinations using intermediate
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nodes as relays. The promise of quickly deployable networks
has several uses ranging from military applications such as
battlefield networks, to civilian applications like disaster re-
covery efforts and temporary networks for conferences or
expeditions. In the case of civilian applications, where all
the nodes are not under the control of a single authority, co-
operation cannot be taken for granted. There can be selfish
users that want to maximize their own welfare, defined as
the benefit of their actions minus the cost of their actions.
Thus, it is necessary to develop incentive mechanisms that
allow cooperation to emerge among selfish users.

Mechanisms can be broadly divided in two types: credit-
exchange systems and reputation-based systems. In credit-
exchange schemes [6, 18, 19, 22, 7, 8, 1], nodes receive a
payment every time they forward a packet, and this credit
can later be used by these nodes to encourage others to
cooperate. Some proposals rely on the use of tamper-proof
hardware to store credit information which may hinder their
ability to find wide-spread acceptance; others use an off-line
central trusted authority, which requires an infrastructure
to work. In reputation-based schemes [12, 13, 5, 3, 10, 11,
14, 17], a node’s behavior is measured by its neighbors, and
selfishness is deterred by the threat of partial or total discon-
nection from the network. However, due to packet collisions
and interference it is not always possible to detect if a given
node actually forwarded a packet as expected, so sometimes
cooperative nodes will be perceived as being selfish, which
will trigger a retaliation situation that can potentially de-
crease the throughput of cooperative nodes.

The contributions of this paper are twofold: we first use
a simple network model to understand the impact of im-
perfect measurements on the robustness of some previously
proposed reputation strategies. In the analysis it is shown
that the schemes punish selfish behavior at the expense of
decreasing the throughput of cooperative users, and in some
cases this can lead to complete network disconnection. Sec-
ond, we propose a new strategy that we call DARWIN (Dis-
tributed and Adaptive Reputation mechanism for WIreless
ad-hoc Networks) that is able to effectively detect and pun-
ish selfish behavior. The conditions under which no node
can gain from deviating from our strategy are presented.
We also prove that our scheme is collusion resistant and can
achieve full cooperation among nodes.

2. BASIC GAME THEORY CONCEPTS
Here we introduce the concepts from Game Theory [9]

that are used in this paper. As an illustration, we use a well-
known game between two players known as The Prisoners’
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Table 1: Payoff Matrix of the Prisoners’ Dilemma
Game

Player 2

Cooperate Defect

Player 1
Cooperate 1 1 −1 2

Defect 2 − 1 0 0

Dilemma. Both players have two possible pure strategies,
Cooperate (C) or Defect (D), and the payoffs they receive
for their actions are given in Table 1. Then player i’s strategy
space Si is defined to be the set of pure strategies available
to it. In this case Si = {C, D} for i = {1, 2}. A strategy
profile is defined to be an element of the product-space of
strategy spaces of each player. An example is for player 1
to play D and player 2 to play C.

Definition 1. A Nash equilibrium is a strategy profile
having the property that no player can benefit by unilaterally
deviating from its strategy.

Such a strategy profile is considered to be self enforcing. In
this example, the Nash equilibrium would be the strategy
profile s = (D, D). Assume now that this game is repeated
infinitely many times, and for each k, the outcomes of the
k − 1 preceding plays are observed before the k-th stage
begins. In this case, the total payoff of the game for player
i is the discounted sum of the stage payoffs. Denoting the

stage payoffs by u
(k)
i , the total payoff is given by

Ui =
∞

∑

k=0

wku
(k)
i ,

where w ∈ (0, 1) is the discount factor. The infinitely re-
peated game can also be interpreted as a repeated game
that ends after a random number of repetitions. Under this
interpretation, the length of the game is a geometric random
variable with mean 1/(1 − w).

In this game a player’s strategy specifies the action it will
take at each stage, for each possible history of play through
previous stages. In our example a strategy for player 1 could
be to cooperate until player 2 defects, and then defect for-
ever. Since both players know the previous history, we can
view the game starting at stage k with a given history hk as
a new game; this is called a subgame of the original game.

Definition 2. For a given set of strategies that are in
Nash equilibrium, history hk is on the equilibrium path if it
can be reached with positive probability if the game is played
according to the equilibrium strategies, and is off the equi-
librium path otherwise.

Definition 3. A Nash equilibrium is subgame perfect if
the player’s strategies constitute a Nash equilibrium in every
subgame.

Subgame perfection is a stronger concept that eliminates
noncredible equilibria, since it analyzes the case when a
game is on or off the equilibrium path. This will later help us
analyze whether a given reputation scheme is robust enough
to handle the case when due to inaccurate measurements
nodes appear to be out of their predicted behavior.

Definition 4. A game is continuous at infinity if for
each player i the payoff Ui satisfies:

sup
h,h̃ s.t. hk=h̃k

∣

∣

∣
Ui(h) − Ui(h̃)

∣

∣

∣
→ 0 as k → ∞

Under this definition, events in the distant future are rela-
tively unimportant. This holds true if the total payoff of the

game is the discounted sum of the per-period payoffs u
(k)
i ,

and the per-period payoffs are uniformly bounded. In our

example this holds true since u
(k)
i ≤ 2 for all k.

Lemma 1 (One-Stage Deviation Principle). In an
infinite-horizon multi-stage game with observed actions that
is continuous at infinity, strategy profile s is subgame perfect
if and only if there is no player i and strategy ŝi that agrees
with si except at a single stage k and hk, and such that ŝi

gives a better payoff than si conditional on history hk being
reached.

For a proof see [9]. We say that s satisfies the One-Stage
Deviation Principle if no player can gain by deviating from
s, either on or off the equilibrium path, in a single stage.

In the rest of this paper we will develop a prisoner’s di-
lemma model for wireless networks. Such an exercise has
been carried out before in other papers, but our approach
and solution are quite different.

3. NETWORK MODEL
We assume that nodes are selfish but not malicious. A

selfish node is a rational user that wants to maximize its
own welfare, defined as the benefit minus the cost of its
actions. Links are assumed to be bidirectional. Wireless
links are often bidirectional, and many MAC layers require
bidirectional packet exchanges to avoid collisions, as is the
case in IEEE 802.11. Finally, nodes are assumed to operate
in promiscuous mode, so they are able to listen to all packets
transmitted by their neighbors.

Forwarding a packet consumes resources. We define the
normalized relaying cost to be 1. The reward a node re-
ceives if its packet is relayed is α, where we assume α ≥ 1
since the value of a packet should be at least equal to the
cost of the resources used to send it. We assume that the
interaction among nodes is reciprocal, i.e., any two neigh-
bors have uniform network traffic demands and need each
other to forward packets. Thus, we can isolate any pair of
nodes and study the interaction between them as a two-
player game. In the two-player game, one way to model the
nodes is to assume that they send a packet to each other
and then simultaneously decide whether to drop or forward
their respective packets, and repeat this game iteratively.
In this scenario the stage payoffs matrix is given in Table 2.
Without loss of generality we normalize the payoff matrix
as in Table 3. Using standard game theory notation, we will
denote by i ∈ {1, 2} a generic node and by −i its neighbor.

Since the interaction among nodes is asynchronous in na-
ture, we refine the game assuming that time is divided into
slots and that slots last long enough to allow each node to
send a sufficiently large number of packets. At the end of
the slot each node finds the ratio of dropped packets by its
neighbor; if the number of packets exchanged is sufficiently
large, then this ratio is a good estimate of the probability
of dropping a packet. This assumption is implicitly used in
other papers on reputation mechanisms as well [10, 11].
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Table 2: Payoff Matrix of the Packet Forwarding
Game

Node 2

Forward Drop

Node 1
Forward α − 1 α − 1 −α − 1 α

Drop α − α − 1 −α − α

Table 3: Normalized Payoff Matrix of the Packet
Forwarding Game

Node 2

Forward Drop

Node 1
Forward 1 1 −1

2α−1
2α

2α−1

Drop 2α
2α−1

−1
2α−1

0 0

Due to collisions, it is not always possible to detect whether
a node forwarded a packet or not. We define pe ∈ (0, 1) to
be the probability that a packet that has been forwarded
was not overheard by the originating node. We also assume
that pe is the same for both nodes. By listening to the
channel, node i then estimates the perceived dropping prob-

ability p̂
(k)
−i of its neighbor at time slot k ≥ 0. It must be

noted that a packet is perceived to be dropped if either −i
dropped it or if it is not dropped but node i did not overhear
the transmission. Thus

p̂
(k)
−i = p

(k)
−i + (1 − p

(k)
−i )pe = pe + (1 − pe)p

(k)
−i , (1)

where p
(k)
−i is the probability that −i drops a packet.

Thus, using the payoffs of Table 3, the average payoff at
time slot k is:

u
(k)
i =(1 − p

(k)
i )(1 − p

(k)
−i ) +

2α

2α − 1
p
(k)
i (1 − p

(k)
−i )

−
1

2α − 1
(1 − p

(k)
i )p

(k)
−i .

Rearranging terms:

u
(k)
i = 1 +

1

2α − 1
p
(k)
i −

2α

2α − 1
p
(k)
−i . (2)

The discounted average payoff of player i starting from time
slot n is then given by:

U
(n)
i =

∞
∑

k=n

wk−nu
(k)
i , (3)

where w ∈ (0, 1) is the discount factor. Since node i cannot

know for sure p
(k)
−i , it does not know its payoff either. How-

ever, we use the actual payoff in the analysis since it tells us
whether a given node can gain by deviating from a strategy.

Given this game, each player is allowed to use a strategy
to decide whether to drop or forward packets based on the

history. We use p̃
(k)
i S to denote the dropping probability

player i should use at time slot k according to strategy S.
As mentioned earlier, we assume symmetric and spatially

uniform traffic conditions to derive our model. The robust-

ness of the model is tested in Section 6 using a random
network with asymmetric and spatially non-uniform traffic.

4. ANALYSIS OF PRIOR PROPOSALS
To motivate our new protocol which we will present in the

next section, in this section we present a few strategies that
have been proposed in prior work and show their limitations.

4.1 Trigger Strategies
One idea to provide an incentive for cooperation is to de-

velop a strategy such that the cooperation of a node is mea-
sured and if the fraction of packets it has dropped is above
a threshold it is consider selfish and is disconnected for a
given amount of time. Formally, a n-step Trigger Strategy
is defined as:

p̃
(0)
i nT = 0

p̃
(k)
i nT =

{

0 if p̂
(j)
−i ≤ T for all j ∈ {k − n, . . . , k − 1}

1 else

where we define p̂
(j)
−i = 0 for j ∈ Z−. From (1) it is easy to

see that if node i cooperates then p̂
(k)
−i = pe for all k. Hence

the optimal value of T = pe. In reality we cannot perfectly
estimate pe, so we have to analyze two cases:

1. If T < pe then we have that p̃
(k)
i nT = 1 for k ≥ 1, so

cooperation will never emerge.

2. If T > pe then player −i will be perceived to be coop-
erative as long as it drops packets with probability:

p
(k)
−i ≤

T − pe

1 − pe

.

Therefore, since pe is unknown, any choice of threshold other
than T = pe results in either all packets being dropped or
some fraction of packets being dropped. In other words, full
cooperation is never the Nash equilibrium point with trigger
strategies.

4.2 Tit For Tat
A second alternative is to use a Tit For Tat (TFT) strat-

egy [2]. It was generalized in [15] for the wireless context as
follows:

p̃
(0)
i TFT = 0

p̃
(k)
i TFT = p̂

(k−1)
−i for k ≥ 1.

However, Milan et al. [15] proved that this strategy does not
provide the right incentive either for cooperation in wireless
networks.

4.3 Generous Tit For Tat
The problem with TFT is that it does not take into ac-

count the fact that it is not always possible to determine
whether a packet was relayed or not due to collisions. A
way to deal with this is using a generosity factor g that al-
lows cooperation to be restored. Such a strategy is known
as Generous TFT (GTFT) [21] and in the case of wireless
networks it can be defined [15] as follows:1

p̃
(0)
i GTFT = 0

p̃
(k)
i GTFT = max{p̂

(k−1)
−i − g, 0} for k ≥ 1.

1Note that this definition corresponds to a reputation-based
mechanism, not to be confused with the credit-based mech-
anism proposed in [19] that bears the same name.
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Lemma 2. If both nodes do not deviate from the GTFT
strategy then the generosity factor that maximizes the dis-
counted average payoff is g∗ ≥ pe.

Proof. If g ≥ pe then from (1) we have for all k ≥ 0 and

i ∈ {1, 2} that p
(k)
i = 0. Using (2) and (3) we obtain:

U
(0)
i =

1

1 − w
. (4)

In the case g < pe we obtain:

p
(0)
i = 0

and for k ≥ 1:

p
(k)
i = (pe − g)

k−1
∑

n=0

(1 − pe)
n

= (pe − g)
1 − (1 − pe)

k

pe

.

So the stage payoffs for k ≥ 1 are:

u
(k)
i =

1

pe

[

g + (pe − g)(1 − pe)
k
]

.

Therefore the discounted average payoff is:

U
(0)
i = 1 +

w

pe

[

g

1 − w
+

(pe − g)(1 − pe)

1 − w(1 − pe)

]

. (5)

It can easily be checked that the payoff (5) is strictly less
than the payoff (4).

It is important to highlight that in the case g > pe GTFT is
not a Nash equilibrium since for player −i it pays to deviate
dropping packets with a probability

p
(k)
−i ≤

g − pe

1 − pe

.

The following theorem and corollary tell us that if the inter-
action between two nodes lasts long enough then GTFT is
a robust strategy where no node can gain by deviating from
the expected behavior, even if it is not able to achieve full
cooperation.

Theorem 1. GTFT is subgame perfect if and only if

g ≤ pe and w >
1

2α(1 − pe)
.

(See the proof on the appendix.)

Corollary 1. If both nodes use GTFT then cooperation
is achieved on the equilibrium path if and only if g = pe.

Note that in [15] a proof was done for the case g = pe but
only considering the equilibrium path. The subgame perfect
region of GTFT is plotted in Fig. 1 for α = 2. Fig. 2 shows
how the shape of this region is affected by different values
of α. Note that when the value of a packet grows larger
compared to the actual cost of transmitting it then cooper-
ation has a better chance to emerge since being connected
is more important than reducing the cost of helping other
nodes. In summary, GTFT is not satisfactory because in
order to achieve full cooperation we need a perfect estimate
of pe.
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Figure 1: GTFT’s Subgame Perfect Nash Equilib-
rium (SPNE) region for α = 2
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Figure 2: Sensitivity of GTFT’s subgame perfect
region for different values of α

5. DARWIN

5.1 Definition
Our goal is to propose a reputation strategy that does not

depend on a perfect estimation of pe to achieve full cooper-
ation and that is also more robust than previously proposed
strategies. For the iterated Prisoners’ Dilemma a modifica-
tion of TFT known as Contrite Tit For Tat (CTFT) [20, 4]
has been proposed based on the idea of contriteness: a player
that made a mistake and unintentionally defected should ex-
ercise contrition and try to correct the error instead of going
into a retaliation situation. This strategy depends on the no-
tion of good standing and is defined as follows. A player is
always in good standing on the first stage. It remains in
good standing as long as it cooperates when CTFT specifies
that it should cooperate. If an individual is in bad stand-
ing it can get back in good standing by cooperating on one
stage. Then CTFT specifies that a player should cooper-
ate if it is in bad standing, or if its opponent is in good
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standing; otherwise the individual should defect. Inspired
by this strategy, for the case of wireless networks we define
the following strategy:

p̃
(k)
i DARWIN =

[

γ
(

q
(k−1)
−i − q

(k−1)
i

)]1

0
for k ≥ 0, (6)

where we define for i = {1, 2}:

q
(k)
i =

{
[

p̂
(k)
i − p̃

(k)
i DARWIN

]1

0
for k ≥ 0

0 for k = −1.
(7)

Additionally we define the function:

[x]10 =







1 if x ≥ 1
x if 0 < x < 1
0 if x ≤ 0

.

Recall that p̂
(k)
i denotes the estimated dropping probability

and p̃
(k)
i DARWIN is the dropping probability under DARWIN.

Thus, if p̂
(k)
i > p̃

(k)
i DARWIN , it means node i is perceived to

be dropping more packets than it should under DARWIN.

The parameter q
(k)
i measures this deviation. In this case

q
(k)
i acts as a measurement of the bad standing of a node,

and only the player that has better standing should propor-
tionally punish its opponent with the difference in the two
standings instead of the absolute value of the standing of its
opponent. It must be noted that in the definition of DAR-
WIN it is assumed that nodes share the perceived dropping
probability with each other and that users do not lie about
this probability; equivalently, we assume that these proba-
bilities can be collected in a secure fashion. An alternative
assumption is that most users do not misbehave and only
a small number of users do. This allows us to share repu-
tation information among users and the perceived dropping
probability would be in this case the average of the received
values, so liars have a limited impact.2

5.2 Performance Guarantees
The following theorem proves that when the interaction

between two nodes lasts long enough DARWIN is a robust
strategy where no node can gain by deviating from the ex-
pected behavior.

Theorem 2. Assuming 1 < γ < p−1
e , DARWIN is sub-

game perfect if and only if

w > max

{

1

γ
,

1

2α(1 − peγ) + peγ

}

. (8)

(See the proof on the appendix.)
From (8) it is clear that the optimum value of γ that

minimizes this bound is a function of α and pe. Since you
cannot estimate α, a suboptimal strategy could be to choose
γ to be the average of the interval (1, p−1

e ):

γ =
1 + p−1

e

2
=

1 + pe

2pe

. (9)

In Fig. 3 it is shown the subgame perfect region of DARWIN
for different values of α assuming (9) holds, which is not
significantly different from the subgame perfect region if we
would have used the optimal value of γ.

2The reader is referred to [16] where the impact of liars is
studied in a different context. The further study of this topic
in the case of reputation mechanisms for wireless networks
is left as future work.
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Figure 3: Sensitivity of DARWIN’s subgame perfect
region for different values of α assuming (9) holds

It must be highlighted that if both nodes use DARWIN
then full cooperation is achieved. This can easily be checked
using (1) and the definition of DARWIN to observe the game
evolution.

Lemma 3. If both nodes use DARWIN then cooperation

is achieved on the equilibrium path. That is, p
(k)
i = p

(k)
−i = 0

for all k ≥ 0.

Since this is the best any strategy S can achieve, we have
that:

U
(0)
i S ≤ U

(0)
i DARWIN for any strategy S. (10)

It is also important to remember that for DARWIN to be
subgame perfect we need to estimate pe in order to achieve
the bound γ < p−1

e . Since we cannot do perfect estimation,

we have that the estimated error probability p
(e)
e is equal to

p(e)
e = pe + ∆,

where ∆ ∈ (−pe, 1−pe) is the estimation error. If we choose
γ using (9) we have:

γ =
1 + p

(e)
e

2p
(e)
e

=
1 + pe + ∆

2pe + 2∆
.

So we have that γ < p−1
e if and only if:

∆ > −pe

(

1 − pe

2 − pe

)

.

Thus, for the DARWIN strategy, one does not need a pre-
cise estimate of pe, an estimator that overestimates pe is
sufficient for Theorem 2 to hold.

5.3 Collusion Resistance
We now consider the case when a group of colluding nodes

work together to maximize their own benefit regardless of

the social optimum. Define U
(0)

i Si|S−i
to be the discounted

average payoff of player i using strategy Si when it plays
against player −i using strategy S−i. Hence (10) can be
rewritten as:

U
(0)

i S|S ≤ U
(0)

i D|D for any strategy S. (11)
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Also, a consequence of Theorem 2 is

U
(0)

i S|D < U
(0)

i D|D (12)

for any strategy S 6= D=DARWIN. Assume a group of col-
luding nodes implementing strategy S enters the network.
Define pS ∈ (0, 1) to be the probability that a node that im-
plements DARWIN interacts with a colluding node. There-
fore the average payoff to a cooperative node will be:

U(D) = pSU
(0)

i D|S + (1 − pS)U
(0)

i D|D.

Similarly, if pD ∈ (0, 1) is the probability that a colluding
node interacts with a node implementing DARWIN we have:

U(S) = pDU
(0)

i S|D + (1 − pD)U
(0)

i S|S .

We have that the average payoff is bounded by

U(S) < max
{

U
(0)

i S|D, U
(0)

i S|S

}

. (13)

So a group of colluding nodes cannot gain from unilaterally
deviating if and only if U(S) < U(D). Equivalently,

pS

[

U
(0)

i D|D − U
(0)

i D|S

]

< U
(0)

i D|D − U(S). (14)

From (11), (12) and (13) we know that

U
(0)

i D|D − U(S) > 0.

Define strategy S to be a sucker strategy if

U
(0)

i D|D < U
(0)

i D|S .

If S is a sucker strategy, then (14) is always true. If S is a
non-sucker strategy, we have that (14) holds for

pS <
U

(0)

i D|D − U(S)

U
(0)

i D|D − U
(0)

i D|S

,

with the understanding that we define the trivial bound
pS < +∞ if

U
(0)

i D|D = U
(0)

i D|S .

So we have just proved the following theorem:

Theorem 3. DARWIN is collusion resistant against a
sucker strategy. Furthermore, it is resistant against a non-
sucker strategy if and only if

pS <
U

(0)

i D|D − U(S)

U
(0)

i D|D − U
(0)

i D|S

.

Thus if cooperative nodes mostly interact among each other
then DARWIN can resist group attacks.

5.4 Algorithm Implementation
Let N

(k)
i denote the set of one hop neighbors that node

i has discovered in time interval k by overhearing packet

transmissions. For every node j ∈ N
(k)
i node i keeps two

counters, one for the number of messages sent to j for for-

warding (S
(k)
ij ) in time slot k and another for the number of

messages j actually forwarded (F
(k)
ij ) in time interval k. At

the end of the time slot it computes the ratio

c
(k)
ij =

F
(k)
ij

S
(k)
ij

and proceeds to send c
(k)
ij to its neighbors. With the values

gathered node i estimates j’s average connectivity ratio

ĉ
(k)
j =

∑

m∈N
(k)
i

∪{i}

m6=j

c
(k)
im × c

(k)
mj

∑

m∈N
(k)
i

∪{i}

m6=j

c
(k)
im

,

where by definition c
(k)
ii = 1 for all k. It must be noted

that the average is weighted with the perceived connectivity
ratio that node i measured from node m. This helps to avoid
sybil attacks to spread false values with the hope to improve
a selfish node’s reputation since all its other identities have
low connectivity too, so they have a small impact on the

average. In a similar way, node i will find ĉ
(k)
i , the average

connectivity ratio its one-hop neighborhood perceived from

it during time slot k. We define p̂
(k)
j = 1 − ĉ

(k)
j and use (6)

and (7) to find the dropping probability that node i will use
while forwarding packets for node j in time interval k + 1.

Since we need γ < p−1
e , we need to estimate pe. An in-

teresting solution was proposed in [11] probing a node with
anonymous messages, but it increases the overhead of the
protocol. Instead, note that pe is the probability that at

least one terminal in N
(k)
i transmits when node j transmits.

Thus we estimate pe by measuring the fraction of time at
least one node different from j transmits. Call it p̂ej . Math-

ematically, if T
(k)
j is the fraction of time node j has trans-

mitted up to time interval k and T
(k)
c is the fraction of time

a collision occurred up to time interval k we have:

p̂ej = T (k)
c +

∑

n∈N
(k)
i

n6=j

T (k)
n .

In case the MAC layer uses a CSMA/CA protocol, and due
to the exposed terminal problem, we will have that p̂ej ≥ pe.
This overestimation is not a problem for our algorithm since

γ <
1

p̂ej

≤
1

pe

.

6. SIMULATIONS

6.1 Settings
Our goal is to test the performance of the network in the

presence of nodes which deviate from DARWIN. To do that
we implemented our algorithm using the network simula-
tor ns-2. For the propagation we used the two-ray ground
reflection model, while the IEEE 802.11 Distributed Coordi-
nation Function (DCF) was used at the MAC layer. Nodes
had a physical radio range of 250 m and a raw bandwidth
of 2 Mbps. Routing was performed by the Dynamic Source
Routing (DSR) protocol. We simulated a network of 50
nodes randomly placed in an area of 670×670 m2, where we
randomly selected five nodes that do not implement DAR-
WIN and behave selfishly dropping all packets that are not
destined to them. In the rest of this section, a selfish node
will be taken to mean a node that does not implement DAR-
WIN and a cooperative node is one which does. There are
14 source-destination pairs and each source transmits at a
Constant Bit Rate (CBR) of 2 packets/s, with a packet size
of 512 bytes. The simulation time is 800 s, where the time
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Figure 4: Normalized throughput for different drop-
ping ratio of selfish nodes

intervals used by DARWIN were 60 seconds long. Each fig-
ure presented is the average of 30 randomly generated runs.
In the simulations, γ was set to be 2.

6.2 Results
To evaluate DARWIN’s performance, we measure the nor-

malized forwarding ratio for both cooperative and selfish
nodes, which is defined to be the fraction of forwarded pack-
ets in the network under consideration divided by the frac-
tion of forwarded packets in a network with no selfish nodes.

Figure 4 shows the difference between cooperative and
selfish nodes, when selfish nodes probabilistically drop a
fraction of the packets they are expected to relay. It can
be seen that DARWIN effectively detects selfish behavior
and punishes nodes proportionally. The relationship be-
tween source rate and the normalized forwarding ratio is
presented in Figure 5. It can be noted that the normalized
ratio of cooperative nodes remains almost constant for dif-
ferent rates, even at high load when pe increases and false
positives are expected, showing that DARWIN can effec-
tively restore cooperation after false positives. A similar
result can be observed if we vary the total number of source-
destination pairs. In Figure 6 we explore the impact of the
fraction of selfish nodes. Remarkably, even when the fraction
is 90%, under DARWIN, cooperative nodes achieve a better
forwarding ratio than selfish nodes. The fact that the differ-
ence between the normalized ratios is small is less relevant
than the fact that selfishness does not improve performance.

7. CONCLUSIONS
In this paper we have studied how reputation-based mech-

anisms can help cooperation emerge among selfish users. We
first showed the properties of previously proposed schemes,
and with the insight gained from such understanding, we
proposed a new mechanism called DARWIN. We showed
that DARWIN is robust to imperfect measurements, is also
collusion-resistant and is able to achieve full cooperation.
We also showed that the algorithm is relatively insensitive
to parameter choices.
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Figure 5: Normalized throughput for different con-
nection rates (for a packet size of 512 bytes)
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Figure 6: Normalized throughput for different num-
ber of selfish nodes

8. APPENDIX
Here we present the proofs of the theorems presented in

this paper.
Theorem 1. GTFT is subgame perfect if and only if

g ≤ pe and w >
1

2α(1 − pe)
.

Proof. In Section 4.3 we have already seen that if g > pe

then GTFT is not a Nash equilibrium, so for the rest of the
proof we will assume g ≤ pe. It must be noted that GTFT
is a one-stage history strategy because it only needs to take
into account what happened in the previous stage. With
that in mind, and without loss of generality, let us assume

that any history hn is represented as p
(0)
i = pi for i ∈ {1, 2}.

If both nodes use GTFT then using (1) we have the following
subgame evolution:
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k p
(k)
i

0 pi

1 p−i(1 − pe) + pe − g

2 pi(1 − pe)
2 + (pe − g)

1
∑

n=0

(1 − pe)
n

3 p−i(1 − pe)
3 + (pe − g)

2
∑

n=0

(1 − pe)
n

...
...

or equivalently for k ≥ 1:

p
(k)
i = θ

(k)
i (1 − pe)

k +
(pe − g)

pe

[

1 − (1 − pe)
k
]

where

θ
(k)
i =

{

pi if k is even
p−i if k is odd.

Therefore from (2) the stage payoffs for k ≥ 1 are:

u
(k)
i = 1 +

1

2α − 1
p
(k)
i −

2α

2α − 1
p
(k)
−i .

If player i deviates at stage 1 using

p
(1)
iδ = p̃

(1)
i GTFT + δ

for some δ > 0 and later conforms to GTFT, we have the
following dropping probabilities:

k p
(k)
iδ

0 pi

1 p−i(1 − pe) + (pe − g) + δ

2 pi(1 − pe)
2 + (pe − g)

1
∑

n=0

(1 − pe)
n

3 p−i(1 − pe)
3 + (pe − g)

2
∑

n=0

(1 − pe)
n + δ(1 − pe)

2

...
...

or equivalently:

p
(2m+1)
iδ = p−i(1 − pe)

2m+1

+
(pe − g)

pe

[

1 − (1 − pe)
2m+1] + δ(1 − pe)

2m

p
(2m)
iδ = pi(1 − pe)

2m +
(pe − g)

pe

[

1 − (1 − pe)
2m

]

.

So we have:

p
(2m+1)
iδ = p

(2m+1)
i + δ(1 − pe)

2m for m ≥ 0

p
(2m)
iδ = p

(2m)
i for m ≥ 1.

Which leads to the following stage payoffs:

u
(2m+1)
iδ = u

(2m+1)
i +

1

2α − 1
δ(1 − pe)

2m for m ≥ 0

u
(2m)
iδ = u

(2m)
i −

2α

2α − 1
δ(1 − pe)

2m−1 for m ≥ 1.

Since the stage payoff received at stage 0 is independent of
the action player i takes at stage 1, we are only interested
in finding the following discounted average payoff:

U
(1)
iδ =

∞
∑

k=1

wk−1u
(k)
iδ

= U
(1)
i +

δ [1 − 2αw(1 − pe)]

(2α − 1) [1 − w2(1 − pe)2]
.

Where U
(1)
i is the discounted payoff received if δ = 0. Since

we assume that α ≥ 1, it does not pay to deviate if:

1 − 2αw(1 − pe) < 0.

But this is true if and only if:

w >
1

2α(1 − pe)
.

Then by the One-Stage Deviation Principle GTFT is sub-
game perfect.

Theorem 2. Assuming 1 < γ < p−1
e , DARWIN is sub-

game perfect if and only if

w > max

{

1

γ
,

1

2α(1 − peγ) + peγ

}

.

Proof. The line of reasoning is similar to the one pre-
sented for Theorem 1. DARWIN is a one-stage history strat-
egy because it only needs to take into account what hap-
pened in the previous stage. Hence, and without loss of

generality, any history hn can be represented as q
(0)
i = qi

for i ∈ {1, 2}. If both nodes do not deviate from DARWIN
then using (1) we have for k ≥ 1 the following subgame
evolution:

If qi ≥ q−i then:

p
(k)
i = 0

p
(k)
−i = pk−1

e γk−1 min{1, γ(qi − q−i)}

p̂
(k)
i = pe

p̂
(k)
−i = pe + pk−1

e γk−1(1 − pe) min{1, γ(qi − q−i)}

q
(k)
i = pe

q
(k)
−i = pe − pk

eγk−1 min{1, γ(qi − q−i)}
From (2) the stage payoffs for k ≥ 1 are:

u
(k)
i a = 1 −

2α

2α − 1

[

(peγ)k−1 min {1, γ(qi − q−i)}
]

.

If qi < q−i then:

p
(k)
i = pk−1

e γk−1 min{1, γ(q−i − qi)}

p
(k)
−i = 0

p̂
(k)
i = pe + pk−1

e γk−1(1 − pe) min{1, γ(q−i − qi)}

p̂
(k)
−i = pe

q
(k)
i = pe − pk

eγk−1 min{1, γ(q−i − qi)}

q
(k)
−i = pe

From (2) the stage payoffs for k ≥ 1 are:

u
(k)
i b = 1 +

1

2α − 1
pk−1

e γk−1 min {1, γ(q−i − qi)} .

If player i deviates at stage 1 using

p
(1)
iδ = p̃

(1)
i DARWIN + δ

for some δ > 0 and later conforms to DARWIN, we have the
following game evolution:

If qi ≥ q−i then:
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p
(1)
i = δ

p
(k)
i = 0

p
(1)
−i = min{1, γ(qi − q−i)}

p
(k)
−i = (peγ)k−2 min{1, γδ(1 − pe) + peγp

(1)
−i }

p̂
(1)
i = pe + δ(1 − pe)

p̂
(k)
i = pe

p̂
(1)
−i = pe + (1 − pe)p

(1)
−i

p̂
(k)
−i = pe

+(peγ)k−2(1 − pe) min{1, γδ(1 − pe) + peγp
(1)
−i }

q
(1)
i = pe + δ(1 − pe)

q
(k)
i = pe

q
(1)
−i = pe − pep

(1)
−i

q
(k)
−i = pe − pk−1

e γk−2 min{1, γδ(1 − pe) + peγp
(1)
−i }

Therefore from (2) the stage payoffs are:

u
(1)
iδ = u

(1)
i a +

δ

2α − 1

u
(k)
iδ = u

(k)
i a −

2α(peγ)k−2

2α − 1
min{1 − peγp

(1)
−i , γδ(1 − pe)}.

Since the stage payoff received at stage 0 is independent of
the action player i takes at stage 1, we are only interested
in finding the discounted average payoff

U
(1)
iδ =

∞
∑

k=1

wk−1u
(k)
iδ = U

(1)
i a +

1

2α − 1
[δ

−
2αw

1 − wpeγ
min{1 − peγp

(1)
−i , γδ(1 − pe)}

]

,

where U
(1)
i a is the discounted payoff received if δ = 0. It

does not pay to deviate if U
(1)
iδ < U

(1)
i a . Since we assume

that α ≥ 1, we only have to check two cases:

1. If 1 − peγp
(1)
−i < γδ(1 − pe) we need the following con-

dition

δ −
2αw(1 − peγp

(1)
−i )

1 − wpeγ
< 0

to be true for any δ. Equivalently:

w > max
0≤δ≤1

{

δ

2α(1 − peγp
(1)
−i ) + peγδ

}

.

So we get the bound:

w >
1

2α(1 − peγp
(1)
−i ) + peγ

. (15)

2. If 1 − peγp
(1)
−i ≥ γδ(1 − pe) we need the following con-

dition:

δ −
2αwγδ(1 − pe)

1 − wpeγ
< 0.

Thus we have the bound:

w >
1

2αγ(1 − pe) + peγ
. (16)

For the case qi < q−i the analysis has to be more detailed.
In stage 1 according to DARWIN player i has to drop player
−i’s packets with probability:

p̃
(1)
i DARWIN = min{1, γ(q−i − qi)}.

So if γ ≥ 1
q−i−qi

then player i cannot deviate at stage 1 for

any value of w. In the case that γ < 1
q−i−qi

we can only

increase δ up to:

δ ≤ 1 − γ(q−i − qi).

Now the rest of the analysis will consider the following two
cases:

δ ≤ min

{

1 − γ(q−i − qi),
peγ(q−i − qi)

1 − pe

}

(17)

peγ(q−i − qi)

1 − pe

< δ ≤ 1 − γ(q−i − qi) (18)

For the case when (17) is true we have the following evolution
of the game:

p
(1)
i = γ(q−i − qi) + δ

p
(k)
i = pk−1

e γk(q−i − qi) − δpk−2
e γk−1(1 − pe)

p
(1)
−i = 0

p
(k)
−i = 0

p̂
(1)
i = pe + γ(q−i − qi)(1 − pe) + δ(1 − pe)

p̂
(k)
i = pe + pk−1

e γk(q−i − qi)(1 − pe)
−δpk−2

e γk−1(1 − pe)
2

p̂
(1)
−i = pe

p̂
(k)
−i = pe

q
(1)
i = pe − peγ(q−i − qi) + δ(1 − pe)

q
(k)
i = pe − pk

eγk(q−i − qi) + δpk−1
e γk−1(1 − pe)

q
(1)
−i = pe

q
(k)
−i = pe

In this case, and from (2), the stage payoffs are:

u
(1)
iδ = u

(1)
i b +

δ

2α − 1

u
(k)
iδ = u

(k)
i b −

δpk−2
e γk−1(1 − pe)

2α − 1
.

And the discounted average payoff starting from stage 1 is:

U
(1)
iδ =

∞
∑

k=1

wk−1u
(k)
iδ = U

(1)
i b +

δ

2α − 1

[

1 −
wγ(1 − pe)

1 − wpeγ

]

.

Since α ≥ 1 it does not pay to deviate if:

1 −
wγ(1 − pe)

1 − wpeγ
< 0.

Which leads to the following bound on w:

w >
1

γ
. (19)

For the case when (18) is true we have the following game
evolution:
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p
(1)
i = γ(q−i − qi) + δ

p
(k)
i = 0

p
(1)
−i = 0

p
(k)
−i = pk−2

e γk−2 min{1, γδ(1 − pe) − peγ
2(q−i − qi)}

p̂
(1)
i = pe + γ(q−i − qi)(1 − pe) + δ(1 − pe)

p̂
(k)
i = pe

p̂
(1)
−i = pe

p̂
(k)
−i = pe + (1 − pe)p

(k)
−i

q
(1)
i = pe − peγ(q−i − qi) + δ(1 − pe)

q
(k)
i = pe

q
(1)
−i = pe

q
(k)
−i = pe − pep

(k)
−i

From (2), the respective stage payoffs are:

u
(1)
iδ = u

(1)
i b +

δ

2α − 1

u
(k)
iδ = u

(k)
i b −

(peγ)k−2

2α − 1

[

peγ
2(q−i − qi)

+2α min{1, γδ(1 − pe) − peγ
2(q−i − qi)}

]

.

The discounted average payoff starting from stage 1 is:

U
(1)
iδ =

∞
∑

k=1

wk−1u
(k)
iδ = U

(1)
i b +

1

2α − 1
{δ

−
w

[

peγ
2Q + 2α min{1, γδ(1 − pe) − peγ

2Q}
]

1 − wpeγ

}

.

Where Q = q−i − qi and U
(1)
i b is the discounted payoff re-

ceived if player i does not deviate. It does not pay to deviate

if U
(1)
iδ < U

(1)
i b . Since we assume α ≥ 1, we have:

1. If γδ(1−pe)−peγ
2(q−i−qi) > 1 we need the condition

δ −
w[2α + peγ

2(q−i − qi)]

1 − wpeγ
< 0

to be true for any δ. Equivalently:

w > max
δ

{

δ

2α + peγ2(q−i − qi) + peγδ

}

.

Since δ is bounded by (18) we get:

w >
1 − γ(q−i − qi)

2α + peγ2(q−i − qi) + peγ[1 − γ(q−i − qi)]
.

Simplifying:

w >
1 − γ(q−i − qi)

2α + peγ
. (20)

2. If γδ(1−pe)−peγ
2(q−i−qi) ≤ 1 we need the following

condition:

δ −
w

[

peγ
2Q + 2αγδ(1 − pe) − 2αpeγ

2Q
]

1 − wpeγ
< 0.

Where Q was defined above. Thus we have the bound:

w > max
δ

{

δ

δ [2αγ(1 − pe) + peγ] − (2α − 1)peγ2Q

}

.

Since δ is bounded by (18) we get:

w >
1

γ
. (21)

So for a given history hn we have found five bounds that w
has to fulfill in order for DARWIN to be a Nash equilibrium
in a given subgame. We first start noting that (19) and (21)
are identical, so we really have four bounds, two of which
are dependent on hn. In order to find the conditions under
which DARWIN is subgame perfect we need to find bounds
that are history independent. In the case of (15) the bound
is maximized by:

w >
1

2α(1 − peγ) + peγ
. (22)

Similarly, (20) is maximized by:

w >
1

2α + peγ
. (23)

Comparing (16), (22) and (23) it is easy to check that (22)
is the strictest bound since we assumed γ > 1. In summary,
we have the following bound on w for DARWIN:

w > max

{

1

γ
,

1

2α(1 − peγ) + peγ

}

.

Thus if the bound holds true, by the One-Stage Deviation
Principle DARWIN is subgame perfect.
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