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Abstract

Spatial heterogeneity in tumors is generally thought to result

frombranching clonal evolution driven by randommutations that

accumulate during tumor development. However, this concept

rests on the implicit assumption that cancer cells never evolve to

a fitnessmaximumbecause they can always acquiremutations that

increase proliferative capacity. In this study, we investigated the

validity of this assumption. Using evolutionary game theory, we

demonstrate that local cancer cell populationswill rapidly converge

to thefittest phenotype givena stable environment. In such settings,

cellular spatial heterogeneity in a tumorwill be largely governed by

regional variations in environmental conditions, for example,

alterations in blood flow. Model simulations specifically predict

a common spatial pattern in which cancer cells at the tumor–host

interface exhibit invasion-promoting, rapidly proliferating pheno-

typic properties, whereas cells in the tumor core maximize their

population density by promoting supportive tissue infrastructures,

for example, topromote angiogenesis.We testedmodel predictions

through detailed quantitative image analysis of phenotypic spatial

distribution in histologic sections of 10 patients with stage 2
invasive breast cancers. CAIX, GLUT1, and Ki67 were upregulated
in the tumor edge, consistent with an acid-producing invasive,
proliferative phenotype. Cells in the tumor core were 20% denser

than the edge, exhibiting upregulation of CAXII, HIF-1̂I�, and
cleaved caspase-3, consistent with a more static and less prolifer-
ative phenotype. Similarly, vascularitywas consistently lower in the
tumor center compared with the tumor edges. Lymphocytic
immune responses to tumor antigens also trended to higher level
in the tumor edge, although this effect did not reach statistical
significance. Like invasive species in nature, cancer cells at the
leading edge of the tumor possess a different phenotype from cells
in the tumor core. Our results suggest that at least some of the
molecular heterogeneity in cancer cells in tumors is governed by
predictable regional variations in environmental selection forces,
arguing against the assumption that cancer cells can evolve toward
a local fitness maximum by random accumulation of mutations.

Cancer Res; 76(11); 3136–44. �2016 AACR.

Introduction

Although patient-specific, precision therapy remains an impor-

tant goal in oncology, treatment strategies based on static and

non-spatial data canbe limited as somatic evolution continuously

alters the tumor environments and cell populations over space

and time (1). For example, recent studies demonstrate significant

intratumoral spatial heterogeneity in the molecular properties of

cancer cells in several tumor types (2–4). These regional variations

are widely recognized as evidence of intratumoral evolution, but

the proposed dynamics typically focus on random acquisition of

mutations that confer a fitness advantage resulting in a "selective

sweep" (5, 6) by the new population. An important clinical

implication of this conventional "clonal branching" model is

that intratumoral molecular heterogeneity, because it is depen-

dent on stochastic accumulation of mutations, must be funda-

mentally unpredictable.

An implicit assumption of conventional models of intratu-

moral evolution is that cancer cells do not achieve a fitness

maximum so that cancer cells can always undergo mutations that

increase their fitness allowing a new population to emerge even

within a static environment. In contrast, we note that very differ-

ent dynamicswill results if tumor cells, likemost species in nature,

rapidly evolve to local fitness maximum (7) so that no heritable

change can further increase its fitness. In fact, under such condi-

tions, the population will tend converge to a single dominant
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Major Findings

Like invasive species in nature, cancer cells at the leading

edge of the tumor possess a different phenotype from cells in

the tumor core. We conclude that at least some intratumoral

heterogeneity in the molecular properties of cancer cells is

governed by predictable regional variations in environmental

selection forces.
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Quick Guide to Equations and Assumptions

Darwinian dynamics of intratumoral heterogeneity

The fitness generating function is given by

Gðu; u; xA; xBÞ ¼ pFA þ ð1� pÞFB:

The fitness of a focal individual in a habitat i ¼ A or B of species j is a function of its strategy u and the current density of individuals

within that habitat xi given by

Fiðu; u; xiÞ ¼ riðuÞ
KiðuÞ �

P

j xij

KiðuÞ

� �

� di:

The individuals' strategy u within a habitat affects both the logistic growth rate and carrying capacity given by

riðuÞ ¼ ri0exp �
ðu� 1Þ2

s
2
K

 !

and KiðuÞ ¼ ki0 exp �
u2

s
2
K

� �

:

A strategyuwill converge on a distribution of individuals amonghabitats such that the strategy has the sameper capita growth rate in

each habitat. Equilibrating
qxij
qt and substituting q ¼ xA=xB results in

q ¼
ðFA � FB þmB �mAÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFB � FB þmA �mBÞ
2 þ 4mAmB

q

2mA

:

Therefore, the frequency with which a strategy u will eventually experience habitat A for any fixed biotic environment is given by

pðu; u; xA; xBÞ ¼
q

ðqþ 1Þ
:

The population dynamics of the size of a species within a habitat is given by

qxij

qt
¼ xij � ½Fiðuj; u; xiÞ �mixij þmlxlj�; l 6¼ i:

The strategy dynamics is given by
qu

qt
¼ C �

qG

qu
:

Together, the population dynamics and the strategy dynamics represent the complete Darwinian dynamics of the system. The

ecologic and evolutionary dynamics generally converge on an "evolutionary stable strategy" (ESS). At an ESS the system becomes

both ecologically ½qx=qt ¼ 0� and evolutionarily stable ½qG=qv ¼ 0�:

Parameters
* c is a constant that scales the speed of evolutionary change;
* di is an extrinsic mortality term not built into the logistic growth due to ecologic properties of the habitat;
* ri0 is the maximum growth rate of each habitat i ¼ A or B;
* ki0 is the maximum carrying capacity of each habitat i ¼ A or B;
* s

2

K is a constant characterizing the Gaussian penalty due to strategy to riðuÞ and KiðuÞ;
* mi is the per capita migration rate of individuals from habitat i to the alternate habitat l for l „ i;

Major Assumptions

1 Species are identical in all ways except for the values of their strategies.

2 The strategy u represents investment along a continuum of all CAIX (u ¼ 0Þ and all CAXII (u ¼ 1Þ.
3 A tradeoff exists between fitness in the two habitats, where qFA/ qu> 0 and qFB/ qu < 0.

4 There are diminishing returns in fitness in habitat A from increasing u and to fitness in B from decreasing u, where q2FA/ qu
2 < 0

and q
2FB/ qu

2 < 0.

5 Individuals compete with each other for limiting resources within each habitat, so fitness within a habitat declines with an

increase of individuals within that habitat, where qFA/ qxA < 0 and qFB/ qxB < 0.
6 Migration ratesmA andmB are passive in that we assume thatmA andmB are independent of strategies, u, and species population

sizes, xA and xB.

Darwinian Dynamics of Intratumoral Heterogeneity
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phenotype, resulting in decreasing heterogeneity. Thus, in this

alternative model of cancer evolution, spatial variation of phe-

notypesmust result from local variations in environmental factors

that select for different phenotypic properties. For example,

regions of low blood flow, a common observation in tumor

imaging, will select for tumors that are optimally adapted to

environmental conditions that include reduced availability of

substrate and blood-derived growth factors. Importantly, in con-

trast with the conventional model, this approach requires molec-

ular characteristics of cancer cells to be non-random. That is, the

local phenotypic properties of cancer cells should be generally

predictable with sufficient understanding of local environmental

properties and Darwinian dynamics (8).

Here, we frame this hypothesis using mathematical models

from evolutionary game theory (9, 10). The quantitativemethods

extend prior work that applied classic evolutionary trade-offs

between fecundity and survivorship. That is, we propose cancer

cells, like all evolving organisms, can invest resources tomaximize

fecundity or survivorship but not both (11). This Darwinian

trade-off manifests in cancer cells as two tumor cell types roughly

correspond to what is known as r and K selection (12) where "r"

refers to a species with maximal growth rate (capacity to grow at

low population densities) as opposed to "K" referring to a species

that maximizes its carrying capacity (capacity to maintain growth

at high population densities).

Although based on simple evolutionary first principles, the

model leads to complex and variable spatial and temporal pop-

ulation. However, we find that the model does consistently

predict one property of the tumor ecology—that the cancer cells

at the tumor–host interface will demonstrate phenotypic prop-

erties that are consistent between tumors, but very different from

the properties of cells deeper within the same tumor. We then

examine model predictions through detailed, quantitative anal-

ysis of spatial distribution of phenotypic properties in histologic

sections taken from 10 patients with stage 2 invasive breast

cancers.

Materials and Methods

All clinical components of the study were completed with the

approval of the University of South Florida Institutional Review

Board. Participant's written consent was not obtained because all

personal health information was de-identified and analyzed

anonymously. The Moffitt Scientific Review Committee and Uni-

versity of South Florida IRB committee both approved this pro-

tocol (MCC 16511).

Mathematical model

We investigate a mathematical model from evolutionary game

theory of habitat heterogeneity (12), in which we envision two

habitats, the core of the tumor versus the tumor edge. We assume

that cancer cells can evolvewhereas normal cells do not.However,

normal mesenchymal cells retain phenotypic plasticity and may

be influenced and/or co-opted by the tumor cells to generate a

tissue infrastructure that favors cancer growth. Within a habitat,

we assume that the cancer cells compete for limiting resources but

do not interact directly with cells in the other habitat. Indirectly,

however, their habitats do interact via migration where a fraction

of the population form each habitat actively moves into the

adjacent habitat or find themselves in that habitat as the edge of

the tumor either recedes, expands or shifts location.

We imagine an evolutionary strategy that represents a trade-

off between capacities to produce carbonic anhydrase (CA),

CAXII versus CAIX. CAIX and XII are extracellular enzymes that

catalyze the reversible hydration of CO2 to bicarbonate and a

proton:

CO2 þH2O $ HCO�
3 þHþ

CAIX is a transmembrane glycoprotein whose catalytic domain

faces the extracellular milieu (13). CAXII has a similar overall

secondary structure and orientation to CAIX, although missing

the PG-like domain. CAIX sets the extracellular pH at 6.8 whereas

CAXII sets the extracellular pH at 7.4. We use this difference in

extracellular pH set point as markers for phenotypic strategy. It is

also reported that CAIX is a poor prognostic indicator andCAXII is

a positive prognostic indicator in breast cancer (14).

The buffering and habitat modulating properties of CAXII

promotes or are associated with higher carrying capacity (K) and
lower maximum proliferation rates (r)—such a species empha-

sizing CAXII is "K-selected." The acid-tolerating properties of

CAIX promotes or are associated with resistance to the immune

system, degradation of normal cells, and higher proliferation

rates—such a species is "r-selected." We scale the heritable strat-

egy, u, to range from u ¼ 0 (maximum carrying capacity K and

minimum growth rate r) to u ¼ 1 (minimum K and maximal r).
Via competition within habitats and migration between habi-

tats, the tumor cells engage in an evolutionary game in which an

individual'sfitness,Gðu; u; xA; xBÞ, depends upon its strategy,u,
the strategies of the other tumor cells, u, and population sizes of

tumor cells in the interior (A) and edge (B) of the tumor, xA and

xB, respectively. The evolutionary dynamics of the cancer cell

strategies can be visualized on an adaptive landscape. This land-

scape plots G versus the strategy of the focal individual, u. The
adaptive landscape is fixed for a given tumor population with its

associated strategies andpopulation sizes. But, as thepopulations'

strategies evolve (evolutionary dynamics) and their associated

population sizes change (ecological dynamics) the landscape also

changes. Hence, the landscape itself is dynamic in response to the

Darwinian dynamics of strategies and population sizes (15). At

any time and point along this landscape the population will

evolve "uphill" until it reaches a convergent stable point—at this

point, the slope of the landscape is zero (qG=qv ¼ 0), and the

population sizes equilibrate so that fitness is 0 (G ¼ 0). This

convergent stable point can either be at amaximum orminimum

of the adaptive landscape (16). If at a maximum, then the cancer

has evolved to its evolutionarily stable strategies (ESS) and such a

state will be both ecologically and evolutionarily persistent. If at a

minimum, then the cancer cell population is under strong dis-

ruptive selection and it should "speciate" into two distinct clades

that diverge and evolve to occupy distinct niches seen as distinct

peaks of the adaptive landscape (17).

Further methods, details, and theories of the game theory

model and image analysis strategies may be found in Supple-

mentary Material.

Case selection

Following approval by the Institutional Review Board, 10

patients with formalin-fixed and paraffin-embedded (FFPE)

blocks of diagnosed invasive ductal breast carcinoma were retro-

spectively examined. Cases were selected by a practicing pathol-

ogist (M.M. Bui) to include five each of the three Nottingham

score grades.

Lloyd et al.
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Histology

Sectioning. The Tissue Core atMoffitt located each FFPE block and

4-mmserial slides fromeachpatientwere sectionedusing standard

histotechnique.

Immunohistochemical staining

Slides were stained using a Ventana Discovery XT automated

system (Ventana Medical Systems) as per the manufacturer's

protocol with proprietary reagents. Slides were deparaffinized on

the automated system with EZ Prep solution (Ventana).

For the CD34 staining, the mouse monoclonal antibody

CMA334 (Cell Marque) was used at a prediluted concentration

and incubated for 16 minutes. The Ventana OmniMap anti-

mouse secondary antibody was incubated for 12 minutes. Ven-

tana ChromoMap was used for detection.

For the KI67 staining, the rabbit primary antibody #790-4286

(Ventana) was applied and incubated for 16 minutes. The Ven-

tana anti-rabbit secondary was incubated for 16 minutes. The

detection system was OmniMap.

To stain for CAIX, the rabbit primary antibody #ab15086

(Abcam) was used at a 1:500 concentration in Dako antibody

diluent and incubated for 32 minutes. The OmniMap anti-rabbit

secondary was used for 20 minutes. ChromoMap was used for

detection.

For CAXII, the rabbit primary antibody #HPA008773 (Sigma)

was used at a 1:75 concentration in Dako antibody diluent and

incubated for 32 minutes. The OmniMap anti-rabbit secondary

was used for 20 minutes. The detection system was ChromoMap.

Each setwas counter stainedwithhematoxylin thendehydrated

and coverslipped per standard histologic protocol.

Imaging and analysis

Image acquisition. Stained slides were digitally scanned using the

Aperio (Vista) ScanScope XT high-throughput slide scanning

instrument (200�/0.75NA objective with a rate of 2–3 minutes

per slide via Basler tri-linear array).

Segmentation. Histology pattern recognition technology used

included both Aperio's GENIE software and Definiens (Munich,

Germany) TissueStudio v3.0 to identify tumor regions of interest

(26, 27). Regions of the tumor edgewere defined as areas within 1

mm of the tumor–host interface and tumor center regions were

defined as any area deeper than 1mmof the tumor–host interface.

For each measurement a 500� 500 mm subregion was randomly

selected using a customMatlab (R2014b) script. Three subregions

were used for each analysis of the center or edge regions for each

patient sample. Furthermore, single cells were identified as tumor

and mesenchymal regions, respectively, by identifying the nuclei

and growing cell simulations 5 mm. The classified nuclear and

cytoplasmic subcellular compartments were evaluated indepen-

dently for biomarkers that localize to a specific cellular region.

Intensity thresholds from each biomarker were determined by the

study pathologist (M.M. Bui) and retained consistently for each

patient set.

Results

Cancer adaptive landscapes and intratumoral evolution

Although tumors likely possess a large number of ecologic

niches, ourmodel simulations focused on just two: (i) the tumor–

host interface in which tumor cells compete primarily interact

with elements of normal tissue, including the predatory effects of

the immune response and normal tissue infrastructure such as

intact blood vessels and (ii) the interior in which tumor cells

compete with each other and must actively promote formation

of the mesenchymal infrastructure required to support the

population.

If the population of tumor cells iswell-mixed between edge and

interior of the tumor (high migration rate, m), then evolution

promotes anESS that is a single clone (Fig. 1). This clone possesses

a generalist strategy balancing the need for a higher rwhen facing

the edge habitat and a higher K when facing the interior. No

matter the starting strategy of the population, it will evolve toward

the same peak of the adaptive landscape. We expect this outcome

when either the spatial heterogeneity of habitat types is very fine

grained, or the cells for some reason are highly motile and

frequently move from one habitat to the next, which itself could

be a response to environmental selective pressures (18). For larger

more advanced tumors, we would expect edge and interior

habitats to be more coarse grained, and the likelihood of a given

tumor cellmoving fromone to the other to be relatively small on a

per 8 to 24 hours basis (the likely unit of time in our model).

If themigration rate is small, an axis of heterogeneity describing

the edge to interior of the tumor can result in the speciation of a

single clonal cancer lineage into two distinct phenotypes special-

ized to exploit different regions of tumor heterogeneity (Fig. 2). If

the tumor starts with a single evolving population of cancer cells,

then these cells evolve up the slope of the adaptive landscape. But

instead of achieving a peak, they actually evolve to an evolution-

arily stable minimum on the landscape. At this point, disruptive

selection should promote speciation and the divergence of

Figure 1.

Evolution of a population of cells in an

environment where the migration

rate is high (m ¼ 0.1). The initial

population begins with a strategy

u ¼ 0.5 (left). Evolutionary dynamics

will cause this population's strategy to

climb the adaptive landscape.

Through both the ecological and

evolutionary dynamics, an ESS is

achieved at a strategy of u ¼ 0.3564

(right).

Darwinian Dynamics of Intratumoral Heterogeneity

www.aacrjournals.org Cancer Res; 76(11) June 1, 2016 3139

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/7

6
/1

1
/3

1
3
6
/2

7
3
5
5
7
6
/3

1
3
6
.p

d
f b

y
 g

u
e
s
t o

n
 2

5
 A

u
g
u
s
t 2

0
2
2



separate tumor cell types. The one being K-selected (CAXII) and

the other r-selected (CAIX). Although some spatial overlap will

occur between the two types, the former will predominate in the

interior of the tumor and the latter at the tumor's edge.

More generally the model shows how the grain-size of habitat

heterogeneity and the motility of tumor cells will determine

whether tumor heterogeneity promotes generalist versus more

specialist tumor "species." Figure 3 shows how low migration

rates promote speciation and divergent strategies among the

tumor cells. As the migration rate increases, the values of the two

strategies comprising the ESS begin to converge and do so at a

critical threshold value of migration. At higher rates of migration

above this threshold, the ESS is a single species with a generalist

strategy (Fig. 3).

In summary, themodel simulations demonstrate that selection

forces in the tumor core favor tumor cells with "engineering"

phenotypes that maximize carrying capacity by promoting angio-

genesis and aggressively competing for limited resources. Con-

versely, the tumor cells at the leading edge (i.e., the tumor-host

interface) possess "pioneering" phenotypes that maximize their

invest resources in invasive strategies that permit them to acquire

resources through co-opting normal vessels and other host

mesenchyma even at the expense of a potentially higher death

rate due to host response. Thus, in general our models predict

"engineering" phenotypes will dominate the tumor core whereas

cells at the leading edge of tumor will exhibit phenotypes that can

pioneer in a novel, and sometimes hostile environment. Inter-

estingly, this prediction is consistent with observations in nature

that "weedy" phenotypes (i.e., higher maximum proliferation

rates at the expense of lower carrying capacities) predominate at

the leading edge of a population invasion when compared with

individuals in regions far from the propagating border (19).

Clinical analysis

As described above, the evolutionary models predict observ-

able changes in the neoplastic cells and the environment in both

the center and edge regions of a tumor. We tested these model

predictions with clinical analysis of histologic sections evaluated

by quantitative image analysis. Our clinical results indicate a

number of consistently observed and quantified changes in cell

Figure 2.

Evolution of a population of cells in an

environment where the migration rate

is low (m ¼ 0.001). Again, the initial

population begins with a strategy of

u ¼ 0.5 and begins to climb the

adaptive landscape (top left). Instead

of achieving a peak, the population

actually evolves to an evolutionarily

stable minima of the landscape at

u ¼ 0.3677 (top right). Disruptive

selection causes the single population

to diverge into two separate species.

The one being K-selected is shown as

species 1 in red and evolves to an ESS

of u ¼ 0.0774. The other being r-

selected is shown as species 2 in blue

and evolved to an ESS of u ¼ 0.4074

(bottom).

Figure 3.

Evolutionary stable strategies versus the migration rate m. Speciation into

two distinct strategies occurs at low migration rates (m < 0.012). At high

migration rates (m > 0.012), the values of the two strategies converge to a

single species with a generalist strategy. The dynamics ofm¼ 0.1 are shown

in Fig. 1 and the dynamics of m ¼ 0.001 are shown in Fig. 2.

Lloyd et al.
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density, cell proliferation, cell death, cell aggression, acidosis, and

hypoxia in both locations (each measured in triplicate) of histo-

logic samples of 10 invasive breast cancer patients. Furthermore,

the presence of lymphocytes and vascular resources in the micro-

environment were measured in triplicate in both locations of the

same tumors (See Table 1 and Fig. 4).

First, the tumor cell density was evaluated. We used a partially

hierarchical ANOVA (SYSTAT version 13) to test for the effects of

tumor cell density (number of tumor cells per area) and habitat

(tumor center vs. tumor edge; each with triplicate sampling) for

each of 10 patients. These analyses were calculated by quantifying

the number events (as indicated as the number of tumor cells or,

for each biomarker, strongly expressing tumor cells) within a 500

by 500 mm subregion. Each subregion was extracted randomly, in

triplicate, from within 1 mm of the mesenchymal interface for

edge samples and beyond 1mm from themesenchymal interface

for center regions. The cell density model provided a good fit to

the data (multiple r2 ¼ 0.72). The patient [F-Ratio ¼ 0.49, not

significant (n.s.)] was not found to influence the ratio of cell

counts per region so that the tissue slices provided roughly the

same ratio of cancer cells regardless of patient. Cancer cell abun-

dances varied significantly by center and edge region (F-Ratio ¼
15.39, P < 0.001) for all patients (F-Ratio¼ 9.20, P < 0.001). This

indicates that cells in the tumor center out-numbered cells at

the tumor edge consistently across all patients with statistical

significance.

Second, the tumor cell proliferation was evaluated by evidence

of Ki-67 expression across tumor cells in triplicate for both regions

for the same 10patients. Themodel also provided a good fit to the

data (multiple r2¼ 0.88). Again the patient (F-Ratio¼ 2.74, n.s.)

was not found to influence the ratio of Ki67-positive cells per

region so that the tissue slices provided roughly the same ratio

of Ki67 positivity regardless of patient. Proliferation varied

very significantly by center and edge region (F-Ratio ¼ 73.58,

P < 0.001) for all patients (F-Ratio ¼ 21.56, P < 0.001). This

indicates that proliferative cells in the tumor edge consistently

out-numbered cells in the tumor center across all patients with

statistical significance.

Next, the tumor cell death by apoptosis was evaluated by

evidence of cleaved caspase-3 (CC3) expression across tumor

Table 1. Statistical summary for each biomarker by region interaction

Multiple r
2

F-ratio

(habitats)

F-ratio

(patients)

F-ratio

(habitats�patients)

P

(habitats)

P

(patients)

P

(habitats�patients)

Cell density 0.072 15.387 9.297 0.495 <0.0001 <0.0001 n.s.

CAIX 0.908 255.766 7.881 4.513 <0.0001 <0.0001 0.001

CAXII 0.927 329.297 12.495 3.318 <0.0001 <0.0001 0.006

KI67 0.88 73.58 21.559 1.516 <0.0001 <0.0001 n.s.

CC3 0.838 45.231 12.036 5.993 <0.0001 <0.0001 <0.0001

Glut1 0.933 148.704 22.081 1.692 <0.0001 <0.0001 n.s.

HIF-1a 0.861 13.4 24.44 1.516 0.001 0.001 n.s.

CD34 (#) 0.797 22.482 12.661 2.261 <0.0001 <0.0001 n.s.

CD34 (#) 0.64 27.25 2.886 1.692 <0.0001 0.014 n.s.

Lymphocytes 0.793 0.057 14.708 2.744 0.812 <0.0001 n.s.

Abbreviation: n.s., nonsignificant.

Figure 4.

H&E images of a grade 3 invasive breast cancer. A, regions were randomly selected from the whole slide image, such that three regions were within 1 mm of the

edge of the tumor border (black boxes) and three regions were located near the center of the tumor region (yellow boxes). Scale bar, 2 mm. B and C, Each edge

region (B) and each center region (C) are shown at �200 magnification; scale bar, 100 mm. D, digitally zoomed to �1,000 from the dotted black box and

demonstrates the tumor cell identification (blue points) and lymphocyte identification (teal points) used to calculate both the tumor cell density and lymphocyte

numbers in each of the 60 H&E and 600 total images evaluated; scale bar, 100 mm. E, scatter plot of the 10 patient's (x-axis) cell density (y-axis) for the center (blue)

and edge (orange) regions.
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cells in triplicate for both regions for the same 10 patients. The

model also provided a good fit to the data (multiple r2 ¼ 0.84).

Here, CC3 expression varied very significantly by center and

edge region (F-Ratio ¼ 45.23, P < 0.001) for all patients (F-

Ratio¼12.04, P < 0.001). This indicates that apoptosis in the

tumor center consistently out-numbered cells in the tumor edge

across all patients with statistical significance.

Then, a number of additional metabolomic biomarkers that

indicate tumor cell aggression, acidosis, glycolysis, and hypoxia

were tested. Aggressive, acid producing cells should be consis-

tently observed in the tumor edge whereas cells in vascularized

regions of the remainder of the tumor should be functioning in

normal pHe. To test model predictions, we examined the spatial

distribution of CAIX and XII as biomarkers for regional high

and low acidity, respectively.

The model provided a good fit to the CAIX data (multiple r2 ¼
0.91) and the CAXII data (multiple r2 ¼ 0.93). CAIX expression

varied very significantly by center and edge region (F-Ratio ¼
255.77, P < 0.001) for all patients (F-Ratio ¼ 7.88, P < 0.001)

whereas CAXII expression varied very significantly by center and

edge region (F-Ratio¼ 329.27, P < 0.001) for all patients (F-Ratio

¼ 12.50, P < 0.001). This indicates that CAIX-expressing cells in

the tumor edge consistently out-numbered cells in the tumor

center across all patients with statistical significance when the

converse is true ofCAXII, which consistently has higher expression

in the tumor center across all patients with statistical significance.

This matched with the predictions of the evolutionary mathe-

matical models (Fig. 5).

Glycose transporter 1 (GLUT1), also known as solute carrier

family 2 facilitated glucose transporter member 1 (SLC2A1;

multiple r2¼ 0.93) and hypoxia-inducible factor 1-alpha (HIF1a;

multiple r2 ¼ 0.86) measurements were similarly modeled.

GLUT1 expression varied very significantly by center and edge

region (F-Ratio ¼ 148.70, P < 0.001) for all patients (F-Ratio ¼
22.08, P < 0.001) whereas HIF1a expression varied very signif-

icantly by center and edge region (F-Ratio¼ 13.40, P¼ 0.001) for

all patients (F-Ratio ¼ 24.44, P < 0.001). This indicates that

GLUT1-expressing cells in the tumor edge consistently out-num-

bered cells in the tumor center across all patients with statistical

significance when the converse is true of HIF1a, which consis-

tently has higher expression in the tumor center across all patients

with statistical significance.

Finally, two aspects of the environment were quantified: The

vascular density (number and area of vasculature) and the density

of lymphocytes per region area. The number of blood vessels per

area (multiple r2 ¼ 0.80), the area of vascular involvement

(multiple r2 ¼ 0.77) and the density of lymphocytes (multiple

r2 ¼ 0.79) were modeled. The number of blood vessel per area

varied significantly by center and edge region (F-Ratio ¼ 22.48,

P<0.001) for all patients (F-Ratio¼ 12.66,P<0.001)whereas the

area of vascular involvement varied significantly by center and

edge region (F-Ratio¼16.85,P<0.001) for all patients (F-Ratio¼
11.62, P < 0.001) whereas lymphocytic density did not vary

significantly by center and edge region (F-Ratio ¼ 0.057, n.s.)

but was consistent for all patients (F-Ratio ¼ 14.71, P < 0.001).

This indicates that the number and area of vasculature was

statistically greater at the tumor edge than in the tumor center

across all patients; however, the lymphocytes were statistically

similar in both the edge and center regions across all patients.

Non-specific staining of one of the patients may have resulted in

an artificially high patient interaction effect. When this patient's

samples were removed the trend remained constant for the center

to edge effect (F-Ratio ¼ 27.25, P < 0.001) and the patient effect

was reduced to (F-Ratio ¼ 2.89, n.s.). The lymphocytic response,

taken together with the tumor cell density does, however, indicate

that the ratio of lymphocytes to tumor cells is consistently high at

the tumor edge (where the tumor cell density is lower than the

center).

Overall, the biomarker measures of tumor cells are strikingly

segregated by center and edge regions. This species by habitat

interaction contributes most to the explained variation within the

statistical model (see Table 1 for a statistical summary for each

biomarker by region interaction). See Fig. 6 for a graphical

representation of each data point.

Discussion

The conventional model of intratumoral evolution allows

new "driver" mutations to accumulate indefinitely, resulting in

branching clonal evolution. This conceptual model implicitly

assumes that tumor cells never achieve a local fitness maximum

so that new mutations can always generate a novel (and fitter)

genotype and phenotype. Here, we explore an alternative model

in which cancer cells may evolve to an evolutionary stable state

(ESS) and, thus, cannot be displaced by new strategies if the

environment remains stable. This would lead to local phenotypic

convergences so that regional molecular variations, rather than

the result of random mutations, would represent reasonably

predictable phenotypic adaptations to changes in environment

conditions such as blood flow, as described in the results, and via

conventional clinical imaging such as MRI. This model would be

supported by identification of a simple, consistent spatial varia-

tion in tumor molecular properties that emerged directly from

fundamental evolutionary dynamics.

Here, we framed this hypothesis mathematically using evolu-

tionary game theory. Although built on a simple conceptual

model, computer simulations demonstrate the ecological dynam-

ics within cancers can be quite complex and highly variable from

Figure 5.

Experimental and mathematical model results showing the percentage of

total cells counted in the center and edge that expressed either CAIX or CAXII.

Experimental results showed that 90% of the cells in the center of the

tumors expressed CAXII, whereas only 10% expressed CAIX. Conversely, 63%

of the cells in at the edge of the tumors expressed CAIX. The mathematical

model showed that 97% of the cells in the center would express CAXII

and 96% of the cells at the edge would express CAIX.
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tumor to tumor. However, a common pattern emerged as our

models predicted cancer cells at the invasive front of the tumor

will consistently possess distinct phenotypic properties when

compared with the cells in the core. Interestingly, similar patterns

of distinctive phenotypes at the leading edge have been observed

in biological invasions such as the cane toad in Australia (20) and

the house sparrow in Kenya (21).

Detailed analysis of spatialmolecular heterogeneity in10clinical

breast cancers demonstrates a consistent regional distribution in

whichproliferation, the ratioof tumor cells to lymphocytes,GLUT1

and CAIX expression were higher at the tumor edge. Conversely,

tumor cell density, apoptosis, HIF1a and CAXII expression were

observed to be greater in the tumor center.We also investigated the

location of increased vascularity and cell death. Although the

number of clinical tumors is small, we note that the results are

highly statistically significant. Furthermore, other clinical studies

have observed changes in gene expression in the edge of cutaneous

squamous cell carcinoma (22, 23) and colon cancer (24).

Our results are similar to the variations in favorable and

unfavorable gene signatures within the same tumor reported in

prior studies (1, 3). For example, our results show that positive

prognostic (CAXII) and negative prognostic (CAIX) biomarkers

are routinely observed in the same tumor but different regions.

Importantly, however, we can clearly identify the Darwinian

dynamics that produced this spatial variation, and thus place this

regional heterogeneity within an ecologic and evolutionary con-

text. This may have clinical implications because it supports the

hypothesis that at least some intratumoral heterogeneity in the

molecular properties of cancer cells can be predicted on the basis

of the local environmental selection forces, which can be defined

by clinical imaging (25–27).

Our results suggest a number of important avenues for future

investigation. Because clinical cancer imaging can depict spatial

variations in perfusion, it should be possible to estimate some

molecular variations based on imaging. In addition, it seems clear

that some current prognostic and predictive molecular biomar-

kers that can be observed in different regions of the same tumor,

such as CAIX and CAXII, can be accurately evaluated and reported

only in a spatial context.

Disclosure of Potential Conflicts of Interest
R.J. Gillies has ownership interest (including patents) and is a consultant/

advisory boardmember for HealthMyne. No potential conflicts of interest were

disclosed by the other authors.

Authors' Contributions
Conception and design: M.C. Lloyd, J.J. Cunningham, M.M. Bui, R.J. Gillies,

J.S. Brown, R.A. Gatenby

Development of methodology: M.C. Lloyd, J.J. Cunningham, J.S. Brown,

R.A. Gatenby

Acquisition of data (provided animals, acquired and managed patients,

provided facilities, etc.):M.C. Lloyd, J.J. Cunningham, M.M. Bui, R.A. Gatenby

Analysis and interpretation of data (e.g., statistical analysis, biostatistics,

computational analysis): M.C. Lloyd, J.J. Cunningham, M.M. Bui, R.J. Gillies,

J.S. Brown, R.A. Gatenby

Writing, review, and/or revision of the manuscript:M.C. Lloyd, J.J. Cunning-

ham, M.M. Bui, R.J. Gillies, J.S. Brown, R.A. Gatenby

Figure 6.

Comparison of tumor cell molecular properties at the invasive edge compared with the tumor core. A and B, an image panel of center (top; A) and edge (bottom; B)

regions are displayed to demonstrate examples of each biomarker staining within each area of interest; scale bar, 100 mm. C, scatter plot of the 10 patient's

(x-axis) CAIX, CXII, Ki67, CC3, GLUT1, HIF-1a, and CD34 biomarkers for the center (blue) and edge (orange) regions.

Darwinian Dynamics of Intratumoral Heterogeneity

www.aacrjournals.org Cancer Res; 76(11) June 1, 2016 3143

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/7

6
/1

1
/3

1
3
6
/2

7
3
5
5
7
6
/3

1
3
6
.p

d
f b

y
 g

u
e
s
t o

n
 2

5
 A

u
g
u
s
t 2

0
2
2



Administrative, technical, or material support (i.e., reporting or organizing

data, constructing databases): M.C. Lloyd

Study supervision: J.S. Brown, R.A. Gatenby

Acknowledgments
The authorswould like to extend theirmost sincere thanks to all of thosewho

discussed, reviewed, and provided edits for this article, especially Tamir Epstein

and the Brown laboratory. The authors thank the Moffitt Tissue Core and the

Analytic Microscopy Core for their expertise.

Grant Support
This work was sponsored in part by the Moffitt Cancer Center PSOC,

NIH/NCI U54CA143970.

The costs of publication of this articlewere defrayed inpart by the payment of

page charges. This article must therefore be hereby marked advertisement in

accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

ReceivedOctober 28, 2015; revised January 22, 2016; acceptedMarch7, 2016;

published OnlineFirst March 23, 2016.

References
1. Longo DL. Tumor heterogeneity and personalized medicine. N Engl J Med

2012;366:956–7.

2. Gerlinger M, Swanton C. How Darwinian models inform therapeutic

failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer

2010;103:1139–43.

3. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC,

et al. Intratumor heterogeneity in human glioblastoma reflects cancer

evolutionary dynamics. Proc Natl Acad Sci U S A 2013;110:4009–14.

4. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis

occurs late during the genetic evolution of pancreatic cancer. Nature

2010;467:1114–7.

5. Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012;481:

306–13.

6. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and

ecological process. Nat Rev Cancer 2006;6:924–35.

7. Gatenby RA, Gillies RJ, Brown JS. Of cancer and cave fish. Nat Rev Cancer

2011;11:237–8.

8. Alfarouk KO, Ibrahim ME, Gatenby RA, Brown JS. Riparian ecosystems in

human cancers. Evol Appl 2013;6:46–53.

9. Michelson S, Miller BE, Glicksman AS, Leith JT. Tumor micro-ecology and

competitive interactions. J Theor Biol 1987;128:233–46.

10. Aktipis CA, Boddy AM,Gatenby RA, Brown JS,Maley CC. Life history trade-

offs in cancer evolution. Nat Rev Cancer 2013;13:883–92.

11. Gatenby RA, Cunningham JJ, Brown JS. Evolutionary triage governs fitness

in driver and passenger mutations and suggests targeting never mutations.

Nat Commun 2014;5:5499.

12. Brown JS, Pavlovic NB. Evolution in heterogeneous environments: effecs of

migration on habitat specialization. Evol Ecol 1992;6:360–82.

13. Morgan PE, Pastorekova S, Stuart-Tilley AK, Alper SL, Casey JR. Interactions

of transmembrane carbonic anhydrase, CAIX, with bicarbonate transpor-

ters. Am J Physiol Cell Physiol 2007;293:C738–48.

14. Potter CP, Harris AL. Diagnostic, prognostic and therapeutic implications

of carbonic anhydrases in cancer. Br J Cancer 2003;89:2–7.

15. Vincent TL, Brown JS. Evolutionary game theory, natural selection, and

Darwinian dynamics . Cambridge, UK: Cambridge University Press; 2005.

16. Apaloo J, Brown JS, Vincent TL. Evolutionary game theory: ESS, conver-

gence stability, and NIS. Evol Ecol Res 2009;11:489–515.

17. Cohen Y, Vincent TL, Brown JS. A G-function approach to fitness minima,

fitness maxima, evolutionarily stable strategies and adaptive landscapes.

Evol Ecol Res 1999;1:923–43.

18. Aktipis CA, Maley CC, Pepper JW. Dispersal evolution in neoplasms: the

role of disregulated metabolism in the evolution of cell motility. Cancer

Prev Res 2012;5:266–75.

19. Vigueira CC,Olsen KM, Caicedo AL. The red queen in the corn: agricultural

weeds as models of rapid adaptive evolution. Heredity 2013;110:303–11.

20. Brown GP, Shilton C, Phillips BL, Shine R. Invasion, stress, and spinal

arthritis in cane toads. Proc Natl Acad Sci U S A 2007;104:17698–700.

21. Liebl AL, Martin LB. Living on the edge: range edge birds consume novel

foods sooner than established ones. Behav Ecol 2014;25:1089–96.

22. Mitsui H, Suarez-Farinas M, Gulati N, Shah KR, Cannizzaro MV, Coats I,

et al. Gene expression profiling of the leading edge of cutaneous squamous

cell carcinoma: IL-24-driven MMP-7. J Invest Dermatol 2014;134:

1418–27.

23. Pourreyron C, Reilly L, Proby C, Panteleyev A, Fleming C, McLean K, et al.

Wnt5a is strongly expressed at the leading edge in non-melanoma skin

cancer, forming active gradients, while canonical Wnt signalling is

repressed. PLoS ONE 2012;7:e31827.

24. Georgiou L, Minopoulos G, Lirantzopoulos N, Fiska-Demetriou A, Mal-

tezos E, Sivridis E. Angiogenesis and p53 at the invading tumor edge:

prognosticmarkers for colorectal cancer beyond stage. J Surg Res 2006;131:

118–23.

25. Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution

and ecology. Radiology 2013;269:8–15.

26. Zhou M, Hall L, Goldgof D, Russo R, Balagurunathan Y, Gillies R, et al.

Radiologically defined ecological dynamics and clinical outcomes in

glioblastoma multiforme: preliminary results. Transl Oncol 2014;7:5–13.

27. Gill BJ, Pisapia DJ, Malone HR, Goldstein H, Lei L, Sonabend A, et al. MRI-

localized biopsies reveal subtype-specific differences in molecular and

cellular composition at the margins of glioblastoma. Proc Natl Acad Sci

U S A 2014;111:12550–5.

Cancer Res; 76(11) June 1, 2016 Cancer Research3144

Lloyd et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/7

6
/1

1
/3

1
3
6
/2

7
3
5
5
7
6
/3

1
3
6
.p

d
f b

y
 g

u
e
s
t o

n
 2

5
 A

u
g
u
s
t 2

0
2
2


