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Abstract: Background: The Dietary Approaches to Stop Hypertension (DASH) dietary pattern, which

emphasizes fruit, vegetables, fat-free/low-fat dairy, whole grains, nuts and legumes, and limits

saturated fat, cholesterol, red and processed meats, sweets, added sugars, salt and sugar-sweetened

beverages, is widely recommended by international diabetes and heart association guidelines.

Objective: To summarize the available evidence for the update of the European Association of

the Study of Diabetes (EASD) guidelines, we conducted an umbrella review of existing systematic

reviews and meta-analyses using the Grading of Recommendations Assessment, Development,

and Evaluation (GRADE) approach of the relation of the DASH dietary pattern with cardiovascular

disease and other cardiometabolic outcomes in prospective cohort studies and its effect on blood

pressure and other cardiometabolic risk factors in controlled trials in individuals with and without

diabetes. Methods: MEDLINE and EMBASE were searched through 3 January 2019. We included

systematic reviews and meta-analyses assessing the relation of the DASH dietary pattern with

cardiometabolic disease outcomes in prospective cohort studies and the effect on cardiometabolic risk

factors in randomized and non-randomized controlled trials. Two independent reviewers extracted

relevant data and assessed the risk of bias of individual studies. The primary outcome was incident

cardiovascular disease (CVD) in the prospective cohort studies and systolic blood pressure in the

controlled trials. Secondary outcomes included incident coronary heart disease, stroke, and diabetes

in prospective cohort studies and other established cardiometabolic risk factors in controlled trials.

If the search did not identify an existing systematic review and meta-analysis on a pre-specified
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outcome, then we conducted our own systematic review and meta-analysis. The evidence was

summarized as risk ratios (RR) for disease incidence outcomes and mean differences (MDs) for

risk factor outcomes with 95% confidence intervals (95% CIs). The certainty of the evidence was

assessed using GRADE. Results: We identified three systematic reviews and meta-analyses of 15

unique prospective cohort studies (n = 942,140) and four systematic reviews and meta-analyses of 31

unique controlled trials (n = 4,414) across outcomes. We conducted our own systematic review and

meta-analysis of 2 controlled trials (n = 65) for HbA1c. The DASH dietary pattern was associated

with decreased incident cardiovascular disease (RR, 0.80 (0.76–0.85)), coronary heart disease (0.79

(0.71–0.88)), stroke (0.81 (0.72–0.92)), and diabetes (0.82 (0.74–0.92)) in prospective cohort studies and

decreased systolic (MD, −5.2 mmHg (95% CI, −7.0 to −3.4)) and diastolic (−2.60 mmHg (−3.50 to

−1.70)) blood pressure, Total-C (−0.20 mmol/L (−0.31 to −0.10)), LDL-C (−0.10 mmol/L (−0.20

to −0.01)), HbA1c (−0.53% (−0.62, −0.43)), fasting blood insulin (−0.15 µU/mL (−0.22 to −0.08)),

and body weight (−1.42 kg (−2.03 to −0.82)) in controlled trials. There was no effect on HDL-C,

triglycerides, fasting blood glucose, HOMA-IR, or CRP. The certainty of the evidence was moderate

for SBP and low for CVD incidence and ranged from very low to moderate for the secondary outcomes.

Conclusions: Current evidence allows for the conclusion that the DASH dietary pattern is associated

with decreased incidence of cardiovascular disease and improves blood pressure with evidence of

other cardiometabolic advantages in people with and without diabetes. More research is needed to

improve the certainty of the estimates.

Keywords: dietary approaches to stop hypertension; DASH; cardiometabolic health; cardiovascular

disease; review; GRADE

1. Introduction

Cardiovascular disease (CVD) continues to be a leading cause of mortality in people with and

without diabetes globally [1–3]. Clinical practice guidelines recommend dietary strategies as the

cornerstone of therapy to prevent and manage cardiovascular disease [4–9]. The dietary approaches to

stop hypertension (DASH) dietary pattern, which emphasizes fruit, vegetables, fat-free/low-fat dairy,

whole grains, nuts and legumes, and limits total and saturated fat, cholesterol, red and processed meats,

sweets, added sugars, and sugar-sweetened beverages, was originally developed through research

sponsored by the US National Institutes of Health (NIH) to treat hypertension without medication and

successfully demonstrated a clinically meaningful blood pressure lowering effect [10].

In addition to reducing blood pressure, the DASH dietary pattern has since been shown to have a

decreasing effect on low-density lipoprotein-cholesterol (LDL-C) among other cardiometabolic risk

factors in randomized controlled trials and be associated with reductions in diabetes and cardiovascular

mortality in prospective cohort studies [11–13].

These benefits of the DASH dietary pattern have been recognized by general dietary guidelines

from the U.S.-based National Heart, Lung, and Blood Institute (NHLBI) and the United States

Department of Agriculture (USDA) [14]. International diabetes [7,15] and cardiovascular [6,16,17]

clinical practice guidelines have also recommended the DASH dietary pattern for cardiovascular risk

reduction. The European Association for the Study of Diabetes (EASD), however, has not reviewed

the evidence or made specific recommendations regarding the DASH dietary pattern in its clinical

practice guidelines for nutrition therapy. To update current recommendations, the Diabetes and

Nutrition Study Group (DNSG) of the EASD commissioned an umbrella review of existing systematic

reviews and meta-analyses using the Grading of Recommendations Assessment, Development, and

Evaluation (GRADE) approach to summarize the available evidence of the relation of the DASH dietary

pattern with diabetes and cardiovascular outcomes in prospective cohort studies and its effect on
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blood pressure and other established cardiometabolic risk factors in randomized and non-randomized

controlled trials.

2. Materials and Methods

2.1. Design

Public health policy and clinical practice guidelines are established with the use of systematic

reviews and meta-analyses of controlled trials and prospective cohort studies, which are regarded as

the best levels of evidence. We thus identified the most recent systematic reviews and meta-analyses

assessing the relationships of the DASH dietary pattern with incident cardiometabolic diseases in

prospective cohort studies and on cardiometabolic risk factors in randomized and non-randomized

controlled trials in individuals with and without diabetes. The umbrella review was conducted

according to the principals of the Cochrane Handbook for Systematic Reviews of Interventions [18] and

the GRADE handbook [19] with reporting according to the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) [20]. The study protocol was registered (clinicaltrials.gov

identifier, NCT03542370).

2.2. Study selection

The databases Medline and Embase were searched from inception through 3 January 2019

using the search terms “dietary approaches to stop hypertension” or “DASH” and “meta-analysis”

(Supplemental Table S1). If the search of systematic reviews and meta-analyses did not identify

an existing systematic review and meta-analysis on any of the pre-specified outcomes below, then

we conducted our own systematic review and meta-analysis in which studies were eligible if the

intervention was a DASH dietary pattern and the outcomes of interest were reported.

2.3. Data extraction

Two independent reviewers extracted relevant data from each included systematic review

and meta-analysis and from invidual studies if we had to conduct our own systmatic review

and meta-analysis.

2.4. Risk of Bias Assessment

The quality of the individual studies contained in each systematic review and meta-analysis was

assessed by the two independent reviewers. Study characteristics were extracted and risk of bias

assessments were performed using either the New Castle Ottawa score [21] for the prospective cohort

studies or the Cochrane Risk of Bias Tool [22] for the controlled trials.

2.5. Outomes

The primary outcome was incident CVD in the prospective cohort studies and SBP in the

controlled trials. Secondary outcomes included incident coronary heart disease (CHD), stroke,

and diabetes in the prospective cohort studies and diastolic blood pressure (DBP), blood lipids

(Total-cholesterol (Total-C), LDL-C, high-density lipoprotein-cholesterol (HDL-C), and triglycerides),

glycemic control (HbA1c, fasting blood glucose, fasting blood insulin, homeostasis model assessment

of insulin resistance (HOMA-IR)), adiposity (body weight), and inflammation (C-reactive protein) in

the controlled trials.

2.6. Evidence Synthesis

All of the available evidence for each systematic review and meta-analysis identified was

summarized, including pooled risk ratios for reports of prospective cohorts and pooled effect

estimates of mean differences (MDs) for reports of controlled trials. Where we conducted our own
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meta-analysis, the generic inverse variance method with fixed or random effects models were used

where appropriate [18].

2.7. Grading of the Evidence

The certainty of the evidence was assessed using the GRADE tool [19,23–34]. This tool allows

evidence to be graded as high, moderate, low, or very low quality. Randomized controlled trials start as

high-quality evidence and observational studies such as prospective cohort studies start as low-quality

evidence. Both can then be downgraded or upgraded on the basis of pre-specified criteria. The criteria

used to downgrade evidence include study limitations (weight of studies showing risk of bias as

assessed by the Cochrane Risk of Bias Tool [22] or the New Castle Ottawa Scale [21], unless otherwise

specified), inconsistency (substantial unexplained inter-study heterogeneity, I2 ≥ 50% and P < 0.10),

indirectness (presence of factors that limit the generalizability of the results), imprecision (the 95%

confidence intervals (95% CIs) for MDs and risk estimates are wide or cross a minimally important

difference), and publication bias (significant evidence of small-study effects). The criteria used to

upgrade the quality of evidence are restricted to prospective cohort studies. These criteria include

a large magnitude of association (relative risk, (RR) ≤ 0.5 or ≥2), a dose–response gradient, and

attenuation by plausible confounding.

3. Results

3.1. Search Results

Figure 1 illustrates the literature search and selection process. We identified 125 reports from

the search, of which 60 were excluded for title and abstract. Of 17 reports that were reviewed in full,

seven reports met eligibility criteria and were included. We identified three systematic reviews and

meta-analyses of 15 unique prospective cohort studies (n = 942,140) and four systematic reviews and

meta-analyses of 31 unique controlled trials (n = 4414) across outcomes.

3.2. Outcomes

3.2.1. Systematic Reviews and Meta-Analyses of Prospective Cohort Studies

Cardiovascular Disease Incidence

One systematic review and meta-analysis assessed the relationship between consumption of

the DASH dietary pattern and CVD incidence (including incidence and mortality of CVD, CHD,

stroke and sudden cardiac death) [13] (Figure 2, Table 1, and Supplemental Table S2). It included

11 prospective cohort comparisons [35–42] (n = 783,732; 32,927 events) conducted in various countries,

including the United States (seven studies), Sweden (two studies), China (one study), and Italy (one

study), with follow-up durations ranging from 7.9 to 24 years [13]. The consumption of a DASH

dietary pattern was found to significantly reduce CVD (RR = 0.80 (95% CI: 0.76–0.85), which showed

no evidence of inter-study heterogeneity (I2 = 30%) [13]. No serious risk of bias was identified

(Supplemental Tables S3–S4).
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Figure 1. Literature search.

Supplemental Table S5 shows the GRADE assessment of the certainty of the evidence for the

relationship between the DASH dietary pattern and CVD. The evidence was rated as low for the

association of the DASH dietary pattern and CVD incidence. This assessment suggests that the DASH

dietary pattern may have a meaningful cardiovascular benefit, but the estimate remains uncertain.
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Table 1. Summary of characteristics of included studies in most recent systematic reviews and meta-analyses of prospective cohort studies assessing the effect of the

DASH dietary pattern on chronic disease.
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CVD
Schwingshackl
et al., 2015 [13]

11 783,732
44,544

(2061–242,321)

7 USA: 2
Sweden:
1 Italy: 1

China

3 CHD incidence: 3
CVD mortality: 3

stroke incidence: 1
CVD incidence: 1

sudden cardiac death

32,927
(123–15,497)

60.5
(20–83)

14.6 (7.9-24) FFQ

7 quintiles:
2 quartiles:
2 tertiles of

DASH score

Record linkage

8 Agency: 2 not
reported: 1

Agency,
Industry

10 H: 1 Lo

CHD
Salehi-Abargouei

et al., 2013 [43]
3 144, 337

348,827
(20,993–88,517)

3 USA

1 CHD morbidity and
mortality: 1 CHD

mortality: 1 fatal and
nonfatal CHD

7260
(430–6210)

52
(30–69)

16 (14.6-24) FFQ 3 quintiles Record linkage 3 Agency 2 H: 1 Lo

Stroke
Salehi-Abargouei

et al., 2013 [43]
3 150,191

40,681
(20,993–88,517)

2 USA: 1
Italy

1 stroke incidence: 1
stroke mortality: 1 fatal

and nonfatal stroke

4,413
(178–3999)

52
(30–74)

16 (7.9-24) FFQ
2 quintiles:
1 tertiles

Record linkage
2 Agency: 1

Agency,
Industry

2 H: 1 Lo

Diabetes
Jannasch

et al., 2017 [12]
5 158,408

21, 616
(822–89,195)

4 US: 1
Europe

(8
countries)

diabetes incidence
23,612

(129–11, 217)
58

(25–84)
11.5 (5-20) FFQ

4 quintiles:
1 tertiles

3 self-reported +
record linkage: 1

independent
assessment: 1
OGTT or DM

med use

4 Agency: 1
Agency,
Industry

4 H: 1 Lo

‡ Agency funding is that from government, university or not-for-profit health agency sources. ** Newcastle Ottawa quality assessment Scale was used to assess risk of bias across the
following domains: selection (four points), comparability (two points), and outcome (three points). A total score of six or greater was considered high-quality and a total score of five or
smaller was considered low-quality. CHD, coronary heart disease; CVD, cardiovascular disease; obs, prospective cohort; DASH, dietary approaches to stop hypertension; DM, diabetes; H,
High; Lo, Low; med, medication; obs, observational; OGTT, oral glucose tolerance test; yr, year.
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showed no evidence of inter-study heterogeneity (I2 = 30%) [13]. No serious risk of bias was 
identified (Supplemental Tables S3–S4). 

Supplemental Table S5 shows the GRADE assessment of the certainty of the evidence for the 
relationship between the DASH dietary pattern and CVD. The evidence was rated as low for the 
association of the DASH dietary pattern and CVD incidence. This assessment suggests that the 
DASH dietary pattern may have a meaningful cardiovascular benefit, but the estimate remains 
uncertain. 

 
Figure 2. Summary plot of the association between the DASH dietary pattern on risk of various 
chronic diseases in prospective cohort studies. The pooled risk estimate is represented by the 
diamond. P-values were determined using random effects modelling in each systematic review and 
meta-analysis. Between-study heterogeneity was assessed by the Cochran Q statistic, where P < 0.10 
is considered statistically significant, and quantified by the I2 statistic, where I2 ≥ 50% is considered 
evidence of substantial heterogeneity [29]. The Grading of Recommendations, Assessment, 
Development and Evaluation (GRADE) of prospective cohort studies are rated as “Low” certainty of 
evidence and can be downgraded by five domains and upgraded by three domains. The filled black 
squares indicate downgrade and/or upgrades for each outcome. CHD = coronary heart disease; CI = 
confidence interval; CVD = cardiovascular disease; GRADE = Grading of Recommendations, 
Assessment, Development and Evaluation; NA = not applicable. 

Coronary Heart Disease Incidence 

One systematic review and meta-analysis assessed the relationship between consumption of 
the DASH dietary pattern and CHD incidence [43] (Figure 2, Table 1, and Supplemental Table S6). 
It included three prospective cohort comparisons [37–39] (n = 144,337; 7260 events) all of which 
were conducted in the United States, with follow-up durations ranging from 14.6 to 24 years [43]. 
The consumption of a DASH dietary pattern was found to significantly reduce CHD incidence (RR 
= 0.79 (95% CI: 0.71–0.88)), which showed no evidence of inter-study heterogeneity (I2 = 0%) [43]. No 
serious risk of bias was identified (Supplemental Tables S7–S8). 

Supplemental Table S5 shows the GRADE assessment of the overall strength of the evidence 
for the relationship between the DASH dietary pattern and CHD incidence. The evidence was rated 
as very low for the association of the DASH dietary pattern and CHD incidence, owing to a 
downgrade for indirectness since the findings are not generalizable given that the three prospective 
cohort studies were conducted in middle-aged or elderly women. The relationship remains 
uncertain, with future studies likely to have an important influence on risk estimates. 

Figure 2. Summary plot of the association between the DASH dietary pattern on risk of various

chronic diseases in prospective cohort studies. The pooled risk estimate is represented by the diamond.

P-values were determined using random effects modelling in each systematic review and meta-analysis.

Between-study heterogeneity was assessed by the Cochran Q statistic, where P < 0.10 is considered

statistically significant, and quantified by the I2 statistic, where I2 ≥ 50% is considered evidence of

substantial heterogeneity [29]. The Grading of Recommendations, Assessment, Development and

Evaluation (GRADE) of prospective cohort studies are rated as “Low” certainty of evidence and can

be downgraded by five domains and upgraded by three domains. The filled black squares indicate

downgrade and/or upgrades for each outcome. CHD = coronary heart disease; CI = confidence interval;

CVD = cardiovascular disease; GRADE = Grading of Recommendations, Assessment, Development

and Evaluation; NA = not applicable.

Coronary Heart Disease Incidence

One systematic review and meta-analysis assessed the relationship between consumption of

the DASH dietary pattern and CHD incidence [43] (Figure 2, Table 1, and Supplemental Table S6).

It included three prospective cohort comparisons [37–39] (n = 144,337; 7260 events) all of which

were conducted in the United States, with follow-up durations ranging from 14.6 to 24 years [43].

The consumption of a DASH dietary pattern was found to significantly reduce CHD incidence

(RR = 0.79 (95% CI: 0.71–0.88)), which showed no evidence of inter-study heterogeneity (I2 = 0%) [43].

No serious risk of bias was identified (Supplemental Tables S7–S8).

Supplemental Table S5 shows the GRADE assessment of the overall strength of the evidence for

the relationship between the DASH dietary pattern and CHD incidence. The evidence was rated as

very low for the association of the DASH dietary pattern and CHD incidence, owing to a downgrade

for indirectness since the findings are not generalizable given that the three prospective cohort studies

were conducted in middle-aged or elderly women. The relationship remains uncertain, with future

studies likely to have an important influence on risk estimates.

Stroke Incidence

One systematic review and meta-analysis assessed the relationship between consumption of

the DASH dietary pattern and stroke incidence [43] (Figure 2, Table 1 and Supplemental Table S9).

It included three prospective cohort comparisons [35,38,39] (n = 150,191; 4,413 events) two of which

were conducted in the United States and one study in Italy, with follow-up durations ranging from

7.9–24 years [43]. The consumption of a DASH dietary pattern was found to significantly reduce stroke

incidence (RR = 0.81 (95% CI: 0.72–0.92)), which showed no evidence of inter-study heterogeneity

(I2 = 0%) [43]. No serious risk of bias was identified (Supplemental Tables S10–S11).

Supplemental Table S5 shows the GRADE assessment of the certainty of the evidence for the

relationship between the DASH dietary pattern and stroke incidence. The evidence was rated as low
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for the association of the DASH dietary pattern and stroke incidence. This assessment suggests that

the DASH dietary pattern may have a meaningful stroke benefit, but the estimate remains uncertain.

Diabetes Incidence

One systematic review and meta-analysis assessed the relationship between consumption of the

DASH dietary pattern and diabetes incidence [12] (Figure 2, Table 1, and Supplemental Table S12).

It included five prospective cohort studies [44–48] (n = 158,408; 23,612 events) four of which were

conducted in the United States and one study in Europe, with follow-up durations ranging from

5–20 years [12]. The consumption of a DASH dietary pattern was found to significantly reduce

diabetes incidence (RR = 0.82 (95% CI: 0.74–0.92)), however showed substantial unexplained inter-study

heterogeneity (I2 = 62%) [12]. No serious risk of bias was identified (Supplemental Tables S13–S14).

Supplemental Table S5 shows the GRADE assessment of the certainty of the evidence for the

relationship between the DASH dietary pattern and diabetes incidence. The evidence was rated as very

low for the association of the DASH dietary pattern and diabetes incidence, owing to a downgrade

for inconsistency (I2 = 62%; P = 0.03), and with <10 studies, no subgroup analyses were performed

to attempt to explain heterogeneity. The relationship remains uncertain, with future studies likely to

have an important influence on risk estimates.

3.2.2. Systematic Reviews and Meta-analyses of Controlled Trials

Blood Pressure

One systematic review and meta-analysis of controlled trials assessed the effect of the DASH

dietary pattern on blood pressure outcomes, including SBP and DBP [11] (Figure 3, Table 2,

and Supplemental Table S15). A total of nineteen controlled trials [10,49–63] were included, involving

1,918 middle-aged participants with and without hypertension. The DASH dietary pattern was

found to significantly lower SBP (MD = −5.20 mmHg (95% CI: −7.00 to −3.40 mmHg)) and DBP

(MD = −2.60 mmHg (95% CI: −3.50 to −1.70 mmHg)). There was substantial unexplained inter-study

heterogeneity across both outcomes (I2 = 76% and 49%, respectively). No serious risk of bias was

identified (Supplemental Figures S1–S2).

Supplemental Table S16 shows the GRADE assessments for the certainty of the evidence for the

effect of a DASH dietary pattern on blood pressure. The evidence for SBP was rated as moderate,

owing to a downgrade for inconsistency (I2 = 76%; P < 0.001). The evidence for DBP was rated as

low, owing to downgrades for inconsistency (I2 = 49%; P = 0.009) and imprecision in the pooled

effect estimate. This assessment suggests that the DASH dietary pattern may result in clinically

meaningful reductions in blood pressure. The effect of the DASH dietary pattern on DBP, however,

remains uncertain, with future randomized controlled trials likely to have an important influence on

risk estimates.
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for most glycemic outcomes, calling for more large, high-quality, randomized trials to clarify the 
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One systematic review and meta-analysis of controlled trials assessed the effect of the DASH 
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directly from the original mean difference and 95% CI. Between-study heterogeneity was assessed 
by the Cochran Q statistic, where P < 0.10 is considered statistically significant, and quantified by 
the I2 statistic, where I2 ≥ 50% is considered evidence of substantial heterogeneity [29]. The Grading 
of Recommendations, Assessment, Development and Evaluation (GRADE) of randomized 
controlled trials are rated as "High" certainty of evidence and can be downgraded by five domains. 
The filled black squares indicate downgrades for each outcome. *Due to the difference in 

Figure 3. Summary plot of the effect of the DASH dietary pattern on cardiometabolic risk factors

in controlled trials. Data are expressed as weighted mean differences with 95% CIs using random

effects models in each systematic review and meta-analysis with the exception of HbA1c in which a

fixed effects model was used due to the inclusion of <5 trials. To allow the pooled effect estimates for

each end point to be displayed on the same axis, mean differences were transformed to standardized

mean differences (SMDs). Pseudo-95% CIs for each transformed SMD were derived directly from the

original mean difference and 95% CI. Between-study heterogeneity was assessed by the Cochran Q

statistic, where P < 0.10 is considered statistically significant, and quantified by the I2 statistic, where I2

≥ 50% is considered evidence of substantial heterogeneity [29]. The Grading of Recommendations,

Assessment, Development and Evaluation (GRADE) of randomized controlled trials are rated as

"High" certainty of evidence and can be downgraded by five domains. The filled black squares indicate

downgrades for each outcome. *Due to the difference in directionality of HDL-C compared to the other

outcomes with regards to signal for benefit or harm, the sign for the SMD was changed. ** Since no

published systematic review and meta-analysis was retrieved from the search, we manually conducted

a systematic review and meta-analysis on the DASH dietary pattern and HbA1c (Supplemental Tables

S20–21 and Supplemental Figure S3). To convert Total-C, LDL-C, and HDL-C to mg/dL, multiply

by 38.67; to convert TG to mg/dL, multiply by 88.57; to convert blood glucose to mg/dL, multiply

by 18.02; to convert CRP to mg/L, multiply by 0.105. CI = confidence interval; CRP = C-reactive

protein; GRADE = Grading of Recommendations, Assessment, Development and Evaluation; HbA1c

= hemoglobin A1c; HDL-C = high-density lipoprotein-cholesterol; HOMA-IR = Homeostatic Model

Assessment of Insulin Resistance; LDL-C = low-density lipoprotein-cholesterol; MD = mean difference;

NA = not available; SMD=standardized mean difference; TG = triglycerides; Total-C = total-cholesterol
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Table 2. Summary of characteristics of included trials in the most recent systematic reviews and meta-analyses of controlled trials assessing the effect of the DASH

dietary pattern on cardiometabolic risk factors.
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Blood Pressure
(SBP + DBP) Siervo et al., 2015 [11] 19

1,
918 37 (12–537)

9 HTN: 3
PreHTN +

HTN: 2 MetS:
1 GDM: 1

Norm: 1 OH,
lean: 1 OB: 1

T2DM
44.3

(30.1–59.2) 8 (2–24) 6 CO: 13 P

12 USA: 4
Iran: 3

Australia 16 Y: 3 N

15 DASH alone: 2
weight loss

DASH: 1 weight
loss DASH +

exercise: 1
behavioural

intervention plus
DASH

10 usual diet: 2
low fat diet: 2 low
antioxidant diet:

2 weight loss
diet:1

behavioural
intervention

alone: 1 exercise
alone: 1 usual
GDM practice

14 dietary advice:
4 metabolic: 1
dietary advice

plus some
supplemented

foods 11 U: 8 Lo

Total-C + LDL-C Siervo et al., 2015 [11] 13
1,

673 54 (12–537)

6 HTN: 2
PreHTN +

HTN: 1 GDM:
1 Norm: 1

OH, Lean: 1
OB: 1 T2DM

48.3
(30.1–59.2) 4 (3–24) 6 CO: 7 P

8 USA: 3
Australia: 2

Iran 10 Y: 3 N

12 DASH alone: 1
behavioural

intervention plus
DASH

7 usual diet: 2
low fat diet: 2 low
antioxidant diet:1

behavioural
intervention

alone: 1 usual
GDM practice

10 dietary advice:
2 metabolic: 1
dietary advice

plus some
supplemented

foods 9 U: 4 Lo

HDL-C Siervo et al., 2015 [11] 15
1,

749 54 (12–537)

6 HTN: 2
PreHTN +

HTN: 2 MetS:
1 GDM: 1

Norm: 1 OH,
lean: 1 OB: 1

T2DM
44.0

(30.1–59.2) 8 (3–24) 6 CO: 9 P
8 USA: 4 Iran:

3 Australia 12 Y: 3 N

12 DASH alone: 2
weight loss

DASH: 1
behavioural

intervention plus
DASH

7 usual diet: 2
low fat diet: 2 low
antioxidant diet:

2 weight loss
diet:1

behavioural
intervention

alone: 1 usual
GDM practice

12 dietary advice:
2 metabolic: 1
dietary advice

plus some
supplemented

foods 11 U: 4 Lo

Triglycerides Siervo et al., 2015 [11] 14
1,

654 44 (12–537)

5 HTN: 2
PreHTN +

HTN: 2 MetS:
1 GDM: 1

Norm: 1 OH,
Lean: 1 OB: 1

T2DM
42.6

(30.1–55.6) 6 (3–24) 6 CO: 8 P
8 USA: 4 Iran:

2 Australia 11 Y: 3 N

11 DASH alone: 2
weight loss

DASH: 1
behavioural

intervention plus
DASH

7 usual diet: 1
low fat diet: 2 low
antioxidant diet:

2 weight loss
diet:1

behavioural
intervention

alone: 1 usual
GDM practice

12 dietary advice:
2 metabolic 10 U: 4 Lo
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HbA1c Manual conductc 2 65 33 (31–34)
1 GDM: 1

T2DM
42.6

(30.1–55.0) 6 (4–8) 1 CO: 1P 2 Iran 2 Y 2 DASH alone 2 usual diet 2 dietary advice 1 U: 1 Lo

Blood glucose Siervo et al., 2015 [11] 10 826 27 (12–537)

1 HTN: 2
PreHTN +

HTN: 2 MetS:
1 GDM: 1

Norm: 1 OH,
Lean: 1 OB: 1

T2DM
40.8

(30.1–55.0) 6 (3–24) 5 CO: 5 P 6 USA: 4 Iran 8 Y: 2 N

7 DASH alone: 2
weight loss

DASH: 1
behavioural

intervention plus
DASH

4 usual diet: 2
low antioxidant
diet: 2 weight

loss diet: 1
behavioural
intervention

alone: 1 usual
GDM practice 10 dietary advice 7 U: 3 Lo

Fasting insulin
Shirani et al., 2013

[64] 11 760 15 (9–266)

2 HTN: 4
PreHTN +

HTN: 1 Norm:
1 OH: 1 OH,

Lean: 2
OW/OB

44.1
(34.3–51.8) 4 (3–24) 6 CO: 5 P 10 USA: 1 UK 6 Y: 5 N

8 DASH alone: 3
behavioural

intervention plus
DASH

6 usual diet: 2
low antioxidant

diet: 3 advice
only

10 dietary advice:
1 dietary advice

plus some
supplemented

foods 7 U: 4 Lo

HOMA-IR
Shirani et al., 2013

[64] 8 603 14 (9–266)

1 HTN: 3
PreHTN +

HTN: 1 Norm:
1 OH: 1 OH,
Lean: 1 OB

39.7
(34.3–49.8) 3.5 (3–24) 6 CO: 2 P 8 USA 4 Y: 4 N

6 DASH alone: 2
behavioural

intervention plus
DASH

4 usual diet: 2
low antioxidant

diet: 2 advice
only 8 dietary advice 6 U: 2 Lo

Body weight
Soltani et al., 2016

[65] 11 1,211 54 (22–476)

5 HTN: 2
MetS: 1

PreHTN +
HTN: 1 HF
patients: 1
OW/OB,

NAFLD: 1
OW/OB,

PCOS
48.5

(30.1–62.0) 16 (8–52) 0 CO: 11 P

4 USA: 4 Iran:
2 Australia: 1

Brazil 11 Y: 0 N

5 DASH alone: 4
weight loss

DASH: 1
behavioural

intervention Plus
DASH: 1 DASH +

LGI

4 weight loss: 2
low fat: 2 usual

diet: 1
behavioural

intervention: 1
general HF

recommendations:
1 standard low
sodium HTN

advice

10 dietary advice:
1 dietary advice

plus some
supplemented

foods 6 U: 5 Lo
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CRP
Soltani et al., 2017

[66] 6 451 42 (31–241)

2
Hyperlipidemic:
1 Lean Norm
+ OB HTN: 1

OW/OB,
NAFLD: 1
OW/OB,
PCOS: 1
T2DM

45.7
(30.1–55.0) 8 (3–24) 3 CO: 3 P

3 Iran: 2 USA:
1 Canada 16 Y: 0 N

3 DASH alone: 2
weight loss

DASH: 1
lacto-ovo

vegetarian DASH

2 weight loss: 1
usual diet: 1

usual plus fibre,
potassium,

magnesium: 1
healthy

American: 1
Portfolio diet

(plant-based with
soy protein,

viscous fibres and
nuts)

15 dietary advice:
1 metabolic 3 U: 3 Lo

A range represents the range of the mean age in the trials. b For ROB, an assessment was performed using the Cochrane Risk of Bias tool, including the evaluation of individual domains of
risk of bias (sequence generation, allocation concealment, blinding of participants/personnel and outcome assessors, incomplete outcome data, selective outcome reporting). Each of the
five domains was evaluated as either low, high or unclear ROB and the overall ROB category was determined based on the most selected category. c Since no published systematic review
and meta-analysis was retrieved from the search, we manually conducted a systematic review and meta-analysis on the DASH dietary pattern and HbA1c (Supplemental Tables S20–21
and Supplemental Figure S3). BMI, body mass index; BP, blood pressure; CO, crossover; CRP, C-reactive protein; DASH, dietary approaches to stop hypertension; DBP, diastolic blood
pressure; DM, diabetes; F, female; F/U, follow-up; GDM, gestational diabetes; HDL-C, high-density lipoprotein-cholesterol; HF, heart failure; HTN, hypertensive; HOMA-IR, Homeostatic
Model Assessment of Insulin Resistance; HTN, hypertension; L, lean; Lo, Low; LDL-C, low-density lipoprotein-cholesterol; LGI, low glycemic index; M, male; meds, medication; MetS,
metabolic syndrome; N, no; Norm, normotensive; NAFLD, non-alcoholic fatty liver disease; OB, obese; OH, overall healthy; OW, overweight; P, parallel; PCOS, polycystic ovarian
syndrome; PreHTN, prehypertensive; ROB, Risk of Bias; SBP, systolic blood pressure; SD, standard deviation; T2DM, type 2 diabetes; Total-C, total-cholesterol; U, unclear; W, women; wks,
weeks; Y, yes; yr; year.
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Blood Lipids

One systematic review and meta-analysis of controlled trials assessed the effect of the

DASH dietary pattern on blood lipid outcomes, including Total-C, LDL-C, HDL-C and

triglycerides [11] (Figure 3, Table 2, and Supplemental Tables S17–S19). A total of thirteen controlled

trials [50,52–55,57–59,63,67,68] were included in the analysis of Total-C and LDL-C, involving

1673 middle-aged participants, fifteen trials [50,52–59,63,67,68] in the analysis of HDL-C, involving

1749 participants, and 14 trials [50,52,54–59,63,67,68] in the analysis of triglycerides, involving

1654 participants. The DASH dietary pattern was found to lower Total-C (MD = −0.20 mmol/L (95%

CI: −0.31 to −0.10 mmol/L)) and LDL-C (MD = −0.10 mmol/L (95% CI: −0.20 to −0.01 mmol/L))

with no significant effects on HDL-C or triglycerides. There was substantial unexplained inter-study

heterogeneity for Total-C and HDL-C (I2 = 52% and 76%, respectively), some evidence of inter-study

heterogeneity for LDL-C (I2 = 37%) and no evidence of inter-study heterogeneity for triglycerides

(I2 = 0%). No serious risk of bias was identified (Supplemental Figures S1–S2).

Supplemental Table S16 shows the GRADE assessments for the certainty of the evidence for the

effect of a DASH dietary pattern on blood lipids. The evidence for LDL-C was rated as moderate,

owing to a downgrade for imprecision in the pooled effect estimate. The evidence for Total-C, HDL-C,

and triglycerides were rated as low, where Total-C and HDL-C were downgraded for inconsistency

(I2 = 52% and 76%, respectively) and imprecision in the pooled effect estimates and triglycerides was

downgraded for imprecision in the pooled effect estimate and for evidence of potential publication

bias. This assessment suggests that the DASH dietary pattern may result in reductions in Total-C and

LDL-C, established therapeutic lipid targets for cardiovascular risk reduction. However, sources of

uncertainty remain. Thus, there is a need for further large, high quality, randomized controlled trials

to clarify the lipid-lowering benefits of the DASH dietary pattern.

Glycemic Control

There were no systematic reviews and meta-analyses identified of trials assessing the effect of the

DASH dietary pattern on HbA1c. Therefore, we conducted a systematic review and meta-analysis for

this outcome. The search (Supplemental Table S20) identified 2 controlled trials [57,63] (Supplemental

Figure S3) which were eligible for inclusion, involving 65 middle-aged participants. The DASH dietary

pattern was found to lower HbA1c (MD = −0.53% (95% CI: −0.62 to −0.43%) with significant evidence

of inter-study heterogeneity (I2 = 99%) (Figure 3, Table 2, and Supplemental Table S21).

One systematic review and meta-analysis of controlled trials assessed the effect of the DASH

dietary pattern on blood glucose [11], insulin, and HOMA-IR [64] (Figure 3, Table 2, and Supplemental

Tables S22–S24). A total of ten controlled trials [50,52,56–59,63] were included in the analysis of blood

glucose, involving 826 middle-aged participants, 11 trials [52,58,59,69–72] in the analysis of insulin,

involving 760 participants, and eight trials [52,58,70,71] in the analysis of HOMA-IR, involving 603

participants. The DASH dietary pattern was found to lower insulin (MD = −0.15 µU/mL (95% CI:

−0.22 to −0.08 µU/mL)) with no significant effects on blood glucose or HOMA-IR. There was no

evidence of inter-study heterogeneity for insulin (I2 = 0%) or for HOMA-IR (I2 = 16%). There was

substantial unexplained inter-study heterogeneity for blood glucose (I2 = 59%) No serious risk of bias

was identified (Supplemental Figures S1–S2).

Supplemental Table S16 shows the GRADE assessments for the certainty of the evidence for the

effect of a DASH dietary pattern on glycemic control. The evidence for HbA1c was rated as low, owing

to downgrades for inconsistency (I2 = 99%) and serious indirectness due to <5 studies available for

inclusion and lack of generalizability since one study included those with type 2 diabetes and the other

women with gestational diabetes. The evidence for blood glucose was also rated as low, owing to

downgrades for inconsistency (I2 = 59%) and imprecision in the pooled effect estimate. The evidence

for fasting insulin and HOMA-IR were rated as moderate, owing to downgrades for imprecision in

the pooled effect estimates. This assessment suggests that the DASH dietary pattern may result in
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reductions in HbA1c. The effect estimates, however, remain uncertain for most glycemic outcomes,

calling for more large, high-quality, randomized trials to clarify the glycemic benefits.

Body Weight

One systematic review and meta-analysis of controlled trials assessed the effect of the

DASH dietary pattern on body weight [65] (Figure 3, Table 2, and Supplemental Table S25).

A total of 11 controlled trials [53,55,56,59,73–78] were included in the analysis of body weight,

involving 1211 middle-aged participants. The DASH dietary pattern was found to lower

body weight (MD = −1.42 kg (95% CI: −2.03 to −0.82 kg)). There was substantial unexplained

inter-study heterogeneity for body weight (I2 = 71%). No serious risk of bias was identified

(Supplemental Figures S1–S2).

Supplemental Table S16 shows the GRADE assessments for the certainty of the evidence for

the effect of a DASH dietary pattern on body weight. The evidence for body weight was rated as

moderate, owing to a downgrade for inconsistency (I2 = 71%). This assessment suggests that the

DASH dietary pattern may result in meaningful reductions in body weight. The relationship, however,

remains uncertain, with future randomized controlled trials likely to have an important influence on

risk estimates.

Inflammation

One systematic review and meta-analysis of controlled trials assessed the effect of the DASH

dietary pattern on inflammation [66] (Figure 3, Table 2, and Supplemental Table S26). A total of six

controlled trials [57,77–81] were included in the analysis of the inflammatory marker C-reactive protein

(CRP), involving 451 middle-aged participants. The DASH dietary pattern was found not to have

an effect on CRP. There was substantial unexplained inter-study heterogeneity for CRP (I2 = 97%).

However, subgroup analyses performed by Soltani et al. [66] based on comparator revealed a significant

effect compared to unhealthy or usual diets (4 studies) ((MD = −9.62 nmol/L (95% CI: −15.62 to −3.62

nmol/L), I2 = 67.7%), as well as based on follow-up where there was an effect in trials with ≥8 weeks

follow-up ((MD = −7.05 nmol/L (95% CI: −12.95 to −1.05 nmol/L), I2 = 92.7%). No serious risk of

bias was identified (Supplemental Figures S1–S2).

Supplemental Table S16 shows the GRADE assessments for the certainty of the evidence for the

effect of a DASH dietary pattern on CRP. The evidence for CRP was rated as low, owing to downgrades

for inconsistency (I2 = 97%) and imprecision in the pooled effect estimate. This assessment suggests

uncertainty in whether the DASH dietary pattern has an effect on inflammation. Future randomized

controlled trials are likely to have an important influence on risk estimates.

4. Discussion

The present umbrella review of the DASH dietary pattern and cardiometabolic outcomes identified

three systematic reviews and meta-analyses of prospective cohort studies involving 15 unique cohort

comparisons in 942,140 participants and 32,927 CVD events, 7260 CHD events, 4413 stroke events,

23,612 diabetes events, and four systematic reviews and meta-analyses supplemented by one updated

systematic review and meta-analysis of randomized and non-randomized controlled trials involving

33 trial comparisons in 4479 participants on intermediate cardiometabolic risk factors. The DASH

dietary pattern was associated with a reduction in the primary outcome of the prospective cohort

studies, CVD incidence (20%), as well as reductions in the secondary outcomes: CHD (21%), stroke

(19%), and diabetes (18%). These changes were supported by a clinically meaningful reduction in the

primary outcome of the controlled trials, blood pressure (−5.2 mmHg for SBP), as well as reductions

in the secondary outcomes: DBP (−2.6 mmHg), lipids (−0.1 mmol/L for LDL-C and −0.2 mmol/L for

Total-C), body weight (1.42 kg), and HbA1c (−0.53%).
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4.1. Findings in the Context of the Literature

The observed cardiovascular benefits may be attributable to a combination of the foods

encouraged as part of the DASH dietary pattern. High consumption of fruits and vegetables as

part of the DASH dietary pattern have been shown in systematic reviews and meta-analyses of

prospective cohort studies, when consumed either together or alone, to be inversely associated with

cardiovascular incidence and mortality [82]. Systematic reviews and meta-analyses of prospective

cohort studies have also demonstrated that whole grain intake is associated with a 20–21% reduction

in CVD incidence [83,84] and 14% reduction in stroke incidence [84], dietary pulse intake with a 9%

reduction in CVD incidence [85], and nut intake with a 21% reduction per 28 g/day [86], while

processed and red meats are associated with a 15–18% increase in incidence of CVD mortality

comparing highest to lowest levels of intake [87,88]. A key nutrient richly found in many of the

foods emphasized which may contribute a biological effect includes dietary fibre, which has been

shown in systematic reviews and meta-analyses of prospective cohort studies to reduce CVD by 9%

per 7g/d intake [89] and reduced risks of CHD and stroke incidence of 24% and 22%, respectively,

when comparing highest to lowest intake groups [84], in addition to significant reductions in body

weight, Total-C, LDL-C, and SBP in controlled clinical trials [84]. CVD benefit may be the result of

the biological effects of other key nutrients richly found in foods emphasized in the DASH dietary

pattern, such as magnesium, potassium, and phytochemicals, including flavonoids, which have been

demonstrated to have anti-inflammatory and anti-antioxidant activity and result in reductions in

angiogenesis [56,90,91]. The blood pressure lowering effect of the DASH diet may play a major role,

since high blood pressure is ranked as the strongest risk factor attributable to chronic disease [10,92].

Furthermore, the observed 5.20-mmHg lowering in SBP by the DASH dietary pattern is clinically

relevant based on evidence from prospective studies showing that a 2-mmHg reduction in SBP

is associated with lower mortality from stroke (10%) and CHD or other vascular causes (7%) in

middle-aged men and women [93]. An additional contribution may be via a reduction in established

therapeutic lipid targets for cardiovascular risk [11], such as the observed 0.10mmol/L lowering in

LDL-C, which would translate to about a 2% reduction in major cardiovascular events based on the

Cholesterol Treatment Trialists' (CTT) Collaboration [94–96]. The observed overall 1.42 kg reduction

in body weight may be considered clinically relevant [97] and may also play a role since obesity is a

key risk factor for CVD [98]. Furthermore, a recent prospective cohort not captured in the systematic

review and meta-analysis on the DASH dietary pattern and composite CVD outcomes, but which

also supports the findings, showed an 11% reduced risk of all-cause mortality when comparing those

participants who had the greatest improvement in DASH diet quality score over a 12-year follow-up

period compared to those with a relatively stable diet quality [99]. Importantly, they also found a 9%

reduced risk among those who maintained a high-quality DASH diet score over the 12-year period

compared to those with consistently low diet scores over time [99]. These results highlight the CVD

benefit of not only adopting or increasing adherence to a DASH dietary pattern, but also to maintaining

a high compliance to it.

The observed reductions in diabetes incidence and improvements in glycemic control again

may be attributable to the high consumption of fruit and vegetables as well as the low-fat dairy

component of the DASH dietary pattern. Systematic reviews and meta-analyses have shown that

fruit and vegetables alone or together [100] and low-fat milk and yogurt [101] are associated with

reduced diabetes incidence. Again, dietary fibre coming from many of the foods may play a role since

a recent systematic review and meta-analysis of prospective cohort studies found a 16% reduction in

incidence of type 2 diabetes when comparing the highest to lowest fibre intakes84. The blood pressure

lowering effects of the DASH diet may contribute to this effect since hypertension is associated with

type 2 diabetes [102], where prospective cohort studies have demonstrated that a 1-mmHg increase

in SBP is associated with a 1%–4% increase in type 2 diabetes risk [103,104]. The observed reduction

in body weight may also contribute since body weight is strongly associated with diabetes risk [98].

The increase in legumes, nuts, fruit, whole grains and dietary fibre intake, especially from whole
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grain viscous fibres, as part of a DASH diet may also be the mechanism by which there is a reduction

in HbA1c, since these have been demonstrated to improve glycemic control in systematic reviews

and meta-analyses of randomized controlled trials [105–109] and have been associated with reduced

diabetes incidence in systematic reviews and meta-analyses of prospective cohort studies [110,111].

The DASH diet was originally developed to contain foods which increase magnesium, potassium,

and calcium based on established links to lower blood pressure and successfully demonstrated a

clinically meaningful blood pressure lowering effect [10]. Interactions between these nutrients can

also have blood pressure lowering effects, such as the sodium-to-potassium ratio or the interaction

between potassium and calcium and the ability to increase sodium excretion by the kidneys [112].

Potassium and calcium have previously been demonstrated to interact with the renin-angiotensin

system by affecting plasma renin activity [113–115] and potassium can assist with sodium balances

and has also been demonstrated to potentially lower blood pressure through endothelium-dependent

vascular effects [115–117]. Additionally, it has been suggested that a reduction in blood pressure

may result from an increased intake of nitrate-rich foods, including fruits and vegetables, especially

leafy vegetables, via the role of inorganic nitrate in the non-enzymatic generation of nitric oxide [118].

Furthermore, many of the foods encouraged on the DASH diet have demonstrated blood pressure

reductions in systematic reviews and meta-analyses of controlled trials in those with and without

diabetes, including legumes [119], fruit [120], and whole grains, particularly those rich in viscous

fibres [106,121].

The observed reductions in lipids, including the primary lipid target for therapy, LDL-C, may be

attributable to the high consumption of fruit, nuts, legumes, and whole grains (especially from oats

and barley), increases in dietary fibre, and reductions in saturated fat intake as part of the DASH

dietary pattern. Systematic reviews and meta-analyses of randomized controlled trials have shown

that each of these alone [120,122–125] or combined as part of cholesterol-lowering dietary patterns

such as the Portfolio dietary pattern [126] lowers Total-C and LDL-C.

The effect of the DASH dietary pattern on body weight may result from increased fruit and

vegetable consumption, as was found in a systematic review and meta-analysis of randomized

controlled trials [127]. Greater dietary fibre intake may contribute to weight loss since high-fibre

foods require longer chewing time and promote gastric distention, triggering signals of fullness and

slowed digestion, and delayed absorption of nutrients could delay hunger and subsequent energy

intake [128]. Increasing dietary pulse intake has also been demonstrated in systematic reviews and

meta-analyses of controlled trials to reduce body weight [129] and increase satiety [130]. Reduced

sodium intake may also play a role in lowering body weight since high sodium intake is associated

with obesity in the general population, possibly because of the associated increase in thirst and

appetite [131].

Although a significant effect on CRP was not observed in the primary pooled analyses, subgroup

analyses demonstrated that when the DASH diet was compared to an unhealthy or usual diet as

opposed to a healthy diet (e.g. Portfolio diet) or when the follow up duration was ≥8 weeks, the DASH

diet resulted in a significantly lower CRP. If this is a true effect, then the reduction in inflammation may

also play a key role in the observed reduction in incidence of cardiometabolic diseases. The effect may

be mediated by increased dietary fibre intake [132] possibly because of the delay in glucose absorption

and alteration to gut microflora which may suppress inflammatory cytokines production, stimulate

the production of short-chain fatty acids and lead to lower circulating free fatty acid concentrations

and, thus, subsequent inflammation [133–135]. The effect may also be the result of increased fruit

and vegetable intake due to possible anti-inflammatory effects [136,137] and increased magnesium

intake [138,139]. The high content of vitamin C, calcium and magnesium coming from fruits and

vegetables in the DASH dietary pattern may reduce inflammation through reductions in oxidative

stress via decreased NADPH oxidase activity [140] and by restoring the activity of anti-oxidative

enzymes [141].
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4.2. Strengths and limitations

The strengths of the current umbrella review include that the included systematic reviews and

meta-analyses were all conducted recently with the census dates of each ranging from January 2012 to

November 27, 2018 and an assessment of the overall certainty of the evidence was performed using

the GRADE approach. The limitations include: indirectness for CHD incidence due to the inclusion

of cohorts limited to middle-aged and elderly women and for HbA1c due to the inclusion of 2 trials

in either type 2 diabetes or gestational diabetes; unexplained inconsistency for diabetes incidence

(I2 = 62%; P = 0.03) and for 8/12 risk factors; imprecision for 9/12 risk factors; and publication bias

for triglycerides. Although we did not downgrade the evidence for indirectness, concern may be

raised that many of the included trials and cohorts were conducted in people without diabetes. We did

not feel that there was any biological reason to believe that the DASH dietary pattern would behave

differently in people with diabetes, as many components of the DASH dietary pattern have been

shown individually to lower blood pressure and other established CVD risk factors in systematic

reviews and meta-analyses of randomized controlled trials inclusive of people with diabetes without

any evidence of a subgroup effect by diabetes status [85,108,109,121,122,129,142,143].We also felt that

this concern was mitigated by the evidence of similar or greater improvements in all of the measured

outcomes (SBP, DBP, LDL-C, Total-C, HDL-C, TG, HbA1c, body weight, CRP) in those trials conducted

exclusively in diabetes (that is, the effect estimates for these outcomes in the individual trials were

contained within or exceeded the 95% confidence intervals of the overall pooled estimates).

Weighing the strengths and limitations, the certainty of the evidence based on the GRADE

approach was rated as very low to low for associations with cardiometabolic disease incidence and

low to moderate for effects on cardiometabolic risk factors.

4.3. Implications

Clinical practice guidelines recommend dietary strategies as the cornerstone of the prevention

and management of CVD [4–9]. Our pooled analyses demonstrate that the DASH dietary pattern is

associated with a 20% reduced CVD incidence and has blood pressure benefits which may translate

to about a 20% reduction in risk of CVD, along with meaningful benefits in other established CVD

risk factors in those with and without diabetes. In the systematic review and meta-analysis on the

DASH dietary pattern and blood pressure, trials included participants who were hypertensive but

not on medication [10,49,53,56,58–60], as well as trials where participants were taking blood pressure

medications [51,54], all of which found significant blood pressure lowering effects. Thus, the DASH

dietary pattern may play a role both as a first line therapy as well as an add-on therapy.

There may be an important opportunity for people with and without diabetes to realize the CVD

benefits of a DASH dietary pattern. The DASH dietary pattern emphasizes fruit, vegetables, low-fat

dairy, whole grains, nuts and legumes, and limits total and saturated fat. Specifically, the DASH diet

includes 4–5 servings of fruits and vegetables per day, 2–3 servings of low fat dairy, 6–8 servings of

whole grains and limits meat, poultry and fish to less than six servings per day. It also recommends

4–5 servings per week of nuts, seeds, dry beans, and peas and choosing foods with low saturated

fat, high potassium and fibre, and low sodium. Dietary intake patterns in Europe and other Western

countries do not currently meet these targets. The European Health Interview Survey (EHIS) (Eurostat

2016) reports that, on average, more than a third of the EU adults do not consume any fruits and

vegetables on a daily basis and only 14.1% consume five portions per day [144]; about one third of

those aged 35 and older had average intakes of saturated fat ≥15 E% [145]; although a high total

consumption of dairy products was reported in the Dutch, Swedish and Danish, and most of Spain

and the UK, a somewhat low consumption was reported Greece and in some of Italy (Ragusa and

Turin) [146]. According to the most recent survey in the United States, only one in 10 adults and youths

eat the recommended amount of fruits or vegetables [147], only 1.9 servings/day of dairy products

are consumed on average [148], only ~38.2% of adults consume nuts on a given day [149] and most

exceed the recommendations for added sugars, saturated fats, and sodium [14]. These data suggest
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that in these populations that there is an opportunity for people with and without diabetes to increase

these foods to achieve a DASH dietary pattern and realize the cardiometabolic benefits.

5. Conclusions

In conclusion, this synthesis of systematic reviews and meta-analyses demonstrates that the

DASH dietary pattern as a well-accepted blood pressure-lowering diet has associated CVD benefit

supported by reductions in blood pressure, HbA1c, LDL-C and other established CVD risk factors in

people with and without diabetes. The certainty of the evidence based on the GRADE approach was

very low to low for associations with cardiometabolic disease incidence and low to moderate for effects

on cardiometabolic risk factors. More research is needed to improve the estimates and confirm that

these benefits do translate into reductions in clinical outcomes of clinical practice and public health

importance. In this regard, there remains a need for large randomized trials of the effect of the DASH

dietary pattern on clinical CVD outcomes in those with and without diabetes. The available evidence

does support a potential opportunity for those with and without diabetes to adopt the DASH dietary

pattern to improve cardiometabolic health.
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