
 Open access Posted Content DOI:10.1101/501726

Dashing: Fast and Accurate Genomic Distances with HyperLogLog
— Source link

Daniel N. Baker, Ben Langmead

Institutions: Johns Hopkins University

Published on: 20 Dec 2018 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

 Mash: fast genome and metagenome distance estimation using MinHash.

 On the resemblance and containment of documents

 BinDash, software for fast genome distance estimation on a typical personal laptop.

 Fast genome and metagenome distance estimation using MinHash

 Phylonium: fast estimation of evolutionary distances from large samples of similar genomes

Share this paper:

View more about this paper here: https://typeset.io/papers/dashing-fast-and-accurate-genomic-distances-with-hyperloglog-
158yxh8y17

https://typeset.io/
https://www.doi.org/10.1101/501726
https://typeset.io/papers/dashing-fast-and-accurate-genomic-distances-with-hyperloglog-158yxh8y17
https://typeset.io/authors/daniel-n-baker-1n7pbf2287
https://typeset.io/authors/ben-langmead-5d63mehja0
https://typeset.io/institutions/johns-hopkins-university-gbw0p3kc
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/papers/mash-fast-genome-and-metagenome-distance-estimation-using-3b84vfnedh
https://typeset.io/papers/on-the-resemblance-and-containment-of-documents-2h0d2o3ko3
https://typeset.io/papers/bindash-software-for-fast-genome-distance-estimation-on-a-2nwzv8o81b
https://typeset.io/papers/fast-genome-and-metagenome-distance-estimation-using-minhash-fkniivnwso
https://typeset.io/papers/phylonium-fast-estimation-of-evolutionary-distances-from-58zs5n0995
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/dashing-fast-and-accurate-genomic-distances-with-hyperloglog-158yxh8y17
https://twitter.com/intent/tweet?text=Dashing:%20Fast%20and%20Accurate%20Genomic%20Distances%20with%20HyperLogLog&url=https://typeset.io/papers/dashing-fast-and-accurate-genomic-distances-with-hyperloglog-158yxh8y17
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/dashing-fast-and-accurate-genomic-distances-with-hyperloglog-158yxh8y17
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/dashing-fast-and-accurate-genomic-distances-with-hyperloglog-158yxh8y17
https://typeset.io/papers/dashing-fast-and-accurate-genomic-distances-with-hyperloglog-158yxh8y17

Baker and Langmead Genome Biology (2019) 20:265

https://doi.org/10.1186/s13059-019-1875-0

SOFTWARE Open Access

Dashing: fast and accurate genomic
distances with HyperLogLog
Daniel N. Baker* and Ben Langmead*

Abstract
Dashing is a fast and accurate software tool for estimating similarities of genomes or sequencing datasets. It uses the
HyperLogLog sketch together with cardinality estimation methods that are specialized for set unions and
intersections. Dashing summarizes genomes more rapidly than previous MinHash-based methods while providing
greater accuracy across a wide range of input sizes and sketch sizes. It can sketch and calculate pairwise distances for
over 87K genomes in 6 minutes. Dashing is open source and available at https://github.com/dnbaker/dashing.

Keywords: Sketch data structures, Hyperloglog, Metagenomics, Alignment, Sequencing, Genomic distance

Background
Since the release of the seminal Mash tool [1], data

sketches such as MinHash have become instrumental in

comparative genomics. They are used to cluster genomes

from large databases [1], search for datasets with cer-

tain sequence content [2], accelerate the overlapping step

in genome assemblers [3, 4], map sequencing reads [5],

and find similarity thresholds characterizing species-level

distinctions [6]. Whereas MinHash was originally devel-

oped to find similar web pages [7], here it is being used

to summarize large genomic sequence collections such as

reference genomes or sequencing datasets. A collection is

reduced to a set of representative k-mers and ultimately

stored as a list of integers. The summary is much smaller

than the original data but can be used to estimate rele-

vant set cardinalities such as the size of the union or the

intersection between the k-mer contents of two genomes.

From these cardinalities one can obtain a Jaccard coeffi-

cient (J) or a “Mash distance,” which is a proxy for Average

Nucleotide Identity (ANI) [1]. These make it possible to

cluster sequences and otherwise solve massive genomic

nearest-neighbor problems.

MinHash is related to other core methods in bioinfor-

matics. Minimizers, which can be thought of as a special

case of MinHash, are widely used in metagenomics classi-

fication [8] and alignment and assembly [9]. More gener-

ally, MinHash can be seen as a kind of Locality-Sensitive

*Correspondence: dnb@cs.jhu.edu; langmea@cs.jhu.edu
Department of Computer Science, Johns Hopkins University, 3400 N Charles
St, 21218 Baltimore, USA

Hashing (LSH), which involves hash functions designed to

map similar inputs the same value. LSH has also been used

in bioinformatics, including in homology search [10] and

metagenomics classification [11].

Spurred by MinHash’s utility, other groups have pro-

posed alternatives using new ideas from search and data

mining. BinDash [12] uses a b-bit one-permutation rolling

MinHash to achieve greater accuracy and speed compared

to Mash at a smaller memory footprint. Other theoretical

improvements are proposed in the HyperMinHash [13]

and SuperMinHash [14] studies.

Some studies have pointed out shortcomings of Min-

Hash. Koslicki and Zabeti argue that MinHash cardinality

estimates suffer when the sets are very different sizes

[15]. This is not an uncommon scenario, e.g., when find-

ing the distance between two genomes of very different

lengths or when finding the similarity between a short

sequence (say, a bacterial genome) and a large collection

(say, deep-coverage metagenomics datasets).

Here we use the HyperLogLog (HLL) sketch [16] as an

alternative to MinHash that exhibits excellent accuracy

and speed across a range of scenarios, including when the

input sets are very different sizes and when the sketch data

structures are quite small. HLL has been applied in other

areas of bioinformatics, e.g., to count the number of dis-

tinct k-mers in a genome or data collection [17–19]. We

additionally use recent theoretical improvements in car-

dinality estimation for set unions and intersections [20],

the components needed to estimate J and other similarity

measures.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1875-0&domain=pdf
http://orcid.org/0000-0003-2437-1976
https://github.com/dnbaker/dashing
mailto: dnb@cs.jhu.edu
mailto: langmea@cs.jhu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Baker and Langmead Genome Biology (2019) 20:265 Page 2 of 12

We implemented the HLL in the Dashing software tool

[21] (https://github.com/dnbaker/dashing), which is free

and open source under the GPLv3 license. Dashing sup-

ports the functions available in similar tools like Mash

[1], BinDash [12], and Sourmash [22]. Dashing can build

a sketch of an input sequence set (dashing sketch),

including FASTA files (for assembled genomes) or FASTQ

files (for sequencing datasets). Dashing has a sketch-based

facility for removing k-mers that likely contain sequenc-

ing errors prior to sketching. The dashing dist func-

tion performs all-pairwise distance comparisons between

pairs of datasets in a large collection, e.g., all the com-

plete genomes from the RefSeq database. Since Dashing’s

sketch function is extremely fast, Dashing can per-

form both sketching and all-pairs distance calculations in

the same command, obviating the need to store sketches

on disk between steps. Dashing is parallelized, and we

show that it scales efficiently to 100 threads. Dashing

also uses Single InstructionMultiple Data (SIMD) instruc-

tions on modern general-purpose computer processors

to exploit the finer-grained parallelism inherent in HLL

computations.

Results
Here we discuss Dashing’s design, then present simulation

results demonstrating HLL’s accuracy relative to other

data structures. We then describe experiments demon-

strating Dashing’s accuracy and computational efficiency

relative to Mash and BinDash in a range of scenarios.

Unless otherwise noted, experiments were performed

on a Lenovo x3650 M5 system with 4 2.2 Ghz Intel E5-

2650 CPUs with 12 cores each and 512 GB of DDR4

RAM. Input genomes and sketches were stored on a

SAS-attached Lenovo Storage E1000 disk array with 12

8TB 7,200-RPM disks combined using RAID5. All exper-

iments were conducted using scripts available in the

dashing-experiments repository at https://github.

com/langmead-lab/dashing-experiments.

Design

Dashing uses the HyperLogLog (HLL) sketch to solve

genomic distance problems. Dashing takes one or more

sequence collections as input. These could be assem-

bled genomes in FASTA format or sequencing datasets

in FASTQ format. It then builds an HLL sketch for

each input collection based on its k-mer content. The

sketch can be written to disk or simply forwarded to

the next phase, which performs a distance compari-

son between one or more pairs of sketches. Dashing

prints a set of similarity estimates, including estimates

for Jaccard coefficient and ANI. It can operate on a

given pair of datasets, or can perform all-pairs compar-

isons across many datasets in a single invocation of the

tool.

Dashing is written in C++14. It uses OpenMP for

multithreading, with both the sketching and distance

phases readily scaling to 100 simultaneous threads. It also

uses data-parallel SIMD instructions, including the recent

AVX512-BW extensions that have been effective at accel-

erating other bioinformatics software [23]. Dashing has

Python bindings that enable other developers to use the

HLL implementation.

Sketch accuracy

To assess HLL’s accuracy, we measured Jaccard-

coefficient estimation error across a range of set and

sketch sizes. We implemented both the HLL [16] and

MinHash [7] structures in Dashing v0.1.2. For HLL, we

used Ertl’s Maximum Likelihood Estimator (MLE) to

estimate set cardinalities [20], though we explore alter-

nate methods in later sections. For MinHash, we used

a k-bottom sketch with a single hash function, follow-

ing Mash’s strategy [1]. In both cases, we used Thomas

Wang’s 64-bit reversible hash function [24]. In both cases,

the tools used canonicalized k-mers, so that a k-mer

and its reverse complement are treated as equal when

sketching. For details on the commands used to obtain

the results, see Additional file 1: Note S1.

We performed several experiments varying (a) the sizes

of the two input sets, (b) the degree of overlap between

the sets (to achieve a target J), and (c) the size of the sketch

data structures. Though the structures differ in charac-

ter, with the HLL storing an array of narrow integers and

the MinHash storing an array of wider integers, we can

parameterize them to use the same number of bytes of

storage. We populated each structure using its natural

insert operation; for the HLL, this involves hashing the

item and using the resulting value to identify the target

register and possibly update it according to the leading

zero count of the remainder bits (detailed below in the

“Methods” section). For the bottom-k MinHash, insert-

ing involves hashing the item and updating the sketch

if the hash is less than the current greatest sketch ele-

ment. We populated the input sets with random numbers,

thereby simulating an ideal hash function with uniformly

distributed outputs. Sets were constructed to have tar-

get Jaccard coefficients ranging from 0.00022 to 0.818.

Many set-size pairs were evaluated ranging from equal-

size sets to sets with sizes differing by a factor of 212.

In total, we evaluated 36 combinations of set size and J

were evaluated, with full results presented in Additional

file 2. Note that set size and jaccard coefficient are depen-

dent; if set A has cardinality c times greater than set B,

J(A,B) ≤ 1
c .

Figure 1 shows Jaccard-coefficient estimation accuracy

results for two values of the true Jaccard coefficient

(0.0465 and 0.111) and five pairs of unequal-cardinality

input sets. HLL exhibited lower absolute error than

https://github.com/dnbaker/dashing
https://github.com/langmead-lab/dashing-experiments
https://github.com/langmead-lab/dashing-experiments

Baker and Langmead Genome Biology (2019) 20:265 Page 3 of 12

0.00

0.02

0.04

0.06

10 12 14 16 18 20 22

log2(sketch bytes)

A
b

s
 J

a
c
c
a

rd
 e

rr
o

r

0.00

0.02

0.04

0.06

10 12 14 16 18 20 22

log2(sketch bytes)

A
b

s
 J

a
c
c
a

rd
 e

rr
o

r
0.000

0.005

0.010

0.015

10 12 14 16 18 20 22

log2(sketch bytes)

A
b

s
 J

a
c
c
a

rd
 e

rr
o

r

0.000

0.005

0.010

0.015

10 12 14 16 18 20 22

log2(sketch bytes)

A
b

s
 J

a
c
c
a

rd
 e

rr
o

r

Set sizes (log2)

14, 17

17, 20

20, 23

23, 26

26, 29

Abs Jaccard error

HLL

MinHash

Fig. 1 Jaccard-coefficient estimation error using HLL and MinHash. Left column shows experiments with the true Jaccard coefficient fixed at 0.111.
Right column shows the same for a coefficient of 0.0465. x axis shows the log2 of the size of the sketch data structure in bytes. y axis shows the
absolute error of the JACCARD-COEFFICIENT estimate. The second row zooms further in with respect to the y-axis. Colors indicate the input set sizes,
and each pair of inputs differs in size by a factor of 23 = 8

MinHash in all cases. We also plotted accuracy for input

sets of equal size and for Jaccard coefficients of 0.33, 0.6,

and 0.82 (Additional file 1: Figure S1). There, HLL exhib-

ited lower absolute error in most but not all scenarios,

with HLL’s greatest advantage coming at smaller sketch

sizes.

We also compared HLL- and MinHash-based sketches

to a Bloom-filter-based approach [25]. Like HLL andMin-

Hash, a Bloom filter can represent an approximate set, and

filters can be compared to estimate union and intersection

cardinalities. We implemented and evaluated both a naive

(collision-agnostic) and a collision-aware method [26] for

estimating set cardinalities via Bloom filters in Dashing

v0.1.2. Results are plotted for unequal-cardinality input

sets (Additional file 1: Figure S2) and equal-cardinality

sets (Additional file 1: Figure S3). Details on our Bloom

filter implementation are presented in Additional file 1:

Note S2. Bloom-based methods achieved slightly lower

absolute error than HLL when the number of bits in the

filter approached and exceeded the set cardinality, reflect-

ing the fact that a Bloom-based method eventually con-

verges on error-free “linear counting” given a large enough

filter. But HLL exhibited lower error in most circum-

stances, especially for smaller sketches and larger input

sets.

A complete table of results, including all data structures

and reporting both absolute and squared errors, can be

found in Additional file 3. There we observed that even

in adverse scenarios (small data structures and very dif-

ferent set sizes) HLL’s absolute error never exceeded 3%

(compared to 8% for MinHash). Overall, the results rec-

ommend HLL as an accurate and memory-economical

sketch requiring no major assumptions about input set

sizes.

Accuracy for complete genomes

Encouraged by HLL’s accuracy, we measured the accuracy

of Dashing v0.1.2’s HLL-based Jaccard-coefficient esti-

mates versus those of Mash v2.1 [1] and BinDash v0.2.1

[12].We repeated the HLL experiments for three HLL car-

dinality estimation methods: Flajolet’s canonical method

using harmonic mean [16], and twomaximum-likelihood-

based methods (MLE and JMLE) proposed by Ertl [20].

We selected 400 pairs of bacterial genomes from Ref-

Seq [27] covering a range of Jaccard-coefficient values. To

select the pairs, we first used dashing dist with s =
16, k = 31 and the MLE estimation method on the full set

of complete bacterial RefSeq assemblies (latest versions).

We then selected a subset such that we kept 4 distinct

genome pairs per Jaccard-coefficient percentile. Our goal

was to test an even spread of Jaccard-coefficient values,

though some unevenness emerged later due to differences

between data structures and different selections of k. Of

the genomes included in these pairs, the maximum, mini-

mum, and mean lengths were 11.7 Mbp, 308 kbp, and 4.00

Mbp, respectively. For details on exact commands used

Baker and Langmead Genome Biology (2019) 20:265 Page 4 of 12

to obtain and compare the genome pairs, see Additional

file 1: Note S3.

We ran the three tools to obtain Jaccard-coefficient esti-

mates for the 400 pairs and plotted the results versus

true J, as determined using a full hash-table-based k-mer

counter. Results for k = 16 and k = 21 and for sketches of

size 210 and 214 bytes are shown in Fig. 2. The horizontal

axis is divided into 10 J partitions, each containing about

40 pairs (see Additional file 3 for number of pairs per

partition). The vertical axis shows the difference between

tool-estimated and true Jaccard coefficient. For Dashing,

we used the MLE estimation method. We made a minor

change to the Mash software to allow it to output esti-

mated Jaccard coefficient, as it typically emits only Mash

distance.

Dashing’s estimates were consistently near the true J.

Mash shows a pattern of bias whereby its estimates are

somewhat too low at low Jaccard-coefficients then too

high at higher coefficients. This is sometimes combined

with an overall bias shifting estimates too high (in the

case of k = 16, sketch size = 214) or low (in the case of

k = 21, sketch size = 214). BinDash and Dashing exhibit

less J-specific bias.

Additional file 3 shows mean squared Jaccard-

coefficient estimation error (meanSE) for a range of

sketch sizes and for k ∈ {16, 21, 31}, also including the

two alternate cardinality estimation methods for Dashing

(Original and JMLE). In short, BinDash and Dashing

consistently achieve lower meanSE than Mash, with

BinDash achieving the lowest meanSE at smaller J ’s and

both BinDash and Dashing achieving similar meanSE

at intermediate and larger J ’s. Among the Dashing esti-

mation methods, JMLE consistently achieves the lowest

meanSE. For computational efficiency reasons (discussed

later), Dashing’s default estimation method is the MLE,

which had only slightly higher error than JMLE.

Computational efficiency

To assess computational efficiency and scalability in a

realistic context, we used Dashing v0.1.2, Mash v2.1

Fig. 2 Estimated versus true Jaccard coefficients (Js) for various methods across a range of true J. Each point is one pair from an overall set of 400
pairs of genomes, selected to evenly cover the range of true Js

Baker and Langmead Genome Biology (2019) 20:265 Page 5 of 12

and BinDash v0.2.1 to sketch and perform all-pairs dis-

tance calculations for 87,113 complete genome assem-

blies. We obtained the assemblies from Refseq, filtering

to include only assemblies marked “latest” and “Com-

plete genome” and without “contig” in the name. The

set included genomes from various taxa, spanning viral,

archaeal, bacterial and eukaryotic. Genome lengths var-

ied from 288 bases to 4,502,951,408 bases with mean

and median lengths of 9.8 Mb and 3.8 Mb, respectively.

The total number of genome-pair distance calculations

required for 87,113 assemblies was over 3.79 billion. We

repeated the experiment for a range of sketch sizes and k-

mer lengths. All experiments were performed on a Lenovo

x3850 X6 system with 4 2.0 Ghz Intel E7-4830 CPUs, each

with 14 processor cores. After hyperthreading, the sys-

tem supports up to 112 simultaneous hardware threads.

The system had 1 TB of DDR4 RAM and ran CentOS

7.5 Linux, kernel v3.10.0. The system was located at and

maintained by theMarylandAdvanced Research Comput-

ing Center (MARCC).

For Dashing, we used dashing sketch for sketch-

ing and dashing dist for pairwise distance calcu-

lations. For Mash, we used mash sketch and mash

triangle for the two stages respectively. For BinDash,

we used bindash sketch and bindash dist. We

also ran each tool in a way that performed sketching

immediately followed by all-pairs distance calculations.

For Mash, this involves running its dist and triangle

commands but specifying the sequence files (rather than

their sketches) as input. In the case of dashing dist,

this combined invocation avoids writing any sketches to

disk. Mash provides support for this functionality as well,

but we were unable to run it successfully for our large

experiment.

All tools were configured to use up to 100 simultaneous

threads of execution (Dashing: -p 100, Mash: -p 100,

BinDash: -nthreads=100). Since the system supports

a maximum of 112 simultaneous threads, 100 was cho-

sen to achieve high utilization while avoiding excessive

contention. We used the GNU time utility to measure

the average number of CPUs utilized, wall time, and peak

memory footprint for each tool invocation. For details on

the exact commands used, see Additional file 1: Note S4.

For Dashing, we repeated the experiment for each of its

three cardinality estimation methods: Flajolet’s canonical

method (“Original”), Ertl’s Maximum Likelihood Estima-

tor (“Ertl-MLE”), and Ertl’s joint MLE (“Ertl-JMLE”).

Results for k = 21 and k = 31 are summarized in Fig. 3,

and a tabular version of the results for k = 31 is shown

in Table 1. Full tabular results including CPU utilization

measurements are shown in Additional file 4.

We observed that Dashing is the fastest tool in the

Sketch phase, running 3.3–4.3 times faster than BinDash

and 3.8–5.0 times faster than Mash. As shown in

Additional file 4, Dashing also achieves excellent CPU

utilization in the Sketch phase.

BinDash achieves the lowest memory footprint among

the tools in the Sketch phase, requiring 140 Mb for the

1-kb sketch and 5.5 GB for the 64-kb sketch. By contrast,

Dashing required about 12 GB across all sketch sizes. This

is largely because of how Dashing is parallelized; Dashing

threads simultaneously work on separate sequence collec-

tions, each filling a buffer of size sufficient to hold the

largest sequence yet parsed by that thread. Mash had the

highest memory footprint, ranging from 17–25 GB.

In the distance phase, we noted that the estimation

method had a major effect on Dashing’s speed, with

JMLE performing 5.9–7.4 times slower than MLE. This

is because the JMLE performs significantly more cal-

culations, as described in the “Methods” section. This

result, together with the relatively small accuracy differ-

ence noted earlier, led us to chose the Ertl-MLE method

as Dashing’s default. (In a separate experiment, we found

that the JMLE inner loop could be made about 20% faster

using AVX512BW instructions, as discussed later and

detailed in Additional file 1: Note S5 and Table S1.)

BinDash was the fastest tool in the distance phase,

running 25–70% faster than Dashing’s MLE mode. But

Dashing is 2–19 times faster than Mash, with the largest

speed gap observed at the smallest (1 kb) sketch size.

When we compared tools based on combined perfor-

mance in both the sketch and distance phases, BinDash

again had the lowest memory footprint (always below

6 GB), with Dashing’s footprint at 12–18 GB andMash’s at

17–25 GB. Dashing was the fastest among the three tools

at all sketch sizes, though BinDash achieves similar speed

at the largest (64 kb) sketch size. Mash was the slowest

of the tools in all cases. Since small sketch sizes tend to

be used in practice (Mash’s default is 4 kb or 212 bytes),

we expect Dashing to be the fastest overall tool—certainly

for sketching, but also combined sketching and distance

calculations—in typical situations.

Thread scaling

We also compared the tools’ speed and memory foot-

print when run with 4, 8, and 16 threads. We found

that all three tools achieved excellent thread scaling in

the sketching phase, where Dashing achieves the highest

throughput. We also found that, for the distance esti-

mation phase, Dashing exhibited better thread scaling

compared to Mash and BinDash. See Additional file 1:

Note S6 and Figure S4 for details.

Discussion
Genomics methods increasingly use MinHash and other

locality-sensitive hashing approaches as their computa-

tional engines. We showed that the HyperLogLog sketch,

combined with recent advances in cardinality estimation,

Baker and Langmead Genome Biology (2019) 20:265 Page 6 of 12

Distance Sketch Both

21
,1

0

21
,1

4

21
,1

6

31
,1

0

31
,1

4

31
,1

6

21
,1

0

21
,1

4

21
,1

6

31
,1

0

31
,1

4

31
,1

6

21
,1

0

21
,1

4

21
,1

6

31
,1

0

31
,1

4

31
,1

6

1

10

100

1000

10000

k, log2 (sketch size)

T
im

e
 (

s
e
c
o
n
d
s
)

Distance Sketch Both

21
,1

0

21
,1

4

21
,1

6

31
,1

0

31
,1

4

31
,1

6

21
,1

0

21
,1

4

21
,1

6

31
,1

0

31
,1

4

31
,1

6

21
,1

0

21
,1

4

21
,1

6

31
,1

0

31
,1

4

31
,1

6

1

10

100

1000

10000

k, log2 (sketch size)

M
e
m

o
ry

 f
o
o
tp

ri
n
t
(M

B
)

 Mash BinDash HLL (Orig) HLL (Ertl−MLE) HLL (Ertl−JMLE)

Fig. 3 Computational efficiency of Mash, BinDash and Dashing. Results for k = 21, k = 31 and sketches of size 210 (1 kb), 212 (4 kb), 214 (16 kb), and
216 (64 kb). “Both” results obtained either by using a combined Sketch+Distance mode (for Dashing) or by combining results from separate
sketching and distance-calculation invocations (for Mash and BinDash). Dashing was assessed using three estimation methods: Flajolet’s method
using the harmonic mean (“Orig”) and Ertl’s MLE and JMLE methods

offers a superior combination of efficiency and accuracy

compared toMinHash. This is true even for small sketches

and for the challenging case where the input sets have very

different sizes. While HLL has been used in bioinformat-

ics tools before [17–19], this is the first application to the

problem of estimating genomic distances, the first imple-

mentation of the highly accurate MLE and Joint-MLE

estimators [20], and the first comprehensive comparison

to MinHash and similar methods. The combination of

HLL and JMLE is also notable since it directly estimates

the cardinality of an intersection, a meaningful quantity

independent of its use in the Jaccard coefficient.

We implemented HLL-based sketching and distance

calculations in the Dashing software tool. Dashing can

sketch and calculate pairwise distances for over 87K Ref-

seq [27] genomes in around 6 min using its MLE esti-

mation method, 1 kb sketch size, and 100 simultaneous

threads of execution (Table 1).

Dashing’s speed advantage is clearest in the sketch-

ing step. Notably, re-sketching from scratch is not much

slower than loading pre-made sketches from disk. Thus,

Dashing users can forgo the typical practice of saving

sketches to disk between steps. Dashing’s accuracy with

smaller sketches (Fig. 1) justifies a lower default sketch size

(1 kb) compared to Mash’s default of 4 kb (or 8 kb for long

k-mers).

It is interesting to observe that Dashing’s accuracy

is comparable to that of BinDash across the Jaccard-

Baker and Langmead Genome Biology (2019) 20:265 Page 7 of 12

Table 1 Comparison of computational efficiency of Mash, BinDash, and Dashing at k = 31 and various sketch sizes

Dashing Dashing Dashing

Phase Measure k log 2(size) Mash BinDash Original Ertl-MLE Ertl-JMLE

Sketch Wall clock (s) 31 10 1345 1157 273 271 277

12 1349 1157 273 274 270

14 1356 1159 286 289 278

16 1400 1226 359 367 299

Peak mem (MB) 31 10 17,720 141 12,683 12,721 12,644

12 18,296 399 12,723 12,430 12,726

14 19,706 1426 12,630 12,877 12,853

16 25,127 5542 12,888 12,412 12,933

Distance Wall clock (s) 31 10 1901 74 80 100 601

12 2368 188 286 308 2139

14 3446 672 1113 1137 8308

16 8777 3603 6172 4251 30,506

Peak mem (MB) 31 10 1120 409 116 116 116

12 1380 673 371 371 372

14 2785 1,709 1392 1392 1392

16 10,776 5,816 5476 5476 5476

Both Wall clock (s) 31 10 3246 1,231 345 365 870

12 3717 1,345 557 579 2407

14 4801 1,831 1390 1,408 8574

16 10,177 4,829 4394 4,453 30,433

Peak mem (MB) 31 10 17,720 409 12,468 12,950 12,988

12 18,296 673 12,958 13,042 13,020

14 19,706 1709 13,951 13,782 14,205

16 25,127 5816 18,320 18,081 18,011

The log 2(size) column reports the log2 of the sketch size in bytes. “Both” results obtained either by using a combined Sketch+Distance mode (for Dashing) or by combining
results from separate sketching and distance-calculation invocations (for Mash and BinDash). Dashing was assessed using three estimation methods: Flajolet’s method using
the harmonic mean (“Original”) and Ertl’s MLE and JMLE methods. Italicized entries indicate the lowest space or time for a given experiment

index deciles in Table 1. Though Dashing is faster—both

at sketching and at combined sketching-and-distance—

BinDash’s speed approaches that of Dashing at the high-

est sketch size tested. As we continue to investigate the

HyperLogLog sketch, the b-Bit Minwise Hashing tech-

nique underlying BinDash is clearly a close competitor,

and it will be important to continue to study it as well. In

particular, b-Bit Minwise Hashing is also more amenable

to SIMD acceleration, providing a trade-off between reso-

lution as runtime as vector size grows.

Because the HLL can be used to estimate intersections

and unions directly, it can be applied to readily estimate

not just Jaccard coefficient but containment (|A ∩ B|/|A|)
or overlap (|A ∩ B|/min(|A|, |B|)) coefficients.
The Dashing software also supports several features not

supported by Mash or BinDash, including spaced seeds,

PHYLIP-based output format, TSV, binary output, asym-

metric distances, and a hash-set-based mode that can

calculate exact Jaccard coefficients (as we did in one of

our experiments) at the cost of memory footprint. Further,

Dashing contains its own implementation of MinHash

and b-Bit and so is a flexible tool for future situations

where a combination of approaches is warranted.

HLL also comes with drawbacks. As shown in Fig. 3

and Table 1, Dashing is slower than BinDash at distance

calculations. This is expected; the b-bit Minwise Hashing

approach consists primarily of comparisons of bit-packed

suffixes of minimizers, which can be effectively vector-

ized. By contrast, the distance calculation between two

HLL sketches is relatively expensive, requiring exponen-

tiations, divisions, harmonic means, and—for the MLE-

based methods—iterative procedures for finding roots of

functions. The trade-off between accuracy and computa-

tional cost is underlined by Ertl’s Joint MLE [20] method,

which is both the slowest (even compared to MinHash)

but the most accurate of the HLL-based methods. It will

Baker and Langmead Genome Biology (2019) 20:265 Page 8 of 12

be important to continue to refine and accelerate the

cardinality-estimation algorithms at the core of dashing

dist.

HLL lacks another advantage of MinHash; when Min-

Hash is used in conjunction with a reversible hash func-

tion, it can be used not only to calculate the relevant

set cardinalities but also to report the k-mers common

between the sets. This can provide crucial hints when the

eventual goal is to map a read to (or near) its point of ori-

gin with respect to the reference, as is the goal for tools

like MashMap [5].

Past efforts have considered how to extend MinHash

to include information about multiplicities, essentially

allowing it to sketch a multiset rather than a set. This

can improve accuracy of genomic distancemeasurements,

especially in the presence of repetitive DNA. Finch [28]

works by capturingmore sketch items than strictly needed

for the k-bottom sketch, then tallying them into a multi-

set. More theoretical studies have proposed ways to store

multiplicities, including BagMinHash [29], and Super-

MinHash [14]. In the future, it will be important to seek

similar multiplicity-preserving extensions—and related

extensions like tf-idf weighting [3, 30]—for HLL as well.

As we consider how HLL can be extended to improve

accuracy and handlemultiplicities, an asset is that our cur-

rent design uses only 6 out of the 8 bits that make up

each HLL register. (The LZC of our hash cannot exceed

63 and therefore fits in 6 bits.) Thus, 25% of the structure

is waiting for an appropriate use. One idea would be to

use the bits to store a kind of striped, auxiliary Bloom fil-

ter. This would add an alternate sketch whose strength lies

in estimating low-cardinality sets. Since we observed that

Bloom filters have superior accuracy when the bitvector is

large enough to simulate linear counting (Additional file 1:

Figures S2 and S3), we could potentially populate the aux-

iliary filter with the input items (or a sample thereof) and

recover some of the accuracy advantage enjoyed by Bloom

filters.

While HLL was used by the KrakenUniq [17] tool for

metagenomics read classification, KrakenUniq’s imple-

mentation allows for a sparse representation of the reg-

isters, with 0-count registers omitted and non-0-count

registers stored in a sparse array. Sparsity is a reason-

able assumption in KrakenUniq, since some taxa have few

associated k-mers due to relatedness of the genomes at

the leaves. The sparsity assumption is less valid in Dash-

ing’s typical usage scenarios, though it can be valid if one

input set has few elements compared to the number of

HLL registers. In the future, it will be important to inves-

tigate whether Dashing can be extended to exploit sparsity

where it exists.

Though we compared to Mash and BinDash here, an

alternative approach is used by the Kmer-db software [31].

Kmer-db’s data structure captures the k-mer content of

many input datasets at once. The underlying data struc-

ture is a compressed bit matrix with bits indicating mem-

bership relationships between k-mers (rows) and input

datasets (columns). Once a matrix is built, a second phase

can perform individual or all-pairwise distance calcula-

tions over the samples. Since distinct k-mers are repre-

sented explicitly—which can take considerable space—the

tool gives the option of subsampling the input k-mers

using a MinHash-based method.

HLL’s accuracy even when using a small sketch makes

it appropriate for search and indexing. It can be seen

as performing a similar function as the Sequence Bloom

Tree [32]. Additionally, because any items which can be

hashed can be inserted in a HyperLogLog, dashing could

be generalized or extended to other applications, such as

comparing text documents by their n-grams, or images by

extracted features.

Methods
HyperLogLog

The HyperLogLog sketch builds on prior work on approx-

imate counting in O(log2 log2(n)) space. Originally pro-

posed by Morris [33] and analyzed by Flajolet [34],

this method estimates a count by possibly incrementing

a counter with exponentially decaying probability. The

probability is typically halved after each increment, so the

counter approximates the log2 of the true count. While

the estimator is unbiased, it has high variance. The hope

is that needing only log2 log2(n) bits to store a summary—

compared to the log2(n) needed for a MinHash—allows

us to store more summaries total and, after averaging,

achieve a better estimate.

The HLL combines many such counters into one sketch

using stochastic averaging [35]. Given a stream of data

items, we partition them according to the most significant

bits (“prefix”) of their hash values. That is, if o is an input

item and h is the hash function, the value h(o) is parti-

tioned so that h(o) = p⊕q for bit-string prefix p and suffix

q. To insert the item, we use p as an offset into an array of

8-bit “registers.” We update the register to equal either its

current value or the leading zero count (LZC) of suffix q,

whichever is greater (Fig. 4a). Note that the LZC of a bit

string x of length q is related to log2(x):

LZC(x) =
{

q, x = 0

q − 1 − ⌊log2(x)⌋ x > 0

Each register ultimately stores a value related to

minq∈Q log2(q) where Q is the set of suffixes mapping to

the register (Fig. 4b). We can combine estimates across

registers by taking their harmonic mean and applying a

correction factor, as detailed below. The estimator has a

standard error of 1.03896√
m

[16].

While the HLL is conceptually distinct from MinHash

sketches and Bloom filters, it is related to both. Informally,

Baker and Langmead Genome Biology (2019) 20:265 Page 9 of 12

Fig. 4 a Relationship between maximum leading zero count (Max LZC) and set size for three randomly-generated sets of 8-bit numbers. The Max
LZC roughly estimates the log2 of the set size, though with high variance; here, two of three estimates are off by 2-fold. b Schematic of HyperLogLog
sketch. Input items are hashed and hash value is partitioned into prefix p and suffix q. p indexes into the array of HLL registers. A register contains the
maximum leading zero count among all suffixes q that mapped there. Register-level estimates are then combined to obtain an overall cardinality
estimate. c Estimating cardinalities of sets A and B, and d estimating the cardinality of their union. For intersection cardinalities using
inclusion-exclusion principle, estimated set and union cardinalities are combined. e Direct estimation of intersection cardinality with Ertl’s JMLE

an HLL modified so that the summary stored in each reg-

ister is a simple minimum (without the log2) is similar to a

MinHash sketch. Similarly, a Bloom filter with a single hash

function and 2x bits is essentially anHLLwith an x-bit hash

prefix and with registers consisting of a single bit each.

Estimation methods

The original HLL cardinality estimation method [16]

combines the register-level estimates by taking a corrected

harmonic mean:

E =
αmm

2

m
∑

j=1
2−Mj

where αm is a correction factor equal to 1
2 ln 2 andMj is 1 +

the maximum LZC stored in register j. But the estimator’s

accuracy suffers at low and high extremes of cardinality.

This has spurred various refinements starting with the

original HLL publication [16], where linear counting is

used to improve estimates for low cardinalities and careful

treatment of saturated counters improves high-cardinality

estimates.

Ertl proposed further refinements [20]. The “improved

estimator” uses the assumptions that (a) the hash func-

tion produces uniformly distributed outputs and (b)

register values are independent. It then models reg-

ister count as a Poisson random variable. Estimat-

ing the Poisson parameter yields an estimate for the

cardinality.

Ertl’s MLE method again uses the uniformity and Pois-

son assumptions of the improved method, but the MLE

method proceeds by finding the roots—e.g., using New-

ton’s method or the secant method—of the derivative of

the log-likelihood of the Poisson parameter given the reg-

ister values. Ertl shows that the estimate is lower- and

upper-bounded by harmonic means of the per-register

estimates. Ertl suggests using the secant method, which

uses inexpensive instructions and avoids derivative cal-

culations. We follow this suggestion in Dashing. Ertl

also argues that the MLE generally converges in a small

number of steps; we confirm that our implementation

converges in at most 3 steps in every case we have tested.

Ertl’s Joint MLE method, unlike those described so far,

can directly estimate the cardinality of set intersections.

We say “directly” to contrast it with methods that use

Baker and Langmead Genome Biology (2019) 20:265 Page 10 of 12

the inclusion-exclusion principle to estimate intersection

cardinality indirectly via cardinalities of sets (Fig. 4c) and

their unions (Fig. 4d). The JMLE method again adopts

the Poisson model, but two sketches, A and B, are mod-

eled as a mixture of three components, one with elements

unique toA, another with elements unique to B and a third

with elements in their intersection A ∩ B. The method

then jointly estimates the Poisson parameters for the three

components. The procedure operates on a set of tallies of

how often registers having a certain value in A are less

than, equal to, or greater than their counterparts in B (and

vice versa) (Fig. 4e).

As discussed in the “Results” section, the JMLE as

implemented in Dashing is substantially slower thanMLE.

This is partly because of the increased complexity of

the numerical optimization, as there are more optimiza-

tion problems and each requires roughly twice as many

iterations as for MLE. However, our profiling indicates

the added time is chiefly spent on tallying the <, =, >

relationships between the sketch registers. This tallying

work grows linearly with the sketch size. This highlights

the importance of efficient, SIMD-ized inner loops for

comparing HLLs.

We considered but did not include Ertl’s Improved Esti-

mator or the HyperLogLog++ estimator [36] in this study

as they performed worse than Ertl’s MLE in preliminary

comparisons.

Optimizing speed

Dashing takes advantage of the fine-grained parallelism

inherent in HLLs. Union and intersection cardinalities are

the key components of similarity measures like the Jaccard

coefficient. For two HLLs having the same number of reg-

isters and the same hash function, a sketch of their union

is simply the element-wise maximum of their registers.

Thus, one fundamental need is to perform element-wise

maximum over long vectors of 8-bit registers. Finding the

cardinality of an individual set—or of the intersection of

two sets using the JMLE—requires tallying statistics over

the register array. Thus, another need is to perform tallies

(e.g., counting the registers having a particular value) over

long vectors of 8-bit registers.

For set unions, Dashing’s inner loops use Single-

Instruction Multiple Data (SIMD) instructions, which are

capable of performing fast arithmetic and bitwise opera-

tions on vectors of many adjacent operands. These vectors

are substantially wider (up to 512 bits) than the typi-

cal 32-bit or 64-bit machine words used to store scalar

operands. Speedups can be attained by converting impor-

tant loops to use only or mostly SIMD instructions and to

avoid loops with scalar instructions. The more operands

per SIMD vector, the greater the potential benefit [23].

The ideal would be to use vectors consisting of 8-bit

operands, since this matches the HLL register width.

While past iterations of the SIMD instruction set operated

on 128- and 256-bit vectors of 8-bit operands, only with

the recent introduction of Intel’s AVX-512BW instruc-

tion set did it become possible to operate on 512-bit

vectors of 8-bit operands. We created AVX-512BW ver-

sions of inner set-union loops and confirmed that these

deliver the greatest distance-estimation throughput, pro-

viding 20% speed boost compared to loops based on

the older SSE2 SIMD instruction set (Additional file 1:

Note S5 and Table S1). For compatibility with older

systems, Dashing supports older SIMD instruction sets

back to SSE2.

The process of tallying statistics for set cardinalities and

set intersection cardinalities is harder to SIMD-ize in this

way. Dashing uses manual loop unrolling to speed up

these inner loops, but no SIMD instructions. A question

for future work is whether these loops can be rewrit-

ten using, for example, a combination of SIMD gather,

increment, and scatter operations.

Dashing also supports use of many simultaneous

threads of execution using the OpenMP v4.5 library.

The dashing sketch function is parallelized across

input files, with distinct threads reading, sketching,

and writing sketches for distinct inputs. In dashing

dist, threads work in parallel on elements in a row

of the upper-triangular matrix while a distinct thread

writes out the results. To minimize the overhead asso-

ciated with global memory-allocation locks, each thread

allocates from a private memory buffer. The all-pairs

distance calculation uses multiple output buffers and

asynchronous I/O to avoid blocking and output-lock

contention.

Another concern is load balance; having many simulta-

neous threads is beneficial only if we can avoid “straggler”

threads that run long after the others have finished. We

eliminated an important source of stragglers by performing

an up-front large-to-small ordering of the inputs to be

sketched. This minimizes the chance that the thread with

the largest genome will still be working when others are

finishing.

Sketching sequencing data

While Dashing supports both FASTA and FASTQ inputs,

input data from sequencing experiments require special

consideration due to the presence of sequencing errors.

Following the strategy of Mash [1], Dashing uses an auxil-

iary data structure at sketching time to remove infrequent

k-mers that are likely to contain errors. Dashing does this

in a single pass. Each k-mer in a sequencing experiment

is added to a Count-min Sketch (CMS) [37], and only if

the estimated count for the k-mer is sufficiently high is it

added to the HLL. The CMS can provide count estimates

using an amount of space that grows sublinearly with the

number of items.

Baker and Langmead Genome Biology (2019) 20:265 Page 11 of 12

Hash function

We compared clhash, Murmur3’s finalizer, and the Wang

hash across a set of synthetic Jaccard index estimates and

found that Wang’s had the lowest error (8.20 × 10−3) and

bias (−2.14× 10−4), compared to 8.27× 10−3 and 2.30×
10−4 for Murmur3 and 8.21×10−3 and −2.66e×10−4 for

clhash. In addition to providing the best results, theWang

hash was also much faster than clhash, which is meant for

string inputs rather than specialized for 64-bit integers.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s13059-019-1875-0.

Additional file 1: Supplementary notes and figures. All supplementary
notes and figures appear in this additional file.

Additional file 2: Full results for sketch accuracy. Full results from the
experimental comparison of MinHash, Bloom, Bloom+, and HyperLogLog
methods for Jaccard-coefficient estimation on synthetic data. Results are
presented in a spreadsheet.

Additional file 3: Full results for accuracy for complete genomes. Jaccard
coefficient estimation accuracy across a range of true Jaccard values for
BinDash, Mash and 3 HyperLogLog estimation algorithms in tabular format.
Experiments were repeated for all combinations of k ∈ {16, 21, 31} and log2
sketch size ∈ {10, 11, 12, 13, 14, 15}. Results are presented in a spreadsheet.

Additional file 4: Full results for computational efficiency. Space and time
efficiency benchmark for all pairwise comparisons between 87,113
genomes for k ∈ {16, 21, 31} and log2 sketch size ∈ {10, 14, 16} between
BinDash, Mash, and 3 HyperLogLog estimation algorithms. Results are
presented in a spreadsheet.

Peer review information

Anahita Bishop was the primary editor on this article and managed its editorial
process and peer review in collaboration with the rest of the editorial team.

Acknowledgements

We thank Florian Breitwieser for HLL implementation discussions and Nikita
Ivkin for insights with regard to sketch data structure theory and
implementation. This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), supported by National Science Foundation
grant number ACI-1548562.

Authors’ contributions

DNB conceived the method and implemented the software. DNB and BL
designed the experiments and wrote the paper. Both authors read and
approved the final manuscript.

Authors’ information

Twitter handles: Daniel N. Baker @dnb_hopkins and Ben Langmead
@BenLangmead.

Funding

BL and DNB were supported by National Science Foundation grant IIS-1349906
to BL and National Institutes of Health/National Institute of General Medical
Sciences grant R01GM118568 to BL. Experiments on the Intel Skylake system
used the XSEDE Stampede 2 resource at the Texas Advanced Computing
Center (TACC), accessed using XSEDE allocation TG-CIE170020 to BL.

Availability of data andmaterials
• Dashing source code is available under the open source GPLv3 license

[21].
• The particular version of Dashing evaluated here is included in this

permanent archive: [38]
• Scripts and code used to perform the experiments described in this

study are available under the open-source GPLv3 license [39].

• The particular version of the scripts and code used to perform the
experiments described in this study is included in this permanent
archive [38].

• Accessions of genomes compared in the “Accuracy for complete
genomes” subsection of the “Results” section are listed at: https://github.
com/langmead-lab/dashing-experiments/blob/master/accuracy/
genomes_for_exp.txt.

• Accessions of genomes compared in the “Computational efficiency”
subsection of the “Results” section are listed at: https://github.com/
langmead-lab/dashing-experiments/blob/master/timing/filenames.txt.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 5 February 2019 Accepted: 1 November 2019

References

1. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S,
Phillippy AM. Mash: fast genome and metagenome distance estimation
using MinHash. Genome Biol. 2016;17(1):132.

2. Schaeffer L, Pimentel H, Bray N, Melsted P, Pachter L. Pseudoalignment
for metagenomic read assignment. Bioinformatics. 2017;33(14):2082–8.

3. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Res. 2017;27(5):722–36.

4. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM.
Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nat Biotechnol. 2015;33(6):623–30.

5. Jain C, Koren S, Dilthey A, Phillippy AM, Aluru S. A fast adaptive
algorithm for computing whole-genome homology maps.
Bioinformatics. 2018;34(17):748–56.

6. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High
throughput ANI analysis of 90K prokaryotic genomes reveals clear species
boundaries. Nat Commun. 2018;9(1):5114.

7. Broder AZ. On the resemblance and containment of documents. In:
Compression and Complexity of Sequences 1997. Proceedings.
Piscataway, NJ 08854-4141 USA: IEEE Operations Center; 1997. p. 21–9.

8. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 2014;15(3):46.

9. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics. 2016;32(14):2103–10.

10. Buhler J. Efficient large-scale sequence comparison by locality-sensitive
hashing. Bioinformatics. 2001;17(5):419–28.

11. Luo Y, Yu YW, Zeng J, Berger B, Peng J. Metagenomic binning through
low-density hashing. Bioinformatics. 2018;35(2):.

12. Zhao X. Bindash, software for fast genome distance estimation on a
typical personal laptop. Bioinformatics. 2018;35(4):651.

13. Yu YW, Weber G. Hyperminhash: Jaccard index sketching in loglog space.
CoRR. 2017;abs/1710.08436:. arXiv. http://arxiv.org/abs/1710.08436.

14. Ertl O. Superminhash - A new minwise hashing algorithm for jaccard
similarity estimation. CoRR. 2017;abs/1706.05698:. arXiv. http://arxiv.org/
abs/1706.05698.

15. Koslicki D, Zabeti H. Improving min hash via the containment index with
applications to metagenomic analysis. bioRxiv. 2017. https://doi.org/10.
1101/184150.

16. Flajolet P, Fusy É., Gandouet O, Meunier F. HyperLogLog: the analysis of
a near-optimal cardinality estimation algorithm. In: Jacquet P, editor.
AofA: Analysis of Algorithms. DMTCS Proceedings. Juan les Pins, France:
Discrete Mathematics and Theoretical Computer Science; 2007. p.
137–56. https://hal.inria.fr/hal-00406166.

17. Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast
metagenomics classification using unique k-mer counts. Genome Biol.
2018;19(1):198.

18. Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R,
Charbonneau A, Constantinides B, Edvenson G, Fay Sea. The khmer
software package: enabling efficient nucleotide sequence analysis.
F1000Res. 2015;4:900.

https://doi.org/10.1186/s13059-019-1875-0
https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/timing/filenames.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/timing/filenames.txt
http://arxiv.org/abs/1710.08436
http://arxiv.org/abs/1706.05698
http://arxiv.org/abs/1706.05698
https://doi.org/10.1101/184150
https://doi.org/10.1101/184150
https://hal.inria.fr/hal-00406166

Baker and Langmead Genome Biology (2019) 20:265 Page 12 of 12

19. Georganas E, Buluç A, Chapman J, Oliker L, Rokhsar D, Yelick K. Parallel
de bruijn graph construction and traversal for de novo genome assembly.
In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’14. Piscataway: IEEE
Press; 2014. p. 437–48.

20. Ertl O. New cardinality estimation algorithms for hyperloglog sketches.
CoRR. 2017;abs/1702.01284:. arXiv. http://arxiv.org/abs/1702.01284.

21. Baker DN. Dashing: fast and accurate genomic distances using
HyperLogLog. 2019. https://github.com/dnbaker/dashing. Accessed 18
Jan 2019.

22. Brown CT, Irber L. sourmash: a library for MinHash sketching of DNA. J
Open Source Softw. 2016;1(5):.

23. Rahn R, Budach S, Costanza P, Ehrhardt M, Hancox J, Reinert K. Generic
accelerated sequence alignment in SeqAn using vectorization and
multi-threading. Bioinformatics. 2018;34(20):3437–45.

24. Wang T. Integer Hash Function. 1997. http://web.archive.org/web/
20071223173210/http://www.concentric.net/Ttwa%ng/tech/inthash.
htm. Accessed 31 Jul 2017.

25. Bloom BH. Space/time trade-offs in hash coding with allowable errors.
Commun ACM. 1970;13(7):422–6.

26. Swamidass SJ, Baldi P. Mathematical correction for fingerprint similarity
measures to improve chemical retrieval. J Chem Inf Model. 2007;47(3):
952–64.

27. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R,
Rajput B, Robbertse B, Smith-White B, Ako-Adjei Dea. Reference
sequence (RefSeq) database at NCBI: current status, taxonomic expansion,
and functional annotation. Nucleic Acids Res. 2016;44(D1):733–45.

28. Bovee R, Greenfield N. Finch: a tool adding dynamic abundance filtering
to genomic minhashing. J Open Source Softw. 2018;3(22):.

29. Ertl O. Bagminhash - minwise hashing algorithm for weighted sets. arXiv.
2018. http://arxiv.org/abs/1802.03914.

30. Chum O, Philbin J, Zisserman A, et al. Near duplicate image detection:
min-hash and tf-idf weighting. In: BMVC; 2008. p. 812–5.

31. Deorowicz S, Gudys A, Dlugosz M, Kokot M, Danek A. Kmer-db: instant
evolutionary distance estimation. Bioinformatics. 2019;35(1):133–6.

32. Solomon B, Kingsford C. Fast search of thousands of short-read
sequencing experiments. Nat Biotechnol. 2016;34(3):300–2.

33. Morris R. Counting large numbers of events in small registers. Commun
ACM. 1978;21(10):840–2.

34. Flajolet P. Approximate counting: a detailed analysis. BIT Num Math.
1985;25(1):113–34.

35. Flajolet P, Martin GN. Probabilistic counting algorithms for data base
applications. J Comput Syst Sci. 1985;31(2):182–209.

36. Heule S, Nunkesser M, Hall A. Hyperloglog in practice: algorithmic
engineering of a state of the art cardinality estimation algorithm. In:
Proceedings of the 16th International Conference on Extending Database
Technology. EDBT ’13. New York: ACM; 2013. p. 683–92.

37. Cormode G, Muthukrishnan S. An improved data stream summary: the
count-min sketch and its applications. J Algo. 2005;55(1):58–75. https://
doi.org/10.1016/j.jalgor.2003.12.001.

38. Baker DN, Langmead B. Dashing software used in manuscript
experiments. 2019. https://doi.org/10.5281/zenodo.3402234. https://
zenodo.org/record/3402234.

39. Baker DN, Langmead B. Dashing software used in manuscript
experiments. 2019. https://github.com/langmead-lab/dashing-
experiments.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://arxiv.org/abs/1702.01284
https://github.com/dnbaker/dashing
http://web.archive.org/web/20071223173210/http://www.concentric.net/Ttwa%ng/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/Ttwa%ng/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/Ttwa%ng/tech/inthash.htm
http://arxiv.org/abs/1802.03914
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.5281/zenodo.3402234
https://zenodo.org/record/3402234
https://zenodo.org/record/3402234
https://github.com/langmead-lab/dashing-experiments
https://github.com/langmead-lab/dashing-experiments

