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Abstract

Dasymetric models increase the spatial resolution of population data by incorporating related

ancillary data layers. The role of uncertainty in dasymetric modeling has not been fully addressed

as of yet. Uncertainty is usually present because most population data are themselves uncertain,

and/or the geographic processes that connect population and the ancillary data layers are not

precisely known. A new dasymetric methodology - the Penalized Maximum Entropy Dasymetric

Model (P-MEDM) - is presented that enables these sources of uncertainty to be represented and

modeled. The P-MEDM propagates uncertainty through the model and yields fine-resolution

population estimates with associated measures of uncertainty. This methodology contains a

number of other benefits of theoretical and practical interest. In dasymetric modeling, researchers

often struggle with identifying a relationship between population and ancillary data layers. The

PEDM model simplifies this step by unifying how ancillary data are included. The P-MEDM also

allows a rich array of data to be included, with disparate spatial resolutions, attribute resolutions,

and uncertainties. While the P-MEDM does not necessarily produce more precise estimates than

do existing approaches, it does help to unify how data enter the dasymetric model, it increases the

types of data that may be used, and it allows geographers to characterize the quality of their

dasymetric estimates. We present an application of the P-MEDM that includes household-level

survey data combined with higher spatial resolution data such as from census tracts, block groups,

and land cover classifications.
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Introduction

Researchers often desire population data at finer spatial resolutions than are publicly

available. Fine resolution population data have been produced using such methods as areal

interpolation, ordinary kriging, and dasymetric modeling. Dasymetric modeling produces

fine-resolution estimates by utilizing relations between population distribution and ancillary

geographic layers (Figure 1). Examples of ancillary data commonly used include: land cover

(Mennis 2003), road density (Reibel and Bufalino 2005), slope (Schumacher et al. 2000),

nighttime lights (Briggs et al. 2007), Landsat Thematic Mapper data (Yuan, Smith, and

Limp 1997), LIDAR-derived building heights (Xie 2006; Kressler and Steinnocher 2008),

IKONOS-derived land use classification (Liu, Kyriakidis, and Goodchild 2008), parcel data

(Tapp 2010) and address points (Zandbergen 2011).

A common characteristic of these studies is the integration of: 1) population data, 2)

ancillary data layers, and 3) a model relating the two. Each of these model inputs introduces

its own uncertainty. For instance, population data may be the result of a sample survey

rather than a complete enumeration, or they may represent the population distribution at a

different point in time. Similarly, most geospatial ancillary layers contain their own sources

of error in location or in attribution. Perhaps most important, however, are the uncertainties

that arise from trying to quantitatively link or relate the population distribution to the

ancillary layers. The link between the distribution of population and the distribution of other

spatial attributes is typically uncertain and is difficult to quantify and assess. Population

distributions can never be completely characterized by deterministic relations because they

are sensitive to local contextual factors such as cultural norms, local land use and housing

regulations, local/regional environmental constraints, and the vagaries of random chance and

history.

Despite these many sources of uncertainty, dasymetric techniques primarily treat this

relational problem as a deterministic problem and do not adopt quantitative mechanisms for

incorporating uncertainty. We propose a new methodology for dasymetric modeling that

takes uncertainty into account, whether arising through uncertain population data, uncertain

ancillary data, or uncertain relationships between population and ancillary data.

Furthermore, this new methodology tracks these uncertainties through the dasymetric model

in order to produce a measure of quality for the final population estimates.

This new model is based on an extension of Maximum Entropy (ME) techniques and we call

it the Penalized Maximum Entropy Dasymetric Model (P-MEDM). ME techniques have

been frequently used for “location-allocation” type problems in geography, in which an

initial population needs to be allocated among a variety of different locations (Johnston and

Pattie 1993). By themselves, ME techniques do not address the effects of uncertain input

data layers, but we show how these uncertainties may be addressed by adding penalties to

the ME. Furthermore, the P-MEDM model is shown to naturally adapt to the varying

qualities of input data, allowing both high- and low-quality data to be utilized

simultaneously.

The benefits of the P-MEDM include:
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1. integrates population and ancillary data sources with disparate levels of spatial and

attribute resolution,

2. incorporates information about the known uncertainty of the input population and

ancillary data,

3. incorporates information about uncertainty about the estimated relationship

between population and ancillary data layers, and

4. produces output population estimates with quantifiable uncertainty themselves,

allowing other researchers to assess the quality of the final dasymetric products

with regard to their own intended uses.

A simple case demonstrates the benefits of the P-MEDM. Since one of these benefits is its

seamless ability to incorporate data of varying resolutions and qualities, this case study

includes: household-level data from the Public Use Microdata Sample (PUMS) of the

American Community Survey (ACS), tract- and block group-level summary data from the

ACS, and land cover information from the National Land Cover Database (NLCD). The

PUMS have extraordinary demographic resolution in that they contain records of individual

households and the persons within them. They have very coarse spatial resolution, however.

The enumeration districts for the PUMS (called Public Use Microdata Areas, or PUMAs)

must contain at least 100,000 persons. While it is possible to identify in which PUMA a

household lives, it is not possible to identify the household’s location within the PUMA.

In contrast to the ACS microdata, the ACS census tract and block group data are aggregates

of many households. While these layers have finer spatial resolution than the PUMS, they

have coarser demographic resolution than the PUMS because they do not contain

description of individual households or persons. The ACS is a rolling sample of the

American population. On average, the ACS samples 135 household per census tract over a 5

year period, which are used to estimate the characteristics of the tract. Tract- and block

group-level data layers are available for univariate population distributions, and some

bivariate distributions, but they do not contain the richness of individual- and household-

level data afforded by microdata. An additional problem when using ACS data for small

areas is that these data often have large Margin of Errors. Because of the relatively small

sample size of the ACS compared to the previous decennial census long form, tract and

block group level estimates may be quite uncertain. The P-MEDM is able to account for

this.

Finally, the case study includes relatively fine spatial resolution (30 meter) land cover data

from the NLCD. These data, however, have relatively crude demographic characterization.

Land cover data are valuable since they a proxy for demographic characteristics through a

chain of indirect links that tie together land cover, land use, the type and density of housing,

and the type and quantity of people residing in those houses. Thus, while land cover data

have fine spatial resolution, they have coarse demographic resolution. The P-MEDM model

allows this type of proxy data to enter and play their own unique role within the dasymetric

model.
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This application case study demonstrates new types of analyses that are enabled by the P-

MEDM. It also demonstrates how the uncertainty estimates produced by P-MEDM can

provide signals to analysts indicating the quality of a dasymetric model and hence, to also

indicate appropriate and inappropriate uses of dasymetric modeling more generally.

Areal Interpolation and Uncertainty

Areal interpolation is the process of downscaling coarse scale geographic data from source

regions to a finer target scale (Goodchild and Lam 1980). Areal interpolation and

dasymetric modeling are similar in that both are methods for downscaling spatial data. Areal

interpolation differs from dasymetric modeling in that it assumes the boundaries of the target

regions are arbitrary and that the variable being interpolated varies smoothly across the

boundaries of the source and target regions. This smoothness assumption is explicit in

methods such as Tobler’s smooth pycnophylactic interpolation (1979) and Kyriakidis’ area-

to-area and area-to-point ordinary kriging (2005). In contrast, dasymetric modeling assumes

that there are regions of homogeneous density, and dasymetric modeling seeks to

incorporate ancillary data that are able to identify the boundaries between these regions as

well as the difference in densities across the regions. Uncertainty is reduced in dasymetric

models if the boundaries between target regions correspond to real boundaries in the

population surface. This assumption – whether the population surface is a smooth or a

discrete surface with sharp boundaries – influences the nature of interpolation and the

strategies chosen to address uncertainty (Goodchild and Lam 1980; Goodchild, Anselin and

Deichmann 1995).

Assumptions about the nature of boundaries affect the kinds of ancillary information that are

used for downscaling. The ancillary information in the smoothing methods includes

information about the spatial structure (spatial autocovariance) of the population surface; the

ancillary information in dasymetric methods includes information that identifies boundaries

of homogeneous regions the population surface. Stated differently, smoothing methods

assume that the best ancillary information is information about the spatial autocorrelation of

the population surface (i.e., the target variable itself), whereas dasymetric methods assume

that the best information is information about the correlation between population and

ancillary data at the same location. Both of these methods, however, involve interpolating

the population to an unknown target region, and thus introduce uncertainty.

Many studies have been conducted to identify the sources of uncertainty in areal

interpolation methods. In general, uncertainty is found to increase with larger source regions

and smaller target regions (Sadahiro 2000). Ancillary data that can effectively define

homogeneous regions also reduce uncertainty. Zandbergen and Ignizio (2010) compare

different types of ancillary data and conclude that no one source of ancillary data is superior

in all instances, but they do suggest that land cover data are relatively robust ancillary data

for modeling population density. Furthermore, the variations between these methods can

have significant impacts for subsequent spatial analysis. Maantay, Maroko and Hermann

(2007) and Maantay, Maroko and Porter-Morgan (2008) used alternative interpolation

techniques to estimate population density for an analysis of asthma prevalence, and showed

that simpler areal interpolation estimators underestimated the negative effects compared to a
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more realistic, cadastral-based dasymetric model. These studies have indicated that the

interpolation uncertainty is directly linked to the problem of identifying homogeneity in the

population surface. Dasymetric models are successful if the ancillary data help to identify

regions of homogeneous population. Similarly, the smoothing interpolation methods are

successful if the population surface is smoothly varying with near-by areas being relatively

homogeneous.

While these studies have provided a rich qualitative description of the sources of

uncertainty, they have not provided a means to quantitatively assess the interpolation

uncertainty within a specific study. The P-MEDM allows for the quantification of

uncertainty in dasymetric estimates. Importantly, this method quantifies not only the

uncertainty that is inherent to the downscaling problem, but also the uncertainty that arises

from using inexact ancillary data. While many studies have conducted validation

experiments to compare the relative accuracy of different methodologies ex post facto, few

methodologies allow the quantification of uncertainty as a direct model output. Notable

exceptions are the geostatistical models, which do allow direct estimation of uncertainty

(Kyriakidis 2005; Wu and Murray 2005; Liu, Kyriakidis and Goodchild 2008). These

methods use the spatial autocorrelation of the population surface in order to quantify the

uncertainty of downscaling, they do no, however, quantify the uncertainty that arises

through using ancillary data of varying quality, nor do they provide an automatic means for

balancing between these data of varying qualities. The P-MEDM has these capabilities.

METHODS

Dasymetric modeling includes a suite of techniques to more precisely depict the spatial

distribution of population within the spatially aggregate regions (Slocum et al. 2009, chap.

15). Ancillary spatial data are essential to the dasymetric process. Dasymetric modelers

often categorize ancillary data into two types: limiting and related ancillary variables.

Limiting variables set constraints on the allowable population values, for example, by

limiting population densities to zero in areas covered by water. Related ancillary variables

can accommodate more complex relationships. For example, road density, elevation, or land

cover might be used to amplify or constrain population densities. Objectively identifying

these relations is a recurring problem, however. While there is no firmly established method

for quantifying this relationship, linear regression techniques are common (Mennis 2009).

Intelligent Dasymetric Mapping

One of the most widely used and most flexible techniques for dasymetric modeling is

intelligent dasymetric mapping (Flowerdew, Green, and Kehris 1991; Mennis and Hultgren

2006). This technique downscales from source populations Pops to target populations 

as follows:

(1)
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where wt is the expected population count in target region t. This expected population count

wt is derived through regression analysis using the population and ancillary layers; hence,

Reibel and Agrawal (2007) call this approach regression weighted dasymetric modeling.

One practical benefit of this method is that the target populations are consistent with the

source populations. Adding up the dasymetric estimates recovers the source populations: i.e.

. This constraint is frequently called the pycnophylactic, or volume-

preserving, constraint (Tobler 1979).

Regression weighted dasymetric modeling does not account for uncertainty in knowing the

inputs or their relationships. Often, the source population Pops is not precisely known. For

example, the source population may come from a sample survey rather than a complete

enumeration, or may represent the population at a different point in time. Thus, it might be

more appropriate to write the source populations as  in recognition of the fact that these

data are actually estimates of populations whose size is unknown.

An implicit logic of equation (1) is that the target estimates  are the result of

rebalancing the target estimates wt in order to be consistent with the source data.1 We

question, however, the logic of these constraints when the data are uncertain and noisy. Why

should we exactly constrain our dasymetric results to inexact data? If these populations are

derived through regression between the population data layers and the ancillary data layers

(Mennis and Hultgren 2006; Reibel and Agrawal 2007), then these estimates contain

uncertainty. Depending on the nature and quality of the data and on the strength of the

regression relationship, the uncertainty in these regression estimates may be quite large.

Dasymetric modeling techniques do not currently address these uncertainties. Even more

alarming, dasymetric models commonly produce a single estimate for the target population,

implying that there is no uncertainty. There is no explicit recognition that estimation is

uncertain, that estimation error is expected, nor of how large that estimation error might be.

What is needed is a technique that can account for uncertainty, possibly balancing between

the uncertainties in the source populations  and the uncertainties in the target estimates

wt, in order to produce population estimates with quantifiable uncertainty. The P-MEDM

model introduced here provides exactly these capabilities.

The Maximum Entropy approach to dasymetric modeling

We advance the maximum entropy (ME) framework as an effective tool for dasymetric

modeling in presence of uncertainty. While ME has a long history in geography for location-

allocation modeling (Wilson 1971), it is not widely used for areal interpolation (however,

Mrozinski and Cromley 1999 is a noteworthy exception). The ME framework has been

successfully employed, however, in the closely related problem of small area estimation,

with applications varying from modeling the distribution of votes across subpopulations

1Equation (1) is often presented in an alternative, but equivalent form:  . In this form,
the target estimates are seen as the result of allocating the source errors back to the target estimates wt.
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within electoral districts (Johnston and Pattie 1993) to estimating the distribution of

subpopulations across census zones (Birkin and Clarke 1988; Wong 1992; Simpson and

Tranmer 2005). Leyk et al studied the ME problem for small area estimation and assessed

the degree of ambiguity in these subpopulation distributions (2013). These applications face

problems that are essentially areal interpolation problems, although, they are not framed as

such. A similar approach, developed independently, is the Bayesian Maximum Entropy

Framework (Christakos 2000; Bogaert 2002).

In order to introduce maximum entropy modeling we present a stylized problem in the

manner of Birkin and Clarke (1988). Table (1) presents a data situation in which there are

two census tracts, with the goal to obtain the distribution of specific subpopulations – as

determined by race and income – within these two tracts. There might be published data for

the univariate distribution of race and univariate distribution of income by census tract, but

the joint cross-tabulation of these attributes might not be published in order to protect

anonymity of respondents. Thus, the modeling goal is to estimate these joint distributions.

Let wrck be the population in a given row (r), column (c) and tract (k). The ME method

estimates these missing values wrck through solving the following problem:

(2)

subject to the pycnophylactic constraints

and where drck are prior estimates. The prior estimates can be a constant value if no other

information exists, or they can reflect prior, ancillary information about the joint distribution

across attributes and/or location. For example, if the joint distribution of income and race is

known for the overall population, then this overall distribution might be use as a prior

estimate for each tract. This situation is displayed in Table 1. This situation was faced by

Birkin and Clarke (1988) and Wong (1992), who obtained these global estimates from

public use microdata. We adopt a similar strategy for integrating public use microdata into

dasymetric modeling. Public use microdata are widely used across the social sciences, but

are rarely encountered in geographic research. Thus, the potential impacts of this research

are to provide techniques to “spatialize” household- and individual-level microdata and to

provide new opportunities for interaction between geography and the other social sciences.

Penalized Maximum Entropy Dasymetric Modeling

A significant shortcoming of both the ME and regression weighted dasymetric modeling

approaches is the failure to account for uncertainties. If the population data are uncertain,

then the pycnophylactic constraints are too stringent. Models should not force population

estimates to exactly add back up to other estimates that are inherently imprecise. By relaxing

the pycnophylactic constraints we incorporate uncertainty into the ME dasymetric approach.
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Following Birkin and Clarke (1988) and Wong (1992), we begin with individual-level

microdata, but we then place these data within the dasymetric modeling framework, and

allocate these individuals to target regions according to small area census data as well as

other ancillary spatial data layers. In survey sample data, each sampled individual represents

a group of unsampled individuals in the population with the same characteristics. Let the

target population wit be the number of individuals like sample record i in target region t. Let

 be an uncertain estimate of a population group k, and let Popk be the true, but unknown

population count. The index k is general; it could represent the total population in a tract, or

in a target region, or a specific subpopulation, such as a tract level count of children in

poverty, or even housing unit counts (not population counts) such as the count of single

family housing units in a block group.

The ideal pycnophylactic constraints would be Σitεk wit = Popk. These constraints are not

feasible, however, because we do not know the true values Popk. Thus, we must explicitly

account for the unknown error between the true and estimated populations. We instead use

the constraints: , where ek is the positive or negative error between the

estimated and the true population count. These errors must be estimated in addition to the

target populations wit. Population estimates can come from a variety sources. Census

estimates for various attributes and spatial resolutions can be used as one type of constraint.

Other constraints might come from estimates produced by the researcher. For example,

regression weighted dasymetric modeling requires the researcher to estimate a regression

between population layers and ancillary land cover layers. Predictions from this regression

could be another source of population estimates. This freedom to include many different

sources of data into dasymetric modeling is a significant advancement. Any and all data

layers that can be used to predict a population attribute become feasible inputs to dasymetric

modeling.

These errors and constraints can be added to the ME model as follows: Choose wit and ek to

(3)

subject to the relaxed pycnophylactic constraints

where n is the size of the microdata sample, N is the population size,  is the variance of the

uncertainty ek, and dit is a prior estimate of the population wit. The term  is a penalty

factor; it penalizes solutions with large errors ek. If a P-MEDM solution exactly reproduces

a population constraint i.e. , then the error ek will be zero, and there will be

no penalty. However, if the solution does not exactly reproduce a population constraint, i.e.
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, then there is an estimated error ek, and the solution will be penalized for

this discrepancy between the dasymetric estimates and the corresponding (ancillary)

population estimates. This penalized Maximum Entropy framework, while new to

geography, has received considerable treatment in the machine learning literature; see, for

example, Chen and Rosenfeld (2000) and Dudik, Phillips and Schapire (2007).

The effect of the penalty term is to favor solutions with small errors ek, and preferably with

zero errors. Thus, the P-MEDM will tend to be close to the ancillary population estimates

. But not all population data are of equal quality, however. Some estimates are more

reliable than others. The variance terms  in (3) accounts for the variation in data quality

among the input data layers. If the variance σ2 of a population estimate is relatively small

then the penalty on errors ek will be great. Thus, the P-MEDM solution will tend to have

high fidelity to those input data that have a low variance. In contrast, if input data have a

high variance, then the penalty effect will be small. Large errors ek will be permissible for

these imprecise population constraints. In the extreme case where the constraints are

completely imprecise, then the penalty effect will be zero; it will be as if the constraint

doesn’t exist. At the other extreme, when all the uncertainties are zero, then the P-MEDM

solution is identical to the ME solution. A similar use of the model variance σ2 as a

qualitative measure for assessing the ancillary data was suggested by Mennis and Hultgren

(2006); here, we have formalized and quantified this process.

The adaptive property is convenient because it allows many different types of ancillary data

to be included. Data that are reliable will have a strong impact on the solution. Data that are

not reliable will have a slight impact on the solution. If the solution can accommodate

unreliable data without compromising the fit of reliable data, then it will do so. If, however,

the P-MEDM cannot fit unreliable data without also compromising the fit of reliable data,

then the reliable data take precedence.

The variance  must be known a priori, however, this is not usually a problem because the

variance of population estimates is often available. For instance, if census tract- or block

group-level summary tables are used as constraints, then the variance  is directly obtained

from the Margins of Error that the Census Bureau publishes along with each estimate.

Alternatively, if a population constraint is obtained by regression, such as a regression

between population data and land cover data, then a prediction error variance  is provided

by the regression model. In contrast to regression weighted dasymetric modeling, which

ignores the fact that regression predictions are imprecise, or that the population data are

themselves imprecise, P-MEDM is able to incorporate these uncertainties and to even adapt

to variations in quality among the various input data layers.

A statistical motivation

In this section, we briefly describe a statistical motivation for the P-MEDM model, and

describe techniques for estimating the uncertainty in the final dasymetric map product. The

P-MEDM equation (3) has two parts; each of which is part of a specific, well-known log
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likelihood model. The first part - , is proportional to the log-likelihood

equation of a multinomial model for the weights wit (Jaynes 2003). The second term in the

P-MEDM - the sum of square error terms  - is proportional to the log likelihood of a

Gaussian distribution. Together, these two terms represent the joint likelihood of the weights

wit and the errors ek.

Taken together, we see that the P-MEDM equation is equivalent to simultaneously

maximizing the likelihood of sample weights (which have a multinomial distribution) as

well as the likelihood of the error distribution of ancillary population estimates (which are

assumed to have a Gaussian distribution).

Since the P-MEDM problem is also a maximum likelihood problem, there are many possible

ways to specify confidence intervals for the output dasymetric map. One way, based on the

Likelihood Ratio, is conceptually simple, but computationally expensive. For the likelihood

ratio method, one evaluates the P-MEDM model multiple times, once with the optimal wit

and errors ek, and then repeatedly with alternative, sub-optimal values. Call the optimal log-

likelihood value L0, and the sub-optimal value L1. The likelihood ratio is the ratio L1/L0.

This ratio will have a χ2 distribution (O’Brien 1992). For 95% confidence intervals of the

weights, one can try different suboptimal weights wit, repeatedly recalculating the likelihood

ratio and searching for the weights that yield a likelihood ratio equal to the 2.5% and 97.5%

values of a χ2 distribution; this is a computationally expensive process.

Another, simpler method, relies on approximating the confidence intervals by a Gaussian

distribution. For this method, we rely on the large sample approximation that the second

derivatives of a likelihood function are inversely proportional to the covariance matrix of the

model parameters (Schabenberger and Gotway 2004). With the covariance matrix in hand,

one can then obtain the standard errors of the parameters, and the approximate 95%

confidence intervals are obtained by the usual method of calculating ± 2standard errors.

Many computational optimization procedures automatically calculate the second derivatives.

Thus, this method is cheap to calculate; the P-MEDM only needs to be solved once and the

final information about the second derivatives at the solution is immediately used to

calculate the covariance matrix.

Case Study

Data

We demonstrate the P-MEDM model with a case study that models the population in

Davidson County, Tennessee at various spatial and demographic resolutions. Davidson

County contains the city of Nashville and had a population of about 600,000 persons in

2010. In order to demonstrate the wide applicability of the P-MEDM data, we incorporate

three different sources of data representing four different levels of spatial resolution (Figure

2).

The first source of data are household-level microdata from the 5% Public Use Microdata

Sample (PUMS) of the 2005–2009 American Community Survey. These microdata describe
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detailed characteristics of a 5% sample of individual households. The spatial resolution of

the PUMS, however, is very coarse. The geography of the PUMS is a geographic unit called

the Public Use Microdata Area (PUMA). PUMAs are large in order to preserve the

anonymity of respondents; each PUMA contains at least 100,000 persons, and there are only

5 PUMAs in Davidson County. While these data are not widely used in geography, they are

widely used in other social sciences. It is important that geographers develop tools that

enable them to engage with the methods and findings being produced in the other social

sciences; the P-MEDM enables the use of these data in spatial contexts.

The second source for data are summary tables from the 2005–2009 ACS representing two

different geographic scales: census tracts (which are nested within PUMAs) and block

groups (which are nested within tracts). These ACS summaries are survey estimates from a

10–12 percent survey of the population and are not actual population counts. For each ACS

estimate, the Census Bureau also publishes a 90 percent Margin of Error (MOE), which is

used to compute an error variance  ( US Census Bureau 2009). The MOE can be quite

large for small population estimates, such as for some block groups and some small sub-

populations. In extreme cases, the coefficient of variation for an ACS estimate may exceed

100 percent. Such a low precision makes the use of these data dubious in traditional

dasymetric model. The P-MEDM, however naturally adapts to these differences in quality;

these estimates can be added to the model with very little effect on the model. This reduces

the burden on the researcher to subjectively evaluate which data are good enough to use and

which are not.

The final source of data used in this case study is the 2006 National Land Cover Database

(NLCD). The NLCD is raster grid with a spatial resolution of 30m covering the entire

United States, with each cell preclassified into a single land cover type. Dasymetric models

commonly use land cover data (Eicher and Brewer 2001; Mennis and Hultgren 2006; Reibel

and Agrawal 2007; Tapp 2010). Despite their prevalence in dasymetric studies, land cover is

not actually a direct estimate of any population attribute. In all such dasymetric studies, a

relation between the land cover layer and population layer must be identified. We adapt the

regression weighted areal interpolation approach (Reibel and Agrawal 2007; Mennis and

Hultgren 2006) in order to derive ancillary population estimates  and error variances σ2

for each 30 meter pixel from the ancillary data.

Data processing and target zone construction

For this analysis, each land cover pixel was reclassified into six classes: five classes that are

potential residential areas (these are used as related ancillary variables), and one non-

residential class (this is used as a limiting ancillary variable). The five land cover classes

used as related ancillary variables are High-, Medium- and Low-Intensity and Open Space,

Developed land (NLCD classes 24, 23, 22 and 21), and Vegetated land (all pixels not

classified as water, barren or wetland). The underlying NLCD definitions for these classes

indicate that residential land use is possible (Fry et al. 2011). Water, barren land and wetland

are grouped into a single non-residential class since the given class definitions indicate that

residential land use is highly unlikely (we ignore the possibility, for example, of residential

houseboats). We then merged the NLCD pixels within census block groups in order to
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construct target regions. Thus, target regions for this analysis are sub-block group regions

with homogeneous NLCD classification; there are at most six target regions within each

block group.

In order to construct population constraints, the ACS data are processed by selecting a

subset of the summary tables and then further collapsing some categories. The census tract

and block group data tables that are used as ancillary estimates are

• Total population and Number of housing units.

• Number of housing units by building type (six categories: single family detached,

single family attached, a building with 2–9 units, one with 10–49 units, one with 50

units or more, and housing units not elsewhere classified).

• Number of households by tenure status (two categories: Own or Rent).

• Number of households by household Income (in three categories: <=$25,000,

$25,001–50,000, and >=$50,001).

• Number of households by race of householder (two categories: Black, All Other).

• Number of households by income and race (for a total of six categories).

• Number of households by income and tenure (six categories).

• Number of households by race and tenure (four categories).

These data constraints and their geographic scale are summarized in Table 2.

The Census Bureau publishes each of these tables at both the block group and tract level,

except for the Households by Income and Tenure and the Households by Income and Race

tables, which are only published down to the tract level. While it might seem that the

constraints at both the tract and the block group levels are redundant, this is not the case.

Even though the tract level estimates are equal to the sum of block group estimates, the

MOEs can be very different. The MOE of the sum of block group estimates is at least as

large as the MOE of the tract level estimate. Thus, including the tract level estimates in

addition to those for the block groups allows the P-MEDM to maintain more fidelity to the

tract level estimates.

The tract and block group summaries are already in the proper form that allows us to use

them as pycnophylactic constraints with error, i.e. . The related NLCD

land cover data are not immediately usable as population constraints, however; we must

convert the land cover data into constraining population estimates. Following the regression

weighted dasymetric modeling approach, we use regression techniques to specify a

relationship between the land cover and population layers and then calculate the associated

standard errors of prediction.

Many dasymetric studies have specified a linear regression relation between land cover and

population density. Logically, however, land cover is less related to population density than

it is to building type and building density. While this type of relation was difficult to specify

and use in previous dasymetric studies, it can be easily used in the P-MEDM approach. We
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use a Poisson Generalized Linear Model to relate housing unit counts to land cover type. Let

 denote the number of housing units of building type k in block group b and land cover

c. We assume that this quantity has a Poisson distribution. We then specify the following

link between expected number of housing units and the land cover:

where  is the expected number of housing units, Areacb is the land area of block

group b with land cover c, and  is the regression coefficient measuring the housing unit

density for building type k in land cover class c. This characterizes a Poisson Generalized

Linear Model with additive link function (McCullagh and Nelder 1989). We have also

added overdispersion (extra variance) to the model specification. Overdispersion may arise

from either uncertainty in measuring the dependent variable, which is certainty present for

these data measured by the ACS, or from model misspecification, or from measurement

error in the land cover classification, which is certainly present as well.

Once this regression is fitted for each building type k, we construct estimates  for each

target region. Thus, the regression produces a geographic data layer containing housing unit

predictions for each building type and target region. In addition to producing a regression

prediction, the regression also produces a prediction variance; this is the σ2 that is needed

for P-MEDM. Thus, we use regression to construct housing unit estimates for each target

region, which are then added to the P-MEDM constraints, along with the constraining tract

and block group estimates that are provided directly by the Census Bureau.

An important note to make is that, while we have explicitly quantified the prediction

accuracy of the land cover data, we have not explicitly quantified the classification error of

the NLCD. The NLCD is itself a complex dataset, and there is an extensive literature on

uncertainty and error in NLCD classifications (Wickham et al 2010; 2013). This

classification error is especially problematic in rural areas, where isolated housing units are

often misclassified as Vegetated. This type of error is not explicitly incorporated in the P-

MEDM. It is implicitly incorporated, however, as the misclassification error will reduce the

prediction accuracy of the land cover data, and thus increase the prediction variance σ2 of

these P-MEDM constraints. More accurate land cover data would presumably lead to higher

prediction accuracies. This misclassification problem is a common impediment to

dasymetric modeling, is subject to intensive research in the land cover/remote sensing

community and can only be solved by improved detection procedures.

Results

In this section, we present a variety of different products and analyses that are made possible

by the P-MEDM technique. Once weights wit are obtained, they can be utilized in a variety

of different ways.
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Dasymetric mapping

First, it is possible to duplicate traditional dasymetric modeling. The sum Σi wit will produce

population estimates for each target region. Since we have the microdata, with all of their

individual- and household-level attributes, it is possible to obtain dasymetric maps for

various subpopulations as well. Let k be any subpopulation of interest, then Σiεk wit

represents the subpopulation estimate for target region t. Figure 3 displays both a dasymetric

map for total population, as well as low income black households, in Davidson County.

The P-MEDM makes it possible, with one optimization, to produce many different types of

dasymetric estimates at the target zone scale. This contrasts with existing practice, in which

the dasymetric model must be independently fitted for each estimate. Eicher and Brewer

(2001), for example fit dasymetric models separately for total population, Hispanic persons,

and number of children. The P-MEDM approach can provide these different estimates

simultaneously. Furthermore, the P-MEDM estimates are internally consistent in the sense

that dasymetric estimates for sub-populations will add up to the dasymetric estimates for

larger populations.

Small Area estimation

The P-MEDM also allows the creation of new small area estimates for use in mapping and

analysis. Consider, for example, an analysis of racial disparities in rates of homeownership

across neighborhoods. Ideally, such an analysis, would control for the confounding effects

of income. In order to do this, we need neighborhood- level estimates of the trivariate table

containing tenure (own versus rent), race, and income. This trivariate table is not produced

by the Census Bureau. The Census produces each of the bivariate tables for census tracts,

but not the trivariate table. Researchers might use the PUMS to construct the trivariate table

for each PUMA, but PUMAs are so large that they are inadequate proxies to assess any

neighborhood effects.

This type of estimate is possible with the P-MEDM approach. Using the estimated weights

wit, we can construct the necessary trivariate tables for each tract (or block group, or target

region) and then directly calculate the homeownership rate for each region. Figure 4

displays maps of the estimated home ownership rates for each tract, separated by race of the

householder and household income. These maps are not possible from the ACS summary

tables. Similarly, if the PUMS were used to estimate these homeownership rates, these rates

would have to be constant across all tracts within the same PUMA. The P-MEDM clearly

shows that there is likely spatial variation in these homeownership rates across the county.

In this way, the P-MEDM technique allows richer mapping and analytical capabilities than

currently exist.

Uncertainty analysis

Finally, we demonstrate the ability of the P-MEDM to produce estimates of uncertainty for

the output maps and estimates. For the homeownership analysis in the previous section, we

might consider the odds ratio of homeownership between black and white households, for

households with incomes between $25,001 and $50,000. Using the estimated data that went

into Figure 4, we could produce the single best estimate of the odds ratio for each tract. But
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for scientifically robust analysis, it is necessary to evaluate the uncertainty of these estimates

as well.

This is possible with the P-MEDM approach. Using the second derivatives of the likelihood

equation and the covariance function, we have simulated 100 different sets of weights .

For each simulation, we aggregate the weights and calculate the odds ratio for each

simulation. These simulations give us a Monte Carlo estimate of the statistical uncertainty

(see, for example, Wood (2006, pp. 246–7) for discussion of this technique in the context of

penalized generalized linear models).

Figure 5 displays box plots of the simulated odds ratio for each census tract. Each of these

estimates is in some sense consistent with the input data, subject to the inherent uncertainties

in both input data, as well as in the maximum entropy/maximum likelihood estimating

procedure. Each column of the figure represents a different census tract, with the tracts

sorted from that tract with the highest proportion of white households on the left to that tract

with the highest proportion of black households on the right. For households earning

$25,001 to $50,000, we see clearly that black households are more likely to own a home in

predominantly black neighborhoods than are white households, and that this is the opposite

in predominantly white neighborhoods. Also, in a majority of tracts, black households are

less likely to own a home than are white households (more tracts have a an odds ratio less

than 1.0 than have an odds ratio above 1.0). Even considering the error bars, this trend is

evident and robust.

It is important to emphasize that not all tracts are reliably estimated. The error bars can be

quite large. Taken individually, many of the tract-level estimates might have been deemed

unreliable or unusable. A choropleth plot, for instance, might not have robust class breaks.

This uncertainty analysis, however, allows researchers to make this determination on their

own. This is not possible with current dasymetric techniques. Despite the high uncertainty of

individual estimates, we can still see from Figure 5 that robust scientific generalizations are

possible. Even with many census tracts imprecisely estimated, there is a clearly identified

relationship between the odds ratio of homeownership and the racial composition of a

census tract. This type of uncertainty information is important since it allows researchers to

objectively evaluate the quality of dasymetric estimates. This evaluation of quality will vary

by researcher and by data use. With the P-MEDM estimate, researchers are provided with

sufficient information to undertake such an evaluation, even if they know very little about

dasymetric or small area estimation techniques.

Discussion

This article has introduced a new methodology for dasymetric modeling. This model is able

to account for information about the quality of ancillary data with regard to downscaling

population estimates. Previous literature has focused on spatial accuracy, noting that finer

resolution population data are preferred to coarse resolution data. The results here suggest a

cautionary note that does not exist in the previous literature; data with finer spatial

resolution are often less accurate. For example, block groups are less accurate than tracts.

Thus, while we expected the tract level data to be redundant given the block group data, this
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was not the case; the tract level data were more precise than the sum of the block group data.

Similarly, data with even higher resolution, such as land cover have even less accurate

information about population. Future developments in dasymetric modeling should consider

more fully the multidimensional nature of tradeoffs between different data sources and more

fully acknowledge tradeoffs between spatial resolution and data accuracy.

The P-MEDM model does have some potential limitations. First and foremost, the model

requires an estimate of variance for each ancillary variable. This may not be as challenging

as it first seems, however. For example, census data in the United States are published with

estimates of the Margin of Error. Secondly, ancillary data are important only insofar as they

are able to predict population well. For example, the quality of the land cover class is only

indirectly important, what is directly relevant is how well the available land cover data can

predict the population surface. This can be determined by regression techniques, regardless

of the quality of the land cover data. More precise land cover data will have higher

predictive power, but it is the predictive power that is the directly relevant measure of data

quality, not the quality of the land cover classification. Whatever this predictive fit between

the ancillary data and the population distribution is, the P-MEDM will properly find the

balance between the different ancillary data inputs. It is possible that there are situations in

which it is still difficult to quantify the uncertainty of a particular ancillary data layer, but we

believe that the framework described here is general enough to incorporate many different

types of data.

A second limitation of the P-MEDM is that it does not incorporate spatial autocorrelation of

population data as ancillary component such as in smoothing techniques that are motivated

by the concept of areal interpolation. Integrating smoothing and the described P-MEDM is

difficult because traditional statistical smoothing methods rely on a Gaussian assumption,

which is incompatible with the log-linear assumption used here. The log-linear assumption

is convenient because it is guaranteed to produce non-negative population estimates. This is

not true, for example, with common geostatistical techniques, where ad hoc fixes are

sometimes needed to enforce non-negativity (Yoo and Kyriakidis 2006). Additionally,

geostatistical models are tailored to specific sub-populations; there is no guarantee, for

instance, that the spatial structure of low-income Black households is the same as the spatial

structure of other household types. The P-MEDM approach is attractive because it can

model all subpopulations found in the microdata simultaneously. Nonetheless, explicit

incorporation of spatial autocorrelation should enhance the predictive ability of the P-

MEDM, and further research will investigate this possibility.

Another limitation is that we have not used explicitly spatial regression models in the

modeling of ancillary data. We have assumed that the errors in the constraint equations are

uncorrelated. This, however, is a limitation of our implementation and not of the P-MEDM.

One way to incorporate spatial autocorrelation among the constraints would be to change the

penalties to include the entire inverse covariance matrix of the constraints. In essence, rather

than assuming that the penalties derive from an approximating Gaussian distribution, this

would instead treat the errors as if derived from a multivariate Gaussian distribution. At an

intuitive level, this modification would decluster, or decorrelate, the constraints, giving more

weight to the constraints that are precise or that are relatively uncorrelated with other
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constraints. For ancillary data that are included through a regression relationship, as the land

cover data are here, it would be possible to use a linear or nonlinear spatial regression

model, and account for spatial autocorrelation explicitly. Incorporating the spatial

autocorrelation of small area census data will be more difficult, however, as the spatial

structure of survey sampling errors is relatively understudied. These are subjects for further

research.

Summary

We have developed a new conceptual framework for dasymetric modeling called the

Penalized Maximum Entropy Dasymetric Model (P-MEDM). This P-MEDM addresses four

problems that have challenged recent dasymetric modeling approaches, those of:

1. Accounting for uncertainty in the dasymetric output,

2. Accounting for uncertainty in the relationship between ancillary variables and the

target variables,

3. Accounting for uncertainty in the population data themselves, and

4. Simultaneously producing estimates for multiple subpopulations.

The P-MEDM technique is able to integrate data with disparate levels of spatial and

demographic resolution in order to construct richer and more complete population models at

finer spatial scales. The penalizing mechanism allows the P-MEDM to adjust automatically

to various input data having different levels of precision. This property will allow future

dasymetric modeling efforts to consider multiple ancillary data sources, regardless of their

quality. This reduces the need for modelers to subjectively evaluate which ancillary data are

“good enough” and which are not. The P-MEDM model is also able to quantify the

uncertainty of the final product, which has been largely ignored to date. This is an important

factor in making dasymetric techniques accessible to other social scientists and to support

new applications in other disciplines. The quantification of statistical uncertainty will make

it possible for potential users to objectively evaluate the output of the dasymetric model,

even if they do not fully understand the dasymetric model itself. Researchers regularly use

data for which they do not fully understand the estimation procedure, but in order for them

to evaluate their analysis, it is crucial that they are given the sufficient information to

determine the quality of these data.

As demonstrated in the case study with the P-MEDM approach, it is possible to produce

new dasymetric data or modeling tools that are usable by the general social science research

community. Survey weighting, as used in this research, makes it possible for users to

effectively analyze a wide variety of attributes. This article proposes dasymetric modeling as

one effective strategy to producing general purpose spatial microdata, acceptable for use in a

wide variety of research applications.

All computations in this article were produced in the R statistical computing environment,

and programs and data are available from the corresponding author upon request.
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Figure 1.

Dasymetric models utilize ancillary data in order to produce population estimates at finer

resolution. As shown here, coarse resolution population data are combined with a gridded

land cover layer in order to produce a gridded estimate of population. This article presents a

method to track uncertainty from the input layers to the output map.
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Figure 2.

Davidson county illustrated using data at different spatial scales. Davidson county has 5

PUMAs (thick black line), 144 census tracts (thin black lines) and 467 block groups (grey

lines). The base layer is a hill-shaded representation of the 2006 National Land Cover

Database, residential classes in red shades, and vegetated classes in green.
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Figure 3.

Dasymetric maps for total population (left) and for persons living in a home with a Black

householder and household income less than $25,001 (right). These dasymetric estimates

were produced using the exact same model, as described in the text. Other population

characteristics can be similarly modeled and mapped.
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Figure 4.

Maps of tract-level homeownership rates, separated by race of householder (varying across

columns) and household income (varying across rows). These estimates are not published by

the Census Bureau and have been estimated according to the P-MEDM as described in the

text.
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Figure 5.

Boxplots of simulated odds ratios for each census tract. The odds ratios are those of

homeownership for black households relative to white households, each with household

incomes between $25,001 and $50,000. Odds ratios below 1.0 indicate that black

households are less likely to own their home than are white households.

Nagle et al. Page 25

Ann Assoc Am Geogr. Author manuscript; available in PMC 2014 July 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Nagle et al. Page 26

T
ab

le
 1

A
 s

im
p
li

fi
ed

 s
ce

n
ar

io
 i

n
v
o
lv

in
g
 t

ra
ct

-l
ev

el
 s

u
m

m
ar

y
 d

at
a 

an
d
 r

eg
io

n
-w

id
e 

jo
in

t 
d
is

tr
ib

u
ti

o
n
s.

 M
is

si
n
g
 c

el
l 

v
al

u
es

 a
re

 d
en

o
te

d
 b

y
 a

 q
u
es

ti
o
n
 m

ar
k
.

M
ax

im
u
m

 E
n
tr

o
p
y
 c

an
 e

st
im

at
e 

th
es

e 
m

is
si

n
g
 v

al
u
es

.

T
ra

ct
 1

T
ra

ct
 2

R
eg

io
n

 T
o
ta

l

O
w

n
R

en
t

T
o
ta

l
O

w
n

R
en

t
T

o
ta

l
O

w
n

R
en

t
T

o
ta

l

B
la

ck
?

?
5

?
?

1
0

1
0

5
1
5

W
h

it
e

?
?

3
5

?
?

2
5

1
0

5
0

6
0

T
o
ta

l
1
0

3
0

4
0

1
0

2
5

3
5

2
0

5
5

7
5

Ann Assoc Am Geogr. Author manuscript; available in PMC 2014 July 24.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Nagle et al. Page 27

Table 2

Listing of calibration constraints by geographic detail and data source

Constraint Tract Block Group NLCD Region Source

Total Pop X X ACS

Housing Units X X ACS

Income X X ACS

Tenure X X ACS

Race X X ACS

Tenure X Race X X ACS

Income X Tenure X ACS

Income X Race X ACS

Building Type X X ACS

Building Type X Regression(ACS and NLCD)
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