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Data Adaptive Rank-Shaping Methods

for Solving Least Squares Problems
Anthony J. Thorpe and Louis L. Scharf, Fellow, IEEE

Abstract- There are two types of problems in the theory
of least squares signal processing: parameter estimation and
signal extraction. Parameter estimation is called ''inversion'' and
signal extraction is called ''filtering.'' In this paper, we present
a unified theory of rank shaping for solving overdetermined
and underdetermined versions of these problems. We develop
several data-dependent rank-shaping methods and evaluate their
performance. Our key result is a data-adaptive Wiener filter that
automatically adjusts its gains to accommodate realizations that
are a priori unlikely. The adaptive filter dramatically outperforms
the Wiener filter on atypical realizations and just slightly under­
performs it on typical realizations. This is the most one can hope
for in a data-adaptive filter.

[1], Marquardt [2], and Stein [3]; however, our data adaptive

shrinkage takes place mode-by-mode.

Our philosophy in this paper is that with clairvoyant side

information (which we do not have), we could improve on

least squares for estimating signals and parameters. A natural

inclination is then to try to steal this clairvoyant information

from the data. We show that this is extremely risky, that naive

methods cannot work, and that only sophisticated, conservative

deviations from Wiener filtering can work. The result is a non­

linear filter that uses mode-dependent, nonlinear companders

to estimate something akin to Wiener gain.

where y is a noisy N x 1 observation of the signal x. The

matrix H is the N x p model matrix, and fl is the p x 1

parameter vector. Geometrically, the signal x lies in the rank­

p subspace (H), illustrated in Fig. 1. The signal x can be

thought of as a linear combination of columns of H

A. The Linear Statistical Model

The linear statistical model is a signal-plus-noise model:

the observations consist of a model or signal component and

an error or noise component. Moreover, the signal component

satisfies a set of linear equations. This leads to the model

Each hi might be a mode in a system. We wish to determine

the weights ()i. Alternatively, the observation y could be a

noisy version of some modulated information fl that we are

trying to estimate. The linear model also arises in curve-fitting

problems such as polynomial interpolation.

We will make extensive use of the singular value decom­

position of H, namely H = U~VT, where ~ is the diagonal

matrix of singular values ai. In the overdetermined case, where

N > p, U is N x p, ~ is p x p, and V T is p x p. In the

underdetermined case, where p > N, U is N x N, ~ is N x N,

and V T is N x p. Note that, in the overdetermined case, we

have UTU = VTV = VVT = I, but in the underdetermined

case we have UTU = UUT = VTV = I. These matrix

decompositions are illustrated below

(Ll)

(1.2)

x= Hfl

[H] = [U] [~][VT]

[H ] = [U][~][VT ]. (1.3)

y = x+n;

x= LhiBi;

i) overdetermined

ii) underdetermined
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I. INTRODUCTION

THE principle of least squares is to fit a model to a set of

observations in such a way as to minimize the squares

of the errors between the observations and the model-hence

the term least squares. Rank shaping is a general method

for reducing the variance of an estimator at the expense of

introducing model bias. In doing this, we hope to reduce the

mean-squared error (MSE), which is the sum of variance and

squared bias.

We will examine rank shaping in overdetermined and un­

derdetermined least squares problems. In the overdetermined

problem, we fit a simple model to a large, complex data

set, while in the underdetermined problem we fit a complex

model to a small, simple data set. We develop several data­

dependent procedures for shaping the rank of least squares

estimators. Our most promising solution is a mix between

rank-shaped least squares and data-adaptive Wiener filtering.

In this solution, a prior distribution is assigned to the parameter

of interest, and this distribution is used to assign a prior

distribution to the rank-shaping gain one would use in a least

squares solution. Then, the measured data is used to compute

the conditional mean of this gain. This conditional mean is,

in fact, the data-adaptive gain of the adaptive Wiener filter.

The filter has very high performance on unlikely data and

nearly Wiener performance on likely data. Our methods are

similar in spirit to the shrinkage methods of James and Stein

1053-587X195$04.00 © 1995 IEEE
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which is distributed as N[H;!""x, a2H;!""H;!""T]. We must ask

ourselves how good this estimator is, for it is no longer

unbiased. We shall define the error in ~r as

(2.5)

(2.4)

(2.3)

(2.2)

c, = (H+H - H;H)fl

= V(r. - I)~-IUT X.

t: =8-0'
~ r - -T'

where c, is the unknown bias

The MSE is

c2 =E(t:Tt: ) = cT
C + a2trH+H+T

~r ~r ~r r r r r

= c~ c, + a2tr(r~-1)2

= f -; [[(')'i - 1)ufX]2 +a
2 (1'i.) 2] . (2.6)

i=1 a, a,

regularizing H+. Other techniques have been proposed that

regularize the pseudoinverse so that the solution is smooth

[1], [7].

Before proceeding with our study of suitable approximations

H;!"", let us establish our conventions:

H+ = V~-IUT is the pseudoinverse of H;

H, = U~r V T is the "rank-shaped" version of H;

~ r = r.-I ~ is a diagonal matrix of weighted singular

values;

r. = diag{1'1, ... ,1'm} is a diagonal matrix of non-negative

weights, 0 < 1'i ~ 1.
H;!"" = V~;IUT = vr~-luT is the "rank-shaped"

pseudoinverse of H;

N[m, R] is a normal distribution with mean vector m and

covariance matrix R.

The last line consists of two terms, both quadratic in 1'i.
The first term is a bias-squared term that is minimized when

r. = 1 or 1'i = 1 Vi. The second term is a variance term

that is minimized when r. = 0 or 1'i = 0 Vi. Thus, the

minimization of e with respect to the weights 1'i already

presents us with a classic tradeoff between squared bias and

variance. Since the sum of two convex upward parabolas must

have a global minimum that lies between the global minima of

the individually summed parabolas, we see that 1'iS outside the

range [0, 1] will never minimize the MSE between ~ and ~r'

A. Rank-Shaped Inversion

We begin with the rank-reduced estimate of the parameter

vector fl

Note that i is just fl in the overdetermined case since H+H =
I. In other words, t is just fl- t: In the underdetermined case,

H+H :/; I. In fact, i is a projection of fl, which is the minimum

norm solution for the underdetermined problem when there is

no noise. For both cases, the error { is distributed as
-r

• y : measurement

, "
x : least squares

< Ie> =range(H )

where U and V consist of columns u, and Vi, respectively.

We see that the solution may be noise sensitive because of

small singular values a, in the SVD decomposition of H

[4]. Small singular values imply that H is ill-conditioned, a

common phenomenon in inverse problems such as numerical

deconvolution [5].

What if we replace H+ by a "rank-shaped" version of

H+, which we denote H;!""? What effect will this have on the

parameter and signal estimates? In particular, can we reduce

some measure of the error between ~ and fl by appropriately

choosing H;!""? Reducing the rank of H is sometimes referred

to as truncating the SVD and shaping the rank is called

II. RANK-SHAPED FILTERING AND INvERSION

We consider two problems: filtering and inversion. For the

inversion problem, the least squares estimate ~ of the param­

eter vector fl is ~ = H'ty, where H+ is the pseudoinverse of

H. In the overdetermined case, the estimate ~ is an unbiased

estimate of fl. However, in the underdetermined case, ~ is

an unbiased estimate of a rank-N projection of fl onto the

subspace spanned by the N columns ofV. This projection also

happens to be the minimum norm solution to the equations

y = Hfl.
When we compute the least squares estimate of x, we are

solving the signal extraction or filtering problem. The estimate

x of the signal x is x = H~. In the underdetermined case,

x= y. That is, the observation is reproduced exactly. For the

overdetermined case, x is the rank-p projection of y onto the

subspace (H). This solution minimizes (y-X)T(y-X). In this

paper, we explore ways of replacing ~ and xwith rank-shaped

approximations. See Fig. I for a pictorial interpretation.

If we scrutinize the solution to the inversion problem

by writing H+ in its SVD form V Il..-I U T
, we get the

decomposition

~ = H+y = V~-IUTy = LVi~ufY (2.1)
i ai

Fig. l. Pictorial interpretation of the overdetermined least squares filtering

problem.

B. Distributions

Throughout our analysis, we assume that the model matrix

H is known and that the noise n is distributed as N[O,a 21]
with a 2 also known. When the vectors fl and x are determin­

istic, then y is distributed as N[x, a 21]. When fl and x are

random, then y is conditionally distributed as N[x, a 21].
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(3.3)

Consequently, any procedure designed to minimize e with

respect to Ii should constrain estimates of Ii to be in the

range [0, 1].

B. Rank-Shaped Filtering

We should ask ourselves another question: if we use a rank­

shaped parameter estimate s; how well do we reproduce the

signal component x of the observation vector y? In other

words, with x, = H~r' what can we say about the error

er = x - x, and its mean-squared value e; = E(e;er )? The

error e; is distributed normally as

er = x - x, = H(fl- ~ r ) : N[br , a 2HH;:H;:THTj (2.7)

where the unknown bias b, is

b; = (I - HH;:)x = (I - U1'.UT)x. (2.8)

The MSE is

e; = E(e;er )

= b;br + a 2trH H ;: H ;:TH T = b;br + a 2t r1'.2

These coefficients take on values in the range [0, 1]. What

is more important, however, is the fact that each clairvoyant

Ii is just the ratio of the power in the ith mode of the signal x

to the power in the ith mode of the observation y. In fact, Ii

can also be written as the ratio

{32

o::; Ii = {3; ~ 1 ::; 1

where the {3; are SNR's in the respective modes:

{3; = (u;x)2ja2
= (ai vTfl)2ja2 = -1"· (3.4)-,i

B. The Wiener Weighting Coefficients

Consider the Wiener solution to the inversion and filtering

problems. Assuming means of zero, the Wiener solutions to

these problems are

(3.5)

For both the underdeterrnined and the overdetermined prob­

lems, the solution for fl may be written

With this assumption, we compute the Wiener solution by

solving for R yy, Roy, and R xy:

From these results we estimate fl and x as follows:

~ = ReeHT(HReeHT + Rnn)-ly

= (R;l + HTR~~H)-lHTR~,;y

x = H~. (3.8)

(3.6)

(3.7)

R yy = HReeH T + R nn;

R xy = HReoHT.

where R u v = Esxv'", The Wiener solution requires knowledge

of the cross-covariance structure that relates y to fl or y to x,

but we have made no assumption thus far about the statistical

nature of fl and x. Let's assume that fl has covariance a§1

Reo = a§1

EBJ}j = a§t5i j .

III. CLAIRVOYANT ESTIMATES OF

THE WEIGHTING COEFFICIENTS

The results of the previous section bring insight into the

dependence of MSE on the weighting coefficients Ii. The

solutions for coefficients that minimize MSE are only idealized

results because they depend on clairvoyant knowledge of x or

fl, which of course we do not have. Nonetheless, by studying

these idealized solutions we gain insight into suitable data­

adaptive solutions.

The last line consists of two terms, both quadratic in 1'.. The

first term is a squared bias term that is minimized when 1'.= 1

or Ii = 1 Vi. The second term is a variance term that is

minimized when T = 0 or Ii = 0 Vi. Again. we have a

classic bias-squared versus variance trade where liS outside

the range [0, 1] will never minimize the MSE between x and

xr. Consequently, when we minimize e; with respect to Ii, we

should constrain our estimates of Ii to be in the range [0, 1].

= L [(x; - 2,i(u; X)2 + (riU; x)2) + (a2,l)]. (2.9)

i=l

(3.11)

The Wiener solutions for ~ and x are of the same form as

the rank-shaped least squares solutions of (2.2)! The diagonal

weighting matrix rw smoothly shapes the rank of H+ in order

to get the minimum MSE estimates of fl and x. Moreover, the
hihv coefficients have values in the range [0, I] and are of

where r w is the diagonal matrix

rw = a§~2(a§~2 + a 21)- 1

= diag[[ri]w]; [ri]W = a§a; j(a§a; +a2).
(3.10)

That is

(3.1)

i = 1" ··,m.

i = 1"" ,m.

A. Least Squares

In the inversion problem, the dependence of MSE ~; on

x is given in (2.6). Differentiating e with respect to Ii and

equating the result to °yields the clairvoyant solution

8~; 2 T 2 2
-8. = 0 = 2[(ri -1)(ui x) +Iia]

" a i

(uTx?,. - , .
'-(UTX)2+ a2'

Likewise, for the filtering problem, minimizing e; in (2.9)

leaves us with the identical solution for the clairvoyant liS

8e 2

-8r = 0 = 2 [ - (uT xf + li(uTx)2 + lia2] (3.2)
Ii

(uTx)2
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This expression may be expanded as follows:

The variance of the estimator br is

(4.7)

(4.6)

i = 1,···,m.

A [f3l]UB
"Ii = A

[,8llUB + 1

where [f3l]UB = 131 - 1 is an unbiased estimate of ,81- This

shows that the minimization of the estimated MSE produces

the same answer we would get if we just replaced the per­

mode SNR's in the clairvoyant solution for "Ii with unbiased

estimates of the per-mode SNR's. This seems plausible, but,

as we shall show, it is not reasonable for it produces poor

performance.

We may follow these arguments for the minimization of

the estimated MSE e; as well. Recall that the MSE e; of

(2.8) is decomposed into squared bias plus variance, with bias

unknown.

An unbiased estimator of b, is

E(b r - br)T(br - b;) = Eb;br - b;br

= a2tr(I - HH;)(I - HH;)T

= a 2tr(I - UrUT)(I - UrUT)T.

(4.9)

'2

a a ~ r = 0 = -;'[(1'i - 1)(u;y)2 + a 2
]

"Ii v;

f3~ - 1 '2 T 2 2
1'i = 'f3?; ,8i = (Ui y) [o ;

Let's compare the estimated 1'i of (4.6) with the clairvoyant

solution, "Ii = ,81/(,81 + 1). Is the comparison plausible?

The estimator 131 is a biased estimator of the SNR ,81, as

the following argument shows. f3i = u;y / a is distributed as

N[,8i' 1], meaning that EN = ,81 + 1. Therefore, 1'i may be
written as

With this result, we can form the following unbiased esti­

mate of the MSE ~;:

€; = c;Cr - a2tr~-2(r - 1)2+ a2tr(r:E-1)2

= c;Cr + a2tr(2r - I)~-2. (4.4)

Let's follow the philosophy of the clairvoyant estimator to

minimize estimated MSE with respect to the weighting coef­

ficients "Ii under the constraint that 0 ::::; "Ii ::::; 1.

The constrained minimization of ~; is obtained by comput­

ing partial derivatives and equating them to zero. Since t; is

quadratic in each "Ii and there are no cross terms between the

"liS, the constraint can be applied after using an unconstrained

minimization of €;. The unconstrained minimum is obtained

as follows:

The variance of the estimator cr is

E(c r - crf(c r - cr ) = Ec;cr - c;c r

=a 2tr(H+ - H;)(H+ - H;f

= a2tr~-2(r - 1)2. (4.2)

A. Unbiased, Constrained, and Abrupt Estimates

Recall that the MSE e of (2.6) is decomposed into bias­

squared plus variance, with bias unknown. An unbiased esti­

mate of the bias C r that is valid for both underdetermined and

overdetermined cases is

cr = (H+ - H;)y: N[cr , a2(H+ - H;)(H+ - H;f].
(4.1)

This produces the fundamental identity

Ec;cr =c;c, + a2tr~-2(r - 1)2. (4.3)

This identity shows that c;cr is a biased estimator of the

squared bias c;c, even though cr is an unbiased estimate of
the bias c r !

the same form as the clairvoyant least squares "u coefficients

computed in (3.3)

a§a1 [,8llw
bi]W = a§a1 +a2 = [,8?lw + 1 (3.12)

with the following definition of SNR:

[,8lJw = a;al/a2 = E[(U;X)2/a2]

= E[(aiv;~)2/a2] = 1 b[]]. (3.13)
- "Ii W

There is no essential difference between the clairvoyant least

squares solution of (3.3) and (3.4) and the Wiener solution

of (3.12) and (3.13): they both use rank shaping with shape

parameter 0 ::::; "Ii ::::; 1.

The least squares coefficients "Ii are a clairvoyant solution

to the least squares problem. For a fixed ~ and multiple noise

realizations, this solution will provide, on average, the smallest

MSE estimates of ~ and x. The Wiener coefficients bi]W
are computed when the covariance matrix for ~ is known but

~ itself is not. The Wiener solution gives us the minimum

MSE estimates of the signal or parameter vector for multiple

signal-plus-noise realizations. Equation (3.13) shows that the

realizable Wiener solution uses the average power in the ith

mode of the parameter, whereas the unrealizable clairvoyant

least squares solution of (3.3) uses the exact power in the ith

mode of the parameter. This observation is insightful but not

yet useful.

IV. NANE ESTIMATES OF THE WEIGHTING COEFFICIENTS

The clairvoyant solutions for minimizing weighting coef­

ficients depend upon exact knowledge of the mean-squared

errors e and e;, which in turn depend on exact knowledge

of the signal x. Any practical, data-dependent solution for

weighting coefficients must rely on estimates of what is

unknown, not on exact knowledge. The primitive estimates we

study in this section use data-dependent estimates of the mean­

squared errors e and e; to derive data-dependent estimates of

the weighting coefficients.
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(4.10)

The corresponding rank-shaped estimators for U. and x are

• • -1 T '" 1'i Tu.r = vrn U y = z: Vi-Ui y;
. ai,

This computation shows that b;br is a biased estimate of

b;br , even though br is an unbiased estimate of b.:

Eb;b r = b;br + a 2tr(1 - UrUT
) 2

= b;br + a
2tr(1

- Z.t + .t
2

) . . urU T
'" - Tx, = Y = ~ Ui/i Ui y. (4.17)

where I is the index set for which 1'i > I/Z. These are purely

rank-reduced pseudoinverses and projections. Note that even

in the case of abrupt rank reduction, the solutions are highly

nonlinear in the data by virtue of the nonlinear dependence of

1'i on the data y.

For abrupt rank reduction, these estimators are
Now, we can form the following unbiased estimate of the

MSE e;:
e; = b;b r - a 2tr(1 - Z.t + .t

2) + a
2trr2

= b;br + a 2tr(Z.t - I). (4.11)

Expanding this expression gives

e; = 11(1 - HH;:)Y112 + a
2tr(Z.t

- I)

= L[Y; - Z/'i(U;y)2 + (ri U ; y)2 + a 2(Z/'i - 1)].

i=1

. LITu.r = Vi-UiY;
a'

iEI '

- '" Tx; = ~UiUi Y
iEI

(4.18)

(4.12)

Using the same procedure as before, we minimize e; by

computing partial derivatives and equating them to zero.

Since e; is quadratic in each /'i and there are no cross

terms between the /'is, the constraint can be applied after

using an unconstrained minimization of e;. The unconstrained

minimum is achieved as follows:

(4.20)

(4.21)

(4.19)
-2 Zi
;3=-.

, 1 - Zi

t 2

Zi == -.-'-;
;3f + 1

1'i = CO(Zi) = max [0, Z- ~]

[ - ] = C (z,) = {I, if z; ~ Z;:3
/', AI, 0, otherwise.

Notice that z, has values in the finite ran~e [0, I] and that the

function that defines z; is invertible for ;3f. Consequently, all

the estimates of /'i can be written as functions of Zi instead

of as functions of tl. These functions can be thought of as

companders that operate on the interval [0, 1], the range of

zi, That is

Of course, we must compute the density function for z; for

fixed /'i, because the data-dependent Zi is just a coarse estimate

of the unknown clairvoyant gain. This density function is

identical to the conditional density function of z, given /'i,

which is computed as part of the appendix, the result being

(6) of the appendix. With this result, the mean and MSE of

each estimator 1'i of /'i can be computed numerically as a

function of /'i' The conditional mean for each of the estimators

is plotted in Fig. 3 versus /'i. If there existed a conditionally

The companders Co and C 1 are plotted for comparison in Fig.

2 and compared with the maximum likelihood compander to

be derived in Section 5-A.

The conditional mean and MSE of each of these estimators

are

E[Cj(Zi)] = 11

Cj(t)fzi (t) dt; j = 0,1 (4.22)

E[(Cj(Zi) -/'i)2] = l\Cj(t) -/'i)2 fz.(t) dt; j = 0,1.

(4.23)

B. Companders and Performance

Each of the estimators 1'i and [1'i]A is a function of the

estimated SNR tf, which has values in the range [0, (0). This

infinite range of values is inconvenient for fixed-point com­

putations, and therefore we consider the variable z; defined

as

(4.16)

(4.13)

(4.15)

(4.14)

i = 1," ·,m.

. [ N-l]/'i = max 0, IJf .

T(x) = {I, if x ~ .1/Z
0, otherwise.

where

Thresholding the 1'iS yields the point on a corner of the m­

dimensional hypercube where the error estimates are smallest.

This result improves on a procedure for abrupt rank reduction

proposed in [8]-[10].

We complete our derivation of naive estimators of

the weighting coefficients by enforcing the nonnegative

constraints

This solution is identical to the solution to minimize the

estimator error in the parameter estimate ~ r ' This analysis tells

us to use exactly the same rank-shaping principles when we

minimize the MSE of our solution regardless of whether we

are solving the inversion or filtering problem.

These results extend in the following way to the more

common approach of abrupt rank reduction, wherein the

weighting coefficients /'i have values of either zero or one.

Each of the estimated error expressions €; and e; define a

multidimensional surface that is quadratic in the /'is. There­

fore, the best abrupt rank reduction is obtained by thresholding

the 1'iS
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Fig. 2. Constrained unbiased, abrupt, and maximum likelihood estimators

of Ii.

Fig. 4. Mean..squared error of the constrained unbiased, abrupt, and maxi..
mum likelihood estimators as a function of Ii.
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Fig. 3. Mean of the constrained unbiased, abrupt, and maximum likelihood
estimators as a function of Ii.

unbiased estimator, it would show up on the graph as a straight

line connecting (0, 0) and (1, 1). We see that both estimators

have a bad positive bias when "Yi is small. This means that a

mode with a small singular value is likely to be used in the

solution with more weight than deserved, degrading the result.

All estimators do, however, have relatively small biases for "Yi

close to one.

Plotted in Fig. 4 is the MSE for the estimators ii and [idA
as a function of "Yi. When little rank shaping is required in a

mode-i.e., when the true "Yi is close to one-the estimators

perform well. However, the estimators of "Yi are poor for

most of the range of "Yi. This poor performance leads to

poor performance of the rank-reduced estimators ~r and x,;
as reported in [5]. Indeed, the quality of the solution in the

inversion problem depends on the lowest per-mode SNR iJf.
The simulations in [11] and [12] indicate that the overall SNR

has to be large enough so that the SNR in anyone mode is at

least 20 dB. Otherwise, the estimates of "Yi in modes with low

SNR are very poor, and the noise in those modes degrades the

solution. In summary, neither of the realizable rank-shaping

methods that use ii or [idA is satisfactory when the model

x has low SNR in its subdominant modes. This is a sobering

result.

Perhaps we can improve our estimates of "Yi by using the a

priori information that is available to a Wiener filter. This of

course constitutes a fundamental change in direction, for we

are proposing to bootstrap ourselves to a useful data adaptive

filter by pretending to have a prior distribution on fl. Once

we are bootstrapped, we will use our results on data that is

mismatched to the bootstrapping assumptions. As we shall see,

the improvements are remarkable.

V. SOPHISTICATED ESTIMATES

OF THE WEIGHTING COEFFICIENTS

We now derive two more estimates of the clairvoyant

weighting coefficients "Yi. The first is a maximum likelihood

estimate of "Yi, and the second is the conditional mean esti­

mate of "Yi given the measurement y. In order to derive the

conditional mean estimator, we assign a prior distribution to

the parameter fl as is done in Wiener filtering, determine the

resulting prior distribution on "Yi = O'ivTfllO', and use this

prior distribution to find the posterior distribution on "Yi given

the measurement y. This is not the Wiener solution, for it uses

the conditional mean of "Yi in a rank-shaped estimator, not the

conditional mean of (J or x.

The conditional d~tribution of O'-IuTy = (/31' /32,''''
/3p)T is I1N(l3i,1), with the l3i = uTxlO' the voltage

SNR in mode i and /3i = uTy 1a the estimated voltage

SNR. This makes /3i sufficient for l3i and iJl sufficient for

13;' But /3f = z;j(1 - Zi), so Zi is sufficient for 13; and,

as "Yi = 131:1(1 + 13'f), z, is sufficient for "Yi when "Yi is
the deterministic but unknown clairvoyant gain. This means

that the maximum likelihood estimate of "Yi is a function

of the estimated SNR iJl or of the companding variable zi.

By a result in [9, pp. 290-291], /3f and Zi are also Bayes

sufficient for "Yi when "Yi is the random parameter induced

from "Yi = 131:1(1 +13'f), 131: = (O'i vTflIO')2, and fl: N[O,0';1].
These results mean that ML and conditional mean estimates

of the clairvoyant gain "Yi are companding functions of the

bounded variable 0 ~ Zi = /31:1(1 + /3f) ~ 1. Think of the
companding variablez, as a coarse estimator of the clairvoyant
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Fig. 5. Conditional mean companders for per-mode SNR's of -10, 0, and
10 dB.

0.2 .

likelihood compander, illustrated in Fig. 2, is very similar to

the naive companders for ii and hilA. The mean and MSE of

[i]ML are plotted in Figs. 3 and 4. It suffers the same defects

as the naive companders.

Recall that N is X2 distributed. That is, N: X2 [(3; , 1], where

(3; is the noncentrality parameter. Our goal is to find a

maximum likelihood estimate of the noncentrality parameter

of a v? distribution with one degree of freedom.

First, we will compute the distribution for ~; for Z 2: °
F

i3f
((32) = P[~; :::; (32]

= P [- (3 :::; u~ y :::; (3] .

gain Ii = (3;1 (1 +(3;), which is to be refined by the principles

of maximum likelihood and conditional mean.

A. Maximum Likelihood Estimators of

the Weighting Coefficients

The function Ii = (3[1 (1 + (3[) satisfies the maximum

likelihood invariance requirements [9]. This allows us to

compute the maximum likelihood estimate of Ii using a

maximum likelihood estimate of (3; as follows

[
A] [~nML
Ii ML = [(3'2] .

i ML + 1

However, u[ y1a is distributed as N[(3i' 1], so this distribution

may be written as

2 {a, if Z < °
F i3f ((3 ) = «I>((3 - (3i) - «I> (-(3 - (3i), otherwise (5.3)

«I> (x) = lX
oo

~ exp ( -t) dt : normal integral.

The density function for ~l is the derivative of the distribution

function, as shown in (5.4) at the bottom of the page.

Given a non-negative sample (32 of ~;, the maximum

likelihood estimate of the noncentrality parameter is

'2 1
[(3d ML = arg rna.x M::752

3f 2y 21r(32

x [exp( - ~ ( ( 3 - (3i)2) + exp( - ~ ( ( 3 + (3i)2) J.
(5.5)

This maximization problem is equivalent to finding the zeros

of the derivative of the density function, or

Equation (5.6) can be solved numerically with a zero finding

routine for nonlinear functions. Then, once the maximum

likelihood estimate for f3l is found, we can compute the

maximum likelihood estimate of Ii via (5.1). The maximum

B. Conditional Mean Estimators of the Weighting Coefficients

The conditional mean estimator for Ii, given the measure­

ment y, is

[ii]cM = Ebi Iy] = Ebi I ~lJ = Ebi I Zi] (5.7)

where the subscript eM denotes conditional mean. In order to

find such an estimator, we need to know the distribution for

Ii conditioned on ~l or Zi. This conditional mean estimator

is also the minimum MSE estimator of Ii and the Bayes

estimator of Ii under quadratic loss.

In the appendix, we derive the conditional density for Ii

given Zi. The density is completely parameterized by the

Wiener coefficient bi]W. The conditional mean estimator is

a function of z; and can be viewed as a compander that

maps z; to an estimate of the clairvoyant gain Ii. We must

approximate these companders numerically, and we must build

a different compander for each mode because each mode has

a different SNR. It is interesting to compare these conditional

mean companders to the companders that map z; into ii, [ii]A,
and [i;]ML. In Fig. 5, we have plotted the conditional mean

companders corresponding to per-mode SNR's of -to, 0, and

to dB. These SNR's reflect a range of singular values of only

one order of magnitude or a condition number of only 101.

The maximum likelihood compander is also plotted in Fig. 5.
The conditional mean compander is very different from the

previous companders, as the following discussion shows.

Each of the conditional mean companders produces an

output Ii close to one for an input z; close to one. This

is plausible because a large value of Zi is obtained from an

observation that has a lot of power in the ith mode. Since the

if (32 < °
otherwise. (5.4)



1598 IEEE TRANSAcrIONS ON SIGNAL PROCESSING, VOL. 43, NO.7, JULy 1995

•••••••• -_••+-. __•••••••••! ,;. __ ! ;.. .

0.1

. . ...... , .

:SNR;= O d ~

0.70.60.4

.-.;._ __..;- .

. ~ t.._..· -L.

0.1

0.2 ,.SN~ =-lOdB.L .

0.4 ........

'ii 11.3 .

~
:c
5
u

: : :

.•••••••• j•.•••••••••••••• ~ ••_ ..__ ! - .

..........;._ t._-_._ ;.._.._ l. _ 1. .

.. -_ ; .

11····························,··_·····.;.······

16 ~ , .

14 .
I

-::: 12
~ i
..... 10 i .

t

~ ~ ~ U ~ ~ ~ U ~
j'i

Fig. 6. Probability density function for ,i at per-mode SNR's of -10, 0,
and 10 dB.

Fig. 8. Conditional MSE for the Bayes estimates Of'i for per-mode SNR's
of -10, 0, and 10 dB.
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Fig. 7. Conditional mean for the Bayes estimates of ,i for per-mode SNR's
of -10, 0, and 10 dB.

0, and 10 dB. Notice how the probability mass is concentrated

near ri = 0 for the -10 dB curve and near ri = 1 for the 10

dB curve. There is a radical shift in the probability mass for a

change in per-mode SNR of only 20 dB. It is not uncommon

for least-squares problems to have per-mode SNR's that range

over 60 to 80 dB. Some of the ri densities for these SNR's
would show extreme probability mass concentrations near

ri = 0 or ri = 1. In other words, true ri coefficients away
from zero are very unlikely for modes with low SNR's, yet

the constrained unbiased estimator is quite likely to produce

estimates of 'Yi spread over the range [0, 1] unless the per­

mode SNR is quite large. When ri should be close to zero,

the constrained unbiased estimator is likely to return a value

far different from zero. Consequently, the solution can be

very inaccurate because a small singular value does not get
sufficiently damped.

average noise power in a mode is just a 2
, most of the power in

the mode must be signal power. Hence, the compander delivers

an estimate of ri close to one.
Notice also how the -10 dB compander will produce values

of [idcM close to bdw = .09 for most values of Zi.
Only if there is strong evidence to the contrary-i.e., z; >
.9-will the compander produce a much different estimate

of ri. In general, conditional mean companders for low per­

mode SNR's exhibit this characteristic. That is, an output

value close to the Wiener bdw is favored unless the input

Zi strongly indicates otherwise. This allows some adaptability

to observations y that are produced by atypical realizations of

fl. For example, if by chance the realization of fl correlates

well with v[, then the signal power will be concentrated in

the ith mode and the conditional mean estimator will adjust
accordingly.

In (14) of the appendix, we have computed the density

for ri when fl is distributed as N[O, a§I]. By plotting this
density, we can gain additional insight as to why the previously

derived constrained unbiased estimators, abrupt estimators,

and maximum likelihood estimators fared so poorly. The
density is plotted in Fig. 6 for three per-mode SNR's of -10,

C. Companders and Performance

Using the results of the appendix, we can analyze the

perfonnance o,fthe conditional mean estimator, which defines

a compander from Zi to [i']cM. The conditional mean and
conditional MSE are ..

E[[ii]CM Iri] = E[Ef'Yi IZi] I 'Yi] (5.8)

E[([ii]cM - ri)2 I ri] =E[(Ebi IZil - ri)2 I ,;].

These functions have been computed numerically and plotted

in Figs. 7 and 8. As before, the three curves in each figure

correspond to per-mode SNR's of -10, 0, and 10 dB. Fig.

7 shows that, for small per-mode SNR's, the estimators are

strongly biased toward the bi]W value which parameterizes
each of the curves. Shown in Fig. 8 is the conditional MSE
for each of the chosen estimators.

VI. SIMULATIONS

In order to test the practicality of our results, we have

applied them to several synthetic inversion and filtering prob­

lems, both overdetermined and underdetermined. After picking
a suitable model matrix H, we picked the parameter vector
fl using a random number generator and then computed the



THORPE AND SCHARF: DATA ADAPTIVERANK-SHAPING METHODSFOR SOLVING LEAST SQUARESPROBLEMS 1599

102 r-...------.......-----.---....-.......-----=l

fixed 30dO Wiener

55

.................................---_ ..

20 25 30 35 40 45

Signal-to-noise ratio (dO)

15io

.....................

. .•... 30dO conditional

.---:- mean ri
---:==r=---: ~ .

~

t...
'0

~
'" 10'&
If'
c:

'"...
E
'0

. ~
~ loo
c:
C
o
Z

I

I

0.81
0.6~

I
0.4r

:i

0.2[

0-
I

.0.2~
I

-O.4r
I

.0.6 1

·0.8

·1
12 140 4

Fig. 9. Columns of the model matrix H for the overdetermined simulation. Fig. 11. Performance of the Wiener filter and [i'i]cM filter when the true
SNR is varied from the assumed SNR.

10'~1O -5 S 10 IS 20 ~S 30 3S 40

Signal-to-nolse rano (db)

Fig. 10. Comparison of the MSE for fl for atypical realizations of fl in the
overdetermined case.

signal x = Hfl.Different observations y were formed from the

signal x by adding multiple noise realizations n, also picked

with a random number generator. The rank-shaped estimates

~r and x, were computed and then compared to the true fl
and x. Finally, the mean-squared errors in the solutions were

averaged and plotted.

H was chosen to be 16 x 8 for the overdetermined case and

8 x 16 for the underdetermined case. We chose the columns

of H to be discrete cosines with closely spaced frequencies so

that H would be moderately ill-conditioned. The frequency of

the ith column was picked to be 7r [i + 2. These columns are

plotted in Fig. 9 for the overdetermined case.

To explore the merits of the adaptability of the [ii]cM,
we ran an overdetermined inversion simulation in which an

atypical fl was picked. The power in the fourth mode of the

signal was decreased by a factor of ten and that in the sixth

and eighth modes increased by a factor of ten. The MSE for

the simulation is plotted in Fig. 10. The data-adaptive [1'i]cM
method outperforms the Wiener solution at several SNR's.

Consequently, the nonlinear, data-dependent [1'i]cM method

is a good alternative to the Wiener solution when atypical

realizations of f!.. can produce atypical data.
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To further illustrate the adaptability of the [1'i]CM for

rank shaping, we ran a simulation to test the sensitivity of

each estimator to the assumed signal power al We studied

the overdetermined inversion problem using the previously

described model matrix H, and the nominal SNR was chosen

to be 30 dB. Multiple signal realizations were generated at

different signal powers to yield SNR's from 5 dB to 55 dB,

and the estimates of fl and x were computed. Three estimators

were considered. The first estimator was a Wiener filter

whose parameters changed to match the actual SNR for each

realization of the observation y. The second estimator was a

fixed Wiener filter designed for the nominal SNR of 30 dB.

The third and final estimator used conditional mean estimates

of Ii in its inversion solution and was also designed for a

SNR of 30 dB. The MSE for fl is shown in Fig. 11. The figure

shows that the variable Wiener filter, which is the minimum

MSE estimator for each SNR, bounds the error for the other

estimators. The fixed Wiener filter performs identically to the

variable Wiener filter at the designed SNR of 30 dB, but its

relative performance degrades at other SNR's, as might be

expected. The [1'i]cM rank-shaped method, however, is data

adaptive. It performs only marginally worse than the Wiener

filter at 30 dB and performs a few dB better than does the fixed

Wiener filter at SNR's more than 5 dB lower than the nominal

SNR. These results indicate that the nonlinear rank-shaped

estimator, because it is data dependent, has a performance

advantage over the fixed Wiener filter in situations where the

signal power is not precisely known or where the signal power

varies between realizations.

VII. CONCLUSION

We have developed procedures for computing rank-shaped

solutions to inversion and filtering problems. The rank-shaped

estimators use weighting coefficients that depend on the data

and a prior model. That is, the rank-shaping weights do not

depend exclusively on the prior model as in other SVD-based

methods. We have shown that rank shaping for the problems

described is equivalent to estimating SNR's in modes of the

signal. We have developed four data-dependent estimates of

the clairvoyant weighting coefficients "Ii: ii, [ii]A, [i;]ML, and
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[1'i]CM. The [1'i]CM method, which assumes some prior infor­

mation in order to bootstrap a solution, performs only slightly

worse than the Wiener solution when data is typical and does

much better when the data is atypical. The Wiener solution

gets its minimum MSE property by performing well on typical

realizations and poorly on atypical ones. The conditional-mean

rank-shaping solution only slightly underperforms the Wiener

solution for typical realizations and dramatically improves on

it for atypical realizations.

The form of the [1'i]cM solution can be summarized as

follows:

reduced to

Fzd'Yi (t I"Ii)

=P[-JL(t) - JL("Ii) ~ /3i - JL("(;) ~ JL(t) - JL("Ii) I"Ii]

= CP(JL(t) - JL("(i)) - CP(-JL(t) - JL("Ii)) (5)

where CP(x) is the integral of the normal density function. The

density is computed by differentiating the distribution

/(Zi I"Ii) = p(Zi)(exp { - ~} + exp{ -~ }] (6)

x =UE[£ Iy]UTy. (7.1)

APPENDIX

THE CONDmONAL DENSITY OF "Ii GIVEN Zi

From Bayes rule, we have

(9)

(7)

(8)

(14)

(13)

(12)

(10)

_ (JL("Ii)) 2C2- --
a

Co = (JL(Zi) - JL("(i))2

Cl = (JL(z;) + JL("(i))2.

/( ) _ 2P("(i) {C2 }"Ii - --exp -­
a 2

F'Yi(t) = Phi ~ t]

= P[-JL(t) ~ f3i ~ JL(t)]

where C2 is defined to be

where Co and Cl are defined to be

We compute the density of Ziby integrating the joint density

for Zi and "Ii over all "Ii. Using the results of (6) and (13), we

get

/(Zi) =1: /(Zi I"I;)/("(i) d"li

=11

p(Zi)(exp { _ C;} + exp{ _ c; }]

X 2P~"Ii) [exp{ - ~}] d"li.

Define the variables

b = v(a)

Now, let us compute the unconditional density for "Ii using

the above technique

where f3i is distributed as N[O, (a- 1(18(1i)2]. Define the vari­

able a to be the square root of the SNR

The density function for "Ii is then the derivative of F'Yi (t)
evaluated at "Ii

and substitute into (19) to get

F'Yi (t) = P [_ JL(t) ~ f3i ~ JL(t)]
a a a

= cp(JL~)) _ cp( _JL~t))

= 2cp (JL~t)) - 1. (11)

(3)

(1)

(2)

/( . I .) - /(Zi I"Ii)/("Ii)
"I. z. - /(Zi) .

In this simplified notation, we use / ("Ii IZi) as the conditional

density for "Ii, given z., rather than !-Yilzi(t I s). We must

compute each of the three densities on the right-hand side of

(1). Let us define a few functions to make this task easier.

In order to avoid needless bookkeeping in the following

derivations, the variables "Ii and z; will be assumed to have

values only in the range [0, 1]. Then JL(t) and v(t) will be

inverses of each other.

We will first compute the density of Zi given "Ii. We can

write the distribution function as.

The matrix i: = E[r I y] is determined from the scalar

companding curves of Fig. 5, which use the sufficient statistics

z; = /3l!(1 + fm, where /3; = (uTy /a)2 is a coarse estimate
of SNR in mode i. These solutions are of a similar form

to the Wiener solutions but use nonlinear functions of the

data to determine the mode weights 1'i in the data-dependent

matrix t = diag(1'i)' Our results are a logical extension

of linear estimators to nonlinear estimators. They show that

naive replacement of clairvoyant or Wiener coefficients with

plausible estimates of them does not work. Something more

sophisticated like conditional mean estimates of weighted

coefficients, which leads to very conservative rank shaping,

is required.

FZii'Yi(t, I, "Ii) = P[Zi ~ t I"Ii]

= p[N ~ 1 ~ tl"ll (4)

We know that /3i I f3i is distributed as N[f3i, 1]. This means

that the random variable /3; I f3i is invariant to the sign of
f3i. Consequently, we can write f3i = ±JL("(i), and (4) can be
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(21)

where

The parameter b, which is the Wiener gain bdw, completely

parameterizes this conditional density.

C3 = ~[(P,(Ti) - bp,(Zi))2] + (1 - b)J1(Ti)2

1
C4 = b[(J1(Ti) + bp,(zd)Z] + (1- b)p,(Ti)2

p,(Zi)
C5 = a2 + 1;
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By simplifying the integral, we get the desired density for z;

{ C5} 2Vb J= 1 {d2}!(Zi) = p(zi)exp -- - --exp -- d'Yi
2 a _= V'iiJJ 2b

{ C5} 2Vb
= p(zi)exp -2" --;;:-

2p(Zi) { P,(Zi)2}
= R+1 exp - 2(a2 + 1) . (20)

Substitute the results of (6), (12), and (20) into (1) and

simplify to get the final desired result

t = p,(Ti);
p,(Ti)3 "fi;

(17) [9]dt = --2- d'Yi = 21rP(Ti) d'Yi,
2'Yi

[10]

so that (16) becomes

{ C5} 2Vb
[11]

j(zd = p(Ti)exp -2" --;;:- [12]

x i= ~ [exp{- ~ ~ } +exp{ - ~~} ]d'Yi (18)

where d2 and d3 are

dz = (t - bp,(Zi))2; d3 = (t + bp,(Zi))2. (19)

Now, define t to be

and then the square in each exponent is completed. Equation

(14) reduces to

j(Zi) = p(zdexp{ - ~ }

x i1 2P~'Yi) [exp{ - ~ } + exp{ - ~1 }] d'Yi. (16)


