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Inverse probability weighting (IPW) and targeted maximum likelihood estimation (TMLE) are methodologies
that can adjust for confounding and selection bias and are often used for causal inference. Both estimators rely
on the positivity assumption that within strata of confounders there is a positive probability of receiving treatment
at all levels under consideration. Practical applications of IPW require finite inverse probability (IP) weights. TMLE
requires that propensity scores (PS) be bounded away from 0 and 1.Although truncation can improve variance and
finite sample bias, this artificial distortion of the IP weights and PS distribution introduces asymptotic bias. As sam-
ple size grows, truncation-induced bias eventually swamps variance, rendering nominal confidence interval cov-
erage and hypothesis tests invalid. We present a simple truncation strategy based on the sample size, n, that sets
the upper bound on IP weights at

√
n ln n/5. For TMLE, the lower bound on the PS should be set to 5/(

√
n ln n/5).

Our strategy was designed to optimize the mean squared error of the parameter estimate. It naturally extends to
data structures with missing outcomes. Simulation studies and a data analysis demonstrate our strategy’s ability
to minimize both bias and mean squared error in comparison with other common strategies, including the popular
but f lawed quantile-based heuristic.

bounds; inverse probability of treatment weighting; propensity score truncation

Abbreviations: ATE, additive treatment effect; CI, confidence interval; CTMLE, collaborative targeted maximum likelihood
estimation; IP, inverse probability; IPTCW, inverse-probability-of-treatment-and-censoring weighting; IPTW, inverse-probability-
of-treatment weighting; MSE, mean squared error; OR, odds ratio; PS, propensity score; SE, standard error; TML, targeted
maximum likelihood; TMLE, targeted maximum likelihood estimation.

The inverse-probability-of-treatment–weighted estimator
provides unbiased parameter estimates when the propensity
scores (PS) used to construct the inverse probability (IP)
weights are correctly specified (1). Causal identifiability
rests on a positivity assumption that 0 < PS < 1. In other
words, within every observed stratum of confounders, there
must be variation in the assigned treatment. In finite samples,
inverse-probability-of-treatment–weighting (IPTW) param-
eter estimates can be unstable when PS values are close
to 0 or 1, as this produces very large IP weights (2, 3).
How close the PS can get to 0 or 1 before estimation
becomes problematic depends primarily on sample size, and
on the underlying distribution of the data. Placing an upper
bound on the IP weights has been proposed as a way to

improve the bias-variance trade-off of the IPTW estimator
(4). This is equivalent to requiring that the PS be bounded
away from 0 and 1 for targeted maximum likelihood (TML)
estimators (5). Truncation can improve variance and finite
sample bias. However, because it artificially distorts the IP
weights and the PS distribution, truncation introduces large-
sample (asymptotic) bias in the estimated treatment effect.
As sample size grows, truncation-induced bias eventually
swamps variance, rendering nominal confidence interval
(CI) coverage and hypothesis tests invalid.

Popular heuristics for weight truncation rely on a pre-
specified quantile of the weights (e.g., 95th or 99th) or
specification of a fixed upper bound (e.g., 20, 40) (4, 5).
Data-adaptive truncation strategies that aim to optimize the
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mean squared error (MSE) of the parameter estimate have
been proposed for some IPTW estimators and TML esti-
mators (6–8), yet the simpler heuristics are used in practice
(9). It is easily demonstrated through simulation that none
of these heuristics is best across all data distributions. In this
paper, we propose a truncation strategy that tailors the bound
to the sample size. It is designed to minimize MSE while
preserving valid inference. We compare its performance
with other common strategies in simulation studies, and in
the analysis of data from a retrospective observational cohort
study of the association between total dose of ritodrine
hydrochloride and pulmonary edema in twin pregnancy in
Japan (10).

To gain insight into how the choice of bound can affect
bias and variance, we first consider the stabilized IPTW
estimator of the marginal additive treatment effect (ATE) (1),

ψIPTW = 1∑n
i=1 Ai g (1|Wi)

n∑
i=1

[
AAi

g (1|Wi)
Yi

]

− 1∑n
i=1 (1 − Ai) (1 − g (1|Wi))

×
n∑

i=1

[(
1 − A )( 1 − Ai

)
1 − g (1|Wi)

Yi

]
, (1)

where n is the number of independent and identically dis-
tributed observations, Y is the outcome, A is a binary treat-
ment assignment indicator, A is the proportion treated, W is
a vector of baseline covariates, and g(1|W) = P(A = 1|W)
is the PS. Because g(1|W) and g(0|W) = 1 − g(1|W)
are in the denominators, the PS must be bounded away
from 0 for treated subjects and away from 1 for untreated
subjects. A treated subject with a PS near 0 makes a large
contribution to the first term on the right-hand side of equa-
tion 1. A similarly influential contribution is made to the
second term by an untreated subject with a PS near 1.
Thus, we see that instability in the IPTW is due to the
interplay between large weights and inherent variability or
heterogeneity in the outcome. For this reason, the same
choice of truncation level that works well in one setting
might work poorly in another.We can extend this reasoning
directly to data structures in which some outcomes are
missing and inverse-probability-of-treatment-and-censoring
weights are required. These weights are the inverse of the
product of the PS and the conditional probability that the out-
come is observed, G�, with appropriate stabilizing constants
in the numerator. The inverse-probability-of-treatment-and-
censoring weighting (IPTCW) estimator of the ATE is given
by

ψIPTCW = 1∑n
i=1 Ai g (1|Wi)

n∑
i=1

[
�̄�i

G� (Ai, Wi)
× AAi

g (1|Wi)
Yi

]

− 1∑n
i=1 (1 − Ai) (1 − g (1|Wi))

×
n∑

i=1

[
�̄�i

G�(Ai, Wi)
×

(
1 − A )( 1 − Ai

)
1 − g (1|Wi)

Yi

]
, (2)

where � is a binary indicator (� = 0 indicates the outcome
is missing), �̄ is the proportion of nonmissing outcomes, and
G�(A, W) = P(� = 1 | A, W). The product of terms in
the denominator must be bounded away from 0. When no
outcomes are missing, �̄�i/G�(Ai, Wi) = 1 for all subjects,
and equation 2 reduces to equation 1.

TML estimators of point treatment effects model the
outcome regression, the PS, g(A|W), and the probability
that the outcome is observed, G�(A, W). The latter two are
known as the G components of the likelihood (11). The
product of the G components must be bounded away from
0 (5). When there are no missing outcomes, G�(A, W) = 1
for all observations. Software implementations of TML esti-
mators enforce user-specified fixed bounds (12–14). For a
TML estimator of the ATE, Ju et al. (8) proposed a data-
adaptive approach based on a collaborative TML estimator
that used cross-validation to select the best bound from a set
of candidate values.

Bias and variance both contribute to MSE. For this rea-
son, an optimal truncation strategy would balance both,
attempting to minimize MSE while also constraining bias to
preserve proper inference. When estimates are normally dis-
tributed and CIs are constructed using an accurate estimate
of the standard error (SE), coverage is a function of the ratio
of the bias to the SE. The coverage of a nominal 95% CI
can be calculated as �(1.96 + r) − �(−1.96 + r), where
� is the cumulative distribution function of the standard
normal distribution and r is the ratio of bias to SE. For
example, when bias is one-fifth of the SE (r = 1/5), CI
coverage is 94.5%, but when bias equals the SE (r = 1),
coverage falls to 83%. The ratio, r, grows with sample size,
and CI coverage approaches 0.

A biased estimator will have larger MSE than an unbiased
estimator in large samples. However, in finite samples, an
estimator that accepts a little bias in return for a large
reduction in variance may have smaller MSE. Generally
speaking, for TML estimators and IPW estimators, increas-
ing a truncation bound, b, increases bias while simultane-
ously decreasing variance. Our proposed sample-size–based
truncation strategy allows b to grow towards 0 as sample
size, n, increases. In finite samples, this strategy strives to
minimize the MSE while preserving valid inference. We
outline the underlying rationale below. A more theoretical
justification is presented in Web Appendix 1 (available at
https://doi.org/10.1093/aje/kwac087).

Simulation studies and an applied data analysis demon-
strate performance relative to strategies that rely on bound-
ing at fixed quantiles or fixed values. We also compare
performance with the collaborative TMLE (CTMLE)-based
strategy, generalized to additional parameters (the ATE,
relative risk, and odds ratio (OR)), and to data with missing-
ness in the outcome (Web Appendix 2). In our experience,
data-adaptive strategies can be more unstable in response
to fluctuations in the data distribution than a deterministic
procedure when there is limited information in the data. Sen-
sitivity to tuning parameter specifications also contributes
to instability. In contrast, the sample-size–based truncation
strategy is robust when estimating treatment effects with
sparse and nonsparse data.
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A SAMPLE-SIZE–BASED TRUNCATION STRATEGY

To devise a strategy that minimizes MSE = (bias2 +
variance), we need to understand the impact of the choice
of bound, b, on bias and variance and how that changes as
a function of sample size, n. As sample size grows towards
infinity, variance converges to some limit (the variance of
the estimator’s influence curve, divided by n). However, if
an estimator is biased, the bias remains, no matter how large
n grows. Asymptotically, a biased estimator will have larger
MSE than an unbiased estimator. However, in finite samples,
an estimator that accepts a little bias in return for a large
reduction in variance will have smaller MSE. Thus, the goal
is to understand how fast b should approach 0 as sample size
grows, in order to optimize the trade-off.

For simplicity, consider the effect of truncation on the
bias and variance of an (unstabilized) IPTW estimator of
the marginal mean outcome under treatment, μ1, when no
outcomes are missing, O = (W, A, Y). The IPTW estimator
is given by μ̂1 = 1/n

∑n
i=1Y1 × Ai/g(1, Wi). Truncating

the PS at b means setting values smaller than b to b itself.
Thus, bounding the PS at b has no effect on the weights for
observations where g(1, W) ≥b. When this is true for all
observations, truncation changes none of the weights, and no
bias is introduced. Eventually, as b increases, there will be
some observations for which g(1, W) < b. Truncating these
values introduces asymptotic bias while reducing variance
and its associated finite-sample bias. This can be expressed
in terms of the cumulative distribution function of the PS
and the choice of b. For example, consider the number
of observations affected by truncation at level b, and the
difference between the truncated and nontruncated values
when n = 100 versus n = 1, 000, 000. An observation
with an IP weight of 100 is quite influential in the smaller
data set and only mildly influential in the larger data set.
Furthermore, truncating a PS of 0.009 at b = 0.01 changes
the IP weight from 111 to 100, while truncating a PS of 0.001
at b = 0.01 changes the IP weight from 1,000 to 100, a much
larger distortion.

In order to control the MSE of the estimate at a 1/n rate,
we need to balance the reduction in bias that occurs as
b is allowed to shrink towards 0, with the corresponding
increase in variance. We analyzed the bias and variance
of the truncated IPTW estimator as a function of b, under
some reasonable statistical assumptions (e.g., the parameter
of interest is practically identifiable from data; thus,

√
n-

estimation is feasible (see Web Appendix 1)).
Our analysis shows that MSE can be optimized (in rate)

by setting b = 1/(
√

n logxn). The logxn term in the
denominator shrinks the bias to be less than the required
1/

√
n, making the bias:SE ratio negligible in finite samples.

Thus, in any scenario where
√

n estimation is possible, our
proposed truncation level achieves the optimal rate for MSE,
while making bias negligible relative to variance, so that
Wald-type inference is preserved.

Through a change of base, b can also be written in terms
of the natural log as c/(

√
n ln n). The value of the constant,

c, in the numerator is unimportant asymptotically. However,
at small sample sizes it can have a pronounced effect. In

simulation studies, we found good practical performance by
setting c equal to 5 (Web Appendix 3, Web Table 1).

Although the analysis focuses on estimating the marginal
mean outcome under treatment, this same reasoning applies
to estimating the marginal mean outcome under exposure
to the comparator or control treatment and to evaluating
parameters that are functions of these 2 marginal means
(e.g., the ATE, relative risk, or OR). Results for stabilized
weights are the same, because multiplication by constants
has no effect on rates of convergence. The analysis also
extends to data structures with missing outcomes, where the
bound is with respect to the product of the G components.
When there is missingness in the outcome, n in our formula
should be set to the number of observed outcomes rather than
the total number of observations. The sample-size–based
strategy will also apply to more general IPW estimators (e.g.,
those used for longitudinal data analyses), but the tuning
of the constant will require separate simulations tailored
towards the specific IPW estimator considered.

SIMULATION STUDIES

We conducted 2 Monte Carlo simulation studies to
demonstrate the performance of TML estimators and IPW
estimators that rely on different strategies for selecting
a truncation level. Correctly specified models for the PS
and the missingness mechanism, the G components of
the likelihood, were used for all analyses. Recall that
targeted maximum likelihood estimation (TMLE) is a
2-stage procedure (11). In stage 1, the outcome regression

is modeled, Q
0
n = E(Y|A, W). If this initial model, Q

0
n, is

misspecified, then if we rely on it to estimate the parameter,
there will be residual bias. Stage 2 of TMLE aims to
remove this residual bias, by using information in G to
update the initial model. The updated model is denoted
by Q

∗
n. We expect the impact of the choice of truncation

strategy to vary, depending on the magnitude of the residual
bias. Therefore, TMLE results are presented under correct
(cor) and misspecified (mis) stage 1 outcome regression
models (Qcor and Qmis, respectively). Qmis is the unadjusted
regression of the outcome, Y , on treatment, A. The IPW
estimators used stabilized IP weights.

For each simulation study, we drew 500 data sets from
the underlying data-generating process at 3 different sample
sizes, n = 100, n = 1,000, and n = 10,000. In each of the 1,500
data sets, approximately 15% of outcomes were set to miss-
ing. The target parameter in simulation study 1, where the
outcome was continuous, was the ATE. The target parameter
in simulation study 2, where the outcome was binary, was the
OR. For all estimators, the PS and missingness probabilities
were estimated using correctly specified logistic regression
models. All analyses were carried out in the R programming
environment, version 4.0-2 (R Foundation for Statistical
Computing, Vienna, Austria) (15).

Nine truncation strategies were evaluated. In addi-
tion to our proposed sample-size–based lower bound of
5/(

√
n ln n), 2 were quantile-based, setting the lower bound

on the PS at either the 95% quantile or the 99% quantile.
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Five strategies specified a fixed bound: 0.1, 0.05, 0.025,
0.01, or 10−6 (equivalent to capping IP weights at 10, 20,
40, 100, or 106, respectively). We also applied the CTMLE-
based strategy (Web Appendix 2), with the following tuning
parameter settings: squared error loss when the outcome
was continuous and negative log likelihood loss when
the outcome was binary; penalty equal to the estimated
variance of the ATE parameter; 20 cross-validation folds;
and 10 candidate truncation levels (0.1, 0.09, . . . , 0.01, and
0.005). In addition, to avoid dividing by 0, the minimum
lower bound (lbmin) on the distance between g(A|W) and 0
was allowed to grow towards 0 with sample size lbmin =
6/ ln n3.

Simulation study 1: continuous outcome

Simulation. The data consisted of observations O = (W, A,
�, �Y). W is a vector of 3 independent covariates,
W1, W2, and W3. W1 and W2 are continuous confounders
generated from N(1, 1) and N(0, 1), respectively. W3 is
binary, generated from Bernoulli(0.4). A is the binary
indicator of treatment, with 53% treated overall—that is,
P(A = 1 | W) = expit(−1.1 + 0.8W1 + 0.9W2 + 1.2W3).
Outcome Y is continuous, Y = 10 + 3A + 2W1 − 0.5W2 +
W3 + 0.5AW1 + ε, with ε ∼ N(0, 1). � is an indicator of
whether the outcome was observed (� = 1) or missing
(� = 0), with 15% missing on average: P(Δ = 1 | A, W) =
expit(0.9 + 0.6A + 0.8W1).

The true value of the ATE was ψATE
0 = 3.5. The true

PS ranged from 0.01 to 0.99. Conditional probabilities
of remaining uncensored were between 15% and 99.9%.
Among observations where the outcome was observed, the
untruncated product of the G components ranged from 0.01
to 0.99, and stabilized IP weights ranged from 0.40 to 42.

Results. For each combination of estimator and truncation
strategy, we calculated the mean bias, variance, MSE, and
ratio of bias to SE over the 1,500 Monte Carlo iterations,
combining all 3 sample sizes (Table 1). Our sample-size–
based truncation strategy minimized the MSE for all 3 esti-
mators, IPTCW, TMLE-Qcor, and TMLE-Qmis. Truncation
at a fixed level of 0.1 also worked well but was more biased
and had larger MSE when coupled with IPTCW and TMLE-
Qmis. As anticipated, all strategies had similar performance
when coupled with TMLE-Qcor. When the initial model for
Q is correct, there will be little to no residual bias to handle
in stage 2 of the procedure. Thus, the magnitude of the
update will be close to 0, and the impact of truncation will
be minimal. For this reason, we were not surprised to see
more sensitivity to the choice of truncation bound for a TML
estimator under Qmis.

Results stratified by sample size illustrate that overall
performance was not dominated by poor performance at
one particular sample size (Table 2). Although the sample-
size–based strategy does not always have the smallest MSE,
across all estimators and sample sizes its bias-variance trade-
off is consistently among the best, typically with small bias
and a favorable ratio of bias to SE.

Box plots of the bias in estimates obtained using IPTCW,
TMLE-Qcor, and TMLE-Qmis demonstrate that the sample-

size–based strategy performs well at all sample sizes for all
estimators (Figure 1). At the smallest sample size (n = 100),
truncating at the 99th or 95th quantile was successful, but
at larger samples sizes these strategies’ bias is evident. The
choice of bound had the least impact for the TMLE-Qcor
estimator at all sample sizes.

Simulation study 2: binary outcome

Simulation. The data consisted of observations O = (W, A,
�, �Y). W is a vector of 5 independent covariates,
W1, W2, W3, W4, W5, that are all confounders, W1 ∼
N(0, 1), W2 ∼ N(W1, 1), W3 ∼ Bernoulli(0.4), W4 ∼
Bernoulli(expit(0.2W1 −W3)), and W5 = log(U(1, 100)). A
is the binary indicator of treatment, with 35% treated overall:
P(A = 1 | W) = expit(−2 + 0.6W1 + 0.48W2 − 0.6W3 +
0.24W4 + 0.36W5). Outcome Y was binary, with a marginal
event rate of 32%: P(Y = 1 | A, W) = expit(−1.5 + 0.8A +
0.03W1+0.2W2−0.4W3+0.3W4+0.1W5). � is an indicator
of whether the outcome was observed, with 15% missing on
average: P(Δ = 1| A, W) = expit(0.9 + 0.6A + 0.2W2 +
0.2W5). The true parameter value is ψOR

0 = 2.10.
Near violations of the positivity assumption were more

extreme than in simulation study 1. The true treatment
assignment probabilities typically ranged from 0.0008 to
0.99. True probabilities of remaining uncensored ranged
from approximately 53% to 98%. Among observations for
which the outcome was observed, the product of the untrun-
cated components ranged from 0.005 to 0.97, and stabilized
IP weights ranged from 0.3 to 54.

Results. For each combination of estimator and truncation
strategy, we calculated the mean bias, variance, MSE, and
bias:SE ratio of the 1,500 Monte Carlo iterations, combining
all 3 sample sizes (Table 3). Our sample-size–based trunca-
tion strategy minimized bias for the IPTCW estimator and
was among the top 3 minimizers of the MSE. Our strategy
minimized MSE for both TML estimators. Truncation at the
99th quantile worked well for IPTCW, while truncation at a
fixed level of 0.1 worked well for TMLE. Because the near
violation of the positivity assumption was more severe than
in simulation study 1, there were differences in the MSE
among the different truncation strategies even for TMLE-
Qcor. Bias was similar for all truncation strategies, while
variance was minimized by our sample-size–based strategy.

Results stratified by sample size again showed that the
overall results were not dominated by poor performance at
one particular sample size (Table 4). Although the sample-
size–based strategy does not always have the smallest MSE,
its bias-variance trade-off was consistently among the best
across all estimators and sample sizes, usually with small
bias, and a favorable ratio of bias to SE. For the IPTCW
estimator, our strategy minimized bias but did not always
minimize variance or MSE. It did minimize MSE for TMLE-
Qmis, and for TMLE-Qcor when n equaled 100. At the larger
sample sizes it was not the best, but performance differences
were minor. This is illustrated in the box plots of the bias in
the OR estimates for each estimator and truncation strategy
(Figure 2).
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Table 1. Simulation Study 1 Bias, Variance, Mean Squared Error, and Ratio of Bias to Standard Error of Additive
Treatment Effect Estimates, Obtained From 1,500 Monte Carlo Simulations, Combining Results From All Sample
Sizes (n = 100, n = 1,000, and n = 10,000)

Estimator and
Truncation Strategy

Bias Var MSE Bias/SE

IPTCW

99th quantile 0.157 0.073 0.098a 0.581

95th quantile 0.371 0.063 0.200 1.478

10−6 0.015 0.122 0.122 0.044

0.01 0.015 0.122 0.122 0.044

0.025 0.017 0.120 0.120 0.048

0.05 0.023 0.111 0.111 0.069

0.1 0.049 0.095 0.097a 0.159

CTMLE 0.025 0.102 0.102 0.078

5/(
√

n ln n) 0.032 0.093 0.094a 0.104

TMLE-Qcor

99th quantile −0.008 0.030 0.030 0.049

95th quantile −0.009 0.028 0.028 0.052

10−6 −0.008 0.030 0.030 0.047

0.01 −0.008 0.030 0.030 0.047

0.025 −0.008 0.030 0.030 0.046

0.05 −0.008 0.029 0.029 0.049

0.1 −0.009 0.027 0.027a 0.058

CTMLE −0.009 0.027 0.027a 0.057

5/(
√

n ln n) −0.009 0.027 0.027a 0.054

TMLE-Qmis

99th quantile 0.067 0.089 0.093a 0.227

95th quantile 0.187 0.073 0.108 0.691

10−6 0.015 0.122 0.122 0.044

0.01 0.016 0.121 0.121 0.046

0.025 0.026 0.109 0.110 0.078

0.05 0.060 0.09 0.093a 0.201

0.1 0.149 0.07 0.091a 0.567

CTMLE 0.144 0.07 0.094 0.536

5/(
√

n ln n) 0.075 0.08 0.084a 0.269

Abbreviations: cor, correctly specified; CTMLE, collaborative targeted maximum likelihood estimation; IPCTW,
inverse-probability-of-treatment-and-censoring weighting; mis, misspecified; MSE, mean squared error; SE, stan-
dard error; TMLE, targeted maximum likelihood estimation; Var, variance.

a One of 3 lowest MSE values for each estimator.

DATA ANALYSIS

Shinohara et al. (10) conducted a retrospective observa-
tional cohort study of the association between total dose
of ritodrine hydrochloride and pulmonary edema in twin
pregnancy in Japan. Ritodrine was approved by the Food
and Drug Administration in the 1970s. Though subsequently
withdrawn from the US market, it continues to be available
in other parts of the world (16). In Japan, ritodrine is a
recommended first-line therapy for halting preterm labor.
Ritodrine has previously been shown to increase risk of

pulmonary edema in pregnant women (14). Shinohara et al.
wanted to establish this result in the subpopulation of women
pregnant with twins, who are at high risk of preterm labor.

The data set containing observations on 225 women
was downloaded from an online data repository (17). We
conducted an analysis to estimate the OR associated with
exposure to ritodrine hydrochloride at any level versus no
exposure. Potential confounders included in the adjustment
set were age, height, weight, body mass index (weight
(kg)/height (m)2), and binary indicators of obesity (body
mass index ≥25), first pregnancy, single placenta, assistive
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Table 2. Simulation Study 1 Bias, Variance, Mean Squared Error, and Ratio of Bias to Standard Error of Additive Treatment Effect Estimates,
Obtained From 500 Monte Carlo Simulations at 3 Sample Sizes (n = 100, n = 1,000, and n = 10,000)

Sample Size

n = 100 n = 1,000 n = 10,000Estimator and
Truncation Strategy

Bias Var MSE Bias/SE Bias Var MSE Bias/SE Bias Var MSE Bias/SE

IPTCW

99th quantile 0.158 0.200 0.224a 0.35 0.160 0.018 0.044 1.18 0.153 0.002 0.025 3.83

95th quantile 0.370 0.171 0.308 0.90 0.376 0.017 0.158 2.92 0.365 0.001 0.135 9.90

10−6 0.031 0.329 0.329 0.05 0.012 0.034 0.034 0.06 0.004 0.004 0.004a 0.06

0.01 0.031 0.329 0.329 0.05 0.012 0.034 0.034 0.06 0.004 0.004 0.004a 0.06

0.025 0.032 0.324 0.324 0.06 0.012 0.032 0.033a 0.07 0.005 0.003 0.003a 0.09

0.05 0.040 0.300 0.301 0.07 0.017 0.030 0.030a 0.10 0.012 0.003 0.003a 0.22

0.1 0.065 0.258 0.261a 0.13 0.045 0.024 0.026a 0.29 0.036 0.002 0.004a 0.76

CTMLE 0.056 0.268 0.271 0.11 0.015 0.032 0.033a 0.08 0.004 0.004 0.004a 0.06

5/(
√

n ln n) 0.079 0.240 0.246a 0.16 0.012 0.032 0.033a 0.07 0.004 0.004 0.004a 0.06

TMLE-Qcor

99th quantile −0.025 0.081 0.081 0.09 −0.001 0.007 0.007 0.01 0.001 0.001 0.001 0.03

95th quantile −0.026 0.077 0.078 0.09 −0.001 0.007 0.007 0.02 0.001 0.001 0.001 0.03

10−6 −0.025 0.082 0.082 0.09 0.000 0.007 0.007 0.01 0.001 0.001 0.001 0.04

0.01 −0.025 0.082 0.082 0.09 0.000 0.007 0.007 0.01 0.001 0.001 0.001 0.04

0.025 −0.025 0.081 0.081 0.09 0.000 0.007 0.007 0.00 0.001 0.001 0.001 0.04

0.05 −0.025 0.078 0.079 0.09 −0.001 0.007 0.007 0.01 0.001 0.001 0.001 0.03

0.1 −0.028 0.074 0.074a 0.10 −0.001 0.007 0.007 0.01 0.001 0.001 0.001 0.03

CTMLE −0.028 0.074 0.075a 0.10 −0.001 0.007 0.007 0.01 0.001 0.001 0.001 0.03

5/(
√

n ln n) −0.028 0.073 0.073a 0.10 0.000 0.007 0.007 0.00 0.001 0.001 0.001 0.04

TMLE-Qmis

99th quantile 0.089 0.241 0.249 0.18 0.061 0.022 0.026a 0.41 0.053 0.002 0.005 1.14

95th quantile 0.198 0.201 0.239 0.44 0.184 0.017 0.051 1.41 0.178 0.001 0.033 4.67

10−6 0.031 0.329 0.329 0.05 0.012 0.034 0.034 0.06 0.004 0.004 0.004 0.06

0.01 0.031 0.326 0.327 0.06 0.012 0.033 0.033 0.07 0.005 0.003 0.003a 0.08

0.025 0.042 0.296 0.298 0.08 0.020 0.029 0.029a 0.12 0.015 0.003 0.003a 0.28

0.05 0.077 0.244 0.250 0.16 0.056 0.023 0.026a 0.37 0.047 0.002 0.004 1.02

0.1 0.159 0.189 0.214a 0.37 0.150 0.018 0.040 1.12 0.139 0.002 0.021 3.57

CTMLE 0.145 0.199 0.220a 0.33 0.149 0.018 0.040 1.12 0.139 0.002 0.021 3.57

5/(
√

n ln n) 0.201 0.179 0.219a 0.48 0.021 0.029 0.029a 0.12 0.004 0.003 0.003a 0.07

Abbreviations: cor, correctly specified; CTMLE, collaborative targeted maximum likelihood estimation; IPCTW, inverse-probability-of-
treatment-and-censoring weighting; mis, misspecified; MSE, mean squared error; SE, standard error; TMLE, targeted maximum likelihood
estimation; Var, variance.

a One of 3 lowest MSE values for each estimator.

reproductive technology, magnesium administration, and
corticosteroid use. No outcomes were missing.

We coupled each previously considered truncation strat-
egy with IPTW and TMLE to estimate the OR. At this
sample size, our proposed lower bound on 1/PS for treated
and 1/(1 − PS) for untreated is given by 5/(

√
225 ln 225) =

0.062. The PS was estimated using ensemble super learning
(18). Candidate algorithms were logistic regression, the least
absolute shrinkage and selection operator (LASSO), and

Bayesian additive regression trees (19, 20). The number of
cross-validation folds was set to V = 20. Super learning was
also used to model the outcome regression for TMLE, using
the default library specification in the tmle package, spec-
ifying V = 20. Ninety-five percent CIs were constructed
on the log OR scale. Robust SEs were evaluated for IPTW
estimators (21, 22). Influence-curve–based estimates of the
SE for TML estimators were internally calculated by the
tmle function.
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Figure 1. Box plots of bias in the estimated odds ratio for 9 truncation strategies for inverse-probability-of-treatment-and-censoring weighting
(IPTCW), targeted maximum likelihood estimation (TMLE) with initial Q correctly specified (cor), and TMLE with initial Q misspecified (mis) at 3
sample sizes (simulation study 1). A) n = 100; B) n = 1,000; C) n = 10,000. Truncation strategies are a) 99th quantile, b) 95th quantile, c) 10−6,
d) 0.01, e) 0.025, f) 0.05, g) 0.1, h) collaborative targeted maximum likelihood estimation, and i) 5/(

√
n ln n). The edges of the boxes represent

the 25th and 75th percentiles, the horizontal line inside the box represents the median, the whiskers represent 1.5 times the interquartile range,
and outliers are shown as circles.

With no truncation, PS estimates ranged from 0.11 to
0.75, and stabilized IP weights were between 0.49 and 3.36
(mean = 0.97). Truncation at each of the fixed truncation
levels considered had no impact on the estimated ORs,
SEs, or CIs, because the maximum weight was less than
the minimum lower bound considered (Table 5). This is
because no PS values or IP weights exceeded any of the fixed
thresholds. Both quantile-based truncation strategies moved

OR estimates towards the null. These estimates had slightly
smaller SEs than those associated with the other strategies
but were presumably more biased.

DISCUSSION

Theory teaches that our sample-size–based truncation
strategy for IP-weighted estimators and TML estimators will
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Table 3. Simulation Study 2 Bias, Variance, Mean Squared Error, and Ratio of Bias to Standard Error of Additive
Treatment Effect Estimates, Obtained From 1,500 Monte Carlo Simulations, Combining Results From All Sample
Sizes (n = 100, n = 1,000, n = 10,000)

Estimator and
Truncation Strategy

Bias Var MSE Bias/SE

IPTCW

99th quantile 0.43 2.19 2.37a 0.29

95th quantile 0.66 1.82 2.25a 0.49

10−6 0.33 3.17 3.28 0.19

0.01 0.33 3.17 3.28 0.19

0.025 0.33 3.17 3.28 0.19

0.05 0.33 3.01 3.12 0.19

0.1 0.34 2.68 2.80 0.21

CTMLE 0.33 2.69 2.80 0.20

5/(
√

n ln n) 0.32 2.55 2.66a 0.20

TMLE-Qcor

99th quantile 0.26 2.83 2.89 0.16

95th quantile 0.26 2.67 2.73 0.16

10−6 0.28 3.61 3.68 0.15

0.01 0.28 3.23 3.30 0.15

0.025 0.26 2.63 2.70 0.16

0.05 0.25 2.15 2.21 0.17

0.1 0.23 1.79 1.85a 0.18

CTMLE 0.23 2.07 2.13a 0.16

5/(
√

n ln n) 0.23 1.70 1.76a 0.18

TMLE-Qmis

99th quantile 0.33 2.97 3.08 0.19

95th quantile 0.37 2.85 2.99 0.22

10−6 0.33 3.17 3.28 0.19

0.01 0.33 3.08 3.19 0.19

0.025 0.33 2.82 2.93 0.20

0.05 0.36 2.43 2.56 0.23

0.1 0.45 2.06 2.26a 0.31

CTMLE 0.34 2.25 2.36a 0.23

5/(
√

n ln n) 0.36 2.04 2.16a 0.25

Abbreviations: cor, correctly specified; CTMLE, collaborative targeted maximum likelihood estimation; IPCTW,
inverse-probability-of-treatment-and-censoring weighting; mis, misspecified; MSE, mean squared error; SE, stan-
dard error; TMLE, targeted maximum likelihood estimation; Var, variance.

a One of 3 lowest MSE values for each estimator.

make the appropriate bias-variance trade-off asymptotically.
In finite samples, our strategy balances minimizing the MSE
with preserving valid inference. Although truncating IP
weights at a prespecified quantile is common practice, our
simulation studies and data analysis illustrated that relying
on a sample-size–based truncation strategy can improve
performance. This was most evident in the real-world data
analysis. Even though PS values were bounded well away
from 0 and 1, and the maximum IP weight was less than
4, the quantile-based strategy insists on altering a certain

percentage of the values. Although we cannot know the
truth, this indicates that quantile-based truncation can alter
study findings even when there are no extremely influential
observations in the data.

Although in any single analysis truncation at a fixed
threshold or quantile can outperform the sample-size–based
approach, no alternative strategy was superior at all sample
sizes, across all data distributions. The fixed bound of 0.01
often performed well in many scenarios, but it was typi-
cally more biased than our sample-size–based strategy. The
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Table 4. Simulation Study 2 Bias, Variance, Mean Squared Error, and Ratio of Bias to Standard Error of Additive Treatment Effect Estimates,
Obtained From 500 Monte Carlo Simulations at 3 Sample Sizes (n = 100, n = 1,000, n = 10,000)

Sample Size

n = 100 n = 1,000 n = 10,000
Estimator and

Truncation Strategy

Bias Var MSE Bias/SE Bias Var MSE Bias/SE Bias Var MSE Bias/SE

IPTCW

99th quantile 0.92 6.03 6.87a 0.38 0.204 0.154 0.195 0.52 0.166 0.017 0.045 1.27

95th quantile 1.14 4.92 6.22a 0.51 0.435 0.163 0.352 1.08 0.399 0.019 0.178 2.89

10−6 0.91 8.83 9.64 0.31 0.063 0.171 0.175 0.15 0.017 0.018 0.018a 0.12

0.01 0.91 8.83 9.64 0.31 0.063 0.171 0.175 0.15 0.017 0.018 0.018a 0.12

0.025 0.91 8.82 9.64 0.31 0.063 0.168 0.172 0.15 0.018 0.018 0.018a 0.13

0.05 0.90 8.37 9.16 0.31 0.065 0.163 0.167a 0.16 0.023 0.018 0.018a 0.17

0.1 0.89 7.43 8.21 0.33 0.082 0.157 0.163a 0.21 0.042 0.017 0.019 0.32

CTMLE 0.89 7.43 8.21 0.33 0.080 0.159 0.165a 0.20 0.017 0.018 0.018a 0.13

5/(
√

n ln n) 0.89 7.00 7.78a 0.34 0.063 0.168 0.172 0.15 0.017 0.018 0.018a 0.12

TMLE-Qcor

99th quantile 0.72 8.00 8.51 0.26 0.047 0.150 0.152 0.12 0.014 0.017 0.017 0.11

95th quantile 0.72 7.53 8.04 0.26 0.046 0.140 0.141a 0.12 0.014 0.016 0.016a 0.11

10−6 0.78 10.28 10.87 0.24 0.053 0.164 0.167 0.13 0.014 0.017 0.017 0.11

0.01 0.76 9.17 9.74 0.25 0.050 0.156 0.158 0.13 0.014 0.017 0.017 0.11

0.025 0.72 7.42 7.92 0.26 0.046 0.146 0.148 0.12 0.014 0.017 0.017 0.11

0.05 0.68 6.02 6.47 0.28 0.046 0.139 0.141a 0.12 0.014 0.016 0.016a 0.11

0.1 0.64 4.99 5.39a 0.29 0.047 0.131 0.133a 0.13 0.015 0.015 0.015a 0.12

CTMLE 0.66 5.80 6.22a 0.27 0.028 0.140 0.140a 0.07 0.009 0.016 0.016a 0.07

5/(
√

n ln n) 0.63 4.71 5.10a 0.29 0.046 0.146 0.148 0.12 0.014 0.017 0.017 0.11

TMLE-Qmis

99th quantile 0.89 8.28 9.05 0.31 0.069 0.162 0.166a 0.17 0.029 0.017 0.018a 0.22

95th quantile 0.92 7.94 8.78 0.33 0.116 0.153 0.166a 0.30 0.079 0.017 0.023 0.61

10−6 0.91 8.83 9.64 0.31 0.063 0.171 0.175 0.15 0.017 0.018 0.018a 0.12

0.01 0.90 8.58 9.38 0.31 0.064 0.167 0.171 0.16 0.019 0.018 0.018a 0.14

0.025 0.89 7.83 8.61 0.32 0.075 0.159 0.164a 0.19 0.033 0.017 0.018a 0.25

0.05 0.89 6.70 7.49 0.34 0.115 0.153 0.166a 0.29 0.073 0.017 0.022 0.57

0.1 0.95 5.65 6.54a 0.40 0.220 0.152 0.200 0.56 0.177 0.017 0.048 1.36

CTMLE 0.90 6.10 6.90a 0.37 0.081 0.163 0.169 0.20 0.042 0.019 0.021 0.30

5/(
√

n ln n) 0.98 5.36 6.31a 0.42 0.076 0.158 0.164a 0.19 0.017 0.018 0.018a 0.13

Abbreviations: cor, correctly specified; CTMLE, collaborative targeted maximum likelihood estimation; IPCTW, inverse-probability-of-
treatment-and-censoring weighting; mis, misspecified; MSE, mean squared error; SE, standard error; TMLE, targeted maximum likelihood
estimation; Var, variance.

a One of 3 lowest MSE values for each estimator.

CTMLE-based strategy also exhibited performance superior
to the quantile-based truncation strategies and many of the
fixed bounds, but it had larger variance and MSE than the
sample-size–based strategy. This may be because strategies
that “listen to the data” overreact to small perturbations in
the distribution when the data are sparse. This manifests
as increased variance, as illustrated in the CTMLE-based
strategy’s results. For TMLE, when the stage 1 outcome

regression model was correctly specified, the choice of
truncation strategy had little impact. The impact was more
pronounced when the outcome regression was misspecified,
and targeting in stage 2 of the TMLE procedure was needed
to reduce residual bias.

The default truncation strategy in the tmle package
(version 1.5.0-1) in the Comprehensive R Archive Network
(CRAN) is the sample-size–based lower bound presented
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Figure 2. Box plots of bias in the estimated odds ratio for 9 truncation strategies for inverse-probability-of-treatment-and-censoring weighting
(IPTCW), targeted maximum likelihood estimation (TMLE) with initial Q correctly specified (cor), and TMLE with initial Q misspecified (mis) at 3
sample sizes (simulation study 2). A) n = 100; B) n = 1,000; C) n = 10,000. Truncation strategies are a) 99th quantile, b) 95th quantile, c) 10−6,
d) 0.01, e) 0.025, f) 0.05, g) 0.1, h) collaborative targeted maximum likelihood estimation, and i) 5/(

√
n ln n). The edges of the boxes represent

the 25th and 75th percentiles, the horizontal line inside the box represents the median, the whiskers represent 1.5 times the interquartile range,
and outliers are shown as circles.

in this paper, 5/[
√

n ln(n)] (12). Other TMLE-based R
packages in CRAN for analyses of longitudinal and time-
to-event data accept fixed user-specified upper and lower
bounds, with suggested default lower bounds of 0.001
(survtmle) and 0.01 (ltmle) (13, 14). We hypothesize that
for these TML estimators, a time-varying bound on the
G components of the likelihood based on the number of

observations contributing to the targeting step at each time t
would have good performance. Our future work will involve
investigating data-adaptive estimation of the constant in the
numerator of the PS bound, c, instead of relying on the
heuristic c = 5.

Ensuring that IP weights are finite is required for any IPW
estimator, and ensuring that the product of the G components
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Table 5. Estimatesa of the Association Between Pulmonary Edema and Any Exposure to Ritodrine Hydrocholoride Versus None

IPTW TMLE
Truncation
Strategy

OR SE 95% CI OR SE 95% CI

99th quantile 5.18 0.45 2.15, 12.46 5.58 0.45 2.30, 13.53

95th quantile 4.91 0.44 2.07, 11.63 5.30 0.44 2.23, 12.61

10−6 5.53 0.46 2.26, 13.54 5.55 0.45 2.29, 13.48

0.01 5.53 0.46 2.26, 13.54 5.55 0.45 2.29, 13.48

0.025 5.53 0.46 2.26, 13.54 5.55 0.45 2.29, 13.48

0.05 5.53 0.46 2.26, 13.54 5.55 0.45 2.29, 13.48

0.1 5.53 0.46 2.26, 13.54 5.55 0.45 2.29, 13.48

CTMLE 5.53 0.46 2.26, 13.54 5.55 0.45 2.29, 13.48

5/(
√

n ln n) 5.53 0.46 2.26, 13.54 5.55 0.45 2.29, 13.48

Abbreviations: CI, confidence interval; CTMLE, collaborative targeted maximum likelihood estimation; OR, odds ratio; SE, standard error.
a OR, SE, and 95% CI associated with each truncation strategy.

of the likelihood is nonzero is required for TMLE. Thus,
some bound must be specified when these estimators are
used in practice. However, although the choice of bound
can help, it is not a panacea when there is a sparsity of in-
formation in the data for estimating the target parameter. A
thoughtful analyst will examine PS diagnostics and conduct
sensitivity analyses to assess the robustness of the study
finding to departures from causal assumptions (9, 23). When
IP weights are extreme (i.e., the PS is near 0 or 1), the
analyst might also consider targeting a less ambitious causal
parameter (e.g., the effect of a realistic treatment rule) or a
stochastic intervention (24).
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