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Data Aggregation in Sensor Networks:
Balancing Communication and Delay Costs
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Abstract. In a sensor network the sensors, or nodes, obtain data and
have to communicate these data to a central node. Because sensors are
battery powered they are highly energy constrained. Data aggregation
can be used to combine data of several sensors into a single message,
thus reducing sensor communication costs at the expense of message
delays. Thus, the main problem of data aggregation is to balance the
communication and delay costs.

In this paper we study the data aggregation problem as a bicriteria
optimization problem; the objectives we consider are to minimize max-
imum energy consumption of a sensor and a function of the maximum
latency costs of a message. We consider distributed algorithms under an
asynchronous time model, and under an almost synchronous time model,
where sensor clocks are synchronized up to a small drift. We use com-
petitive analysis to assess the quality of the algorithms.

Keywords: distributed algorithms, sensor networks, data aggregation,
bicriteria optimization.

1 Introduction

A wireless sensor network (WSN) consists of sensor nodes and one or more
central nodes or sinks. Sensor nodes are able to monitor events, to process the
sensed information and to communicate the sensed data. Sinks are powerful base
stations which gather data sensed in the network; sinks either process this data
or act as gateways to other networks. Sensors send data to the sink through
multi-hop communication.

A particular feature of sensor nodes is that they are battery powered, making
sensor networks highly energy constrained. Replacing batteries on hundreds of
nodes, often deployed in inaccessible environments, is infeasible or too costly
and, therefore, the key challenge in a sensor network is the reduction of energy
� Corresponding author: TU Eindhoven, PO Box 513, 5600 MB Eindhoven, The

Netherlands.
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consumption. Energy consumption can be divided into three domains: sensing,
communication and data processing [1]. Communication is most expensive be-
cause a sensor node spends most of its energy in data transmission and reception
[7]. This motivates the study of techniques to reduce overall data communication,
possibly exploiting processing capabilities available at each node. Data aggre-
gation is one such technique. It consists of aggregating redundant or correlated
data in order to reduce the overall size of sent data, thus decreasing the network
traffic and energy consumption. In this paper we comply with most of the litera-
ture on sensor networks concentrating on total aggregation, i.e. data packets are
assumed to have the same size and aggregation of two or more incoming packets
at a node results in a single outgoing packet. Total aggregation is possible if data
are completely correlated, or can be described by a single value, e.g. when the
required data is maximum temperature. Observe that even if total aggregation
might be considered a simplistic assumption in other cases, it allows us to pro-
vide an upper bound on the expected benefits of data aggregation in terms of
power consumption.

WSN deal with real world environments. In many cases, sensor data must be
delivered within time constraints so that appropriate observations can be made
or actions taken [11]. We assume that the routing network is a tree; this is a
common assumption in data aggregation network problems [1,4].

In [3] we studied the Data Aggregation Sensor Problem as a unicriterion
problem where we minimized the maximum communication costs subject to a
budget on the latency costs. Here the budget constraint was a hard constraint.

The dynamics governing the monitored phenomena are often not well under-
stood and/or defined at the beginning of the monitoring process. For this reason
a strict constraint on latency could be unappropriate.

A common assumption in literature on data aggregation is that value of infor-
mation degrades over time. E.g. Broder and Mitzenmacher [5] describe a data ag-
gregation model where there is a reward function on the data collected by a server;
the function increases with the quantity of data collected and decreases over time.
A similar tradeoff holds for data aggregation in sensor networks: delaying data de-
creases the information value of the data, but increases network lifetime.

Both the above discussed tradeoffs and the partial knowledge of the monitored
process at the beginning, suggest to use a bicriteria objective function to asses
the quality of the algorithms instead of hard constraints.

The bicriteria data aggregation sensor problem
The Data Aggregation Sensor Problem (DASP) is to send all messages to the
sink such as to minimize the communication costs, and to minimize the latency
costs. For the first objective we have chosen to minimize the maximum commu-
nication costs per node. This is a natural objective in sensor networks because
of limited and unreplenishable energy at nodes. The objective maximizes the
network lifetime, i.e. the time that all sensors can communicate. For the second
objective we have chosen to minimize the maximum latency cost.

The two objectives conflict with each other. We can easily find algorithms
with low communication costs by delaying messages and aggregating them into
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packets. As communication costs are independent of the size of packets sent, but
linear in the number of packets sent, aggregation reduces the communication
costs, at the expense of increased latency costs. Similarly we can find algorithms
with low latency costs at the expense of high communication costs. The objective
is to find algorithms where both costs are relatively good.

We formulate the problem as a bicriteria optimization problem: minimizing
one of the objectives under a budget restriction on the other objective. We call a
bicriteria optimization problem an (B, A)-bicriteria problem if we minimize ob-
jective A under a budget on objective B. In this paper we study the (B, A)-sensor
problem where objective A is maximum communication costs and objective B is
maximum latency costs. Quality of algorithms is assessed through the concept of
(β, α)-approximation: allowing an excess of multiplicative factor β on the bud-
get of objective B, the value produced is worst-case within ratio α from optimal
with respect to objective A. For network design problems this was formalized in
[9,10]. The concept is general in the sense that results hold regardless which of
the two objectives is minimized, and which is budgeted.

Sensor nodes are equipped with a clock that can be used to measure the
latency of messages. We distinguish three distributed on-line models, which are
common in literature on distributed algorithms, see [12]. In the synchronous
model all nodes are equipped with a common clock, i.e. the times indicated at all
clocks are identical. A common clock may facilitate synchronization of actions in
various nodes. In the asynchronous model there is no such common clock. In the
almost synchronous model, all nodes are equipped with a clock and the clocks
are almost synchronous, i.e. there is a relatively small drift between any two
clocks. In practice, these clocks can easily drift seconds per day, accumulating
significant errors over time [12].

Results
In this paper we present distributed on-line algorithms for sensor networks with
a routing intree. The first main contribution is that we study for the first time
sensor network problems in a bicriteria optimization framework. In Section 2 we
formalize the model.

In Section 3, for the asynchronous model we present an algorithm which
balances communication and latency costs. If δ is tree depth, and U is the
ratio between maximum and minimum allowed delay, then the algorithm is
(2δλ, 2δ1−λ log U)-competitive, for any λ, 0 < λ ≤ 1. The algorithm is member
of a class of memoryless algorithms for which we show that no better competi-
tiveness than (δλ, δ1−λ) exists.

In Section 4 we present the second main contribution, which is the analysis
of algorithms for sensor networks in which clocks in various nodes show small
drifts. For this so-called almost synchronous model we present an algorithm
which for sensors with a clock drift of at most Δ between any two nodes and
latency budget L is (1 + Δδ/L, log2 δ)-competitive. For small drift, i.e. Δδ/L
small, the competitiveness comes close to the best possible competitiveness in
the synchronous model. We notice that no previous results are known for this
model, which is in fact the more realistic one.
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Related work
In [3] we studied the Data Aggregation Sensor Problem as a unicriterion problem
where we minimized the maximum communication costs subject to a budget on
the latency costs. Here the budget constraint was a hard constraint. Interpreted
in the bicriteria setting the results imply (1, O(log U)) for synchronous, and
(1, δ log U) for the asynchronous models. No results were given for the almost
synchronous model.

In the past, many bicriteria optimization problems were formulated as a uni-
criterion optimization problem with as single objective a weighted sum of the
two objectives. For aggregation problems with objectives to minimize communi-
cation costs and latency costs such a formulation as a unicriterion optimization
problem can be found in [2,4,6,8].

Both Khanna et al. [8] and Brito et al. [4] consider the Multicast Aggregation
Problem (MAP), or TCP Acknowledgment problem, on a tree. The Multicast
Aggregation Problem is equivalent to the Data Aggregation Sensor Problem in
the sense that messages, which arrive over time, have to be sent to a sink in
the graph. The main difference with our problem is in the objectives. First,
the objective of MAP is to minimize the sum of communication costs; this is a
natural objective if nodes have permanent access to energy. This is not true for
sensor networks, for which minimizing energy cost per node is more suitable. The
other objective of MAP is to minimize the sum of latency costs, and latency costs
do not depend on communication time to the sink. Second, the authors analyze
the problem using a single objective which is a weighted sum of communication
costs and latency costs.

A main drawback of formulating the problem using a single objective is that
the choice of the weights influences the outcome. Especially if the objectives are
measured in different units, e.g. energy and time, then the choice of weights is
highly arbitrary. Thus, we believe that a bicriteria setting is more appropriate
in this case.

2 Preliminaries

We study sensor networks G = (V, A), which are intrees rooted at a sink node s ∈
V . Nodes represent sensors and arcs represent the possibility of communication
between two sensors. Over time, n messages, N := {1, . . . , n}, arrive at nodes
and have to be sent to the sink. Message j arrives at its release node vj at its
release date rj ; message j arrives at the sink via the unique vj − s-path. Thus,
each message is completely defined by the pair (vj , rj).

A packet is a set of messages which are sent simultaneously along an arc. Each
initial message is a packet and two packets j and j′ can be aggregated at a node
v into a single packet. The resulting packet can be recursively aggregated with
other packets.

Communication of a message along an arc takes time and energy cost. In this
paper we assume that the communication time τ : A → R�0 and communica-
tion cost c : A → R�0 are independent of packet size. We often refer to the
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communication cost of a node as the communication cost of its unique outgoing
arc. This models the situation in which all messages have more or less the same
size and where total aggregation is possible, as discussed in the introduction.
For the sake of simplicity we also assume that all communication times τ(a) are
equal, namely we set τ(a) = 1 ∀a ∈ A.

For v ∈ V , τv is the total communication time of the path from v to s. We
define r′j := rj + τvj as earliest possible arrival time of j at s. We assume that
each node v knows its total communication time τv to the sink. Finally, we define
δ := maxv τv as the depth of the network in terms of the communication time.
We assume δ ≥ 2, avoiding the trivial case of δ = 1.

The value of information degrades over time. To model this we define the
quality degradation cost of a message. Let dj be the arrival time of message j.
We assume that the quality degradation of a message j depends on the latency
of a message lj := dj − rj . In this paper we choose the latency as our quality
degradation function, i.e. our function increases linearly over time. We also refer
to these costs as latency costs and we say that a solution is L-bounded if lj ≤ L
for all i. Since δ = maxv τv a L-bounded feasible solution must satisfy L ≥ δ,
as otherwise it is impossible to send all messages j to the sink such that their
latency costs are within budget L.

The budget on the latency imposes an arrival time interval Ij := [rj +τvj , rj +
L] of any L-bounded solution. It also imposes a transit interval for each node
u on the vj − s path: Ij(u) := [rj + τvj − τu, rj + L − τu]. I.e. in each L-
bounded solution message j should transit at u in interval Ij(u). Finally, we
define U = maxj |Ij |

max{1,minj |Ij |} . Since L ≥ δ we have U ≤ δ.
Given a solution S the communication cost of node vi is the total energy

cost spent by vi and it is given by the total number of messages sent by vi

times the communication cost of vi. We are interested minimizing maximum
communication cost over all nodes.

Given a bound L on the latency and β, β ≥ 1, we study the communication
cost of algorithms that provide βL-bounded feasible solution: a βL-bounded
feasible solution is (β, α)-approximate if its communication cost is at most α
times the communication cost of the optimal L-bounded solution. An interesting
special case is to find a minimum γ such that there exists a (γ, γ)-approximate
algorithm [9].

In this paper we consider distributed on-line algorithms, in which nodes com-
municate independently of each other and messages are released over time.
Therefore, at any time t the input of each node’s algorithm is given by packets
that have been released at or forwarded from that node in the period [0, t]. An
algorithm is (β, α)-competitive if it is an (β, α)-approximation and the algorithm
is an online algorithm.

2.1 The Synchronous Model

For the synchronous model we presented an algorithm for the latency constrained
sensor aggregation problem in [3]. In the following we restate the algorithm



144 P. Korteweg et al.

in a bicriteria setting, because we use the algorithm as a subroutine in our
algorithm for the almost synchronous model. The algorithm is based on the
following lemma.

Lemma 1. [3] Given any interval [a, b], such that b − a ≥ 1. Let i∗ = max{i ∈
N | ∃k ∈ N : k2i ∈ [a, b]}, then k∗ for which k∗2i∗ ∈ [a, b] is odd and unique.

We use notation t(I) to represent the unique point in the interval I = [a, b]
which equals k∗2i∗

with i∗ and k∗ as defined in Lemma 1. The algorithm sends
messages j to the sink at time t(I) where interval I depends on message j and
budget L on the latency costs. We choose as interval the interval of an L-bounded
solution, i.e. Ij .

Algorithm:CommonClock (CC): Message j is sent from vj at time t(Ij)−τvj

to arrive at s at time t(Ij) unless some other packet passes vj in the interval
[rj , t(Ij)−τvj ], in which case j is aggregated and the packet is forwarded directly.

The analysis of the competitive ratio of CC is based on the following lemma
that will be used in the sequel. The lemma bounds the competitive ratio for
instances in which the arrival intervals Ij differ by a factor at most 2 in length.

Lemma 2. [3] CC is (1, 3)-competitive if there exists an i ∈ N such that 2i−1 <
|Ij | ≤ 2i ∀j.

This result immediately implies the following theorem.

Theorem 1. [3] CC is (1, O(log U))-competitive1.

In the the CC algorithm no message incurs a delay cost which exceeds its bud-
get. A simple modification of the CC algorithm which balances the communi-
cation and delay costs can be obtained by replacing t(Ij) by t(I∗j ) as follows.
Let μ := max{1, minj(Lj − τvj )}, and let Nm = {j ∈ N |( log U

log log U )m−1μ ≤ |Ij | <

( log U
log log U )mμ} for m ∈ N. The algorithm sends messages j ∈ Nm to the sink at

time t(I∗j ) where I∗j = [rj + τvj , rj + τvj + ( log U
log log U )mμ].

The proof of the following theorem is omitted.

Theorem 2. There exists an algorithm that is ( log U
log log U , log U

log log U )-competitive.

3 The Asynchronous Model

For the asynchronous model we present a modification of the algorithm Spread
Latency (SL), as proposed in [3]. The algorithm assigns to message j a total
waiting time of 2(τvj )λ times the allowed latency minus communication time,
for some λ, 0 < λ ≤ 1. SL equally divides this waiting time over the nodes:
1 All logarithms in this paper are base 2.
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at each node of the vj − s path message j is assigned a waiting time of 2(L −
τvj )/(τvj )1−λ time units. When messages are simultaneously at the same node
they get aggregated into a packet, which is sent over the outgoing arc as soon
as the waiting time of at least one of these messages has passed.

Theorem 3. Algorithm SL is (2δλ, 2δ1−λ log U)-competitive for λ, 0 < λ ≤ 1.

Proof. Consider algorithm SL for fixed λ, 0 < λ ≤ 1. First note that because no
message is delayed due to aggregation the latency of each message j is at most

τvj 2(L − τvj )/τ1−λ
vj

+ τvj ≤ 2δλL.

We prove that for all a ∈ A the number of packets SL sends through a is
at most 2δ1−λ log U times that number in an optimal L-bounded solution. This
proves the theorem.

Let μ := max{1, minj(L − τvj )}. Consider a packet P of messages sent by
an optimal L-bounded solution through (u, v) at t. To bound the number of
packets sent by SL that contain at least one message from P , define Pi := {j ∈
P | 2i−1μ ≤ L − τvj < 2iμ}, for i = 1, . . . , �log U	. We charge any sent packet to
the message that caused the packet to be sent due to its waiting time being over.
It suffices to prove that the number of packets charged to messages in Pi is 2δ1−λ.
Since the waiting time of messages j ∈ Pi at node u is at least 2 · 2i−1μ/δ1−λ,
the delay between any two packets that are charged to messages in Pi is at least
2iμ/δ1−λ. Since the optimal solution sends packet P at t through (u, v), we get
t ∈ Ij(u) ∀j ∈ P and thus Ij(u) ⊆ [t − 2iμ, t + 2iμ] ∀j ∈ Pi. Thus, the number
of packets charged to messages in Pi is at most 2 · 2iμ/(2iμ/δ1−λ) = 2δ1−λ. ��

SL determines the waiting time of each message at the nodes it traverses indepen-
dently of all other messages. We call such an algorithm a memoryless algorithm.
To be precise, in a memoryless algorithm node v determines the waiting time of
message j based only on the message characteristics (vj , rj), budget L, commu-
nication time to the sink τvj and clock time. The following lower bound shows
that the competitive ratio of SL cannot be beaten by more than a factor log U
by any other memoryless algorithm. In the derivation of the lower bound we
restrict to memoryless algorithms that employ the same algorithm in all nodes
with the same communication time to s. This is not a severe restriction, given
that communication time to s is the only information about the network that a
node has.

Theorem 4. No deterministic asynchronous memoryless algorithm is better
than(δλ, δ1−λ)-competitive, for fixed λ, 0 ≤ λ ≤ 1.

Proof. Consider any deterministic asynchronous memoryless algorithm with la-
tency costs at most δλ times the budget on the latency costs for fixed λ, 0 ≤
λ ≤ 1. An adversary chooses a binary tree with root s and all leaves at distance
δ from s. The adversary releases message 1 with latency L at time r1 in a leaf
v1. There must be a node u where message 1 waits at most δλ(L − τv1)/δ. The
adversary releases message j, j = 2, . . . , δ1−λ at time r1 + j(L − τv1)/δ1−λ such
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that all messages j are sent over node u, and no two messages can be aggregated
before reaching v. Because τvj = τv1 ∀j and we assumed that any memoryless
algorithm applies the same algorithm in nodes at equal distance, all messages
are sent non-aggregated to and from u, whereas they are aggregated as early as
possible in an optimal solution, in particular at u. ��
Theorems 3 and 4 immediately imply the following corollary.

Corollary 1. There exists a deterministic asynchronous algorithm that is (
√

δ,√
δ log U)-competitive and no deterministic asynchronous memoryless algorithm

is better than (
√

δ,
√

δ)-competitive.

If we assume that L ≥ 2δ, which in practice is not a severe restriction at all,
essentially the same analysis as in the proof of Theorem 3 gives (2δλ, 2δ1−λ)-
competitiveness. Thus, in this case SL is a best possible on-line algorithm up to
a constant multiplicative factor.

4 The Almost Synchronous Model

Typically in sensor networks clocks have a small drift. The CC-algorithm is not
robust in the sense that its competitive ratio may be much worse if we assume
existence of such clock drifts. However, the idea underlying the CC-algorithm
gives rise to algorithms which have good competitive ratio even in the almost
synchronous model. In this section we present such an algorithm. We assume that
the difference between the time indicated at any two clocks is at most Δ. We
assume all communication times to be equal and of unit length, i.e. τ(a) = 1 ∀a.
We also divide nodes into classes; a node v is of class p if p is the maximal integer
such that τv = h2p +1 for some integer h, and v is of class 0 if τv = 1. Note that
p ∈ {0, . . . , �log δ	}. The algorithm is the following:

Algorithm:AlmostSynchronousClock (ASC) Message j incurs 3 kinds
of delay:
1. a delay of t(Ij) − τvj − rj at its release node vj ;
2. a delay of Δ at each node it traverses;
3. a delay which sums to 2p+1Δ at the first node of class p, p > 0, it

traverses.

The waiting time of message j at a node v is the sum of the delays. A message
is sent from a node v once its waiting time is over, unless some other message
(packet) is sent from v earlier in which case j is aggregated with this packet.

Note that if Δ = 0 the algorithm is identical to the CC-algorithm. To illustrate
delay of the third kind we give an example: if a message traverses nodes of classes
1-4 in order 1,2,3,4 then its delay of the third kind of these nodes is respectively
4Δ, 4Δ, 8Δ, 16Δ. If the order is 4,1,2,3 then its delay of the third kind is 32Δ at
the node of class 4 and 0 elsewhere.

Now we analyze the competitive ratio of ASC. Let Vk := {v|2k−1 < τv ≤ 2k}
for some k ∈ N, for k = 1, . . . , �log δ	. First, we analyze the behavior of the
algorithm for instances in which the release nodes of all messages is in Vk for
some k ∈ N.
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Lemma 3. If the CC-solution sends a packet from v, the ASC-solution sends
at most (k + 1) packets from v which contain a message of the CC-packet, if ∀j
vj ∈ Vk for some k ∈ N.

Proof. Each packet, either CC or ASC, contains at least one message whose
waiting time is completely over when the packet is forwarded. Hence without
loss of generality we only consider messages whose waiting time is completely
over when counting packets.

Consider a packet PCC sent by the CC-solution from some node v at time
t. In the remainder of the proof we only consider the messages in this packet.
We analyze the number of ASC-packets which contain a message of PCC. The
delays of messages in PCC are chosen such that all messages in this packet which
traverse v, i.e. v is not the release node, arrive at this node at time t. As the
delay of the first kind in the ASC-algorithm is identical to the delay incurred
by the CC-algorithm we focus on the deviation from this time to analyze the
number of packets ASC sends. This deviation may be caused either by delay of
kind 2 and 3, or by the clock drift.

If k = 0 the lemma trivially holds, because all messages which are sent over
some node v ∈ V0 have this node v as release node. Hence, if they are sent in
a single packet by the CC-solution they are also sent in a single packet in the
ASC-solution.

For k ≥ 1 we introduce the following notation: Vp,k = {v ∈ Vk|v is of class p,
∀v′ ∈ Vk of class p, τv ≤ τv′} for p ∈ {0, . . . , k − 1}. Vp,k is the set of nodes in
Vk of class p with minimal communication time to the sink. Define τ(Vp,k) := τv

for some v ∈ Vp,k. The nodes of Vk are partitioned into layers Up,k for p ∈
{0, . . . , k − 1} as follows:

Up,k := {v ∈ Vk|τ(Vp,k) ≤ τv < τ(Vp+1,k)} for p ∈ {1, . . . , k − 3},

Uk−2,k := {v ∈ Vk|τ(Vk−2,k) ≤ τv},

Uk−1,k := Vk−1,k.

Note that Vp,k ⊆ Up,k for all p. Further, each message j with vj ∈ Up,k traverses
some node in Vp,k. See Figure 1 for a sketch of the layer structure.

We characterize a set of nodes S by its depth, which is maxv∈S τv −minv∈S τv

and the class string. The class string is an ordered string representing the class
of nodes in S by increasing communication time to the sink. I.e. V3 has depth 4
and class string {2010}. In general, set Vk has depth 2k−1. Node sets S and S′

are equivalent if they have the same depth and class string.
We observe that all messages j with vj ∈ Vk are sent to a node in Vk−1 from

some node in Vk−1,k, i.e. a node of class k−1. Also, there are no nodes of higher
class in Vk and this is the only node of class k − 1 a node traverses in Vk. From
these observations we may derive that all messages j with vj ∈ Vk which are sent
over the same node v ∈ Vk−1,k are sent from this node in a single packet. This
can be seen as follows. The total accumulated delay of kind 2 and 3 that any
message has incurred when sent from v is at least 2kΔ + Δ because v is of class
k−1. The total accumulated delay of kind 2 and 3 that any message has incurred
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Fig. 1. Node set Vk and layers U0,k, . . . , Uk−1,k for k = 1, . . . , 5

when it arrives at v is at most 2k−1Δ + 2k−1Δ, because the maximum class of
any other node in Vk is k−2 and each message has traversed at most 2k−1 nodes.
As the clock drift is bounded by Δ and the difference between the minimum and
maximum delay of any two messages is at most (2kΔ+Δ)−(2k−1Δ+2k−1Δ) = Δ
all messages j with vj ∈ Vk which are sent over v in PCC must be sent from this
node in a single ASC-packet.

Now we are in position to prove our lemma using induction on k. Suppose
the lemma holds for V0, . . . , Vk. Consider set Vk+1; this set is partitioned into
layers U0,k+1, . . . , Uk,k+1. For 	 = 0, . . . , k − 1 layer U�,k+1 is equivalent to set
V�+1, hence all messages j with vj ∈ U�,k+1 which are sent from the same node
in U�,k+1 are sent in a single packet. Thus there are at most k packets which
arrive at any node v ∈ Uk,k+1. As Uk,k+1 has depth 1, all messages which have
v as their release node, are sent from this node in a single packet. Hence, the
total number of packets sent from any node in Vk+1 is bounded by k + 1. This
proves the lemma. ��

Theorem 5. ASC is (1 + 4Δδ/L, log2 δ)-competitive.

Proof. Consider a packet P sent by the optimal solution. Let PASC be the set
of packets sent by the ASC-algorithm which contain at least one message from
P . Let Ni,k = {j ∈ Ni|τvj ∈ Vk}, for i, k ∈ N, 1 ≤ i ≤ �log U	, 1 ≤ k ≤ �log δ	.
Observe that for any choice of budget on the latency L, there are at most 2 log δ
nonempty sets Ni,k. Using this, it follows from Lemma 2 and Lemma 3 that
|PASC| = O(log2 δ). Hence, the communication costs of the ASC-solution are at
most O(log2 δ) times the cost of an optimal L-bounded solution.

The latency of any message j is at most L + Δτvj + 2Δτvj + Δ, where the
sum consists of the delay of kind 1,2,3 and the clock drift. Thus, the latency of
message j is at most (1 + 4Δδ/L) times the budget on the latency. ��

If the drift is very small, competitiveness of ASC approaches the lower bound
of (1, log δ) of the synchronous case, which we proved in [3]. If the drift is of the
same order as the latency, i.e. Δ = O(L), then the SL algorithm, with λ = 1,
has strictly better (β, α)-competitive ratio, than the ASC algorithm. In case of
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such drifts, it is not plausible anymore to consider the clocks to be synchronized
in any sense.

5 Conclusions and Open Problems

We presented on-line distributed algorithms for data aggregation in sensor net-
works. We considered algorithms under two different models for sensor clocks.
For the almost synchronous time model we presented an algorithm which min-
imizes communication costs under a small excess of the latency budget. These
are the first analyses of algorithms for this model, which models actual sensor
networks closer than the known ones. We emphasize that the results depend
linearly on the drift, and that if the drift is very small our algorithms approach
best possible competitive ratios.

For the asynchronous time model we presented an algorithm which balances
the communication and latency costs up to a factor log U , where U is the ratio
between maximum and minimum allowed delay. We showed that no memoryless
algorithm can have a competitive ratio which is more than a factor log U better
than ours, and in case the latency budget is not too small our algorithm is best
possible within the class of memoryless algorithms.

The competitive ratio of our asynchronous algorithm is almost balanced; it
would be interesting to find an algorithm with balanced ratios, equal to the
lower bounds we presented in this paper. Another path for future research is to
make a more careful analysis of the almost synchronous time model, in order
to determine the maximum clock drift for which almost synchronous algorithms
have better competitive ratio than asynchronous algorithms.
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