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Abstract In wireless sensor networks, data aggregation al-

lows in-network processing, which leads to reduced packet

transmissions and reduced redundancy, and thus is helpful to

prolong the overall lifetime of wireless sensor networks. In

current studies, Elliptic Curve ElGamal homomorphic encryp-

tion algorithm has been widely used to protect end-to-end data

confidentiality. However, these works suffer from the expen-

sive mapping function during decryption. If the aggregated

results are huge, the base station has no way to gain the orig-

inal data due to the hardness of the elliptic curve discrete

logarithm problem. Therefore, these schemes are unsuitable

for the large-scale WSNs. In this paper, we propose a secure

energy-saving data aggregation scheme designed for the

large-scale WSNs. We employ Okamoto-Uchiyama homo-

morphic encryption algorithm to protect end-to-end data con-

fidentiality, use MAC to achieve in-network false data filter-

ing, and utilize the homomorphic MAC algorithm to achieve

end-to-end data integrity. Two popular IEEE 802.15.4-com-

pliant wireless sensor network platforms, Tmote Sky and

iMote 2 have been used to evaluate the efficiency and feasi-

bility of our scheme. The results demonstrate that our scheme

achieved better performance in reducing energy consumption.

Moreover, system delay, especially decryption delay at the

base station, has been reduced when compared to other

state-of-art methods.

Keywords Data aggregation . Confidentiality . Integrity .

Homomorphic encryption . Large-scale wireless sensor

networks

1 Introduction

Wireless sensor networks (WSNs) have attracted a great deal

of research attention due to their wide-range of potential ap-

plications, such as environmental monitoring, health care,

wildlife surveillance, accident report, etc. [1, 2]. Recently,

advances in microprocessor and wireless communication

technologies have enabled the deployment of large-scale

WSNs to obtain fine-grained, high-precision sensing data

[3]. WSNs consist of large numbers of sensor nodes

constrained in storage space, battery power, and computation-

al capability. Therefore, reducing energy consumption is a

critical concern for WSNs.

Data aggregation allows in-network processing, which

leads to fewer packet transmissions and reduces redundancy

and thus is of benefit for prolonging the overall lifetime of

WSNs [4]. With such technique, data sensed by multiple

member nodes are aggregated into a single one by applying

some aggregation functions such as Sum, Average, MAX, etc.

and finally transmitted to the base station via the wireless link.

Apparently, communication overhead is lessened since only

the aggregated result is transmitted to the base station. Thus,

data aggregation is beneficial to increase the WSN’s overall

lifetime.

However, due to the hostile and unattended environments

deployed, WSNs are subject to various attacks, such as replay
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attacks, injection attacks, tampering attacks and so on. As the

sensor nodes in the WSNs are limited in resources, this makes

existing abundant security algorithms unsuitable for resource-

constrained WSNs. Therefore, ensuring security for data ag-

gregation is a challenge.

To guarantee secure data aggregation, numerous

schemes are proposed successively. The authors of [5] pro-

posed two recoverable concealed data aggregation (CDA)

schemes, RCDA-HOMO for homogeneous WSNs and

RCDA-HETE for heterogeneous WSNs. In [6], the authors

proposed a CDAMA scheme for multi-application envi-

ronments, in which ciphertexts from different applications

can be aggregated into a single one and the base station can

extract application-specific data from aggregated cipher-

texts by a corresponding key. Unfortunately, this scheme

is not suitable for the WSNs where the number of clusters

or applications is large. What is more, it does not achieve

data integrity protection. Shim et al. [7] proposed a data

aggregation scheme with confidentiality and integrity,

which provides in-network data filtering and authorized

aggregation.

These above secure data aggregation schemes use Elliptic

Curve ElGamal (EC-EG) homomorphic encryption algorithm

to achieve end-to-end data confidentiality, which makes them

suffer from an expensive mapping function during decryption

and become too costly to revert. If the aggregated results are

large, the base station has no way to gain the original data due

to the hardness of the elliptic curve discrete logarithm problem

(ECDLP). Therefore, these schemes are unsuitable for the

large-scale WSNs.

Recently, Boudia et al. [4] proposed a novel secure aggre-

gation scheme which uses a symmetric based homomorphic

encryption technique to provide end-to-end data confidential-

ity. However, to achieve data integrity protection, the mes-

sages require to be formed as concatenations of all messages

frommember nodes, i.e.m =m1∣∣… ∣∣mn. Thus, the size of

the resulting message grows linearly with the number of mem-

ber nodes or cluster heads. Therefore, their recoverable sens-

ing data approach is very inefficient if the message size is

large.

To solve the above problems, we design a secure data ag-

gregation scheme that is suitable for large-scale wireless sen-

sor networks but still reduces the energy consumption. We

employ Okamoto-Uchiyama (OU) homomorphic encryption

algorithm to protect end-to-end data confidentiality, use MAC

to achieve in-network false data filtering, and utilize the ho-

momorphic MAC (H-MAC) algorithm to achieve end-to-end

data integrity. Our contributions can be summarized as

follows:

1. We correct some errors discovered in [8]; we amend the

security flaw found in [9] and strengthen security for the

usage of the H-MAC algorithm.

2. We propose a secure data aggregation scheme suitable for

the large-scale WSNs. In previous schemes, decryption

efficiency is not high due to the hardness of ECDLP and

even the base station has no way to decrypt ciphertexts if

the aggregated results are large, which easily makes the

system paralyzed since the base station is busy in

decrypting messages. Fortunately, our scheme makes it

possible for the base station to quickly decrypt ciphertexts

and obtain the sensing data even though the aggregated

results are very large.

3. End-to-end data confidentiality and integrity are provided

using the OU homomorphic encryption algorithm and the

H-MAC scheme, respectively.MAC is used to achieve in-

network false data filtering and thus avoid wasting unnec-

essary energy by not transmitting false data. Analysis

shows that our scheme has a good behavior in reducing

energy consumption. Also, delay, especially decryption

delay at the base station is shorter when compared to other

state-of-art methods.

4. The efficiency and feasibility of our scheme have been

evaluated based on its deployment on Tmote Sky and

iMote 2. The performance of the proposed scheme has

been compared with other related schemes in terms of

computation overhead, communication overhead, energy

consumption and system delay.

The rest of this paper is organized as follows. Section 2

reviews the related works. Section 3 introduces some algo-

rithms mentioned and other related cryptographic tools.

Section 4 comments on Bconfidentiality and integrity for data

aggregation in WSN using homomorphic encryption^.

Section 5 comments on Bsymmetric-key based homomorphic

primitives for end-to-end secure data aggregation in wireless

sensor networks^. Section 6 presents the system model.

Section 7 describes the construction of our scheme in detail.

Section 8 presents security analysis. Performance analysis is

given in section 9 and section 10 concludes this paper.

2 Related works

As a vital method of data collection, data aggregation has

received widespread attention. To achieve secure data aggre-

gation, numerous data aggregation schemes have been widely

proposed.

In conventional hop-by-hop aggregation schemes [10, 11],

an aggregator has to decrypt each received message, then ag-

gregate all messages according to a corresponding aggrega-

tion function and, finally, encrypt the aggregated result before

forwarding to next hop. This means that aggregators are re-

quired to store keys for decryption and, thus, a compromised

aggregator can reveal transmitting messages or forge aggre-

gated results. To decrease this impact, homomorphic
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encryption schemes have been applied to WSNs [12–14]. By

homomorphic encryption schemes, end-to-end data confiden-

tiality is provided. In end-to-end data aggregation schemes,

aggregators directly aggregate encrypted data without

decrypting them and, therefore, compromised aggregators

cannot access secret information.

Girao et al. [15] introduced the method of aggregating

encrypted data in WSNs. They proposed a CDA scheme

based on symmetric homomorphic encryption to achieve the

aggregation of encrypted data. However, all nodes in the work

share a common key for encryption, which means that the

system security will collapse if a node is compromised. The

problem is solved by generating a temporal key for each com-

munication in [16], the authors of which proposed a CDA

scheme based on one-time pad. However, this scheme re-

quires that identifiers of all participants are sent to ensure

accuracy of the aggregated results, which increases the trans-

mission overhead. The authors of [17] proposed an approach

to avoid identifiers transmission; the algorithm requires that

all nodes respond to the query from the base station and values

of nodes having no sensed data are set to zero.

Parmar et al. [9] proposed an integrity and privacy preserv-

ing end-to-end secure data aggregation protocol, in which a

symmetric homomorphic encryption algorithm is used to pro-

tect data confidentiality, MAC is utilized to achieve in-

network false data filtering at cluster nodes and the H-MAC

algorithm is employed to achieve data integrity at the base

station. They claim that their protocol can resist some well-

known cryptographic attacks, such as Known-Ciphertext at-

tack, Known-Plaintext attack, the Sybil attack, Node Capture

attack, and so on. However, we find that this protocol cannot

achieve the security level they claimed. Also, this scheme

cannot resist replay attacks.

Recently, Boudia et al. [4] proposed a novel secure aggre-

gation schemewhich uses Stateful PublicKeyCryptography

(StPKE), symmetric based homomorphic technique and

MAC to provide end-to-end security. However, to achieve

data integrity protection, the messages require to be formed

as concatenations of all messages from member nodes, i.e.

m =m1∣∣… ∣∣mn. Thus, the size of the resulting messages

grows linearly with the number of member nodes or cluster

heads. Therefore, their recoverable sensing data approach is

very inefficient if the message size is large.

Unlike these above schemes using symmetric homomor-

phic encryption, the authors in [18] study the suitability of a

group of asymmetric based homomorphic encryption algo-

rithms and make a detailed analysis of performance in terms

of encryption, decryption and bandwidth. The authors show

that EC-EG algorithm is the best candidate. However, if the

aggregated result is not small enough, EC-EG requires signif-

icantly more computation power for the decryption than other

schemes. It may be that, the plaintext m cannot be recovered

from mP because of the hardness of the ECDLP. The authors

also state that OU is the best scheme if EC-EG cannot be

applied, e.g., in very large networks.

The authors of [5] proposed two recoverable CDA

schemes, RCDA-HOMO for homogeneous WSNs and

RCDA-HETE for heterogeneous WSNs, in which the base

station not only can recover each sensing data, but also can

check the integrity of each original data. However, to verify

the validity of signatures, the base station needs pairing com-

putation. It is well known that the pairing operation is very

expensive. In addition, decryption of a ciphertext is equal to

solution of the ECDLP, which brings much heavier computa-

tion overhead due to the hardness of the ECDLP. Although the

base station is powerful, it is much too heavy, which leads to

very low efficiency in verification. Also, the authors in [7]

point out that RCDA-HETE cannot provide data integrity like

their claim. Moreover, these two schemes do not provide au-

thorized aggregation.

In [6], the authors proposed a CDAMA scheme for multi-

application environments, in which ciphertexts from different

applications can be aggregated into a single one and the base

station can extract application-specific data from aggregated

ciphertexts by a corresponding key. Unfortunately, this

scheme is not suitable for the WSNs where the number of

clusters or applications is large. What is more, it does not

achieve data integrity protection.

Recently, Shim et al. [7] proposed a data aggregation

scheme with end-to-end confidentiality and integrity using

an EC-EG homomorphic scheme and a signature scheme,

which also provides in-network data filtering and authorized

aggregation, but incurs high energy consumption. Also, de-

cryption involves solving the ECDLP, which will undoubtedly

decrease the decryption efficiency.

The aforementioned asymmetric homomorphic

encryption-based schemes are not suitable for the large-scale

WSN. The use of the EC-EG homomorphic encryption algo-

rithm makes it difficult that for the base station to decrypt the

aggregated ciphertexts and obtain the sensing data. If the ag-

gregated results are large, the base station has no way to gain

the original data due to the hardness of ECDLP. Also, these

schemes incur a considerable overhead in terms of energy

consumption and delay due to the cryptographic algorithms

employed.

Our contribution is motivated by the above facts that the

existing secure data aggregation schemes based on symmetric

or asymmetric homomorphic encryption are unsuitable for the

large-scale WSNs, which also justifies the importance of this

work.

3 Preliminaries

In this section, we briefly introduce some algorithms men-

tioned and other related cryptographic tools.
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3.1 Okamoto-Uchiyama (OU) algorithm

The Okamoto-Uchiyama (OU) algorithm [19] is a public-key

cryptosystem as secure as factoring and based on the ability of

computing discrete logarithms in a particular subgroup [18].

Detailed descriptions are presented in Fig. 1.

3.2 Elliptic curve ElGamal (EC-EG) algorithm

EC-EG is additively homomorphic and ciphertexts are com-

bined through addition. Its security is based on the ECDLP.

This algorithm is to map plaintext m to the EC point mG, and

reverse m from mG. However, the demapping of the mG back

tom is impractical. Since it is very hard to be inverted for point

multiplication of ECC, the only solution is a brute force com-

putation that relies on a limited domain of the mapping [7, 18].

Detail descriptions are shown in Fig. 2.

3.3 Homomorphic MAC scheme

In 2009, a homomorphic MAC algorithm was proposed by

Agrawal et al. to check the integrity of aggregated data.

Previous MAC cannot achieve the additive property:

MAC(a + b) ≠MAC(a) +MAC(b), so it cannot be directly used

for data aggregation. Fortunately, the homomorphic MAC

scheme makes it possible to ensure the addition over authen-

ticated data and, thus, can be used to verify the integrity of

aggregated data. The correctness and security proof of this

algorithm can be found in [20]. Fig. 3. gives detailed descrip-

tions of the homomorphic MAC.

3.4 Hash-based Message Authentication Code (HMAC)

The HMAC is generally used to check data integrity and

source. It is implemented by combining a secret key with a

one-way, collision-resistant hash function, such as MD5,

SHA-1 and so on. The security strength of HMAC is due to

the underlying hash function. We use HMAC (k, m) to repre-

sent digest of m with a key k.

4 Comments on BConfidentiality and integrity

for data aggregation in WSN using homomorphic

encryption^

In secure data aggregation schemes, homomorphic en-

cryption is usually used to protect data confidentiality.

The authors of [18, 21] analyze security and performance

for several common asymmetric homomorphic encryp-

tion schemes, including EC-NS, EC-OU, EC-P, EC-EG

and OU. Recently, Othman et al. [8] proposed a data

aggregation scheme with confidentiality and integrity in

WSN using homomorphic encryption, in which the au-

thors adopt OU to protect data confidentiality; however,

EC-EG instead of OU is used as homomorphic encryp-

tion for this paper in Aggregate Phase and Verify Phase.

The processes for Aggregate Phase and Verify Phase are

the same as [5]. The review of Othman et al.’s data

aggregation scheme is presented in Fig. 4.

From ①② in Fig. 4, we can see that the authors intend

to employ OU homomorphic encryption algorithm to pro-

tect data privacy. However, we can see that r; sð Þ in

Aggregated Phase and rmap() in Verify Phase do not ap-

pear in Encrypt-Sign Phase from ③④, because they be-

long to the EC-EG homomorphic encryption algorithm

rather than OU.

So, we correct Othman et al.’s data aggregation scheme as

follows:

Setup Phase. The base station generates parameters

{n,g,h,p,q} and then publishes parameters {n,g,h} as its

public key. These system parameters are preloaded on

each sensor node. {p,q}are kept only by the base station

and used as its private key.

Encrypt-Sign Phase.

1. Encoding: mi = di∣∣0
β,where β = l ⋅ (i − 1), di is the sens-

ing data by the node i.

2. Sign: σi ¼ hi
xi ,where hi =ℋ(di).

3. Encrypt: ci ¼ gmiþnri .

Fig. 1 The Okamoto-Uchiyama

(OU) algorithm
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Aggregation Phase.

1. Aggregating Ciphertext:

c ̂ ¼ ∏
η−1
i¼1g

miþnri ¼ g∑
η−1

i¼1
miþnri ¼ g∑

η−1

i¼1
mi .

2. Aggregating Signature: σ î ¼ ∑
η−1
i¼1σi.

Verify Phase.

1. Decrypt:

c
0
¼ c ̂p−1mod p2 ¼ g∑

η−1

i¼1
mi ⋅ p−1ð Þmod p2 ¼ gp

∑
η−1

i¼1
mi ,

m
0
¼ ∑

η−1
i¼1mi ¼ L c

0� �

L gp

� �−1

.

2. Decoding: di =m'[(i − 1) ⋅ l, i ⋅ l − 1] , i = 1 , 2 , … , η − 1.

3. Verify: e g1;σ ̂ð Þ ¼ ∏
η−1
i¼1e vi; hið Þ.

5 Comments on BSymmetric-key based

homomorphic primitives for end-to-end secure data

aggregation in wireless sensor networks^

Recently, Parmar et al. [9] proposed an integrity and privacy

preserving end-to-end secure data aggregation protocol, in

which a symmetric homomorphic encryption algorithm is

used to protect data confidentiality and a homomorphic

MAC algorithm is employed to achieve data integrity. They

claim that their protocol can resist some well-known crypto-

graphic attacks, such as Known-Plaintext attack, Node

Capture attack, and so on. However, we found that this proto-

col cannot achieve the security level they claimed.

5.1 The weakness found

In this scheme, all the leaf nodes use the same symmetric key

to generate a homomorphic MAC tag. What is more, the

Fig. 3 The Homomorphic MAC

scheme

Fig. 2 The Elliptic Curve

ElGamal (EC-EG) algorithm
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homomorphicMAC tag is generated over a plaintextm, which

leads to security weakness. Once a node is compromised,

messages of all the nodes are revealed and, thus, an adversary

can forge the aggregated results to deceive the base station. As

such, this protocol cannot provide security against Known-

Plaintext attack or, Node Capture attack. The analysis is as

follows.

(1) Known-Plaintext Attack. In such attack, an adversary

tries to deduce the key or recover other plaintexts from

their own ciphertexts by some plaintext-ciphertext

pairs. In WSN, sensor nodes are easily compromised

due to the hostile and unattended environment thus, a

compromised node may produce such plaintext-

ciphertext pairs. In [9], the authors state that the key

for each node is only shared with the base station and

other nodes cannot access it, so, even though a node is

compromised and its key is revealed, an adversary has

no way to gain other nodes’ information through it and

thus can resist Known-Plaintext Attack. However, as

all the leaf nodes use the same key to encrypt the

plaintext, if a node is compromised, the messages of

all the nodes will be discovered. Therefore, this proto-

col cannot resist such attack.

(2) Node Capture attack. If a node is captured, sensor read-

ings and its key information stored will be discovered. In

this scheme, the authors state that they use a symmetric

homomorphic encryption for privacy protection, and any

captured sensor node can only reveal its own sensor

readings, but cannot decrypted the ciphertexts encrypted

with other sensor nodes’ encryption keys. Although the

adversary cannot directly decrypt ciphertexts to obtain

other nodes’ plaintexts, he can decrypt homomorphic

MAC tags with the same k’ to gain sensor readings of

other nodes. Hence, the protocol cannot protect the net-

work against node capture attacks.

Apart from the above weaknesses identified in the protocol,

we also found that the protocol cannot resist replay attack. In

addition, the intermediate nodes need to store key information

of their child nodes, which make them especially attractive for

adversaries. Therefore, to guarantee security, the intermediate

nodes are best equipped with a tamper-resistant device. In

addition, if the number of child nodes is large, the storage

space for normal nodes is insufficient. What is more, the in-

termediate nodes not only encrypt messages and generate

MAC and homomorphic MAC tag like their child nodes, but

also verify each message received, which results in more en-

ergy consumed than their child nodes and causes an energy

imbalance between the intermediate nodes and child nodes.

Hence, the intermediate nodes can be considered setting as

high-end nodes.

Fig. 4 The review of Othman

et al.’s data aggregation scheme
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6 System model

In this section, we state two models: network model and

adversary model. The network model defines the network

architecture; the adversary model defines common attacks

against which a secure data aggregation scheme should

protect.

6.1 Network model

In our scheme, the network topology is a cluster-based ag-

gregation structure and each cluster possesses a cluster head

(CH) (see Fig.5). AWSN contains large numbers of sensor

nodes and one base station. Since storing keys share with

their member nodes and verify packets received, this makes

them require more storage space and higher computational

capability than member nodes, and thus, CHs are set to be

powerful high-end sensors while member nodes are low-

end nodes. We suppose that each node has a unique identi-

fier (ID) and can be identified by their IDs. After deploy-

ment, all nodes are stationary and the base station (BS) is

fixed. We assume that the BS is powerful and absolutely

t rus ted . F ina l ly, t ime is assumed to be loose ly

synchronized.

6.2 Adversary model

We categorize the adversary’s abilities as follows:

1) An adversary can obtain secret information by passively

eavesdropping data being transmitted.

2) An adversary can interfere with the communication by

replaying old packets, modifying the transmitted data,

injecting false data or unauthorized aggregation.

3) An adversary can physically compromise a sensor node

or a CH.

Next, we further refine these three kinds of attacks into

three categories based on abilities and purposes of adversaries.

In category A, an adversary is aimed at obtaining secret

information.

A1: Eavesdropping attack. Eavesdropping attack con-

cerns the passive adversary aiming to get information.

In category B, an adversary aims to send false data by

modifying the contents, replaying old packets, injecting bogus

data or unauthorized aggregation to deceive the base station

even though he does not have the secret key.

B1: Malleability. Malleability allows an adversary to

modify data without knowing the content.

B2: Replay attack. An adversary intercepts the transmit-

ted data, and then replays it in the future to deceive the

BS.

B3: Injection attack. An adversary can generate

valid ciphertexts under the public key of the base

station and then inject them into the network to

deceive the base station and waste the transmission

energy.

B4: Unauthorized aggregation. The idea of such an at-

tack is to aggregate two or more proper ciphertexts into a

forged, but authentically looking one in order to cheat the

base station.

In category C, an adversary is aimed at the sensing data or

secret keys, for example, keys for generating MAC and H-

MAC.

C1: Compromise attack. An adversary can compromise a

CH or a sensor node to try to obtain the sensing data.

7 The proposed scheme

Our secure data aggregation is composed of four phases:

Setup, Encrypt, Aggregate, Verify. The Setup phase is to

prepare and preload some essential secrets and system pa-

rameters for each sensor node and the BS. When a node

wants to send its sensing data to its CH, it firstly carries

out Encrypt, and then sends the result to its CH. Unlike

other secure data aggregation schemes in which CH is only

responsible for aggregation, in our scheme, each CH needs

to verify all packets received from its member nodes, which

can filter part of the bogus packets in-network and thus can

save energy in transmission in Aggregate phase. The last

phase is Verify. The BS individually verifies the integrity ofFig. 5 The network model
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the aggregated result for each cluster. Only the aggregated

results passing integrity verification will be decrypted by

the BS and have chance to participate in the final aggrega-

tion. Table 1 lists the notions used later.

[Setup]. Before the deployment of theWSN, the base station

produces necessary secrets and system parameters as follows:

– The base station distributes a cluster identifier CIDjto

each node in cluster j; namely, the cluster identifiers of

nodes in the same cluster are identical.

– The base station chooses an identifier IDi ∈ [1, … , n]for

each node in WSN and preloads them into nodes. For

simplicity, we assume that IDi = i.

– The base station shares a unique symmetric-key pair

kj = {kj1, kj2}with all nodes in the same cluster j, where

symmetric-key pair kj = {kj1, kj2}is used to generate H-

MAC to protect end-to-end data integrity.

– The cluster head CHjshares a symmetric-key ki − jwith its

each member nodes in cluster j and each cluster head CHj

also shares a symmetric-key kj − BS with the base station,

where ki − j and kj − BS are used to produceMAC to achieve

in-network false data filtering.

– The base station generates its public key (n, g, h)

and private key (p, q) according to OU algorithm,

then keeps the private key and publishes its public

key.

[Encrypt-Sign]. When a sensor nodeCMij(i = 1, … , η − 1)

wants to send sensing data mij to its cluster CHj, it needs to

compute:

– Ciphertext. A member node CMijpicks a random number

r∈Rℤn and computes its ciphertext cij ¼ gmijhrijmodn un-

der the public key of the base station through OU

algorithm.

– Homomorphic MAC. In our scheme, the homomorphic

MACHij is generated over the ciphertext instead of plain-

text, which solves the problem that once a member node

in one cluster is compromised, all the member nodes’ data

will be disclosed because the keys used to generate ho-

momorphic MAC for each node in one cluster are

identical.

– MAC. We use MAC to achieve in-network false data fil-

tering, which thus avoids consuming unnecessary trans-

mission energy to transmit false data packets. Timestamp

t is employed to guarantee data freshness. Algorithm 1

presents this process.

[Aggregate].When the cluster head CHj receives (cij ,Hij ,

MACij , tij) from its member nodeCMij(i = 1, … , η − 1), it will

perform the following operations:

– Check timestamps. The CHjchecks the validity of the

timestamp tij. If the timestamp tij is valid, the CHj will

verify MAC. If not, reject it.

Table 1 Notations and their description

Notation Description

CIDj Cluster identifier of sensor nodes belonging to cluster j

η Number of sensor nodes per cluster

mij Sensing data of member node CMij

Hij The homomorphic MAC generated by CMij

nc Number of clusters in the whole network

CHj The cluster head node of the jth cluster in the network

CMij The ith member node in the jth cluster

magg The sum of all valid sensing data
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– Verify MAC. The CHj computes HMAC(ki − j, cij| |Hij| | tij)

and compares it with MACij received. If they are equal,

then the CHj aggregates the corresponding ciphertext and

homomorphic MAC, or the packet will be rejected.

– Aggregate. In this step, the cluster headCHj(j = 1, … , nc)

acts as a data aggregator. The CHj aggregates η − 1 ci-

phertexts received from its member nodes and its own

ciphertext into a single ciphertext cj. Also, it combines

η − 1 homomorphic MAC Hij and its own Hij into one

homomorphic MAC Hj. Then, the CHj sends the output

of Algorithm 2 to the base station or the nearest CH.

When a CH receives a packet from another CH, it only

forwards it to the base station, and does not aggregate or

verify it.

[Verify].When the base station receives (cj,Hj,MACj, tj), it

will perform the following operations:

– Check timestamps. The base station checks the

validity of the timestamp tj. If the timestamp tj
is valid, the base station will verify MAC. If

not, reject it.

– Verify MAC. The base station calculates HMAC(kj − BS,

cj| |Hj| | tj) and compares it with MACj received. If they

are equal, it can be sure that the ciphertext received and

the corresponding homomorphic MAC are not modified

by adversaries.

– End-to-end integrity verification. The base station

verifies the integrity of each cj through the homo-

morphic MAC scheme. If the verification holds,

then the aggregated ciphertext cj will be decrypted

and has chance to participate in the final aggrega-

tion, otherwise it will be rejected. In our scheme,

the packet of each cluster is verified individually;

that is to say, after each cluster’s packet is verified

successfully, the base station then decrypts them

and aggregates all valid plaintext mj rather than di-

rectly verifying the final aggregated results. In this

way, if the verification is failed to pass for one

cluster, only the packet of this cluster is discarded.

Unlike other schemes [4, 7], once the verification

fails, all packets, including valid packets, will be

abandoned, which means all data need to be

retransmitted.

– Decrypt. In this step, the base station decrypts the

aggregated ciphertext cj and obtains the aggregated

plaintext mj for each cluster. For those ciphertexts

failed to pass end-to-end integrity verification, it is

not necessary to decrypt them, which results in sav-

ing energy consumption, because, for a modified

packet, verification then decryption only involves

verification overhead while decryption then verifica-

tion consumes energy in both verification and

decryption.

– Get the final aggregated result magg. Only by pass-

ing the end-to-end integrity verification, can the

aggregated plaintext mj participate in the final ag-

gregation; namely, magg is the result of the sum for

all mj whose ciphertext passes the end-to-end integ-

rity verification. Its advantage being that, if some

received messages are not successfully verified,

other valid packets can be utilized. Algorithm 3

describes the detail verification process.
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8 Security analysis

In this section, we analyze the security of our scheme in terms

of data confidentiality and integrity.

Theorem 1 Our scheme provides end-to-end data confidenti-

ality in the presence of the adversary of category A.

Proof Since the sensing data of each sensor node are

encrypted with the public key of the base station, only the

corresponding private key can decrypt the encrypted mes-

sages. However, the private key is only stored in the base

station, so, even though an adversary of category A eaves-

drops on the transmitted packet, he cannot decrypt the cipher-

texts. In the following, we analyze how our scheme is secure

against attacks launched by an adversary of category A.

Eavesdrop attack: In our scheme, the sensing data are

encrypted under the public key of the base station during

the transmission process. After receiving packets from its

member nodes, a CH does not decrypt messages but only

aggregates them. Only the base station can decrypt mes-

sages to obtain the sensing data. Even though an adver-

sary eavesdrops on a transmitted packet, he has no way to

decrypt the ciphertext without the private key of the base

station. End-to-end confidentiality of our scheme can be

reduced to the security of the underlying homomorphic

encryption scheme, OU. Detailed security proof can be

found in [19].

Theorem 2 Our scheme provides end-to-end data integrity in

the presence of an adversary of category B.

Proof We utilize a homomorphic MAC scheme to solve the

adversary of category B problem; if malicious behavior

against data integrity occurs, the end-to-end integrity verifica-

tion will not be successful. The security proof for the homo-

morphic MAC can be found in refer to [20]. In the following,

we analyze how our scheme is secure against attacks launched

by an adversary of category B.

Malleability: Malleability is a common threat for all ho-

momorphic encryption schemes. An adversary can alter a

ciphertext by injecting false data, but it will not be detect-

ed due to the homomorphic property. For example, (m +

k) mod n may be modified to (m + x) + kmod n, where x

is the false data injected by an adversary. In our scheme,

we use a homomorphic MAC scheme to verify the integ-

rity of the data. If the encrypted data is tampered, the

integrity verification will fail and thus the BS will refuse

the received packet.

Replay attack: An adversary can impersonate any node

through replaying old packets recorded from past com-

munications; therefore, we add current timestamps to

messages being signed to resist replay attacks. Thus, the

receivers can ensure data freshness by checking the va-

lidity of the timestamps.

Injection attack: With public key cryptography, any ad-

versary can generate a reasonable ciphertext and inject it

into the network to deceive the base station. In our

scheme, each sender (a sensor node or a CH) computes
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a MAC using the symmetric key shared with the receiver

(a CH or the base station), so the receiver will reject these

injected packets in the BVerify MAC^ step if an adversary

injects its false data.

Unauthorized aggregation: Unauthorized aggregation is

a very specific weakness of homomorphic encryption

schemes [18]. The idea of such an attack is to aggregate

two or more proper ciphertexts into a forged but format-

valid ciphertext to deceive the BS. If the CHs only aggre-

gate data, anyone can impersonate this to produce a false

aggregated result by dropping some packets and, thus,

misleading the BS. To protect a homomorphic encryption

scheme from unauthorized aggregation, in our scheme,

each CH not only performs aggregation operation, but

also generates MAC and homomorphic MAC on the ag-

gregated result. Therefore, the BS can check the authen-

ticity of the CHs and the integrity of the aggregated

results.

Theorem 3 Our scheme can provide security against an ad-

versary of category C.

Proof We employ a homomorphic MAC scheme to provide

end-to-end confidentiality. The CHs are only responsible for

aggregation rather than decryption. Therefore, even if a CH is

compromised, an adversary cannot obtain the sensing data. In

addition, we compute a homomorphic MAC over ciphertext

instead of plaintext and, for different clusters, the keys used to

generate a homomorphic MAC are different; therefore, even if

a sensor node is compromised, only its data will be disclosed,

the data for other nodes will be still secure.

Compromise attack: We classify compromise attack into

two cases: (1) Compromise a CH. Since the CHs store

important data, it makes them likely to be targeted by

adversaries. However, even if a CH is compromised, an

adversary cannot obtain the sensing data, because the

CHs do not store the private key of the base station, and

decrypting a ciphertext is impractical. (2) Compromise a

sensor node. If a sensor node is compromised, it only

reveals its own sensing data and an adversary has no

way to get key and data for other nodes. In [9], once an

adversary gains the key used to generate the homomor-

phic MAC by compromising a node, all nodes’ data will

be disclosed, since they calculate the homomorphicMAC

over the plaintext and the keys used for the homomorphic

MAC are identical for all sensor nodes. However, we

compute a homomorphic MAC over the ciphertext and

the keys used to produce a homomorphic MAC for dif-

ferent clusters are different. In this way, even if a node is

compromised, the result cannot have a significant impact

upon the overall system security.

9 Performance analysis

In this section, we evaluate the performance of our scheme in

terms of cost evaluation and execution time (or Bdelay^). Cost

evaluation involves computation overhead, communication

overhead and energy consumption. Delay includes processing

delay, aggregation delay and decryption delay. We also pro-

vide a quantitative analysis of the proposed scheme compared

to RCDA [5], CDAMA [6] and, Sen-SDA [7]. The reason

why we choose these three works for comparison is because

they provide a comparable security level (end-to-end confi-

dentiality and integrity) to ours. Symmetric key-based data

aggregation schemes are not considered, since symmetric

schemes are generally more efficient, but less secure than

asymmetric ones [6].

9.1 Security requirements

A 112-bits security level should be adopted to guarantee ade-

quate security according to [22], but security requirements in

WSNs are generally relaxed to satisfy efficiency constraints.

For example, [23] has adopted a 64-bit security level. We

employ a more conservative solution and use an 80-bit secu-

rity level (RSA-1024 and ECC-160 equivalent). In addition,

for the implementation of the other three works, the elliptic

curve we employ is an MNT curve over with embedding de-

gree of 6, as recommended in [24] for 80-bit security level.

9.2 Cost evaluation

9.2.1 Computation overhead

The implementation is done on Tmote Sky and iMote2 motes

[24]. The iMmote2 mote is equipped with a 32-bit ARM

XScale PXA27x microcontroller and the Tmote Sky mote

uses a 16-bit Texas Instruments MSP430 microcontroller.

On Tmote Sky, the current draw is 21.8mA in receiving mode

and 19.5mA in transmitting mode according to [25]. In

iMote2, according to [26], the current draw is 66mA in

receiving/transmitting mode at 104 MHz. The iMote2 plat-

form takes about 139 ms to execute a scalar multiplication

operation when working at 104 MHz while, according to

[24], Tmote Sky takes 4.1 s. We will use their experimental

results to estimate the energy consumption. In our scheme, we

choose iMote2 as CHs and Tmote Sky as member nodes.

To analyze the computation overhead, we denote symbols

SM and, E as the cost of one scalar multiplication and, a

modular exponentiation, respectively. Other cryptographic

operations, such as hash operations and modular addition are

not considered, since the cost of these operations is negligible

compared to SM and E. In Encrypt phase, a member node has

to compute its ciphertext, H-MAC and MAC, which requires

1E (gmhr = gm + nr, where h = gn mod n,)operation. In
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aggregation phase, a CH verifies the packets received and

then aggregates ciphertexts and H-MACs received from its

member nodes. The process does not involve energy-

consuming operations, just hash, modular additive and con-

catenation operations.

In an RCDA-HOMO scheme, a member node needs to

compute four SMs, of which one SM is required for signature

generation and three SMs for ciphertext generation. A cluster

head only performs point addition operation.

In a CDAMA scheme, the number of SMs that a member

node needs to compute linearly increases with the number of

clusters. If there are two clusters, then four SMs are required.

Similarly, if the number of cluster is n, 2n SMs are needed to

be calculated.

In a Sen-SDA scheme, a member node in one cluster needs

to calculate a ciphertext and generate a signature correspond-

ing to the ciphertext in the Encrypt-Sign phase, which requires

four SMs (hash, module additive and other low-overhead op-

erations are neglected). A cluster head needs 2 N + 1 SMs to

verify signatures from its N member nodes and one SM to

generate the signature of the aggregate result. The comparison

of computation overhead is shown in Table 2.

From Table 2, we can find that our scheme is the best in

terms of computation overhead. In the aggregation phase, the

CH needs to compute 2 N + 2 SMs in order to achieve in-

network false data filtering for a Sen-SDA scheme. However,

only several simple operations are involved in the proposed

scheme, which also provides in-network false data filtering by

MAC verification.

9.2.2 Communication overhead

Firstly, to achieve a fair comparison, we unify the value of

each common parameter. A point on an elliptic curve can be

denoted by coordinates (x, y) in a finite field Fp, with |p| = 163

bits. One can gain y by computing a square root if x and one bit

of y are both given. Therefore, the communication cost of

sending a point is 164 bits. In addition, both sensor nodes’

identities and timestamps are set to be 32 bits.

In our scheme, the ciphertext, MAC, H-MAC and

timestamp need to be transmitted in the WSN. According to

[18], a ciphertext generated by the OU algorithm is 1024 bits.

Here, we consider a 4-byte MAC and H-MAC for calculation

in accordance with [27], the authors of which have validated

the security of 4-byte MAC for WSNs scenarios. The

timestamp is also 4 bytes. Therefore, the size of one transmit-

ted packet in our scheme is 1120 bits.

In an RCDA-HOMO scheme, the transmitted message

contains ciphertext ci and the corresponding signature σi.

The size of the message is 482 bits, which contains two curve

points (164*2 = 328 bits) and one BON [28] signature (154

bits).

In a CDAMA scheme, the size of ciphertexts is (k + 1) ∗

256 + 1 bits according to [6], where k is the number of clus-

ters. If k = 3, then the total length of a transmitted message is

1024 bits.

In a Sen-SDA scheme, a transmitted message includes

sender’s ID, receiver’s ID, ciphertext C, signature σ and

timestamp tt. The length of the ciphertext C = <C1 ,C2> con-

taining two points of the elliptic curve is 328 bits. The signa-

ture σi = < Ri , Ti , zi> consists of two points of the elliptic

curve and one number in ℤq, so its length is 488 bits. Two

IDs are 64 bits and timestamp is 32 bits. Therefore, the total

length of one message sent by the sensor node is 912 bits.

Table 3 shows the comparison of communication overhead.

From Table 3, we can see that our scheme is not the best in

communication cost. This is because the security of the pro-

posed scheme is based on the hardness of the integer factori-

zation problem and the curve has to be chosen from a large

field, resulting in higher encryption overhead [6]. Other

schemes benefit from their smaller modulus operations in both

ciphertext size and computation efforts, since their security is

based on the hardness of ECDLP.

However, although our scheme is relatively inefficient in

terms of communication cost, the proposed scheme achieves

in-network false data filtering and is very helpful to save en-

ergy. As all these above data aggregation schemes use homo-

morphic encryption schemes based on asymmetric cryptogra-

phy to protect data confidentiality, anyone can generate valid

ciphertexts. If there appears large numbers of these false

packets, much energy will be wasted to transmit them.
Table 2 Comparison of computation overhead on member node and

CH

Encrypt (CMij) Aggregate(CHj)

RCDA-HOMO 4 SM --

CDAMA (k = 2) 4 SM --

CDAMA (k = 3) 6 SM --

CDAMA (k = 4) 8 SM --

Sen-SDA 4 SM 2 N + 2 SM

Our scheme 1 E --

k: the number of clusters in the whole network

N: the number of member nodes in one cluster

Table 3 Comparison of communication overhead

Communication (bits)

RCDA-HOMO 482

CDAMA (k = 2) 769

CDAMA (k = 3) 1025

CDAMA (k = 4) 1281

Sen-SDA 912

Our scheme 1120
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Fortunately, our scheme can filter these bogus packets en-

route and, thus, avoid consuming unnecessary energy due to

transmitting them. Also, in our scheme, the packet of each

cluster is verified individually. In this way, if the verification

fails to pass for one cluster, only the packet of this cluster is

discarded. Unlike other schemes, once the verification fails,

all packets, including valid packets, will be abandoned, which

means all data need to be retransmitted. To some extent, our

scheme can greatly save communication overhead in the case

event that one or more false packets reach to the base station.

In a practical application, this case is very likely to emerge.

9.2.3 Energy consumption

Energy consumption (EC) is the core issue in WSNs.

Communication and computation are two main factors that

affect energy consumption.

– ECs for computation. We can estimate ECs of each phase

utilizing the formulaW =U × I × t, whereU is the voltage,

I is the current draw, and t is the execution time for one

phase. According to [19], we find that a modular expo-

nentiation operation takes 7k/4 modular multiplications in

the extended binarymethod and the encryption process of

OU requires about 230 modular multiplications.

Additionally, the time required to compute binary field

multiplication at the 80-bit security level on Tmote Sky

platform is 8706 cycles according to [29]. Since a pairing

computation takes 10.4 × 106 cycles and the time con-

sumed is 1.27 s, we can estimate the cost of a multiplica-

tion in the binary field as

1:27s

10:4� 106cycles
� 8706cycles ¼ 1:06ms:

A multiplication in the extended field is about six times

that in the binary filed. Therefore, computing a modular

exponentiation operation in the extended field takes about

1.06ms × 6 × 230 = 1.46s. The Encrypt phase in our

scheme requires a modular exponentiation operation

(Note that we neglect the cost of other operations such as

hash, modular additive and so on, because they are much

smaller compared to modular exponentiation) and thus the

resulting ECs is Wc = 3V × 1.8mA × 1.46s = 7.88mJ, where

3 V is the voltage and 1.8 mA is the current draw for the

Tmote Sky mote.

– ECs for communication. The ECs for receiving and trans-

mitting an l-bits message are Wr =U ∗ Ir ∗ l/dr, and Wt =

U ∗ It ∗ l/dr, respectively, where Ir and It are the current

draw in receiving and transmitting mode, respectively,

and dr (dr = 250kbps) is a data rate. Therefore, ECs for

the reception and transmission of one message on Tmote

Sky are Wr = 3 ∗ 21.8 ∗ 1120/250 , 000 = 0.29 mJ and

Wt = 3 ∗ 19.5 ∗ 1120/250 , 000 = 0.26 mJ, respectively.

In our scheme, a member node transmits the data to its

cluster head once only, so the total EC of one member

node for communication is Wt = 0.26 mJ. The ECs for a

member node are provided in Table 4. For CHs, apart

from a Sen-SDA scheme, the CHs in other schemes only

execute several simple operations and consume much

smaller energy, which can be ignored, so we will not

make a detailed description of ECs for CHs.

From the comparison results in Table 4, we can find that

our scheme provides a great reduction of energy consumption

compared with related woks and network lifetime can be

hugely improved, which can be explained by the fact that

much less computation cost is incurred in our scheme due to

the use of OU homomorphic encryption algorithm.

9.3 Delay

We define that processing delay denotes the execution time to

produce the ciphertexts, the corresponding H-MAC andMAC

for member nodes. Aggregation delay is measured by the time

spent on verifying MAC from member nodes, aggregating

ciphertexts and H-MAC, and generating the MAC of the ag-

gregated result. Decryption delay indicates the time spent on

eventually gaining original data for the BS by verifying ag-

gregated H-MAC and decrypting aggregated ciphertexts.

In Table 5, SM, PA, AES, E,ECDLP and P represent a scalar

multiplication, point addition, AES encryption algorithm,

modular exponentiation, the elliptic curve discrete logarithm

problem and bilinear pairings, respectively.

From the results in Table 5, we can calculate that the pro-

cessing delay of RCDA-HOMO, CDAMA (k = 4), Sen-SDA,

and our scheme are 16.4 s, 32.8 s, 16.4 s and 1.46 s, respec-

tively. Here, we neglect the cost of PA and H, since they are

much smaller compared to the cost of SM, ECDLP and P. For

Table 4 Energy consumption of a member node on Tmote Sky

EC for

comp. (mJ)

EC for

comm.(mJ)

Total EC (mJ)

RCDA-HOMO 88.56 0.11 88.67

CDAMA(k = 2) 88.56 0.18 88.74

CDAMA(k = 3) 132.84 0.24 133.08

CDAMA(k = 4) 177.12 0.30 177.42

Sen-SDA 88.56 0.21 88.77

Our Scheme 7.88 0.26 8.14
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the aggregation delay, apart from a Sen-SDA scheme, RCDA-

HOMO and CDAMA schemes’ aggregation delay can be

largely ignored because they do not provide in-network false

data filtering and just execute several PA operations. Although

our scheme achieves in-network false data filtering, the aggre-

gation delay is also negligible, because only a few hash oper-

ations are required to compute.

For the decryption delay, our scheme is much smaller than

all the above data aggregation schemes. To gain a more intu-

itive understanding, we take N = 10 and k = 20 as an example.

According to [30], the execution time of SM, P and, H oper-

ations is 0.442 ms, 4.211 ms and 0.0001 ms, respectively.

Table 6 lists the execution time of the above cryptographic

operations running on an Intel I7–4770 processor with

3.40 GHz clock frequency, 4 gigabytes memory and running

Windows 7 operating system. Cryptographic library

MIRACL is used to measure time consumption of these three

cryptographic operations. In fact, it is impractical to solve

ECDLP within current computational capabilities unless the

final aggregationm is small enough. To give an intuitive com-

parison, if we take m as 3 bytes, it would take about 170ms to

decrypt the message [7].

Quantitative comparison of decryption delay is pre-

sented in Table 7. Note that decryption delay indicates

the time spent on decrypting messages of all clusters

instead of one cluster.

From Table 7, we can find that RCDA-HOTO, CDAMA

and, Sen-SDA schemes are much larger than our scheme in

terms of decryption delay. This can be explained by the fact

that these three schemes suffer from expensive mapping func-

tion during decryption, which involves the elliptic curve dis-

crete logarithm problem and is too costly to revert. Although

the BS owns considerably powerful computational capabili-

ties, if computation burden is too heavy, the BS is busy in

decrypting ciphertexts, which makes the whole network easily

paralyzed. Fortunately, our scheme can quickly decrypt ci-

phertexts and get the sensing data, even if the size of the

aggregated result is large. Therefore, our scheme is more suit-

able for larger WSNs.

10 Conclusion

In this paper, we correct some errors and amend the

security flaws found in other data aggregation schemes,

and successfully design an approach to achieve data

integrity protection for the CDAMA scheme. We also

propose a secure data aggregation scheme suitable for

large-scale WSNs, while reducing reduce the energy

consumption. We employ the OU homomorphic encryp-

tion algorithm to protect end-to-end data confidentiality,

use MAC to achieve in-network false data filtering, and

utilize the homomorphic MAC algorithm to achieve

end-to-end data integrity. Unlike other schemes, in this

proposed scheme, the base station can still quickly de-

crypt and obtain the original data even though the ag-

gregation results are large, while other solutions may

not be able to decrypt ciphertexts or the base station

is being busy decoding and thus system may become

paralyzed. In addition, each cluster’s data packet

reaching the base station is individually authenticated

so that if data authentication of one cluster fails, only

the data of the cluster will be discarded. Unlike other

schemes, once the authentication fails, all data including

all of the valid data will be abandoned, namely, all data

need retransmission, which exceedingly wastes the ener-

gy of nodes. Besides, this scheme can greatly weaken

the compromise attack: that a node is compromised will

not threaten secret messages of other nodes in the same

cluster. We choose two popular hardware platforms,

Tmote Sky and iMote 2, to investigate the efficiency

and feasibility of our scheme. The results demonstrate

that our scheme has an excellent performance in

Table 6 Execution time of different cryptographic operations

TSM TP TH

Execution Time (ms) 0.442 4.211 0.0001

Table 5 Comparison of delay in

different phases Processing delay Aggregation delay Decryption delay

RCDA-HOMO 4SM + 1PA + 1H (2N − 2)PA 1ECDLP + k(N + 1)P

CDAMA 2kSM + kPA (k − 1)PA kSM + kECDLP

Sen-SDA 4SM + 1PA + 1H (2N + 2)SM + (2N − 2)PA + 1H (2k + 1)SM + 1ECDLP

Our Scheme 1E + 3H (N + 1)H (2kN + k)H

Table 7 Comparison of decryption delay

RCDA-HOTO CDAMA Sen-SDA Our scheme

Decryption

Delay (ms)

1096.42 3408.84 188.122 0.042
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reducing energy consumption. In addition, delay, espe-

cially decryption delay at the base station is very short

unlike its counterparts, in the event where the base sta-

tion is unable to decrypt ciphertexts and obtain the

sensing data may arise. In the future, we aim to con-

sider new attacks such as selective forwarding.
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