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Abstract—This paper studies rigorous statistical techniques
for modelling long term reliability of demand and supply of
electrical power given uncertain variability in the generation
and availability of wind power and conventional generation. In
doing so, we take care to validate statistical assumptions, using
historical observations, as well as our intuition about the actual
underlying real-world statistical process. Where assumptions
could not be easily validated, we say so explicitly. In particular,
we aim to improve existing statistical models through sensitivity
analysis of ill-known parameters: we propose models for wind
power and conventional generation, estimate their parameters
from historical wind power data and conventional availability
data, and finally combine them with historical demand data
to build a full robust joint time-dependent model of energy
not served. Bounds on some useful indices from this model
are then calculated, such as expected energy not served, and
expected number of continuous outage periods—the latter cannot
be estimated from a purely time collapsed model because time
collapsed models necessarily do not model correlations across
time. We compare our careful model with a naive model that
ignores deviations from normality, and find that this results in
substantial differences: in this specific study, the naive model
overestimates the risk roughly by a factor 2. This justifies the
care and caution by which model assumptions must be verified,
and the effort that must be taken to adapt the model accordingly.

I. INTRODUCTION

The inclusion of variable generation within power system

adequacy risk calculations is currently a key topic in power

system planning methodology. A vital component of this is an

appropriate statistical wind resource model. Some outputs of

interest, such as for example the expected energy not served

(which is the expected total energy shortage in a future time

window), can be calculated using a time collapsed model in

which time correlations in variable generation are not modelled

explicitly [1]. However, other outputs of interest, such as for

instance the expected number of periods of shortfall, require

a full time series model of the variable generation. Examples

of statistical approaches to this may be found in [2], [3], [4].

This paper makes two contributions in the use of time series

wind models within power system adequacy calculations. First,

although standard ARMA processes have Gaussian marginal

distributions, it is not standard practice in the power system

literature to transform wind speed data or wind power data so

that it has a Gaussian marginal before estimating parameters of

an ARMA wind speed or wind power model—although there

are some exceptions [5], [6]. We will demonstrate that ensuring

the conditions for an ARMA process are correctly satisfied

can make a substantial difference to model outputs. Secondly,

as we shall see, the parameters of the ARMA process can

vary substantially when fitted to data from different years. We

demonstrate that these differences can lead to quite different

results, and propose a method for sensitivity analysis, based

on imprecise probability [7], [8].

The analysis is based on the “Adjusted Gone Green” sce-

nario supplied by National Grid, in which the generating

unit capacities are slightly adjusted from the original “Gone

Green” scenario. The results are thus generally representative

of Great Britain calculations and are entirely sufficient for

demonstrating methodology. The small data adjustments are

necessary in order to make clear that model outputs do not

precisely reflect any future scenario for the Great Britain

system developed by National Grid.

Sections II and III discuss, respectively, the wind power

model and the conventional generation model. Various risk

indices are derived from these models in section IV. We reflect

on the results and future work in section V.

II. MODELLING WIND POWER

The available wind power data covers seven twenty week

winters. The aim of our model is to characterize the statistical

properties of the wind power time series in an arbitrary year.

A simple and often effective approach to time series mod-

elling is to use an ARMA process [9]. ARMA processes have

a normal marginal distribution, but obviously our wind power

will not be normally distributed.

The top left plot in fig. 1 confirms that the data is not

normally distributed; there are fewer values in the tail of the

distribution than there would be in a normal distribution. Also,

if other years are to be simulated from the model, there are

certain constraints with which simulated data has to abide; no

output can be below 0 or above 10120 which is the maximum

wind power output of the scenario on which the data is based.



Fig. 1. Normal quantile-quantile plots for the wind data.

In reality we can set this interval to be smaller than [0, 10120]
as it is highly improbable to observe an output at extremes.

Various approaches to dealing with non-normality in wind

power data are discussed in the literature; see for instance [5],

[6]. A simple solution is to take a logit transform:

logit(x) = log
(

t(x)
1−t(x)

)

where t(x) = x−α
β−α

. (1)

Here, [α, β] represents the range of possible values of y.

Chosing α = 0 and β = 10120 according to the physical

constraints of the system does not entirely fix departures from

normality. By visual inspection of quantile-quantile plots, α =
120 and β = 8900 were selected. The quantile-quantile plot

for this choice is depicted in the top right of fig. 1; clearly there

is significant improvement. It is important to realize that our

model thereby excludes extreme wind power events outside

[120, 8900]. Note that the actual bounds of full 7 years of wind

power data are [142.306, 8810.187], so observations outside

the range [120, 8900] were never actually observed in the data.

It is instructive to inspect also the quantile-quantile plots

for individual years. The most problematic years are 2005 and

2010, depicted in the bottom of fig. 1, with the actual quantiles

deviating from the theoretical quantiles in the upper tail for

2010 and the lower tail for 2005. These observations may

suggest that the bounds are not entirely static, and perhaps

some random effect on α and β could be included. For

simplicity, however, we will stick with constant bounds.

We propose the following model:

logit(X(y, t)) = Z1(y) + Z2(y, t) (2)

where y is the year, t is the time within the year, Z1(y)
captures a yearly effect, and Z2(y, t) is an ARMA process

with zero mean. Because

E(logit(X(y, t))|y) = E(Z1(y)|y) + 0 = Z1(y) (3)

TABLE I
ESTIMATED REALIZATIONS OF Z1(y), WITH CONFIDENCE LIMITS AT THE

95% CONFIDENCE LEVEL.

y 2005 2006 2007 2008 2009 2010 2011

ẑ1(y) −0.62 0.22 0.03 −0.56 −0.66 −0.84 −0.17
error ±0.33 ±0.56 ±0.42 ±0.38 ±0.45 ±0.32 ±0.61

we can estimate Z1(y) from the yearly sample mean of

logit(X(y, t)). As we only have 7 years of observations, we

can only estimate 7 realizations of Z1(y). The exact values

thus estimated are listed in table I, along with confidence

limits, where the autocorrelation was taken into account (for

example, see [10, Sec. 3.1]). It can be seen that there is a

significant difference between each yearly effect. However,

most of the confidence intervals for ẑ1(y) overlap with each

other, making it difficult to draw any strong conclusions.

Because the entire process is reasonably normal, we judge

it not unreasonable to assume that the Z1(y) are iid samples

from a normal distribution:

Z1(y) ∼ N(µ, σ2) (4)

where we can estimate µ and σ2 by

µ̂ = 1
7

∑7
y=1 ẑ1(y) = −0.371 (5)

σ̂2 = 1
6

∑7
y=1(ẑ1(y)− µ̂)2 = 0.3972 (6)

The error on µ̂, at the 95% level, is:

1.96× s.e.(µ̂) = 1.96
( σ̂2

7
︸︷︷︸
0.022

+
1

72
∑7

y=1 var(ẑ1(y))
︸ ︷︷ ︸

0.008

)0.5

(7)

= 0.34 (8)

The errors in ẑ1(y) are the least contribution to the total

error. Ignoring the errors in ẑ1(y), a naive but simple 95%

confidence interval for σ̂2 is:
[
6σ̂2/χ2

0.975, 6σ̂
2/χ2

0.025

]
=

[
0.2562, 0.8742

]
(9)

where χ2
α are the α quantiles of the chi-square distribution

with six degrees of freedom.

When simulating a random year, we may simply draw

the yearly effect from N(µ̂, σ̂2). Alternatively, a more con-

servative analysis could simply take the lowest value for

Z1(y) within the confidence intervals of table I, that is,

z1 = −0.84 − 0.32 = −1.16. This could be appropriate if

one would like to drop the assumption that the Z1(y) are iid

realisations from a normal distribution.

As said before, we will assume that Z2 is an ARMA process

with zero mean. More specifically, we assume that

Z2(y, •)|y ∼ AR(α(y), σ(y)) (10)

where α(y) are the coefficients of the AR process and σ(y) is

the standard deviation of the residual noise—these parameters

may vary across years. An estimate for Z2(y, t) is

ẑ2(y, t) = logit(x(y, t))− ẑ1(y). (11)



Fig. 2. Top: partial autocorrelation diagram for Z2(y, t), for y = 2008.
Bottom: full autocorrelation diagram and normal quantile-quantile plot for
the residuals of the fitted AR(5) model for Z2(y, t), for y = 2008.

To judge the stationarity of Z2(y, t), and to pick an appro-

priate order for the AR process, we investigate the partial

autocorrelation diagram of the data, depicted for y = 2008
in fig. 2. Other years follow a very similar pattern. Larger

autocorrelations are limited, thus a stationarity assumption

seems reasonable. The partial autocorrelation become close

to zero at a lag of 4 or 5, which would suggest an AR model

of order 4 or 5. Therefore, we used an AR model of order 5.

To check the model fit, the full autocorrelation diagram and

normal quantile-quantile plot of the residual of the fitted model

are also plotted in fig. 2, again for y = 2008. There are no

large peaks left, so the model is adequate as the residuals do

not have any significant correlation. The largest peak occurs

at lag 24, which corresponds to a day. This suggests that there

might be a daily cycle that has not been taken into account.

Because the peak is quite small, no further attempt to remove

it was made in this study.

To finalise the model, we need to fit the AR model co-

efficients. Naively, we could join all of the years together

after we have transformed each year and set its mean to 0,

hoping that all years are similar enough, and hoping that the

discontinuity across years has little impact on our estimates.

More cautiously, we could fit an AR model to each of the

years separately. As can be seen from table II, the coefficients

vary significantly across years. The errors on these estimates

are consistently approximately equal to

1.96× s.e.(α̂(y)) ≈ (0.03, 0.09, 0.11, 0.09, 0.03) (12)

across all years y. Clearly, the variation of the estimated α(y)
across years is far larger than the errors on the estimates. To

proceed cautiously, we merely assume that at least one of the

TABLE II
FITTED AR COEFFICIENTS FOR EACH YEAR.

y α̂1(y) α̂2(y) α̂3(y) α̂4(y) α̂5(y) σ̂(y)
2005 2.54 −2.54 1.48 −0.64 0.16 0.04
2006 2.56 −2.65 1.63 −0.7 0.16 0.06
2007 2.49 −2.45 1.38 −0.55 0.12 0.06
2008 2.41 −2.25 1.17 −0.44 0.09 0.06
2009 2.56 −2.58 1.46 −0.58 0.14 0.04
2010 2.53 −2.51 1.39 −0.54 0.12 0.04
2011 2.22 −1.73 0.68 −0.27 0.09 0.06

1 0

pi

1− pi

qi

1− qi

Fig. 3. Two-state Markov chain for conventional capacity.

years is representative for a future year, however we do not

know which of the years. In particular, we do not assume that

the Z2(y, ·) processes are fully exchangeable across years y.

For inference, we will simply do a sensitivity analysis on the

coefficients from each observed year, and bound the resulting

probabilities and expectations [7], [8].

III. MODELLING CONVENTIONAL GENERATION

For each unit of conventional generation, we have its

capacity ci, and the fraction of time ai it is available. To model

the total conventional capacity in time, we assume that each

unit Wi follows a 2 state discrete time Markov chain, where

at each time point t the unit is either working (Wi(t) = 1) or

not working (Wi(t) = 0); see fig. 3. Time steps by the hour.

An hourly resolution provides sufficient detail for our purpose.

Moreover, our wind power data is also by the hour.

Each unit i then has two parameters: pi and qi. The mean

time to repair is 1/qi. Due to lack of data, we assume identical

repair rates across all conventional generators. Because 50

hours mean time to repair is reasonably representative of

typical generation units [11, Table 1], we simply set qi = 1/50
for all units i—obviously this aspect of the model could be

improved in future work. The theoretical long term availability

is simply the limiting probability of Wi = 1, which is equal

to qi
pi+qi

. Consequently, the equality ai = qi
pi+qi

determines

pi, as ai and qi are known.

The total available capacity for conventional is then simply

X(t) =
∑k

i=1 ciWi(t). (13)

For simulating X(t), we bluntly simulate Wi(t) for each

conventional unit and then join these together using eq. (13).

IV. ENERGY NOT SERVED AND NUMBER OF SHORTFALLS

The energy not served is defined as

E :=
∑3360

t=1 max {0, D(t)− C(t)−W (t)} (14)

where D(t), C(t), and W (t) are, respectively, the demand,

conventional generation, and wind generation at time t. The



Fig. 4. The energy not served E is the area under the curve which lies above
the horizontal axis. The number of shortfalls N is the number of such areas.

sum runs over 3360 hours, which is equal to the length of

each winter period in the data. The number of shortfalls, N ,

is defined as the number of times that the sequence (D(t) −
C(t)−W (t))t=1...3360 changes sign from negative to positive.

Figure 4 demonstrates both concepts, for a shorter period

of 48 hours. Note that, to serve clarity, the plot is schematic

and does not represent results from our modelling. Anyway,

in this case, E = 29251 and N = 2.

Our main aim is to estimate the distributions of E and N ,

and thereby also various indices of system reliability, such

as the expectation of E, that is, the expected energy not

served, often abbreviated as EENS. Note that the distribution

of N cannot be estimated from a purely time collapsed

model because time collapsed models necessarily do not model

correlations across time. To do this estimation, we combine

the simulated wind and simulated conventional capacity along

with historic demand data. Demand simulation is not at-

tempted, as this requires complicated modelling of periodic

effects at many different time scales, which we have not yet

attempted to model. Instead, we simply use an actual demand

trace from 2010, which has the highest peak demand across

all years between 2005 and 2011. Figure 5 shows a short

simulation trace of wind and conventional, along with demand.

In a normal situation, we would perform n model runs,

where each model run simulates a full winter (3360 hours) of

wind generation and conventional capacity, thereby producing

a single realisation of E and N . However, as discussed in

section II, we fitted 7 distinct AR models for Z2(y, ·), namely

one for each winter in the data. To allow us to perform a

sensitivity analysis against the AR model parameters, every

model run simulated wind for each of these AR models,

thereby producing 7 distinct realisations of E and N . To

ensure consistent sampling errors, the random seed of each

of the 7 wind simulations was forced to the same value—of

course this seed varied randomly between simulation runs.

We then use these samples of E and N to produce lower and

upper expectations, or more sophisticatedly, lower and upper

histograms. Our actual simulations used n = 100 000, and the

total time to complete these runs was 114.21 hours, with most

time spent on simulation of conventional capacity.

The top left of fig. 6 shows 7 overlayed histograms—

Fig. 5. A trace of wind generation (bottom curve), historic demand (middle
curve), and conventional capacity (top curve).

Fig. 6. Estimated distributions of E | E > 0 and N | N ≥ 1. The histograms
on the left show the model with logit and year effect for wind. The histograms
on the right show a naively fitted model without logit and without year effect.

one histogram for every choice of AR parameters—for E,

conditional on E > 0; the large peak at E = 0 (see

eq. (19) further) has been omitted to make for a clearer picture.

The largest simulated value for E was 43653.5, however

E ≥ 10 000 is very rare (only a fraction 0.00412 of all model

runs), so this tail has been omitted from the histogram. The

top right of fig. 6 shows the results of a more naive model for

wind, without logit and without random year effect (or more

precisely, a constant year effect equal to the mean of the data).

In this case, this has led to a clear overestimation of the risk.



Similar histograms for N are depicted at the bottom of

fig. 6. Again, N = 0 is omitted for clarity. The largest

simulated value for N was 8, however N ≥ 4 is very rare

(only a fraction 0.00148 of all model runs), so this tail has

been omitted. If there is a shortfall in a year, then it is likely

to have only happened once or twice. The chance of having a

shortfall more than twice in a single year, given that shortfall

occurs, is at most 0.054. Obviously, here too, a naive model

overestimates the risk quite substantially.

Lower and upper expected energy not served, that is, bounds

on the EENS, can be estimated from the simulation as follows:

P (E)=
7

min
y=1

1

n

n∑

i=1

3360∑

t=1

max {0, d(t)− ci(t)− wyi(t)} (15)

=299.63± 9.24 (16)

P (E)=
7

max
y=1

1

n

n∑

i=1

3360∑

t=1

max {0, d(t)− ci(t)− wyi(t)} (17)

=389.91± 9.24 (18)

where the error is the worst case 95% confidence interval

around the sample means, n = 100 000 is the number of

model runs, d(t) is historic demand at time t (for 2010), ci(t)
is conventional capacity at time t in model run i, and wyi(t) is

the wind power at time t in model run i with AR coefficients

α̂(y). Bounds on the probability of E = 0 follow similarly:

P (E = 0)=0.813±0.002 P (E = 0)=0.848±0.002 (19)

For comparison, the naive model has:

P (E)=808.416±16.501 P (E = 0)=0.733±0.003 (20)

which confirms our earlier observation about risk overestima-

tion. In particular, the naive model overestimates the expected

energy not served by a factor of more than 2.

The difference between AR coefficients α̂(y) clearly has a

significant impact, as do statistical assumptions such as nor-

mality, justifying the caution by which we fitted our models.

V. CONCLUSION

We modelled wind and conventional power to characterize

the distributions of typical quantities of interest, such as

energy not served, and number of shortfalls. Model param-

eters varied substantially when fitted to data from different

years. In our analysis, these differences lead to quite different

results, prompting a sensitivity analysis. We showed that a

naive model—ignoring non-normality and differences across

years—leads to substantial overestimation of the risk. Even

though the model in this study was quite limited, it does

highlight the importance of careful statistical modelling.

Various aspects of the model remain to be improved. The

distributions of energy not served and number of shortfalls

would be as in this paper only if a future winter had the same

demand pattern, if conventional capacity actually followed a

two state Markov chain, and if the wind was similar to wind

seen in at least one of the winters in our data. Therefore, we

have not made a strong ‘real world’ statement.

First, we used a simple historic trace for demand. Due

to complex periodic effects at different time scales (daily,

weekends, season) and dependence on climate and economy,

predictive modelling of demand is a non-obvious task [12].

Next, our model for conventional generation has quite a few

limitations. In particular, the Markovian assumption may be

violated, repair rates will not be equal across all conventional

generators, and repair and failure rates will also not be constant

throughout the day: generators fail more regularly during

startup and during ramping.

Finally, the logit transform, which was used to transform

our wind into a normally distributed process, implies that we

cannot simulate wind power output larger than the bounds on

the transformation, which were set quite closely to the max-

imum and minimum value observed from the data. Perhaps

these bounds should not be taken to be constant.
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