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The Seebeck coefficient is one of the key quantities of thermoelectric materials and routinely mea-

sured in various laboratories. There are, however, several ways to calculate the Seebeck coefficient

from the raw measurement data. We compare these different ways to extract the Seebeck coefficient,

evaluate the accuracy of the results, and show methods to increase this accuracy. We furthermore

point out experimental and data analysis parameters that can be used to evaluate the trustworthiness

of the obtained result. The shown analysis can be used to find and minimize errors in the Seebeck

coefficient measurement and therefore increase the reliability of the measured material properties.

© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807697]

I. INTRODUCTION AND MOTIVATION

Thermoelectric materials can convert heat directly into

usable electrical energy. Since there are ubiquitous sources

of waste heat readily available thermoelectric generators have

numerous potential applications; they can, e.g., enhance the

fuel efficiency of cars or power sensors.1, 2 With respect to the

widely-discussed energy crisis thermoelectric materials have

the potential to be a valuable part of the solution. The attrac-

tiveness of thermoelectric generators is coupled to their heat

to electrical energy conversion efficiency. This efficiency is

linked to the thermoelectric figure of merit ZT, which itself is

composed of basic material properties:

ZT =
σS2

κ
T , (1)

where σ is the electrical conductivity of a material, κ is the

thermal conductivity, S is the Seebeck coefficient, and T is the

absolute temperature. If ZT is to be determined and optimized,

these three quantities have to be measured. Of these three the

Seebeck coefficient is the most prominent in Eq. (1) and per-

haps the most difficult to measure. First, the Seebeck coeffi-

cient enters ZT quadratically while all other quantities enter

only linearly. Furthermore the Seebeck coefficient is the ratio

of the potential difference U that arises due to a temperature

difference �T and thus the determination of S combines the

challenges of correct electrical and thermal measurements.

Many systematic errors of the Seebeck coefficient mea-

surement are related to hardware issues such as thermal con-

tact resistances between sample and thermocouples, parasitic

heat flux through the thermocouples, and other sources. A lot

of insight on this issue can be found in the literature.3, 4 Be-

sides that, there is also some uncertainty on how to extract

the Seebeck coefficient best from the raw measurement data.

In this paper we will focus on a suitable data analysis for the

Seebeck coefficient, present consistency checks that can be

done to evaluate the trustworthiness of the obtained data and

point out parameters that reveal problems in the measurement.

a)johannes.deboor@dlr.de

II. EXEMPLARY SETUP

We will shortly introduce the employed setup. It shares a

lot of general features with other setups and might therefore

serve as a typical example. The focus here is not on the actual

design details of hardware; a brief introduction is neverthe-

less useful for the following discussion. The setup is capable

of measuring the electrical conductivity and the Seebeck co-

efficient simultaneously from room temperature to 1000 K. A

more detailed description of this setup and its accuracy can

be found in Ref. 5; further examples of measurement systems

for the Seebeck coefficient can be found in the literature.3, 6–14

A schematic picture of the employed sample holder is pre-

sented in Figure 1, only the details necessary for the Seebeck

coefficient measurement are shown.

The sample is subject to a variable temperature gradient

that can be created using the gradient heaters that are posi-

tioned close to the sample. The temperatures as well as the

voltage difference resulting from the temperature gradient are

measured using sheathed thermocouples of type N. The two

thermocouples are used to measure the temperatures T1 and

T2 as well as the thermal voltages, see Figure 2. The voltage

measured across the negative pair of wires Uneg is given by

Uneg = −

∫ T2

T1

(S(T ) − Sneg(T )dT

≈ −(T2 − T1) ∗ (S(T̄ ) − Sneg(T̄ )), (2)

where S is the Seebeck coefficient of the sample and Sneg the

Seebeck coefficient of the negative leg of the thermocouple;

for type N this is NiSil. If the temperature difference is suffi-

ciently small, the integral can be replaced by a simple product

with T̄ = (T2 + T1)/2. Correspondingly, the voltage across

the positive legs is given by

Upos = −(T2 − T1) ∗ (S(T̄ ) − Spos(T̄ )). (3)

The two temperature signals and the two voltages are feed

to a Keithley 2700 digital multimeter (DMM) via a switch

card (Keithley 7700) which is used for the concurrent mea-

surement of the signals. The sample Seebeck coefficient is
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FIG. 1. Sample holder for the measurement of the Seebeck coefficient. The

sample is sandwiched between the holder and a support. The temperature

gradient along the sample is established using one of the gradient heaters. The

resulting thermoelectric voltages and temperatures are recorded using two

thermocouples. The whole sample holder is situated in an oven; this allows

for temperature dependent measurements.

determined in a measurement sequence as shown in Figure 3.

First gradient heater 1 is powered and a temperature differ-

ence between TC1 and TC2 establishes. This causes Uneg and

Upos to differ from zero, the ideal equilibrium value. After

a certain time, typically 60 s, the heater is switched off, the

temperature gradient relaxes, and the voltage signals slowly

vanish. After the system has approximately returned to equi-

librium heater 2 is powered and the step is repeated. Follow-

ing the classification scheme by Martin the measurement rou-

tine is thus a quasi-stationary one.4 The measurement signals

are recorded during both steps in the order T1, T2, Uneg, Upos,

T1. . . . To prevent cross talk between the recorded voltage sig-

nals and the power supplied to the gradient heaters only the

data obtained after the heaters are switched off is used for the

subsequent analysis.

Since the setup comprises only two thermocouples, one

multimeter, and a switch card it is one of the simplest sys-

tems for a Seebeck coefficient measurement. Therefore, many

things that are discussed in the following are representative

for other systems, even if details in hardware or electronics

may differ.

- + - +- + - +
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wire with S
neg

wire with S
pos

sample with S

FIG. 2. Wiring scheme of the employed measurement setup. The two ther-

mocouples are connected directly to the switch card and are used to obtain

the temperatures T1 and T2. Furthermore, the voltage Uneg across sample and

negative legs of the thermocouples as well as the voltage Upos across sample

and positive legs are measured on the switch card; these are used to calculate

the sample’s Seebeck coefficient.
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FIG. 3. Measurement routine for the determination of the sample’s Seebeck

coefficient. The figure shows the time resolved profiles of the temperatures

(top) as well as the voltages during one measurement cycle. For later analysis,

only the values recorded after the heaters are switched off are used.

III. FROM RAW MEASUREMENT DATA
TO THE SEEBECK COEFFICIENT

We now want to evaluate several equations that can be

used to obtain the sample’s Seebeck coefficient. Rearranging

Eqs. (2) and (3) yields the first two equations

SA = −
Uneg

T2 − T1

+ Sneg(T̄ ), (4)

SB = −
Upos

T2 − T1

+ Spos(T̄ ). (5)

The results of the two—in principal equivalent—equations

are labeled SA and SB for better distinction. Equations (4) and

(5) can be combined to a third equation for the Seebeck coef-

ficient

SC =
−Uneg

Upos − Uneg

ST C(T̄ ) + Sneg(T̄ ). (6)

In contrast to the previous equations, Eq. (6) requires no ex-

plicit measurement of the temperatures T1 and T2. They are

still required to calculate the absolute measurement tempera-

ture T̄ , but for T̄ usually less precision is required compared

to the measurement of T2 − T1. STC = Spos − Sneg is the See-

beck coefficient of the employed thermocouple.

Calculation of SA and SB requires exact knowledge of T1

and T2. However, the typical accuracy of a thermocouple read-

ing is of the order of 1 K, at best ≈0.2 K.15 This is due to

the fabrication process of the thermocouples and cannot be

avoided. On the other hand it is desirable that the temperature

difference created across the sample during a measurement

is small so that the simplification in Eq. (2) holds. Usually

this temperature difference is therefore also of the order of

1 K. The calculation of T2 − T1 can thus be highly inaccurate

which leads to incorrect values for the sample Seebeck coef-

ficient. Hence in practice Eqs. (4)–(6) tend to give incorrect

results and are rarely applied as such.
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FIG. 4. Seebeck coefficient as obtained from Eq. (4) for the data shown

in Figure 3. The result is not independent of �T as would principally be

expected. The reason for the behavior is a combination of offsets between

the thermocouples and spurious voltages from within the measurement sys-

tem. The effects of these offsets can be expressed in a simple model (using

Eq. (7)) and the result fits the experimental data reasonably well.

The second reason why Eqs. (4)–(6) are questionable is

the existence of small spurious voltages from within the mea-

surement system. These can stem from temperature differ-

ences at any electrical connection between different materials

or inhomogeneities in the thermocouples and can usually not

be completely avoided.4, 10, 12 These voltages will affect the

results for SA, SB, and SC. In order to illustrate this point we

have calculated SA for every set of T1, T2, and Uneg shown in

Figure 3. The result is shown vs. T2 − T1 in Figure 4.

The results for SA are not at all constant vs. �T; in fact,

the values diverge for small �T and converge for large |�T|.

If differences between the two thermocouples and spurious

voltages in the measurement system are taken into account,

Eq. (4) can be rewritten for these non-ideal conditions as

SA,non−id = −
Uneg + δU

T2 − T1 − δT
+ Sneg

(

T̄
)

. (7)

Here δT is the temperature difference in the two thermocou-

ple readings if they are at the same temperature and δU rep-

resents the spurious voltages that affect the Uneg reading. The

result of Eq. (7) is plotted in Figure 4 for δU = 2.5 μV and δT

= 0.001 K; Uneg is calculated from Uneg = (S − Sneg1)(T2

− T1), where S is the convergence value for large �T,

the “true” sample’s Seebeck coefficient. It can be seen that

the obtained measurement data can be represented well by

Eq. (7) using the given parameters.

The magnitudes of δU and δT are quite small and will be

comparable or larger in most measurement systems. The ex-

ample illustrates that Eq. (4) should only be used to obtain a

rough estimate for the Seebeck coefficient of a sample. Simi-

lar reasoning holds for Eqs. (5) and (6).

The well-known approach to eliminate the effect of off-

sets is to obtain the Seebeck coefficient not from a single set

of data points but rather from a linear fit of voltage vs. temper-

ature difference. In this case Eqs. (4) and (5) can be rewritten

as

SD = −
∂Uneg

∂�T
+ Sneg(T̄ ), (8)
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FIG. 5. (a) Seebeck voltages Upos and Uneg vs. temperature difference �T

and (b) Upos vs. Uneg. All three data sets show a linear behavior as in-

dicated by the good agreement between measurement data and the corre-

sponding linear fits. Also indicated are the results for the Seebeck coefficient

(Eqs. (8)–(10)), which agree with each other within 0.1%. The linear correla-

tion coefficient R of the fit gives an indication about the agreement between

raw data and linear fit; here R is very close to unity for all three data sets.

SE = −
∂Upos

∂�T
+ Spos

(

T̄
)

, (9)

where �T = T2 − T1. Equation (6) can be differentiated with

respect to one of the voltages, yielding, e.g.,

SF

(

T̄
)

=
ST C

(

T̄
)

1 −
∂Upos

∂Uneg

+ Sneg

(

T̄
)

. (10)

It is clear that the results for SD, SE, and SF are not affected by

constant spurious voltages or thermocouple differences that

lead to incorrect results for SA, SB, and SC. For Eqs. (8)–(10)

to be correct it is only necessary that the offsets are constant

during the measurement time, which can be experimentally

fulfilled much easier than having no offsets at all. Uneg and

Upos vs. �T are shown in Figure 5(a), while Figure 5(b) shows

Upos vs. Uneg. The figures show the raw measurement data,

the corresponding linear fits to the data as well as the lin-

ear correlation coefficients (Pearson’s correlation coefficient),

and the Seebeck coefficients which were calculated from

the fit.

The measurement data can be represented excellently by

a linear fit as clear from the figure and quantitatively sup-

ported by the obtain values for RD, RE, and RF that are close

to the ideal value of unity. The Seebeck coefficient values
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FIG. 6. Seebeck coefficient over temperature for a skutterudite sample. The

plot compares the results of Eqs. (8)–(10) which basically lie on top of each

other. The relative difference between SD, SE, and SF is smaller than 0.6% for

the whole temperature range.

obtained from the three linear fits are very similar and differ

by less than 0.1%.

The results for SD, SE, and SF are shown for a complete

measurement over temperature for a skutterudite sample in

Figure 6. The agreement between SD, SE, and SF is excellent,

the values differ by less than 0.6%.

The remaining differences can be caused by statistical

noise in the measurement signals (a deviating measurement

value in, e.g., T1 will affect the result for SD and SE but not

SF) and by small inaccuracies in the Seebeck coefficient of

the wire material.

The linear correlation coefficients for all three data sets

have been calculated for each temperature. For better vis-

ibility not R itself but the difference to unity is plotted in

Figure 7.

It can be seen that the linear correlation coefficients RD,

RE, and RF are very similar, always better than 0.999 and ap-

proximately independent of temperature.

In summary Eqs. (8)–(10) yield very similar results for

the Seebeck coefficient and are equivalent. This might not

be too surprising since they are derived from the same basic

equations and describe the same physical situation. However,

as will be shown in the following, the observed good agree-

200 400 600 800

10
−4

10
−3

10
−2

Temperature T [K]

1
−

c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t 
[ 
]

R
E

R
DR

F

FIG. 7. Linear correlation coefficient for the results shown in Figure 6. The

linear correlation coefficients and thus the quality of the fits used to obtain the

Seebeck coefficient are approximately independent of temperature and close

to unity over the whole temperature range.

ment is not self-evident and can be violated easily. For the re-

sults shown so far the temperatures used in Eqs. (8)–(10) are

not obtained from a temperature reading of the multimeter. In-

stead, the voltages corresponding to T1 and T2 are measured

directly and converted into temperatures externally using the

controlling personal computer. The relation between the volt-

age from a thermocouple and the corresponding temperature

at the junction (Thot) is given by

Thot =
∑n

m=0
dmUm, (11)

where U is the recorded voltage. The coefficients dm can

be found for various thermocouple types and temperature

ranges15 under the assumption that the cold end of the ther-

mocouple is at Tref = 0 ◦C. If this is not the case, the cold

side temperature has to be measured and Eq. (11) adapted ac-

cordingly. In our case the temperature of the reference junc-

tion inside the multimeter can be determined directly from the

Keithley DMM and is approximately Tref ≈ 37 ◦C. Using the

inverse equation to Eq. (11) one can calculate the voltage Uref

due to the reference junction not being at 0 ◦C

Uref =
∑n

m=0
cmT m, (12)

and modify Eq. (11)

Thot =
∑n

m=0
dm(Umeas + Uref )m, (13)

to be able to employ the standard tabulated coefficients. For

the employed standard switch card the reference temperatures

can be determined at six different positions of the card. These

temperatures are very similar and vary only very slowly dur-

ing the course of the measurement as shown in Figure 8. It is,

therefore, sufficient to determine the temperature of the refer-

ence junction closest to the used slot prior to the measurement

of the Seebeck coefficient, i.e., before the routine shown in

Figure 3.

It should also be noted that small inaccuracies in the tem-

perature measurement do virtually not affect the result for the

Seebeck coefficient as long as they remain constant. In fact, if
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FIG. 8. Temperature of the six internal cold side temperature sensors of the

employed switching card in the multimeter vs. measurement temperature and

time. All temperatures are similar and vary only slowly over the course of

the measurement. For the voltage to temperature conversion the temperature

of the sensor closest to the respective thermocouple measurement channel is

employed.
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FIG. 9. (a) Seebeck coefficients calculated from (8)–(10). In contrast to the

results shown in Figure 6 in this case the internal voltage to temperature con-

version of the multimeter has been used to obtain the employed temperature

differences. While all three curves follow the same trend it can be seen that

SD and SE show some scattering and partially deviate significantly from SF.

The linear correlation coefficients of the underlying linear fits in (b) show

that the fits are better for SF.

one assumes the same cold junction temperature for two ther-

mocouples which in reality do have different cold side junc-

tion temperatures, one or both of the calculated temperatures

will differ from its “true” value. However, this offset will not

affect the result for SD and SE because the slope of a linear fit

is employed to calculate the Seebeck coefficient.

With this kind of temperature measurement we found

the described good agreement between Eqs. (8)–(10). If in-

stead directly the temperature readings from the multimeter

are used, the agreement is less good. The results of SD, SE, SF

and the corresponding linear correlation coefficients are plot-

ted in Figure 9. Here a PbTe sample was used with a Seebeck

coefficient comparable to the skutterudite sample shown in

Figure 6.

While SD, SE, and SF follow the same trend they show

significant deviations from each other; these can exceed 5%.

It can also be seen that SD and SE show some scattering, while

SF is relatively smooth. This impression can be confirmed by

Figure 9(b)), where it can be seen that the linear correlation

coefficient is better for SF than for SD and SE. Since SF is

calculated directly from the voltages while SD and SE are cal-

culated using the temperature readings, SF is virtually not af-

fected by inaccuracies in the voltage-temperature conversion

in contrast to SD and SE.

The external voltage-temperature conversion has another

advantage beside the improved accuracy. If both voltages and

temperatures are recorded by a single DMM, the instrument

has to switch between the voltage and the temperature

sensing modes. This switching requires some time (≈5 s) due

to internal stabilization procedures and restricts the number

of measurable data points in a non-steady-state measurement

routine as is employed in our setup. If only voltages are

recorded, more data points can be obtained in the same

measurement time which reduces statistical uncertainties of

the obtained results.

If for some reason one has to rely on the temperature

reading of the measurement device and cannot employ an

external voltage-to-temperature conversion, the linear corre-

lation coefficients for SD, SE, and SF can give an indication

which equation gives the most reliable result. We found that

SF from Eq. (10) shows less scattering than Eqs. (8) and (9).

Since SF furthermore does not require an accurate temperature

reading and therefore no voltage-to-temperature switching it

can be used to obtain measurement data at a faster rate.

IV. SIMULTANEOUS MEASUREMENTS

Independent of the particular formula all equations for

the determination of the Seebeck coefficient require in prin-

cipal the simultaneous measurement of several voltages (and

temperatures). The exceptions are true steady state measure-

ments, however, these have very long measurement times

which is why quasi-stationary or transient measurement con-

ditions are often employed.4 True simultaneity can only be

achieved using several properly linked multimeter which

might not always be possible or feasible. We will first show

here that correct results can also be obtained with a single

multimeter by data interpolation and second that this interpo-

lation is important even for fast data acquisition rates.

From the raw data shown in Figure 3 interpolation curves

for the two temperatures and voltages are calculated. From

these curves the values at certain points of time can be ob-

tained; we chose the time where Uneg is recorded as refer-

ence, but this is a more or less arbitrary choice. Since the

measurement data show monotonic behavior with relatively

large time constants the interpolation represents the measure-

ment data very well. To avoid extrapolation the first and the

last data points are excluded from the interpolation. The time

difference between a measurement of Uneg and Upos is around

0.11 s, one might therefore suspect that no temporal data inter-

polation is necessary as the measurements are taken relatively

quick after each other. Figure 10 shows the plot of Uneg vs.

Upos for the raw and the interpolated data. For the raw data

the first measurement for Uneg corresponds to the first mea-

surement of Upos (ignoring the small mismatch in time), while

for the interpolated data the time difference between the two

measurements has been taken into account.

On first glance the effect seems to be very small,

with a good match of the data sets. However, the inset in

Figure 10 shows both the differences in the individual data

points as well as in the corresponding fits that are used to ob-

tain the Seebeck coefficient. In this particular case the value
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FIG. 10. Upos vs. Uneg with and without temporal interpolation. For the raw

data each measurement of Uneg is related to the subsequent measurement of

Upos. For the interpolated data the value is calculated from the temporal inter-

polation of the measurement data such that there is temporal match between

Uneg and Upos. Although the effect appears to be small and is hardly visible in

the overview plot, the zoom in shows that the interpolation to the same time

changes the values of Upos and thus the calculated Seebeck coefficient.

from the raw data and from the interpolated data differs by

≈2 %.

The severity of this effect depends on data acquisition

as well as thermal properties of sample and system. Whether

the Seebeck coefficient is determined too large or too small

depends on the measurement order. We typically find a slow

increase of the relative error with increasing temperature. This

is probably due to the thermal relaxation time constants of

the sample holder which decrease with absolute temperature

due to increasing radiation coupling. The Seebeck coefficient

over temperature calculated from raw and interpolated data is

shown in Figure 11.

The significance of a correct data interpolation has been

shown for the case that the Seebeck coefficient is determined

from Eq. (10), i.e., from Upos and Uneg, but the same holds true

for Eqs. (8) and (9) as well. The significance of this effect also

depends on the measurement routine and the setup, but we

wanted to point out here that this can indeed play an important

role.

A simplified version of data interpolation is the so-called

“delta method.” In this approach the data are taken in a certain
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FIG. 11. Seebeck coefficient over temperature obtained from raw measure-

ment data and interpolated data. Here the relative error is about 2%, depend-

ing on sample properties and geometry it can vary between 1% and 5%.

order (e.g., Tc1, Th1, U1, Th2, Tc2 and then averaged, i.e., Tc

= (Tc1 + Tc2)/2, Th = (Th1 + Th2)/2).10 While this is cer-

tainly an improvement to no interpolation it is not necessar-

ily correct as it implicitly assumes that the switching times

between the readings are identical and that the time gap be-

tween the first two temperatures and the voltage is the same

as the time gap between the voltage and the second set of

temperatures. For our multimeter we found that switching

from voltage to temperature takes longer than the other way

round (7 s–5 s), i.e., the delta method would be an incorrect

linear interpolation in this case. The alternatives to data in-

terpolation are steady state measurements or the use of sev-

eral multimeters for simultaneous data acquisition.12 Steady

state measurements require equilibration times which inher-

ently prolongs the measurement time and are usually acquired

from less data. Comparing the effort/complexity of a simple

data post treatment and synchronizing several measurement

devices one might find the former a feasible approach.

V. CONSISTENCY CHECKS AND ERROR
INDICATIONS

In the following we want to list and discuss consistency

checks that can be used to find errors in the measurement, data

acquisition, or data analysis.

The first opportunity for consistency checks are the dif-

ferent, but equivalent equations to determine the Seebeck co-

efficient. As discussed above equations based only on a single

measurement of temperatures and voltages (Eqs. (4)–(6)) can-

not expected to be accurate due to ubiquitous spurious thermal

voltages within a measurement system. However, the equa-

tions based on a series of temperature and voltage measure-

ments can be used as a consistency check. If Eqs. (8)–(10)

do not give very similar results, this may point out errors in

the used values for the thermocouple Seebeck coefficients, the

temperature measurement, or the voltage-to-temperature con-

version as well as the temporal data interpolation if employed.

A further advantage of employing all three equations arises

when the Seebeck coefficient of the material is comparable to

either of the thermocouple wire Seebeck coefficient. In this

case ∂Upos/∂Uneg cannot be calculated accurately and Eqs. (8)

and (9) will give more reliable results than Eq. (10).

Indications for experimental errors can be obtained by

some data analysis. When calculating the Seebeck coefficient

the linear fits as shown in Figure 5 will usually have an ab-

solute term that is different from zero, i.e., the linear fit will

not run exactly through the origin. In the case of fitting Upos

vs. Uneg the absolute term of the fit is the offset between the

two voltages. The offset arises from non-ideal connections or

material inhomogeneities in the measurement path and is a

measurement system specific quantity and should not depend

on the sample under investigation. Figure 12 shows the ab-

solute term from the linear fit of Upos vs. Uneg over measure-

ment temperature for two different samples. One is a low-

doped LAST-18 sample with a Seebeck coefficient between

−300 μV/K and −400 μV/K in the plotted temperature range

while the other is a doped skutterudite sample with the See-

beck coefficient between −120 and −200 μV/K. Although

the sample properties are highly different, the offsets are
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FIG. 12. Offset of the fit Upos vs. Uneg with respect to measurement tempera-

ture. The offset is shown for two samples with different Seebeck coefficients;

nevertheless resulting in similar offsets.

comparable. Therefore, monitoring this quantity during the

measurements allows for detection of changes in the setup

that might otherwise remain undiscovered. An example is a

change in the connection of a thermocouple wire to a con-

necting plug. It should also be noted that the offset is of

the order of 10 μV over the whole temperature range and

thus relatively small compared to the measurement signals.

Equations (8)–(10) for the calculation of the Seebeck coef-

ficient are based on the assumption that offsets are constant

over the measurement time at one particular temperature. The

observation that these offsets are indeed small therefore justi-

fies this assumption in our case; in the literature values up to

1 mV as offsets have been reported.10

Another quantity to judge the quality of the measured

data is the linear correlation coefficient of the linear fits.

It quantifies how good a linear relation between two vari-

ables (e.g., �T and Upos) is fulfilled. It is, therefore, a mea-

sure for the quality of a linear fit and should be very close

to unity. Linear correlation coefficients significantly smaller

than unity (say <0.999) indicate severe problems with the

measurements: poor signal quality, temperature drifts affect-

ing the measurement, offset voltages that change during the

measurement time, etc. If such problems are generally solved

for a system, the correlation coefficients can also be used to

detect alteration of a sample during a measurement. While

most thermoelectric materials are intended to be stable one

often has to deal with thermally unstable materials, especially

in the early stages of the material development. In Figure 13

we show the Seebeck coefficient measurement for Zn4Sb3,

a material well known for its thermal instability.16 The blue

circles correspond to the Seebeck coefficient values obtained

from the complete measurement routine as shown in Figure 3

and are labeled “α + β.” At lower temperatures the Seebeck

coefficient of the sample increases slowly with increasing as

typical for a degenerate semiconductor. Above 420 K the See-

beck coefficient increases much more rapidly with increasing

temperature up to a temperature of 470 K beyond which the

increase in temperature is comparable to the low temperature

regime. In the temperature interval between 420 K and 470 K

the material undergoes degradation which causes the observed

rapid rise in the Seebeck coefficient; further details on the ma-
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FIG. 13. (a) Seebeck coefficient of a Zn4Sb3 sample over temperature. “α

+ β” corresponds to the Seebeck coefficient that is obtained if the whole

data from the measurement routine as shown in Figure 3 are employed. The

result if only the first half of the data are employed is labeled “α,” while the

result from the second half is labeled “β.” For stable samples the three values

should be very close to each other, but here it can be seen that between 420 K

and 470 K “α” and “β” differ from each other. The reason is a change of the

sample properties during the measurement, i.e., the sample has (on average) a

different Seebeck coefficient during measurement “α” than at “β” at a given

temperature. This is reflected in the correlation coefficient (b) that deviates

stronger from unity in the region where the sample is thermally unstable.

This shows that the linear correlation coefficient can be used to detect such

changes.

terial are, e.g., given in Ref. 17. To illustrate the change of the

sample the Seebeck coefficient of the sample upon cooling is

also shown in Figure 13(a)).

The deviation of the corresponding linear correlation co-

efficients from unity is plotted in Figure 13(b) and shows an

interesting behavior. At low temperatures the difference is rel-

atively small and approximately constant. In the temperature

interval where the sample undergoes degradation the devia-

tion from unity increases and decreases when the sample is

stable again. In this case the linear correlation coefficient can

therefore be used as an indicator where the sample is changing

during the measurement.

To emphasize that the sample is indeed changing in the

mentioned temperature window, Figure 13(a) shows the See-

beck coefficient values obtained from the complete measure-

ment routine together with the values that are obtained if only

the first half of the data is used for fitting (“α”), i.e., using

only heater 1 as well as the result from the second half (“β”),

using only heater 2, compare Figure 3. At low and at high

temperatures the three curves agree well with each other as

would be expected; in fact, this is another consistency check
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FIG. 14. Exemplary two-point resistances of the two thermocouple channels

and the two circuits used to measure Uneg and Upos over temperature. Drastic

changes in R(Uneg) or R(Upos) can indicate poor contact between the sam-

ple and the thermocouples while comparison of R(T1) and R(T2) between

different measurements can reveal changes of the thermocouples, e.g., by

contamination.

for the measurement data. However, in the temperature range

between 420 K and 470 K there is a visible difference be-

tween “α” and “β,” corresponding to the temperature window

in which the sample undergoes thermally induced changes re-

sulting in a higher Seebeck coefficient. Since the “β” mea-

surement is taken after the “α” measurement it will yield a

higher Seebeck coefficient value. This comparison between

the data from “α” and “β” visualizes the temperatures where

the sample is unstable. We want to point out here that this can

also be identified from the plot of the linear correlation coeffi-

cient. If the sample changes on a time scale comparable to the

measurement time at a particular temperature, the linear fits to

the raw used to obtain the Seebeck coefficient become poorer

which in turn is visible in the linear correlation coefficients.

This is of course also visible if one closely examines

the fits of the measurement data. However, due to the large

amount of data that is produced during a measurement this

is often not practical. Here, the correlation coefficient can

be a very useful quantity to be automatically monitored as

it can indicate setup problems or material changes, i.e., where

a closer examination of the measurement data is appropriate.

Further quantities that can be used to detect measurement

errors are the two-point resistances of the different measure-

ment channels. We measure the two-point resistances across

the two thermocouple channels and across the circuits used to

measure Uneg and Upos. The results vs. measurement temper-

ature are shown in Figure 14 for a measurement on a Mg2Si

sample.

For the two thermocouple channels the measured resis-

tance stems basically from the thermocouple wires, which are

thin and therefore have a resistance of ≈140 	 at room tem-

perature. Both thermocouples show a similar resistance and

increase with increasing temperature as can be expected. The

values are not related to the sample properties and should be

very similar for every measurement. If the resistance values

start to deviate from each other or, more importantly, if the

measured resistances deviate from the result of previous runs

this could be an indication of thermal aging of the thermocou-

ples. Since temperature measurement as well as Seebeck coef-

ficient calculation rely on an assumed temperature-to-voltage

relation thermal aging of the thermocouples can lead to erro-

neous results.

The measured two-point resistances across the circuits

for Upos and Uneg are basically the sum of the sample resis-

tance, the resistance of the thermocouple legs, and the con-

tact resistance between thermocouple and sample. For typi-

cal thermoelectric materials the sample resistance is orders of

magnitude smaller than the remaining resistance and there-

fore usually not detectable. The resistance of the thermocou-

ple legs can be estimated from the two-point resistance of

the thermocouples and does vary only slowly with temper-

ature. From the measured resistances across the channels for

Upos and Uneg one can therefore estimate the contact resistance

between thermocouples and sample. We often observe some

contact resistance at the beginning of the measurement which

rapidly decreases with increasing temperature and stays small

under subsequent cooling. This indicates that the contact be-

tween sample and thermocouple improves due to the heat

treatment. If this effect is small, we do not observe any in-

fluence on the measured Seebeck coefficient, i.e., the result

of the heating and the cooling curve is identical. On the other

hand it is clear that a large contact resistance can indicate a

contamination of the thermocouple which can lead to errors.

We also note that large contact resistances increase the scatter-

ing of the raw voltage measurements. A similar analysis has

been suggested by Martin who performed an I–V sweep in-

stead of a two-point resistance measurement.12 This actually

might reveal even more information such as, e.g., the ohmic

nature of contacts but it also requires further electronic equip-

ment. The procedure suggested here might be an alternative if

I–V sweeps are not feasible.

VI. SUMMARY

We have presented details about the data analysis of See-

beck measurements as well as consistency checks and param-

eters to check and increase the trustworthiness of the obtained

results. Using a custom-build system as exemplary setup we

have performed a thorough analysis of the data obtained from

quasi-stationary measurements. Comparing different equa-

tions to calculate the Seebeck coefficient one easily finds that

equations based on only one set of voltages/temperatures can

easily lead to erroneous results as they are affected by spuri-

ous voltages inherent in all measurement systems. If measure-

ments are obtained from a variable temperature gradient, we

can experimentally show excellent agreement between three

different equations for the Seebeck coefficient. This, however,

is only true if the analysis is not based on the internal voltage-

to-temperature conversion of the employed digital multime-

ter. Simultaneous acquisition of the measured temperatures

and voltages is another point that is important for accurate

non-steady-state Seebeck measurements. If this is not possi-

ble, we have shown that temporal data interpolation can also

be applied to obtain correct results.

Finally, we discuss several quantities that can be used to

evaluate the trustworthiness of the data or indicate experimen-

tal deficiencies. These are the linear correlation coefficient of

the linear fits used to calculate the Seebeck coefficient, the

offset of these fits, the agreement between different equations
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to calculate the Seebeck coefficient and the two-point resis-

tances of the different measurement circuits.

Within the last 5 years there have been considerable ef-

forts to increase the quality of thermoelectric measurements

in general and in the Seebeck coefficient measurements in

particular.4, 5, 18–20 Many problems are hardware related and

are addressed in other publications. However, several prob-

lems can also be identified and monitored by a thorough data

analysis which increases the accuracy and the reliability of

the obtained measurement results. This in turn is indispens-

able for efficient optimization of thermoelectric materials and

their application.
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