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Preface 

This book has been written for the researcher who uses computers to analyse 
field data on plant and animal communities and their environment. The book 
originates from a post-graduate course, held at, the Wageningen Agricultural 
University in 1983, 1984 and 1985, for biologists, geographers, agronomists and 
landscape architects active in nature management, water management, environ-
mental impact assessment and landscape planning. We have included topics that 
are useful in a wide range of ecological field studies: regression, to model the 
relation between a particular species and environmental variables, and to detect 
whether a species can be an indicator for a particular environmental variable; 
calibration, to infer about the environment from (indicator) species; ordination 
and cluster analysis, to summarize data on communities of species; and spatial 
analysis, to model and display the spatial variation in the environment and the 
communities studied. 

A major aim of the book is to bridge the gap between exploratory methods, 
e.g. ordination and cluster analysis, and methods that allow statistical hypotheses 
to be tested, such as regression analysis and analysis of variance. This is important 
because environmental impact studies, for example, require careful design and 
analysis that is directed to detecting the effect of the impact variable. The by 
now traditional methods of ordination and cluster analysis are simply not sufficient; 
they may fail to detect the effect of the impact variable because of natural sources 
of variation. Other methods are appropriate here: regression by generalized linear 
models to detect effects at the species level and canonical ordination to detect 
effects at the community. We therefore give an elementary, yet full and up-to-
date, acccount of regression, starting from the classical methods of analysis of 
variance, multiple regression, chi-square tests to logit regression and log-linear 
regression - all of them regression methods that are appropriate for ecological 
data. Canonical ordination is introduced in the ordination chapter as a natural 
combination of multiple regression and regular ordination. One of these methods, 
canonical correspondence analysis, is shown to avoid most of the problems that 
have hampered previous applications of canonical correlation analysis to ecological 
data. 

The methods are explained without the use of matrix algebra, but elementary 
knowledge of algebra, geometry and statistics at a first-year undergraduate level 
is assumed. To make the book suitable for post-graduate courses and for self-
instruction, exercises with solutions have been added to Chapters 2-7. The exercises 
do not require use of a computer. Some exercises start with computer output 
and the reader is asked to verify the results by computer, if one is available, 



but the essence of those exercises is to draw conclusions from the output. It 
is an advantage if the reader has access to one or more of the computer programs 
that are mentioned in the text, but certainly not essential. Bibliographic notes 
are included at the end of Chapter 1-7 to allow readers to put the material into 
its historical perspective and to introduce them to the literature. 

Most chapters are largely self-contained. The order in which they are presented 
is not necessarily the order in which they should be read. We chose the order 
of presentation with the following in mind: 
- the design of a study and data collection are the first and most important 

steps in research 
- understanding regression is a help to understanding calibration 
- understanding regression and calibration is a help to understanding ordination 

and canonical ordination 
- some of the cluster analysis techniques are based on ordination, so a basic 

understanding of ordination is necessary to follow their explanation 
- spatial analysis requires some knowledge of regression; the domain of ap-

plication is on the landscape level rather than the community and species 
level. 

R. Jongman Wageningen 

C. ter Braak September 1987 

O. van Tongeren 
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List of symbols 

ANOVA analysis of variance. 

bk value of the regression coefficient for the k-ih species; used when 
only one regression coefficient is involved. 

b0, bj, b2,... coefficients (parameters) in a regression equation; b0 is usually the 
intercept. 

c, ck maximum of a response curve. Can be indexed by a species number 

(k). 

c0, e,, c2,... coefficients (parameters) in a regression equation. 

C{h) covariance function, i.e. function giving the covariance between Z(x,) 

and Z(x2), where x, and x2 are two points. 

d.f. degrees of freedom. 

exp(x), ex the exponential function or antilog of x (exp(log(x))=x). 

Ey or E(y) expected value of a random variable y. 

F variance ratio in an ANOVA table. 

h lag, distance. 
i,j indices numbering sites in the data (i — 1, 2, . . ., n; j = 1, 2, 

. . ., n), often used as subscript, e.g. xt, the value of variable x 

in the i-th site. 
k, I indices numbering the species in the data (k = 1, 2, . . ., m; I = 

1 , 2 , . . . , m), often used as subscript, e.g. yk, the value of variable 
y of the k-th species. 

loge(x) Naperian or natural logarithm of x (for x > 0). 

m number of response variables (often equal to number of species). 

m.s. mean square in an ANOVA table. 

n number of sites (statistical sampling units, objects, etc.). 

p probability of occurrence of a species. 

p (x) probability of occurrence of a species as a function of the variable 

x. 
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/>max m a x i m u m probabil i ty of occurrence. 

P P value of a statistical test, e.g. P < 0.05. 

q number of explanatory variables (often equal to number of envir-

onmental variables). 

r coefficient of correlation (in a sample). 

R multiple correlation coefficient in regression; R
2 is termed the 

coefficient of determination. 
R{d] adjusted R

2
, also termed percentage variance accounted for. A 

recommended modification of R
2 to adjust for the number of 

parameters fitted by regression. For large sample sizes 7?2
adj is 

approximately equal to R
2
. 

s standard deviation of a sample, or residual standard deviation in 

regression. 

s
2 variance of a sample, or residual variance in regression. 

s.e. standard error. 

s.d. standard deviation of a sample. In Chapter 5, standard deviation 
of a unimodal response curve. 

s.s. sum of squares in an ANOVA table. 

/, ty tolerance, a measure of ecological amplitude, is the parameter for 
curve width in the Gaussian logit response model. It can be indexed 
by a species number (k). 

t, t (v) t or Student's distribution with v degrees of freedom: shows both 
the random variable and a particular or observed value. ta (v), or 
/„, is the critical value of a t distribution in a two-sided (two-tailed) 
statistical test with significance level a. 

u, uk optimum of a response curve, i.e. the value for which the response 
curve under consideration attains its maximum (when uniquely 
defined). Can be indexed by a species number (k). 

var(y) variance of a random variable y, also denoted by a2 or V. 

vr variance ratio in an ANOVA table. 

x arithmetic mean of the variable x in a sample. 

*o 
value of the variable x at a particular site. 

xi value of the variable x at the ;'-th site. 

xt, x2, • • • explanatory variables in a regression equation, often observed 
environmental variables. Also used for latent variables in ordination 
(i.e. theoretical, environmental variables) or variables indicating 
spatial position. 
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yt value of a particular response variable y in the j'-th site, used when 
it is clear from the context which variable is being considered. 

yk value from the k-th. response variable (species) in a particular site, 
used when it is clear from the context which site is considered. 

yki value of the &-th response variable (species) in the j'-th site. 

y+i, yk+ sum of ykj over the index k — 1, . . ., m; sum of yki over the index 

i — 1, . . ., n. 

z- 7-th environmental variable (j — 1, 2, . . ., q). 

Zjj value ofy'-th environmental variable in the j-th site. 

Zjt value of y'-th environmental variable in the i-th site. 

Z(x) a spatial random variable, with x denoting the spatial position. 
z(x) is the value of Z(x) observed in x 

y(h) semivariance. 2y(h) — var[Z(x,) - Z(x2)], where x, and x2 are points 

at distance h apart. 

5jj dissimilarity between sites i and j . 

E error term in a regression equation, e is the random variable 

8 estimator of the parameter 0. 

X, Xs eigenvalue of a cross-product matrix; Xs is the eigenvalue of the 

5-th axis or eigenvector. 

u(x) expected value of a random variable. 

v degrees of freedom. 

p(/z) correlation function p(/z) = C(h)/ C(0). 

a standard deviation of a random variable. 
r2 variance of a random variable; often used for the error variance 

in regression. 

zUyi yi+yi + ---+y„ 

X
2 (v) Chi-square distribution with v degrees of freedom: shows both the 

random variable and a particular or observed value. x a(v) is the 
critical value of a chi-square distribution in a statistical test with 
significance level a. 
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Dune Meadow Data 

In this book the same set of vegetation data will be used in the chapters on 
ordination and cluster analysis. This set of data stems from a research project 
on the Dutch island of Terschelling (Batterink & Wijffels 1983). The objective 
of this project was to detect a possible relation between vegetation and management 
in dune meadows. Sampling was done in 1982. Data collection was done by the 
Braun-Blanquet method; the data are recorded according to the ordinal scale 
of van der Maarel (1979b). In each parcel usually one site was selected; only 
in cases of great variability within the parcel were more sites used to describe 
the parcel. The sites were selected by throwing an object into a parcel. The point 
where the object landed was fixed as one corner of the site. The sites measure 
2x2 m2. The sites were considered to be representative of the whole parcel. From 
the total of 80 sites, 20 have been selected to be used in this book (Table 0.1). 
This selection expresses the variation in the complete set of data. The names 
of the species conform with the nomenclature in van der Meijden et al. (1983) 
and Tutin et al. (1964-1980). 

Data on the environment and land-use that were sampled in this project are 
(Table 0.2): 
- thickness of the Al horizon 
- moisture content of the soil 
- grassland management type 
- agricultural grassland use 
- quantity of manure applied. 
The thickness of the Al horizon was measured in centimetres and it can therefore 
be handled as a quantitative variable. In the dunes, shifting sand is a normal 
phenomenon. Frequently, young developed soils are dusted over by sand, so that 
soil development restarts. This may result in soils with several Al horizons on 
top of each other. Where this had occurred only the Al horizon of the top soil 
layer was measured. 
The moisture content of the soil was divided into five ordered classes.lt is therefore 
an ordinal variable. 
Four types of grassland management have been distinguished: 
- standard farming (SF) 
- biological farming (BF) 
- hobby-farming (HF) 
- nature conservation management (NM). 
The grasslands can be used in three ways: as hayfields, as pasture or a combination 
of these (intermediate). Both variables are nominal but sometimes the use of the 
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grassland is handled as an ordinal variable (Subsection 2.3.1). Therefore a ranking 
order has been made from hay production (1), through intermediate (2) to 
grazing (3). 
The amount of manuring is expressed in five classes (0-4). It is therefore an ordinal 
variable. 

All ordinal variables are treated as if they are quantitative, which means that 
the scores of the manure classes, for example, are handled in the same way as 
the scores of the Al horizon. The numerical scores of the ordinal variables are 
given in Table 0.2. There are two values missing in Table 0.2 . Some computer 
programs cannot handle missing values, so the mean value of the corresponding 
variable has been inserted. The two data values are indicated by an asterisk. 

Table 0.1. Dune Meadow Data. Unordered table that contains 20 relevées (columns) and 
30 species (rows). The right-hand column gives the abbreviation of the species names listed 
in the left-hand column; these abbreviations will be used throughout the book in other 
tables and figures. The species scores are according to the scale of van der Maarel (1979b). 

OOOOOOOOO11111111112 
12345678901234567690 

1 RchiLLea milLefolium 
2 Rgrostis stoLonifera 
3 Rira praecox 
4 Rlopecurus genicuLatus 
5 Rnthoxanthum odoratum 
6 Belt is perennis 
7 Bromus hordaceus 
B Chenopodium album 
9 Cirsium arvense 
10 Eleocharis paLustris 
11 Elymus repens 
12 Empetrum nigrum 
13 Hypochaeris radicata 
14 Juncus articulatus 
15 Juncus bufonius 
16 Leontodon autumnal is 
17 Lolium perenne 
IB PLantago lanceolata 
19 Poa pratensis 
20 Poa trivialis 
21 Potentilla paLustris 
22 Ranunculus fLammuLa 
23 Rumex acetosa 
24 5agina procumbens 
25 Salix repens 
26 TrifoLium pratense 
27 Trifolium repens 
28 Vicia lathyroides 
29 Brachythecium rutabulum 
30 Calliergonella cuspidata 
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Table 0.2. Environmental data (columns) of 20 relevées (rows) from 
the dune meadows. The scores are explained in the description of the 
Dune Meadow research project above; asterisk denotes mean value 
of variable. 

Sample 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Al 
horizon 

2.8 
3.5 
4.3 
4.2 
6.3 
4.3 
2.8 
4.2 
3.7 
3.3 
3.5 
5.8 
6.0 
9.3 

11.5 
5.7 
4.0 
4.6* 
3.7 
3.5 

Moisture 
class 

1 
1 
2 
2 
1 
1 
1 
5 
4 
2 
1 
4 
5 
5 
5 
5 
2 
1 
5 
5 

Management 
type 

SF 
BF 
SF 
SF 
HF 
HF 
HF 
HF 
HF 
BF 
BF 
SF 
SF 
NM 
NM 
SF 
NM 
NM 
NM 
NM 

Use 

2 
2 
2 
2 
1 
2 
3 
3 
1 
1 
3 
2 
2 
3 
2 
3 
1 
1 
1 
1 

Manure 
class 

4 
2 
4 
4 
2 
2 
3 
3 
1 
1 
1 
2* 
3 
0 
0 
3 
0 
0 
0 
0 
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1 Introduction 

R.H.G. Jongman 

1.1 Types of ecological research 

This book deals with the analysis of ecological data. Before going into that 
it is wise to define the area in which we are working: Ecology is part of biology 
and deals with the interrelationships between populations, communities and 
ecosystems and their environment, but draws on knowledge from many other 
disciplines, for example climatology, physical geography, agronomy and pedology. 
Odum (1971) prefers the definition 'Ecology is the study of structure and function 
of nature'. He stresses the role of ecosystem research in relation to the use of 
nature by man. Another definition, emphasizing population dynamics, describes 
ecology as the scientific study of the interactions that determine the distribution 
and abundance of organisms in nature (Krebs 1978). 

Two types of ecological research are autecological and synecological studies. 
Autecology is the study of one species in relation to its environment, which 
comprises other organisms and abiotic factors. Synecology, or community ecology, 
is the study of many species simultaneously in relation to their environment. The 
number of species or, more generally, taxa concerned can vary from a few to 
hundreds. For instance, a study on the Black Woodpecker alone belongs to 
autecology, while a study on forest bird communities including the Black Wood-
pecker belongs to synecology. 

On a larger spatial scale landscape ecology focuses on spatial patterns and 
the processes related to them; it considers the development of spatial heterogeneity, 
and spatial and temporal interactions across heterogeneous landscapes. It attempts 
to answer questions about land-use and land management. Biogeography studies 
the large scale spatial distributions of species in relation to climate and soil. 

Until recently synecological studies have mostly been carried out on terrestrial 
vegetation. Recently they have been extended to animal communities and aquatic 
systems. For example, there have been studies on bird communities (Kalkhoven 
& Opdam 1984, Wiens & Rotenberry 1981), and aquatic ecosystems have been 
classified on the basis of communities of macrofauna (Section 8.3).These clas-
sifications are the basis for landscape analysis. For example, vegetation classi-
fications and soil classifications can be used to classify landscapes. Once we 
understand the patterns and structures in the landscape, we are able to pay attention 
to the processes that determine them. The influence of mankind on these processes 
changes the landscape to a great extent. Especially in landscape ecology several 
sciences meet: geology, geography, biology and soil science (Risser et al. 1984). 

Sometimes it is not easy to define the difference between apparently distinct 



parts of ecological science as autecology and synecology. Floating vegetation of 
rather deep waters may consist mostly of one or few species, e.g. the vegetation 
known in Europe as the community of Nymphoidetum peltatae Oberd. et Th. 
Muell 1960, in which Nymphoides peltata is the only species. The study of this 
vegetation can be defined as either synecology or autecology: 

- if the aim is to classify and define the vegetation as a plant community, it 
can be called synecology 

- if the aim is to find the environmental amplitude of Nymphoides peltata it 
might be defined as autecology 

- the river system with Nymphoides peltata vegetation might be the object of 
a landscape ecology study 

The preceding discussion on the .subdivisions of ecology is not purely academic: 
it indicates the growing complexity in ecological research. With the increasing 
complexity of the systems studied the restrictions to be met when defining research 
objectives and methods increase. For instance, the determination of the effect 
of pollutants on a single species may be a research goal on the short term and 
causal interactions might be found. However, this gives only sparse information 
on the changes that might occur in nature. Spatial or long-term ecological research 
in landscape systems might provide that information, but it will be hard to find 
causal relations at this higher level of complexity. The integration of autecology 
and synecology with landscape ecology within one project can provide better insight 
into the complex relations within the landscape. 

The methods appropriate for analysis of ecological data show the same tendency 
of increasing complexity. This introductory chapter gives an overview for those 
who are not familiar with ecological research and data-analysis in general, a section 
on the terminology used in this book and some historical notes. All topics are 
discussed in detail in Chapters 2 to 7. Chapter 2 describes data collection and 
related topics: problem recognition, and the formulation of research objectives 
and related hypotheses. Regression and calibration are explained in Chapters 3 
and 4. Multivariate analysis is treated in Chapters 5 (Ordination) and 6 (Cluster 
analysis). Chapter 7 explains the analysis of spatial data. In Chapter 8 the use 
of some methods is illustrated by case-studies. 

1.2 Steps in research in community and landscape ecology 

In general, in every research project several steps can be distinguished. Problem 
recognition and the formulation of a research objective and related hypotheses 
are the first steps in any study. Then data must be collected in a correct way. 
Data analysis follows, to summarize the data or to find causal or descriptive 
relations. 

Experimental research in ecology is difficult to carry out, especially at the more 
complex levels of communities, ecosystems and landscapes. Most studies at these 
levels are descriptive. The sets of data being analysed are usually large; they are 
commonly gathered during field surveys. The analytical techniques used are 
determined by the objectives of the project; the results are influenced by what 
is sampled and the way sampling is carried out. 



Many data in ecological research originate from field surveys. A field survey 
starts - after its objectives are clearly stated - by planning how, where and when 
to take samples. Sampling strategy is important, not only to retrench expenses, 
but also to get interprétable data. 

In many countries mapping projects are carried out for planning and nature-
conservation management. Mapping can be described as the classification and 
generalization of field data so that they can be depicted on a map. Data for 
a map are collected by a field survey, often in combination with a satellite or 
aerial survey. The more detailed the research done, the more information can 
be given about the area that was investigated, by smaller, clearly defined mapping 
units. The objective of the study determines the scale of the mapping project. 

Monitoring can be defined as the process of repetitive observation of one or 
more environmental variables (Harvey 1981; Meijers 1986). The analysis of data 
stemming from a monitoring project may indicate, for example, changes in levels 
of pollution or results of nature-conservation management. The variables can be 
biological, chemical or physical: for example, lichens, carbon dioxide, or the water-
table, respectively. In a monitoring project, data collection is repeated over a 
certain period of time at well-defined, permanent locations and at specified time 
intervals. 

Data used in community and landscape ecology are mostly multivariate, i.e. 
each statistical sampling unit is characterized by many attributes. This means 
that (Gauch 1982): 

- data are complex, showing noise, redundancy, internal relations and outliers 
- data are bulky 
- some information in the data is only indirectly interprétable. 

Multivariate methods make such data easier to handle. 
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Figure 1.1 Growth of articles on multivariate analysis in the journal Vegetatio over the 
last 30 years. D total number of articles. M number of articles on multivariate analysis. 



These problems were recognized by vegetation scientists and as a result they 
began looking for adequate data analysis techniques. This led to the founding, 
in 1969, of the Working Group for Data Processing in Phytosociology of the 
International Society for Vegetation Science, which has played an important part 
in stimulating and co-ordinating the development of data analysis techniques (van 
der Maarel et al. 1976). 

Multivariate methods in ecology can be divided into three groups: direct gradient 
analysis, or regression analysis; indirect gradient analysis, or ordination; and 
classification, or cluster analysis. The development of multivariate methods can 
be illustrated by the number of articles in which these methods are used in the 
journal Vegetatio; these have increased from one or two per volume in 1968 to 
about 60% of all articles per volume in 1984 (Figure 1.1). In these articles all 
approaches of vegetation science are present: direct and indirect gradient analysis, 
as well as cluster analysis. 

1.3 Implementing ecological research 

Ecological research is used to support and evaluate nature conservation at 
international, national and local levels; it is applied in planning. In the Netherlands, 
for example, landscape ecological research provides essential information for 
physical planning at national, regional and local levels. Most of the Dutch provinces 
have developed programmes of mapping and monitoring. These programmes may 
entail research on the ground-water table, vegetation, birds, macrofauna, and the 
like. The data from these mapping and monitoring projects are used for many 
purposes, for example: planning locations for human activities (e.g. outdoor 
recreation or transportation); to predict the effect of ground-water extraction; 
to check water for pollutants. 

The aims of nature conservation and planning can be partly met by general 
scientific knowledge about hydrological processes, succession, isolation and 
population structure, and partly by field research directed at particular problems. 
In many cases it is necessary to collect data on the biotic community as well 
as environmental and management data. These data have to be analysed together 
to find a relation between, for instance, species composition and management. 
This requires a good match of objectives and methods of sampling and analysis. 

The way data are collected should ideally be determined by the research 
objectives. A good sampling design can help reducing costs by studying only a 
fraction of the population in a shorter period of time. A well-chosen sampling 
strategy is important, because the results of a study not only depend on clearly 
defined objectives and appropriate methods of analysis, but also on the data that 
are used. 

Correct data are of utmost importance for getting interprétable results from 
a study. A sample that is too small can cause a low power of the analysis, which 
leads to difficulties in the interpretation of the results. Bias in a sample leads 
to wrong conclusions. If a sample is too large for a study's objectives, it will 
cause a waste of effort, time and money. Clearly the sampling phase is a crucial 
one in any research project. For this reason, data collection and its relation with 



objectives and methods of analysis is the first topic of this book (Chapter 2). 
There are several ways to use multivariate analysis in research. Multivariate 

methods are scientific tools to process data collected during field surveys. To 
apply these methods detailed knowledge of the mathematical principles upon which 
they are based is not required, but at least some background is necessary to know 
when a method can be used. This book is not a mathematics textbook; our purpose 
is to make the ecologist aware of what he or she is doing. When you understand 
a numerical method and what it can be used for, it is possible to choose the 
best method to solve your problem; it also helps ensure that you use the method 
correctly. 

To provide a common theme for the explanation and application of techniques 
presented, a common set of data will be used in Chapters 3 to 6. This is part 
of the data of a research project to study management-vegetation relations of 
dune meadows on the Dutch island of Terschelling (Batterink & Wijffels 1983), 
in the Wadden Sea. This set of data, referred to as Dune Meadow Data, is described 
in a preliminary section of the book. A summary of the data is printed on a 
loose card that is placed inside the book. 

In practical terms, then, what techniques can provide answers to what questions 
about the dune-meadow management carried out on the island of Terschelling? 
One may want to explain the variation in abundance of a particular species, for 
example the abundance of Agrostis stolonifera in Table 0.1, which varies between 
0 and 7. The abundance of A. stolonifera is plotted against moisture in Figure 
1.2. Moisture is seen to explain some of the variation as A. stolonifera is absent 
in the driest parcels (moisture=0) and common in the wetter parcels. The relation 
displayed in Figure 1.2 can be analysed quantitatively by regression analysis "-• / ' ' -' •>''
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(Chapter 3). More generally, regression analysis can be used for assessing which 
environmental variables best explain the species' abundance and which environ-
mental variables appear to be unimportant. Once the relations between species 
and environmental variables have been quantified, they can be used to predict 
the species abundance from observed values of one or more observed environmental 
variables (prediction, Chapter 3) or, conversely, to predict values of environmental 
variables from observed abundance values of species (calibration, Chapter 4). 
Instead of abundance, one may have recorded merely the species presence. Chapters 
3 and 4 also describe how to analyse presence-absence data with regression and 
calibration techniques. 

Alternatively, one may want to explain the variation in the abundance of a 
number of species of an ecological community. The first step to achieve this aim 
can be to summarize the species data by searching for the dominant patterns 
of variation in community composition. The abundances of species usually covary 
in a more or less systematic way, because they react to the same environmental 
variables. Without knowing the environmental variables, one may therefore still 
attempt to reconstruct such variables from the species data alone. This is called 
ordination (Chapter 5). In ordination, sites and species are arranged along axes ' ' . ( " ^ ó t 
that represent theoretical variables in such a way that these arrangements optimally 
summarize the species data. Figure 5.7 shows such an arrangement for the 20 
sites and the 30 species in the Dune Meadow Data. The second step in the analysis 
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Figure 1.2 Relation of observed numbers of Agrostis stolonifera present and moisture class; 
from Dune Meadow Data. 
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is to relate the arrangements obtained to environmental variables or to known 
characteristics of the species.This is a powerful, indirect way of exploring possible 
relations between community composition and environment. Chapter 5 also 
introduces the so-called canonical ordination techniques, which search in a more 
direct way for relations between community data and environmental variables. 
The techniques of Chapter 3, 4 and 5 are also known in ecology under the name 
of gradient-analysis techniques. 

Another way of summarizing species data is to use cluster analysis (Chapter 
6). Cluster analysis is based on the idea that community types exist, and that 
each can be characterized by characteristic species combinations. Cluster analysis 
for the purpose of describing community types thus attempts to form groups 
of sites in such a way that the community-composition of sites varies most between 
groups and varies least within groups. This is illustrated with the Dune Meadow 
Data in Table 6.7. Subsequently, the groups may be interpreted in terms of 
environmental variables. This is another indirect way to explore species-envir-
onment relations. Cluster analysis is especially useful for defining mapping units. 
For example, on the basis of floristic data recorded at a limited number of sites, 
a vegetation classification is made. During subsequent field work, the distinguished 
vegetation types are mapped to obtain a vegetation map of a region. 

It is unrealistic to believe that units delineated on a map are really homogeneous. 
An environmental variable, such as precipitation, will vary gradually over a region. 
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One may want to interpolate its values between sampling points, or make a contour 
map. This can be achieved by using trend-surface analysis (Chapter 7). A special 
aspect of spatial data is that deviations from the trend over short distances often 
are highly correlated, but essentially random and therefore unpredictable. In other 
words, there is no easy direct relation between site location and the value of 
an attribute; the value of an attribute at a certain site might be better predicted 
by the values of nearby sites than by the general spatial trend. Chapter 7 "also 
describes methods to quantify this variability. This may lead to more insight in 
the variable studied. It can also be useful to obtain better interpolations by methods 
such as kriging, and to choose a better sampling strategy. 

Ordination and cluster analysis are often used in the early exploratory phase 
of an ecological investigation. The results may suggest relations to be studied 
in more detail in subsequent research. Regression may help in the study of more 
specific questions in the later phases of research. This order - ordination and 
cluster analysis first, regression analysis later - can also be used to analyse an 
existing set of data. Ordination and cluster analysis are useful to explore the 
data for possible patterns of community variation. Subsequently, one may attempt 
to explain the abundances of some species of particular interest in more detail 
by regression analysis, using measured environmental variables as explanatory 
variables. Nevertheless, in this book regression and calibration are introduced 
before ordination, because most ordination techniques require a basic understand-
ing of regression and calibration. Ordination is covered before cluster analysis 
because some cluster analysis techniques are based on ordination. 

1.4 Terminology 

Terminology used to describe various concepts of sampling is a source of 
confusion in ecology because ecologists often use terms that differ from those 
common to mathematical statistics. This is particularly so for the term sample, 
used by many ecologists (e.g. Gauch 1982) as a synonym for 'statistical sampling 
unit'. Also, ecologists from various branches of ecology use their own, different, 
terms for the 'statistical sampling unit'. For clarity, it is necessary to define several 
terms as they will be used in this book. We have adopted the following conventions: 

- The word sample is used in its common statistical meaning, i.e. a collection 
of statistical sampling units. 

- The statistical sampling unit is termed in this book as site (except in Chapter 
2, where the exact statistical terminology is used). 

Unfortunately, this convention introduces another source of confusion, because 
the word site is also often used to indicate a land unit, for example in geomor-
phology. To avoid confusion with this other meaning of the word site, we use 
words like location, land unit, stand or parcel when we want to indicate where 
the site comes from. So in one stand we can collect several sites, distributed 
in space and time to obtain a sample of this stand. We can use these sites to 
describe the stand, its spatial heterogeneity, and its temporal changes. 

Examples of what we call sites are: 

\J0, 



- the quadrat of a vegetation as used in vegetation studies (the so-called relevé 
is the description of a quadrat) 

- a slice from a sediment core used by a palynologist to count pollen 
- the catch in a net used by limnologists and entomologists to estimate species 

abundances 
- the plot used by a forester to estimate production 
- a soil core used by a soil scientist to determine chemical and physical soil 

properties 
- a volume of water collected to measure chemical composition or estimate species 

abundances 
- the eaten in a trap over a certain period of time used by animal ecologists. 

Some other terminological points must be made: 
- In contrast to Pielou (1984), we treat the word clustering as being more or 

less synonymous with classification. The word cluster is used to indicate a 
class of points, no matter how arbitrarily it's boundaries are chosen. 

- Quantities of species can be measured (or estimated) in different ways, depending 
on the kind of organism concerned and the objectives of the study. We use 
the word occurrence to indicate presence-absence data, abundance to indicate 
numbers of individuals, cover to indicate the estimated proportion of soil shaded 
from a vertical light source by any species 

- In a few cases we could not avoid using the term sample instead of site, but 
there it is clear from the context what is meant. 

1.5 Historical notes 

Ecology is an old science. It goes back as far as ancient Greek and Roman 
times, when philosophers such as Plato, Hippocrates, Plinius, Strabo and Po-
sidonius wrote treatises on the relation between man and nature. These studies 
were partly philosophical in approach, but they were also in part a record of 
their empirical observations of changes in nature caused by man (Glacken 1967). 
Despite this long history, the development of ecology as a modern science began 
modestly. It has it's origins in the scientific discoveries of the Renaissance. For 
example, it was in the wake of that period that Anthoni van Leeuwenhoek (1632-
1723) made his calculations on the reproductivity of insects (Egerton 1968), 
Linnaeus (1707-1778) developed his system of plant classification, and Mentzel 
(1622-1701) coined the term plant geography. Later, in the nineteenth century, 
the development of modern autecology and population dynamics benefited greatly 
from the impulse they received from the theories and research of Haeckel, Malthus 
and Darwin. 

Synecology developed from plant geography, from efforts to classify vegetation. 
Humboldt (1807) made the first vegetation classifications on a physiognomic base. 
At the end of the nineteenth century an approach in vegetation science was 
developed in Northern Europe that is based on research of vegetations with a 
small number of species - the 'Nordic' approach. The relatively small number 
of species in the Scandinavian vegetation resulted in emphasis of vegetation layers 
(strata) and their major or dominant species. At about the same time a floris-



tic-sociological approach was developing in Southern Europe. The major exponent 
of this 'French-Swiss' school was J.J. Braun-Blanquet. This school emphasizes 
the classification of vegetation based on its floristic composition. Quantitative 
methods fit in well with this approach and as a result it has developed into one 
of the major quantitative approaches in community ecology. 

Beside these two, schools of vegetation science have developed in other parts 
of the world: Russia, Great Britain, Australia and the United States (Whittaker 
1973). The local vegetation structures and the vegetation patterns, together with 
differences in scientific traditions, have greatly influenced the schools that have 
developed there. The Anglo-American school had great influence on the devel-
opment of gradient analysis as one of the major quantitative approaches in ecology. 

Its geographical aspect brought vegetation science in contact with geography. 
A convergent development in physical geography and vegetation science in 
Germany and Great Britain led in the thirties to the development of landscape 
ecology (Neef 1982). After a long period of silence, growth started anew between 
1960 and 1970, at a time of rediscovery of nature and nature conservation. 

Parallel to the development of the ecological sciences there has been a 
development of statistical methods: the principle of maximum likelihood (19th 
century), most univariate statistical methods (1930s and 1940s), principal com-
ponents analysis (1930s), most other multivariate methods (1950s-1980s), and 
generalized linear models (1970s and 1980s). 

The introduction of the computer, which made methods requiring voluminous 
computations practicable, has contributed largely to the development of new 
methods for data analysis. 



2 Data collection 

J.C. Jager and C.W.N. Looman 

2.1 Data collection, not an isolated or undirected activity 

In this chapter several statistical methodological aspects of community and 
landscape ecology will be discussed. The advanced methods of analysis dealt with 
in this book are of great use to the researcher of ecological communities. One 
would expect that technical knowledge of these methods offers sufficient assurance 
for an objective and efficient application of these methods. However this is not 
the case. The advanced character of the methods and the complexity of ecological 
research can cause the researcher to become caught up in unexpected metho-
dological pitfalls. 

Whole filing-cabinets full of information about the composition of the flora 
and fauna in a certain area do not necessarily offer a useful starting point for 
research. Samples taken from a vegetation in a certain area to establish the natural 
values of that area must be differently placed (in time and space) from samples 
taken to detect the disturbing influences of nearby industries. In the first case, 
one could select the sampling units randomly from the area to be studied. In 
the second case, it could be far better to sample at systematically determined 
distances from the industrial plant. The purpose of a research project puts demands 
on the way in which data are collected. A set of data suitable for one purpose 
may be totally unsuitable for another. The source of the observation data on 
which one bases one's research determines which questions can be answered and 
the nature of the ensuing answers to those questions. 

The execution of research within the framework of an empirical science can 
be taken to be an iterative process of adjustment (Box 1976; Box et al. 1978) 
in which two activities, theoretical speculation and data collection, must be closely 
connected. Indeed, theory and practice are continually linked by this process. 
Initial hypotheses (conjectures, models, theories) may have logical consequences 
that can be compared against data (facts, phenomena). Discrepancies may lead 
to adjustment of the hypotheses, which become the starting point for a new cycle 
of adjustment. The collection of the data is not an isolated, undirected activity. 
In the interaction between theory and practice statistical methodology plays an 
important part. In statistics, methods have been developed for the description 
and classification of data of observations, for data collection (sampling theory), 
for the building of mathematical models (modelling), for comparing models with 
observations and for inferring (generalized) conclusions (hypothesis testing, pa-
rameter estimation). Statistics offer us (cognitive) methods and techniques that 
make it possible to allow the above mentioned iterative process to run smoothly. 
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Statistical textbooks do inform researchers in detail about the many methods 
available to them. There are several textbooks specially intended for the biologist 
(e.g. Sokal & Rohlf 1981). Illustrated with details from real biological research, 
these books give an inventory of the well-stocked tool-kit of statistics. Such books 
are valuable to the researcher; they show how statistical methods can be applied. 
But the researcher is also in need of guidelines - to apply these tools in good 
coherence: the tuning of the structure of a study to the analyses on the research 
questions and the objectives of the research. It is very difficult to treat this aspect 
of statistical methodology in a textbook. 

In a well-thought-out project the following activities are essential: 
- the stating of the problem and the objectives of the project (Section 2.2) 
- the planning of data collection (Section 2.3) 
- the analysis of the observations and the interpretation of the results (Sections 

2.4 and 2.5). 
These are the theoretical activities that support the execution of the research 

project - the data collection. The lack of textbooks in which strategies for research 
are explicitly discussed, and the existence of a number of publications (Section 
2.6) that clearly show serious deficiencies in the application of statistics (for example 
in ecology) justify including a chapter on data collection in this book. In our 
attempt to localize the most dangerous pitfalls we will make comments on the 
above-mentioned activities. 

2.2 Objectives and data collection, start by defining the finish 

Statisticians have pointed out repeatedly, and with increasing stress, that a 
research project must be based on an explicit statement of the problem and the 
objectives. 'Without this, it is easy in a complex survey to forget the objectives 
when engrossed in the details of planning and to make decisions that are at variance 
with the objectives' (Cochran 1963). During the planning of a research project 
the statement of objectives is the guideline for the decisions one has to make 
about the definitions of possible treatments, explanatory variables and response 
variables, by which expensive, irrelevant or unobtainable aims can be avoided 
(Cochran 1983). Box et al. (1978) write: 'In any investigation it is of utmost 
importance (1) to define clearly the objectives of the study to be undertaken, 
(2) to be sure that all interested parties agree on these objectives, (3) to agree 
on what criteria will determine that the objectives have been reached, and (4) 
to arrange that, if the objectives change, all interested parties will be made aware 
of this fact and will agree on the new objectives and criteria. It is surprising 
how often these steps are either ignored or not given the careful attention they 
deserve, a circumstance that often leads to difficulties and sometimes to disaster' 
(Boxetal . 1978, p. 15). 

If the advice above applies to researchers in general, it definitely applies to 
the landscape ecologist in particular. Several characteristics of research in landscape 
ecology are responsible for this. First, the landscape ecologist is usually involved 
in multidisciplinary research (incorporating, for example, ecology, geography and 
agriculture; cf. Risser et al. 1984) in which usually several researchers and 
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institutions have to co-operate. Moreover, landscape ecology is frequently aimed 
at policy-making. Then, the various parties in a research project are often guided 
by diverging interests: scientific ones and policy-making ones. The ecologist may 
be interested in, for example, the causal background of the structure of a vegetation, 
while a researcher on behalf of the policy-maker may prefer to work as quickly 
as possible towards formulating a policy from the research. In the absence of 
the same objectives for all concerned, it all too easily happens that during the 
research the objectives change and diverge. Suppose, for example, researchers 
started a project to describe in some ecological sense an area. Then it is easy 
for a conflict to occur when they are asked to use the data to predict the effects 
of, say, building a motorway or establishing new recreation facilities. The ecologist 
is then forced to analyse a set of data, that was not, or not optimally, designed 
for the new objectives. 

Second, landscape ecology commonly requires long-term field research. The 
time-span between the start and finish of the relevant research is so great that 
changes in the original problem and associated aims can easily occur. For example, 
research into the relation between landscape structure and the density of breeding 
bird populations requires observations over a long period. In contrast to field 
research, laboratory research often easily yields results with experiments that take 
a short time. Since research in landscape ecology usually involves an expensive 
observation process, the researcher is frequently forced to answer questions from 
a set of data that was not put together expressly to answer these questions. The 
desire to use multi-purpose surveys is understandable here. 

Third, research into natural communities is methodologically complex. The 
background to this complexity will be dealt with in Section 2.7. The multivariate 
analysis required in this context also demands sets of data to be specifically designed 
for the objectives. This conflicts with the desire to use multi-purpose surveys. 

2.3 Planning of data collection 

2.3.1 Study design 

Once the problem and objectives of a research project have been stated, it 
is necessary to develop a schema that summarizes accurately the procedure to 
be executed from start to finish. The development of this schema - often called 
the 'experimental design' or the 'study design' - implies detailed attention to a 
whole series of activities, which are summarized below in the conventional 
terminology of statistics (see Cox (1958) and Cochran (1977)): 

- The statement in statistical terms of the problem to be solved. To what 
(statistical) population(s) does one direct the research? Which (statistical) 
hypotheses are to be considered for testing? Which parameters does one want 
to estimate? 

- The description of the objects for study (the experimental unit or the sampling 
unit). 

- The specification of response (dependent) variables, explanatory (independent) 
variables and treatments (in terms of factors and factor levels). 
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- The design of a (random) procedure for the allotment of treatments to 
experimental units or a (random) procedure for the selection of sampling units 
(e.g. completely random sampling, stratified sampling). 

- The specification of the variables to be observed, the relevant observation 
methods and the measurement scales to be used. 

- The determination of the desired accuracy and precision of the observation 
methods to be used. In this activity one should not restrict oneself to the 
specification of the accuracy and precision of the observations to be done 
with a measuring instrument (e.g. with how many digits after the decimal 
point does one have to register a pH), but also one has to determine the 
taxonomie level (species, subspecies) of the organisms in the ecological survey. 

- The establishment of the desired duration and size (number of study objects) 
of the research. The statistical power analysis (see below) can be useful with 
this. 

- The specification of the statistical methods to be used for analysis, the setting 
up of an scheme of analysis and a framework for the representation of the 
results (tables, graphs, diagrams). 

- The evaluation of the objectives and relevant criteria in the light of the above-
mentioned activities. 

This list of activities is not complete. Besides, it is not always possible to realize 
all these activities. For example, in non-experimental research the assignment 
of treatments to study objects (experimental units) does not occur. In addition, 
as already mentioned, the landscape ecologist is frequently forced to make use 
of observational material that he did not collect himself as a starting point for 
his research. It is then impossible for him to tune the observation process to 
the problem under consideration. 

Whenever possible, a good researcher will - almost intuitively - pay attention 
to the features listed in the schema. Researchers do, however, according to their 
nature, stress different aspects. For example, one researcher may try to improve 
his research by increasing the number of observations, while another will con-
centrate on the technical refinement of the instruments to be used. However the 
best approach would be for the researcher to take all the activities listed into 
consideration and to consciously weigh up where he will direct his attention in 
the setting up and conduction of the research. 

A well-thought-out design is the foundation for meaningful application of 
statistical techniques, especially statistical tests of hypotheses. The hypothesis being 
tested - the so-called null hypothesis - is a statement (assumption) about the 
collection of all elements under investigation, i.e. the statistical population. This 
statement is mostly given as a zero difference. For example: 'there is no difference 
between the mean values of the height of oaks in Forest A and B'. It can be 
formulated more generally as 

M-i - " 2 = 0 -

Another example: 'the means of two populations differ by 4 units', i.e. 
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u, - u2 - 4 = 0. 

These two examples refer to population means, but null hypotheses can be 
formulated for many other parameters, such as variances, regression coefficients 
and correlation coefficients. 

A statistical test is meant to enable us to make a statement about populations 
based on the study of samples from those populations. Two types of error can 
occur in a statistical test: Type I error - the rejection of a true null hypothesis; 
or Type II error - the acceptance of the null hypothesis when it is false. The 
probabilities of making false decisions are the probability a of making a Type 
I error and the probability ß of making a Type II error, respectively . An important 
concept in testing is the power of a statistical test, i.e. the probability of rejecting 
the null hypothesis when it is false, 1-ß. The probabilities a, ß or 1-ß and the 
sample size (the number of sampling units involved in the study) are related. 
An increase in sample size reduces both a and ß and thus increases 1-ß. The 
balanced assessment of a, ß, 1-ß and the (required) sample size is the subject 
matter of so-called statistical power analysis. A short survey of statistical power 
analysis is provided by Cohen (1973). A statistical power analysis is an essential 
part of a study design. 

2.3.2 Study type 

When the study design is completed, it is then possible to determine what type 
of study it is. Studies can be classified according to their purpose. Cox & Snell 
(1981) advise to typify any study using the dichotomy 'explanatory' vs. 'pragmatic', 
i.e. research directed to obtaining insight into one or more phenomena vs. research 
with a practical/technological aim. Another important dichotomy concerns ex-
ploratory objectives vs. confirmatory objectives of a study. The first sort are aimed 
at the detection of relations that represent a starting point for later research devoted 
to the testing of hypotheses; the second sort are aimed at obtaining conclusive 
statements (statistical proof), made possible by the application of hypothesis testing 
and parameter estimation. 

Apart from this classification of studies by intended purpose, a typology based 
on a characterization of the study design is important. It is important because 
the study type indicates to the researcher what type of conclusions he may expect 
to be able to make from the application of statistical techniques on the data 
concerned, once he has reached the interpretation phase of the study. Cox & 
Snell (1981) mention the following main types: 
- Experiments. The investigator sets up and controls the system under study, 

and influences the procedures to be conducted. Especially if objective ran-
domization is involved in the assignment of treatments to the experimental 
units, it will be possible to conclude that significant differences in response 
between treatments are a consequence of the treatments. 

- Pure observational studies. The investigator has no control over the collection 
of the data. It may be possible to detect differences and relations between 
measured variables, but interpretation of the differences requires caution. The 

14 



real explanation for the differences may not become apparent; it may not 
have been even measured. 

- Sample surveys. Under the investigator's control, a (random) sample is drawn 
from well-defined statistical populations. Research results in a good description 
of the populations and the differences between those populations, but similar 
to observational studies, the explanation of relations between observed variables 
remains problematic. 

- Controlled prospective studies. The researcher selects units in which various 
variables considered to be explanatory are measured. The units are then 
monitored to see whether some particular event occurs. If all potentially 
important explanatory variables can be measured, which is never totally 
possible, prospective studies lead to conclusive statements on the explanatory 
character of the measured variables (cf. experiments). 

- Controlled retrospective studies. A characteristic response has been registered 
and subsequently the history of the units is traced to detect relevant explanatory 
variables. 

Note that this classification of main types does not meet methodological criteria 
of an adequate classification: a classification must be exclusive and extensive (van 
der Steen 1982). This classification is not exclusive: research of the fourth or 
fifth type, controlled prospective or retrospective studies, for example, can fall 
under research of the third type, sample surveys. Hurlbert (1984) proposes a different 
terminology to distinguish between experiments, which he calls 'manipulative 
experiments', and surveys (including prospective studies), which he calls 'men-
surative experiments'. A classification of study types that meets the formal demands 
of classification should be connected to the range of possible conclusions that 
may result from each study type. Problems that will be discussed in Section 2.6 
are then less likely to occur. Unfortunately such a classification has yet to be 
developed. 

2.3.3 Sampling strategy 

As stated in Subsection 2.3.1 development of a study design implies development 
of a procedure for the allotment of treatments to experimental units or a procedure 
for the selection of sampling units. The sampling strategy represents the skeleton 
of a study design. Randomized procedures, i.e. random allotment of treatments 
to experimental units or random selection of sampling units, are almost always 
preferable to non-randomized procedures. Randomization provides modern re-
search a particularly powerful tool to increase the range of validity of the conclusions 
emerging from a research project (cf. Fisher 1954): randomization eliminates 
systematic errors (bias) and provides the basis for warranted application of 
inferential statistics (testing, estimation). 

It is not necessary for the sampling procedure to be completely randomized. 
In the study of natural populations it can be of profit (i.e. more precise estimation) 
to make use of so-called stratified sampling (e.g. Snedecor & Cochran 1980). 
For the reader of this book it is interesting to take note of what Bunce et al. 
(1983) wrote on this matter. They developed a stratification system for ecological 
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sampling in Britain based on environmental strata. Other, sometimes useful, 
sampling strategies that deviate from completely random sampling contain a 
systematic element, e.g. the line transect method, where sites are located at regular 
distances along a randomly (!) selected transect. Systematic sampling strategies 
require, however, justification by specification of assumptions about the type of 
variation in the sampled population to arrive at statistically sound conclusions. 

In certain cases, for instance in a research project involving treatments or 
observations that could cause irreparable damage, it is not desirable to sample 
randomly. Anderson et al. (1980) discuss the possible reasons for non-randomized 
studies in the field of medicine. Their discussion - translated into ecological 
terms - is also of interest to ecologists. 

For several methodological aspects of the sampling strategy used in ecological 
field studies the reader is referred to Hurlbert (1984a), Pielou (1976) and Southwood 
(1978). 

2.4 Analysis of data and data collection 

2.4.1 Introduction 

In this section we will discuss some subjects that are related to the analysis 
of data. Analysis involves many activities: 

- The inspection of the data to determine their quality. Do outliers occur? Are 
there any gross errors? Are there any missing values? If so, what can be done 
about it? 

- Investigation (by graphing and testing) whether the data meet the requirements 
and assumptions of the analytic methods used. If necessary, values of ob-
servations may be transformed. 

- The preparation of the observations for computer processing and further 
analysis. 

- The application of the analytic methods chosen in the study design and the 
presentation of the results (tables, diagrams, graphs). 

We shall not discuss the content of the analytic methods that are dealt with 
in later chapters. But we do want to bring to the reader's attention some general 
aspects of the analysis that precede the application of these methods, namely 
the measurement scale, the transformation of observed variables and the typification 
of the frequency distributions of the variables to be analysed. 

2.4.2 Measurement scales 

To prevent unnecessary work and disappointment it is important to decide upon 
the appropriate measurement scale in the planning phase of a project. Measurement 
scale will therefore - of all the aspects of study design (Subsection 2.3.1) - receive 
special attention. 

Measuring the abundance of a species or the status of an environmental factor 
means assigning a value to each sampling unit. These values contain the information 
about the samples we have collected. Values can be related to each other in different 
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ways, which are called scales of measurement. In this book we use four kinds 
of scales: 
- nominal scales 
- ordinal scales 
- interval scales 
- ratio scales. 

The first scale is referred to as being 'qualitative'; the last two are referred to 
as 'quantitative'. 

The number of restrictions, or constraints, of each scale increase in this order, 
i.e. nominal scales have fewer restrictions than ordinal scales, ordinal scales fewer 
than interval scales and interval scales fewer than ratio scales. A scale with fewer 
restrictions is 'weaker' than a scale with more restrictions, which is 'stronger'. 

A nominal scale is the least restrictive. The values have no relation to each 
other and are often referred to as classes. An example is the factor soil type, 
which may have the classes 'clay', 'peat' and 'sand'. Values assigned to these classes, 
for example 10, 11 and 17, respectively, do not imply any order and differences 
between them do have no function. The respective values only represent, in effect, 
the names of the classes. 

An ordinal scale implies more than a nominal scale, namely a rank order between 
the values or classes. A well-known ordinal scale is the Braun-Blanquet scale, 
for measuring abundances of plants. This scale was extended by Barkman et al. 
(1964) and recoded to numeric values by van der Maarel (1979b) to provide a 
scale for use in numerical analyses. Table 2.1 presents these scales. The possible 
values or symbols in this scale can be ranked from low to high abundance, but 
the differences between the values are not fixed. It can't be said that the difference 
between the values ' 1 ' and '2' is less or greater than the difference between '4' 
and '5'. Because of this feature the calculation of the mean or standard deviation 
can give misleading results (see Exercise 2.1). Another example of an ordinal 
scale is when we have nothing but an ordering of objects, for instance when 
a person has ranked objects like rivulets or hedges according to their value for 
nature conservation. 

The third type of scale, the interval scale, possesses a constant unit of 
measurement. The differences between values can be compared with each other. 
An example is temperature measured in degrees centigrade. A difference of say 
5 degrees means the same all over the scale. Yet with an interval scale the position 
of the zero value is arbitrary. This leads to the fact that we can say that a certain 
difference is twice as large as an other, but not that a certain object is twice 
as large as an other when corresponding values are in the ratio 2 to 1. Means 
and standard deviations can be calculated as usual. 

A ratio scale is like an interval scale, but with a fixed zero point. So it is 
meaningful to calculate ratios. Abundance measures for species are often ratio 
scales, for instance number of individuals or proportions (usually expressed as 
a percentage). 

When choosing a measurement scale one should be guided by the analytic method 
to be used. Some analytic methods demand a strong scale and cannot be used 
for the analysis of data measured on a weak scale. Though reduction to a weaker 
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Table 2.1 Original cover scale of Braun-Blanquet, extended to a combined cover/ abundance 
scale by Barkman et al. (1964) and then recoded by van der Maarel (1979b). 

Braun-Blanquet 

Symbol 

1 

2 

3 
4 
5 

Cover 

(%) 

< 5% 

5-25 % 

25-50% 
50-75% 
> 7 5 % 

Barkman 

Symbol 

r 
+ 
1 
2m 
2a 
2b 
3 
4 
5 

Cover (%) 
or 
Abundance 

rare 
few 
many 
abundant 
5-12.5 % 

12.5-25% 

van der Maarel's 
scale 

1 
2 
3 
4 
5 
6 
7 
8 
9 

scale can be carried out later on, after measuring, it is preferable to use the weakest 
scale possible, since obtaining measurements using a weak scale requires con-
siderably less effort than measurements using a strong scale. Presence-absence 
data (nominal scale), for example, are far more easy to obtain than data on 
proportions (ratio scale). 

2.4.3 Frequency distributions 

For the statistical analysis of the data it is important to know how the data 
are distributed. We distinguish between distributions of discrete variables and 
distributions of continuous variables. When the smallest possible difference between 
two values is essentially greater than zero, the distribution is called discrete; when 
every real value in an interval is possible the variable is called continuous. When 
we count the number of animals in a sampling unit, the variable resulting will 
be discrete; when we measure a pH, the variable will be continuous. 

The normal distribution (Figure 2.1a) is a distribution for continuous variables. 
Its major feature is that the relative frequency of observing a particular value 
is symmetric around the mean. The normal distribution is described by two 
parameters, the mean (u) and the standard deviation (o). The standard deviation 
is a measure for the spread of the values around the mean. About two-third 
of the values from a normal distribution fall between u-o and u+o and about 
95% of the values fall between u—2a and u+2a. 

When we make a histogram of the values of, for example, the proportions 
of a species in a particular set of data, the histogram will often suggest that 
the underlying theoretical distribution is not symmetric but skewed. A particular 
kind of skewed distribution is the log-normal distribution (Figure 2.1b). A variable 
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ca. 95% of values 

Figure 2.1 Three common types of distribution, a: normal distribution, b: log-normal 
distribution, c: Poisson distribution. 

has a log-normal distribution if its logarithm has a normal distribution. Because 
normal distributions are more convenient to deal with, 'skewed' variables that 
have a log-normal distribution are usually transformed by taking their logarithm. 
Throughout this book the Naperian, or natural, logarithm is used. This trans-
formation does not hinder interpretation of results for the following reasons. The 
mean of a log-transformed variable can be back-transformed by taking its antilog, 
i.e. exp x. This gives the geometric mean of the variable. The geometric mean 
is an estimate of the median of the log-normal distribution. Further, the standard 
deviation of a log-transformed variable (s.d.) is about equal to the coefficient 

of variation of the original variable, at least if s.d. ^ 0.5. For greater values 
of the standard deviation, the coefficient of variation is estimated by 
%/exp (s

2
)— 1 (Aitchison & Brown 1969). (The coefficient of variation is, by 

definition, equal to the standard deviation divided by the mean). 
There are several rules of thumb for deciding whether a continuous variable, 

which has positive values only, can better be described by a log-normal than 
by a normal distribution. For large sets of data one can look at histograms. 
For small sets of data, assuming a log-normal distribution is recommended if 
the standard deviation is larger than the mean or if the maximum value of the 
variable is more than twenty times larger than the smallest value. 

We shall mention two distributions for discrete variables. The first is the binomial 
distribution. A binomial distribution occurs when, for example, a population 
consists of males and females in a ratio of 1 : 3 and we randomly select n individuals. 
The number of females in the sample of n individuals then follows a binomial 
distribution. The parameters of this distribution arejhe total («) and the probability 
ip) that a randomly selected individual is a female; in the example p = 0.75. 
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The variance of a variable that is binomially distributed is equal to np{\—p). 

When we randomly select n sites, then the number of occurrences of a species 
will also follow a binomial distribution, with total n and probability p (the 
probability of occurrence of the species). When we select only a single site (n 

— 1), then the number of occurrences of the species is either 0 or 1, depending 
on whether the species is absent or present in the site selected. As n = 1, this 
particular binomial distribution is described by a single parameter,/», the probability 
of occurrence of the species. 

A second distribution for discrete variables is the Poisson distribution (Figure 
2.1c). This distribution occurs when we count the number of organisms in a region 
or the number of occurrences of a particular event in a given period of time. 
The count can result in the values 0, 1,2, 3, ..., etc. A Poisson distribution can 
be described with one parameter: the mean. The variance of a Poisson distribution 
is simply equal to its mean. The assumption that counts of organisms follow 
a Poisson distribution is often unwarranted. Counts made of organisms that are 
located completely at random in a region do follow a Poisson distribution, but 
often organisms are aggregated (clumped) so that zero counts and extremely high 
counts are encountered more frequently than in a Poisson distribution with the 
same mean. For an aggregated population, the variance exceeds the mean. 

2.4.4 Transformations 

The application of the techniques that are being dealt with in this book frequently 
requires transformation of the data of basic variables. A transformation consists 
of a replacement of measured values by other values. Depending on the motivation 
for the transformation, two groups can be distinguished. The first group serves 
to make several variables comparable (e.g. abundances of species among samples, 
values of different environmental factors). The second group ensures a better fit 
of the values in a regression model, which can then be used for further statistical 
analysis. 

Frequently, we want to express in a number whether an environmental variable 
takes on a high or low value in a certain sample. Obviously it is easier to inspect 
the difference between the average over all samples and the measured value from 
the sample of interest than to inspect all measured values. We replace the value 

y*i = Yk, - Yk+/n Equation 2.1 

for all k. This is called 'centring'. Subsequently one can relate the deviation to 
the total variation of the variables. This is especially desirable where it concerns 
variables with different units of measurement. For example, a deviation of one 
pH unit is obviously quite different from a deviation of one microgram of phosphate. 
To compare such variables the value yki is replaced by 

ytr=(yki-yk+/n)/sk> Equation 2.2 
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where sk represents the standard deviation of the series. This is called 'standardizing 
to zero mean and unit variance'. An alternative is to replace the measured values 
by their rank numbers. Several other methods are available to make variables 
comparable. Subsection 6.2.4 gives more details. 

The second group of transformations ensures a better fit of the data values 
to a certain distribution or to a certain model. We know for instance that the 
responses of many organisms to concentrations of cations is logarithmic. For 
that reason the concentrations of most cations are usually transformed by taking 
the logarithm or the negative logarithm (e.g. H+ ions to pH). Other variables 
also frequently display a logarithmic relation instead of a linear one. Another 
reason for transformation can be that least-squares regression (Chapter 3) requires 
that the dependent variable has normally distributed random errors. If the error 
is proportional to the expected value of the dependent variable (constant coefficient 
of variation) logarithmic transformation of the dependent variable is required. 
The log transformation is: 

y*i = loge Y kr 

If zero values occur, one can use instead: 

Equation 2.3a 

y* = ioge (ƒ*,+!). Equation 2.3b 

The cover/abundance scale of van der Maarel (Table 2.1) is comparable to log-
transformed cover (Figure 2f2) for the cover values (5-9); the abundance values 
(1-4) are unrealistically taken to represent the same proportion of cover. 

9 (•>). 

8 (4L, 

7 (3) 

6 (2b) 

5 (2A) 

.1 (2N), 

"•3 (1) 

•2 ( + ) 

•1 (R) 

log-transformed cover percentage 

Figure 2.2 Log-transformed cover percentages of Table 2.1 plotted against the scale of 
van der Maarel. 
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2.5 Interpretation of results 

Ideally a study should meet a number of strict requirements. It should: 
- have a clearly stated aim 
- have well-defined populations, observation processes, hypotheses to be tested 

and parameters to be estimated 
- use random sampling/ random assignment of treatments 
- have previously specified probabilities of making false decisions 
- use a study design based on the requirements above 
- use analytical methods appropriate to the requirements above 
- have conclusions that concern only the questions stated in the study. 

A study design meeting these requirements will give clear, statistically sound 
conclusions about the population(s) under study and provide a basis to formulate 
causal explanations about observed differences (effects) and relations among 
variables. Evidence of causality is more convincing when treatments can be applied 
to the objects under study than when they cannot be manipulated. When one 
is studying existing populations, as in surveys, then the interpretation of the analyses 
becomes more complicated, because it is possible to come up with more than 
one explanation. 

An example may illustrate this. Assume a researcher is interested in the question 
as to whether a toxic agent in the ground influences the biomass of growing 
sunflowers. Sunflower cuttings are (randomly) assigned to pots in which the 
researcher has established desired levels of the agent, varying over a relevant range. 
After some time the biomass of each plant is assessed. The study design is a 
'completely randomized design with replications' and the results can be analysed 
by regression analysis. If the regression analysis shows a statistically significant 
decrease in the biomass for an increase of the agent levels in the ground, then 
it is safe to conclude the agent affects the biomass - there is a (possibly indirect) 
causal relation between the toxic agent and biomass. Suppose the researcher 
conducts his study as follows. He chooses a certain area where sunflowers are 
abundant. A number of sunflowers are randomly selected, of which he determines 
the biomass. At the place where each of the sunflowers is selected, he also measures 
the agent concentration. Regression analysis is then applied to the observations 
to check whether the biomass changes with the agent's concentration. A statistically 
significant outcome does not necessarily mean that the agent affects biomass, 
i.e. a causal relation between agent and biomass does not necessarily exist. It 
may well be that the agent has nothing to do with the biomass, but that both 
variables fluctuate in response to one or more other variables - for example, 
amount of human disturbance - that were not observed. 

The example shows that non-experimental research where existing populations 
are (randomly) sampled only yields causal explanations if one has been able to 
exclude alternative explanations. Causal interpretations become risky as soon as 
the study is not of the experimental type (Subsection 2.3.2, Type 1), as is the 
case in environmental research that is based on field observations of biological 
communities and environmental variables. The example also shows that the scope 
of a study is not determined by the analytic technique used - here in both cases 
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a simple regression analysis - but rather by the study type. In both cases, however, 
one arrives at conclusive statements (statistical proof) on the populations under 
study (a hypothetical Population-case 1: sunflowers assigned to specified levels 
of the toxic agent; and a real Population-case 2: all sunflowers present in a certain 
area) that depend for their validity on the randomization involved. Studies not 
meeting the randomization requirement, or the other requirements listed at the 
beginning of this section, do not yield conclusive, i.e. statistically sound, statements 
about the relevant population(s). Such studies should be given the label 'detection'. 

The methodological status of statistical classification methods continues to be 
a subject of discussion. Hartigan (1975) remarked on cluster techniques that 'they 
are not yet an accepted inhabitant of the statistical world'. It is usual to label 
them under the heading of 'exploratory data analysis'. That implies one correctly 
assumes the methods concerned to be of detective value and not contributive 
to the testing of hypotheses. One considers the methods to be 'a tool for suggestion 
and discovery' (Anderberg 1973). The conscious use of the distinction proof-
detection is therefore continuously in order when one wants to interpret the results 
of the application of these techniques. The relevant classification techniques are 
relatively young. Integration with classical statistical methodology, typified by 
models for observations (for example analysis of variance and regression analysis), 
the testing of hypotheses and the estimation of parameters is as yet incomplete. 
Gordon (1981, p. 141) remarks : 'The integration of classification into the main 
stream of statistics should prove beneficial to both'. The detective character of 
many multivariate analyses in ecology is attributable, on the one hand, to the 
nature - the stage of development - of these methods and, on the other hand, 
to the nature of the study type - non-experimental field research - in which they 
are applied. 

2.6 Sources of misinterpretation 

In the previous sections we have tried to indicate how an investigator might 
plan his research and the conditions he has to meet to make certain types of 
conclusive statements. However there are various sources of misinterpretation of 
ecological data, most of which affect the status and range of validity of the 
conclusions. Our aim in this section is to indicate the implications of not meeting 
the requirements of a perfect study design. 

2.6.1 Incorrect use of statistical analysis 

Statistical methodological evaluations of the use of statistics in research offer 
a sombre picture, which undoubtedly is caused by the relatively meagre attention 
paid to research strategies in statistical textbooks. Several authors have brought 
to light a number of the abuses that occur as a result, for example: 

- poorly designed and incorrectly analysed field experiments (Hurlbert 1984) 
- incorrect application of Student's t test (Innis 1979) 
- incorrect use of multiple comparison procedures (Dawkins, 1983; Johnson & 

Berger 1982; Mead & Pike 1975) 
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- incorrect or insufficient application of basic statistical principles (Buckland 
1982; Tacha et al. 1982) 

- lack of attention paid to the methodology of the design and analysis of biological 
monitoring systems (Meyers et al. 1982). 

These authors offer numerous recommendations to remedy this situation; their 
publications are compulsory reading for the ecologist. 

2.6.2 Taking detection to be proof 

One of the most frequent misinterpretations is taking detection for proof. Sources 
of this kind of misinterpretation are manifold. Mertz & McCauley (1980) noticed 
that in the past field workers were wary of laboratory experiments and that remnants 
of this attitude still persist today. They also noticed that these field workers made 
no distinction between correlational data and results of research upon which a 
researcher was able to impose treatments. 

Hurlbert (1984) evaluated the application of statistics in field experiments and 
concluded that ecological literature is riddled with 'poorly designed and incorrectly 
analysed experimental work'. He introduced the concept of 'pseudoreplication' 
for those cases where either treatments are not replicated or replicates are not 
statistically independent. Often in such experiments a treatment is applied to a 
plot in which several sites are located, or sites in subsequent years are treated 
as being independent observations. Tacha et al. (1982) observed the lack of explicit 
description of the population in ecological literature, which makes it difficult to 
distinguish between statistical proof (conclusive statements on the sampled pop-
ulation) and detection (statements on the target population). This is very important 
in designing landscape ecological directives, when one is interested in an area 
greater than the area studied. The distinction between proof and detection is also 
impossible to make when sampling units or experimental units are not properly 
defined, or statistical hypotheses and objectives are not clearly stated. 

Deviation from the planned analysis may change the character of the conclusions 
emerging from a study from proof to detection. When, for instance, one decides 
to analyse a difference or a relation that is perceived in the data without having 
planned to do so beforehand, the result has detective value only (the analysis 
predicts what has already happened: 'prophecy ex eventu'). 

2.6.3 Misinterpretation caused by biased sampling 

By not using random sampling, one can obtain a 'distorted picture' (Snedecor 
& Cochran 1980) of a population. Biased sampling, such as choosing sites from 
a vegetation that are considered to be typical (key sites) or that have as many 
species as possible, introduces an observer-tied bias. Other types of bias may 
be caused because certain measurements have been performed with a frequency 
that depends on the season or the location (e.g. near the laboratory vs. far from 
the laboratory). Then the results of any statistical analysis may be different from 
the results that would have been obtained if random sampling had been applied. 
It is worthwile to go to quite some effort to avoid this kind of bias. 
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2.6.4 Other sources of misinterpretation 

Strong (1980) considered the strategy of ecological research. He established 
that explicitly formulated null hypotheses in a broad sense - 'null hypotheses 
entertain the possibility that nothing has happened, that a process has not occurred, 
or that change has not been produced by a cause of interest' (Strong 1980, p. 
271) - occur remarkably seldom in ecology. He writes: 'Instead, most research 
is either phenomenological on one hand or corroborative on the other. Phenome-
nological ecology collects facts and measurements about populations, communities 
or ecosystems without ostensible hypotheses. ... Corroborative ecological research 
is motivated by a particular alternative hypothesis and ignores the null hypothesis. 
It usually either develops deductive theory in which an alternative is treated as 
true or collects circumstantial evidence that corroborates an alternative' (Strong 
1980, p. 273). Strong analysed examples of research of the latter type. He concluded 
that ignoring and not stating explicit null hypotheses (null models) hampers 
ecological research. We notice that reactions on Strong's view (Quinn & Dunham 
1983; Simberloff 1983) bring to light controversial points of view with respect 
to the methodology of ecological research and theory formation; the value of 
inferential statistics involving specified null hypotheses is not being denied here, 
however. 

Several years after the publication of Strong (1980), Toft & Shea (1983) (see 
also Cohen 1977) pointed out that the assessment of the power is one of the 
most important statistical tools for investigating ecological patterns. They found, 
however, that 'Power statistics are drastically underused in basic and applied 
ecological research when they could provide objective measures of the sensitivity 
of null hypothesis tests and thereby strengthen some statistical inferences. Null 
models are being used increasingly to investigate the causes of community-wide 
patterns, yet researchers tend to ignore the risk involved of committing the Type 
II error associated with these models'. 

The insufficient use of statistical power analysis - even though the underlying 
principles have long been known - goes hand in hand with frequent misinter-
pretation of the concepts 'statistically significant' and 'statistically non-significant'. 
Often researchers take a statistically significant outcome automatically for a 
biologically relevant result, while a statistically non-significant outcome is taken 
for granted as absence of an effect or relation. The execution of a statistical test 
in research represents a powerful tool, but testing is not the end of the research. 
Test outcomes need to be evaluated. Absence of significance can be the result 
of too small statistical power, when one has arrived at significant outcomes the 
application of estimation techniques (confidence intervals) is in order for evaluating 
the size of an effect and its reliability. 

2.7 Complexity of ecological research 

From a methodological point of view ecological investigation into natural 
communities represents a complex area of research. The ecologist often encounters 
all possible difficulties of empirical science at the same moment: 
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- a wide variability in the variables studied 
- a complex interaction between explanatory variables and response variables 
- uncertainty about the causes of the observed correlations. 

These difficulties are closely bound up with the fact that ecological research is 
mostly field research. The great variability in the variables observed in the field 
(quantities concerning species in field samples) is caused by the existence of many 
influencing, but also changing, abiotic and biotic factors. For instance, abundances 
of species in the vegetation are influenced by the chemical composition of the 
soil, pH, water-table, manuring, grazing and treading. Perhaps explanatory 
variables influence each other, as response variables do. For example, the water-
table affects the chemical composition of the soil and, in turn, the chemical 
components affect the pH. This results in correlations between variables, so that 
causal explanations are difficult to assess. 

Due to the many variables involved, the analysis of ecological data requires 
the application of multivariate statistical techniques. These methods are of relatively 
recent date and do not yet link up with all aspects of classical statistics, with 
its elaborate methods of hypothesis testing and parameter estimation. 

Both the nature of the research - observational field studies - and the stage 
of development of the analytic techniques required generate the methodological 
complexity associated with landscape ecological research. This situation justifies 
and necessitates a carefully thought-out study design. All the activities summarized 
in Subsection 2.3.1 explicitly need attention to prevent disappointments during 
the analysis and interpretation phase of the research project. 

2.8 Bibliographical notes 

In general statistical textbooks are not easily to read for biologists. The aim 
of this section is to mention some textbooks that are of importance for ecologists. 
A selection is made from both statistical handbooks aimed at researchers in general 
and statistical handbooks aimed at the researcher in ecology. 

Well known is the textbook of Sokal & Rohlf (1981), which is specially aimed 
at the biologist. Clarke (1980) gives an introduction to statistics and experimental 
design in a series of student texts on contemporary biology. Easily accessible 
general statistical handbooks have been written by Snedecor & Cochran (1980), 
Box et al. (1978) and Cox & Snell (1981, especially the first part of the book). 

Study design is explained in a number of classic texts on statistics, such as 
those describing experiments written by Cochran & Cox (1957) and Cox (1958), 
and a book on the design of sampling surveys written by Cochran (1977). 

The application of statistical methods in ecology is treated in textbooks by 
Pielou (1977), Green (1979) and Southwood (1978). Slob (1987) discusses strategical 
aspects of applying statistics in ecological research. 
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2.9 Exercise 

Exercise 2.1 Scales and averages 

Two researchers go into the field to try to find out where the problem of heathlands 
changing into grasslands is more serious, in the Netherlands or in Scotland. Each 
visits the same locations in both countries, but they use different scales: Dr A. 
estimates proportion of cover (%) and Dr B. uses the combined cover/ abundance 
scale of Braun Blanquet, coded numerically according to van der Maarel (1979) 
(see Table 2.1). The results of both investigations are presented below. 

Location 

a 
b 
c 
d 
e 
f 
g 
h 

Country 

N 
N 
N 
N 
S 
S 
S 

s 

Dr A.'s 

Calluna 

70 
10 
7 

90 
70 
80 
80 
85 

estimates 

Deschampsia 

4 

70 
80 

2 
4 

10 
20 

5 

Dr B.'s 

Calluna 

8 
5 
5 
9 
8 
7 
9 
9 

estimates 

Deschampsia 

1 
9 
8 
1 
4 
5 
7 
5 

Compute averages and standard deviations obtained by both investigators for 
each country and each species. Look at the differences and state your conclusions. 

2.10 Solution to exercise 

Exercise 2.1 Scales and averages 

The results are worked out completely for Deschampsia as % estimated by 
Dr A. For the Netherlands he finds a mean proportion of cover of: (4+70+80+2)/ 
4 = 39%. The standard deviation is: [(4-39)2 + (70-39)2 + (80-39)2 + (2-39)2/ 
3]1/2 = 41.8%. For Scotland he finds a mean proportion of cover of: (4+10+20+5)/ 
4 = 9.8%. The standard deviation is : [(4-9.8)2 + (10-9.8)2 + (20-9.8)2 + (5-9.8)2/ 
3]1/2 = 7.3%. His conclusion is that (although not significant) the proportion 
of cover of Deschampsia is lower in Scotland than in the Netherlands. The rest 
of the results are shown below. 
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Country 

Netherlands 

Scotland 

mean 
s.d. 
mean 
s.d. 

Dr A.'s 

Calluna 

44.3 
42.1 
78.8 

6.3 

results 

Deschampsia 

39.0 
41.8 

9.8 
7.3 

Dr B.'s 

Calluna 

6.8 
2.1 
8.2 
1.0 

results 

Deschampsia 

4.8 
4.4 
5.3 
1.3 

Both investigators agree about Calluna: it is more dominant in Scotland than 
in the Netherlands. However they disagree about Deschampsia, since Dr B. 
concludes that Deschampsia is more important in Scotland than the in Netherlands. 
Note also the very high standard deviations in the Dutch samples, which might 
be caused by a skewed or bimodal distribution. 
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3 Regression 

C.J.F, ter Braak and C.W.N. Looman 

3.1 Introduction 

3.1.1 Aim and use 

Regression analysis is a statistical method that can be used to explore relations 
between species and environment, on the basis of observations on species and 
environmental variables at a series of sites. Species may be recorded in the form 
of abundances, or merely as being present. In contrast with ordination and cluster 
analysis, we cannot analyse data on all species simultaneously; in regression analysis, 
we must analyse data on each species separately. Each regression focuses on a 
particular species and on how this particular species is related to environmental 
variables. In the terminology of regression analysis, the species abundance or 
presence is the response variable and the environmental variables are explanatory 
variables. The term 'response variable' stems from the idea that the species react 
or respond to the environmental variables in a causal way; however, causality 
cannot be inferred from a regression analysis. The goal of regression analysis 
is more modest, namely to describe the response variable as a function of one 
or more explanatory variables. This function, termed the response function, usually 
cannot be chosen such that the function predicts responses without errors. By 
using regression analysis, we attempt to make the errors small and to average 
them to zero. The value predicted by the response function is then the expected 
response: the response with the error averaged out. 

Regression analysis is well suited for what Whittaker (1967) termed 'direct 
gradient analysis'. In ecology, regression analysis has been used mainly for the 
following: 

- estimating parameters of ecological interest, for example the optimum and 
ecological amplitude of a species 

- assessing which environmental variables contribute most to the species' response 
and which environmental variables appear to be unimportant. Such assessment 
proceeds through tests of statistical significance 

- predicting the species' responses (abundance or presence-absence) at sites from 
the observed values of one or more environmental variables 

- predicting the values of environmental variables at sites from observed values 
of one or more species. Such prediction is termed calibration and is treated 
separately in Chapter 4. 
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3.1.2 Response model and types of response variables 

Regression analysis is based on a response model that consists of two parts: 
a systematic part that describes the way in which the expected response depends 
on the explanatory variables; and an error part that describes the way in which 
the observed response deviates from the expected response. 

The systematic part is specified by a regression equation. The error part can 
be described by the statistical distribution of the error. For example, when fitting 
a straight line to data, the response model (Figure 3.1) is 

y — b0 + bx x + s Equation 3.1 

with 
y the response variable 
x the explanatory variable 
e the error 
b0 and bx fixed but unknown coefficients; they are the intercept and slope parameter, 

respectively. 

The expected response, denoted by Ey, is equal to b0 + bx x. The systematic 
part of the model is thus a straight line and is specified by the regression equation 

Ey — b0 + b\ x. 

The error part is the distribution of £, i.e. the random variation of the observed 
response around the expected response. The aim of regression analysis can now 
be specified more precisely. The aim is to estimate the systematic part from data 
while taking account of the error part of the model. In fitting a straight line, 
the systematic part is simply estimated by estimating the parameters b0 and b{. 

In the most common type of regression analysis, least-squares regression, the 

Figure 3.1 Response model used in fitting a straight line to data points (•) by least 
squares regression. For explanation see Subsection 3.1.2. 
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distribution of the error is assumed to be the normal distribution (Subsection 
2.4.3). Abundance values of a species commonly show a skew distribution that 
looks like a log-normal distribution (Subsection 2.4.3), with many small to moderate 
values and a few extremely large values. Abundance values often show this type 
of distribution even among sites whose environmental conditions are apparently 
identical. By transforming the abundance values to logarithms, their distribution 
becomes more like a normal distribution (Williamson 1972). To analyse abundance 
values by least-squares regression, it is therefore often more appropriate to use 
log-abundance values. A problem then arises when the species is absent, because 
the abundance is then zero and the logarithm of zero is undefined. 

A regression technique appropriate for presence-absence data is logit regression. 
Logit regression attempts to express the probability that a species is present as 
a function of the explanatory variables. 

3.1.3 Types of explanatory variables and types of response curves 

The explanatory variables can be nominal, ordinal or quantitative (Subsection 
2.4.2). Regression techniques can easily cope with nominal and quantitative 
environmental variables, but not with ordinal ones. We suggest treating an ordinal 
variable as nominal when the number of possible values is small, and as quantitative 
when the number of possible values is large. 

Regression with a single quantitative explanatory variable consists of fitting 
a curve through the data. The user must choose in advance how complicated 
the fitted curve is allowed to be. The choice may be guided by looking at a scatter 

Ey 

Figure 3.2 Shapes of response curves. The expected response (Ey) is plotted against the 
environmental variable (x). The curves can be constant (a: horizontal line), monotonie 
increasing (b: sigmoid curve, c: straight line), monotonie decreasing (d: sigmoid curve), 
unimodal (e: parabola, f: symmetric, Gaussian curve, g: asymmetric curve and a block 
function) or bimodal (h). 
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plot of the response variable against the explanatory variable or can be guided 
by available knowledge and theory about the relation. We denote the environmental 
variable by the letter x and the expected response by Ey, the expected value 
of the response y. We distinguish the following types of curves, often referred 
to as response curves (Figure 3.2): 
- constant: Ey is equal to a constant; the expected response does not depend 

on x (Figure 3.2a). 
- monotonically increasing (or decreasing): Ey increases (or decreases) with 

increasing values of x. Examples are straight lines and sigmoid curves (Figure 
3.2b,c,d). 

- unimodal (single-peaked): Ey first increases with x, reaches a maximum and 
after that decreases. Examples are the parabola with a maximum (Figure 3.2e), 
and a bell-shaped curve like the Gaussian curve (Figure 3.2f). The value of 
x where Ey reaches its maximum is termed the mode or optimum. The optimum 
does not need to be unique when the curve has a 'plateau' (Figure 3.2g). A 
unimodal curve can be symmetric (with the optimum as point of symmetry) 
or asymmetric (Figure 3.2g). 

- bimodal: Ey first increases with x, reaches a maximum, then decreases to a 
minimum, after which Ey increases to a new maximum, from which Ey finally 
decreases again (Figure 3.2h). 

- other: Ey has another shape. 
The types of curves are listed in order of their complexity. Only in the simplest 

case of a constant response curve does the environmental variable have no effect 
on the response of the species. Monotonie curves can be thought of as special 
cases of unimodal curves; when the optimum lies outside the interval that is actually 
sampled, then the unimodal curve is monotonically increasing or decreasing within 
that interval (Figure 3.3). Similarly, unimodal curves can be special cases of bimodal 
curves (Figure 3.3). Curves with a single minimum fall in our classification in 
the category 'other', but can also be thought of as special cases of bimodal curves 
(Figure 3.3). 

Figure 3.3 Response curves derived from a bimodal curve by restricting the sampling interval. 
The curve is bimodal in the interval a-f, unimodal in a-c and in d-f, monotonie in 
b-c and c-e and almost constant in c-d. In the interval b-e, the curve has a single minimum. 
(Ey , expected response; x, environmental variable). 
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3.1.4 Outline of the chapter 

In this chapter, we introduce regression techniques for analysing quantitative 
abundance data (least-squares regression, Section 3.2) and presence-absence data 
(logit regression, Section 3.3). In both sections, we first present a model in which 
the explanatory variable is nominal, and then models in which the explanatory 
variable is quantitative, in particular models that are based on straight lines and 
parabolas. 

From the straight line and the parabola, we derive curves that are more useful 
in ecological data analysis. For abundance data, we derive from them the 
exponential curve and the Gaussian curve, respectively, and for the analysis of 
presence-absence data, the sigmoid curve and the Gaussian logit curve. The curves 
based on a parabola allow estimation of the indicator value (optimum) and the 
ecological amplitude (tolerance) of the species. Problems involved in analysing 
quantitative data containing many zero values are dealt with in Section 3.4. In 
Section 3.5, both least-squares regression and logit regression are extended to 
multiple regression. Multiple regression can be used to study the effect of many 
environmental variables on the response by the species, be it quantitative or of 
presence-absence type. The topic of Section 3.6 is model choice and regression 
diagnostics. Finally, we leave regression and introduce the method of weighted 
averaging, which is a simple method for estimating indicator values of species. 
This method has a long tradition in ecology; it has been used by Gause (1930). 
We compare the weighted averaging method with the regression method to estimate 
indicator values. 

3.2 Regression for quantitative abundance data: least-squares regression 

3.2.1 Nominal explanatory variables: analysis of variance 

The principles of regression are explained here using a fictitious example, in 
which we investigate whether the cover proportion of a particular plant species 
at sites systematically depends on the soil type of the sites. We distinguish three 
soil types, namely clay, peat and sand. The observed cover proportions showed 
a skew distribution within each soil type and therefore we decided to transform 
them by taking logarithms. Before taking logarithms, we added the value 1 to 
the cover expressed in percentages, to avoid problems with the two zero values 
in the data. Figure 3.4 displays the resulting response values for each soil type. 

Our response model for this kind of data is as follows. The systematic part 
simply consists of three expected responses, one for each soil type, and the error 
part is the way in which the observed responses within each soil type vary around 
the expected responses in each soil type. On the basis of Figure 3.4, it appears 
not unrealistic to assume for the error part of the response model that the 
transformed relative covers within each soil type follow a normal distribution 
and that the variance of this distribution is the same for each of the three soil 
types. We further assume that the responses are independent. These assumptions 
constitute the response model of the analysis of variance (ANOVA), which is 
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value 
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original 
value % 

•40 

•33 

•16 

-Ey 

clay 
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r Ey 

1 peat sand 
- soi l type 

Figure 3.4 Relative cover (log-transformed) of a plant species (•) in relation to the soil 
types clay, peat and sand. The horizontal arrows indicate the mean value in each type 
(Table 3.1). The solid vertical bars show the 95% confidence interval for the expected values 
in each type and the dashed vertical bars the 95% prediction interval for the log-transformed 
cover in each type, (fictitious data). 

one particular form of least-squares regression. 
The first step in regression analysis is to estimate the parameters of the model. 

The parameters are here the expected responses in the three soil types. We estimate 
them by using the least-squares principle. We choose values for the parameters 
such that the sum (over all sites) of the squared differences between observed 
and expected responses is minimal. The parameter values that minimize this sum 
of squares, are simply the mean values of the transformed relative covers for 
each soil type. The expected response as fitted (estimated) by regression is, therefore 
just the mean of the response in each soil type. The fitted values are indicated 
by arrows in Figure 3.4. The difference between an observed response (a dot 
in Figure 3.4) and the fitted value is termed a residual, which in Figure 3.4 is 
a vertical distance. Least-squares thus minimizes a sum of squared vertical distances; 
the minimum obtained is called the residual sum of squares. 

Regression analysis by computer normally gives not only parameter estimates 
but also an analysis-of-variance table (ANOVA table). From the ANOVA table 
(Table 3.1), we can derive how well the regression equation explains the response 
variable. In the example, the fraction of variance accounted for (R^ ) is 0.25, 
which means that only a quarter of the variance in the responses is explained 
by the differences between soil types. The ANOVA table can further be used 
for testing statistically whether the expected responses differ among soil types; 
that is, whether the mean values for each soil type differ more than could be 
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Table 3.1 Means and ANOVA table of the transformed 
relative cover of Figure 3.4. 

Term 95% confidence interval 

Clay 
Peat 
Sand 

1.70 
3.17 
2.33 

0.33 
0.38 
0.38 

(1.00.2.40) 
(2.37, 3.97) 
(1.53,3.13) 

Overall mean 2.33 

ANOVA table 

Regression 
Residual 
Total 

d.f. 
2 

17 
19 

s.s 
7.409 

14.826 
22.235 

m.s. 
3.704 
0.872 
1.170 

F 
4.248 

RlAj = 0.25 

expected by chance if soil type did not affect the relative cover. For this test, 
the variance ratio F (Table 3.1) must be compared with the critical value of an 
F distribution with 2 and 17 degrees of freedom in the numerator and denominator, 
respectively (2 and 17 are the degrees of freedom for the regression and residual 
in the ANOVA table). The critical value (at the 5% significance level) is 3.59. 
(Consult for this a table of the F distribution, for instance in Snedecor & Cochran 
1980.) In the example, the variance ratio (4.248) is larger than 3.59. Under the 
null hypothesis of equal expected responses, this happens in 5% of the cases only. 
So it is unlikely that the expected responses are equal. From the ANOVA table, 
we can thus conclude that the expected responses do differ and we say that the 
cover proportions differ significantly between soil types at the 5% level (P < 
0.05, F test). 

How precisely have we estimated the expected responses? An indication for 
this is the standard error of the estimates (Table 3.1). The standard error can 
be used to construct a confidence interval for the expected response. The end-
points of a 95% confidence interval for a parameter (and the -expected response 
is a parameter in this example) are given by 

(estimate) ± t005(v) X (standard error of estimate) Equation 3.2 

The symbol + is used to indicate addition or subtraction in order to obtain upper 
and lower limits. The symbol t0 05(v) denotes the 5% critical value of a two-tailed 
t test. The value of t00i{v) depends on the number of degrees of freedom (v) 
of the residual and can be obtained from a t table (e.g. Snedecor & Cochran 
1980). In our example, v = 17 and t005(l7) = 2.11, which gives the intervals 
shown in Figure 3.4 and Table 3.1. 

35 



We may also want to predict what responses are likely to occur at new sites 
of a particular soil type. A prediction interval for new responses is much wider 
than the confidence interval for the expected response. To construct a prediction 
interval, we need to know the residual standard deviation. This is the standard 
deviation of the residuals and is obtained from the ANOVA table by taking the 
square root of the 'mean square of the residual'. We obtain from Table 3.1 the 
residual standard deviation of yj(0.872) = 0.93. In the example, the residual 
standard deviation is simply an estimate of the standard deviation within soil 
types. The prediction interval within which 95% of the new responses fall is now 
given by 

(estimated response) ± t005(v) V(s.d.2 + s.e.2) Equation 3.3 

where s.d. is the residual standard deviation and s.e. the standard error of the 
estimated response. Equation 3.3 yields for clay the interval 

1.70 ± 2.11 V(0.932 + 0.332) = (-0.38, 3.78). 

If we had done many observations, the estimated response would be precisely 
the expected response. Then s.e. = 0 and t005 (°°) = 1.96, so that Equation 3.3 
reduces, to: expected response ± 1.96 X s.d. Figure 3.4 also displays the prediction 
intervals for the three soil types. 

That procedure is sufficient for ANOVA by computer and for interpretation 
of the results. But for a better understanding of the ANOVA table, we now show 
how it is calculated. After we have estimated the parameters of the model, we 
can write each response as 

observed value — fitted value + residual. Equation 3.4 

For example, one of the observed responses on peat is 3.89 (corresponding to 
a cover of 48%). Its fitted value is 3.17, the mean response on peat, and the 
residual is thus 3.89 - 3.17 = 0.72. We therefore write this response as 3.89 — 

3.17 + 0.72. 
Each term in Equation 3.4 leads to a sum of squares; we first subtract the 

overall mean (2.33) from the observed and fitted values and then calculate (over 
all sites) sums of squares of the observed values and of the fitted values so corrected 
and of the residuals. These sums of squares are the total sum of squares, the 
regression sum of squares and the residual sum of squares, respectively, and are 
given in Table 3.1 in the column labelled with s.s. (sum of squares). The total 
sum of squares is always equal to the regression sum of squares and the residual 
sum of squares added together. Each sum of squares is associated with several 
degrees of freedom (d.f. in Table 3.1). The number of degrees of freedom equals 
n - 1 for the total sum of squares (n being the number of sites), q - 1 for the 
regression sum of squares (q being the number of estimated parameters, the value 
1 is subtracted because of the correction for the overall mean) and n - q for 
the residual sum of squares. 
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In the example, n — 20 and q — 3. The column labelled m.s. (mean square) 
is obtained by dividing the sum of squares by its number of degrees of freedom. 
The mean square of the residual is a measure of the difference between the observed 
and the fitted values. It is the variance of the residuals; hence its usual name 
residual variance. Similarly, the total variance is obtained; this is just the sample 
variance of the responses, ignoring soil type. The fraction of variance accounted 
for by the explanatory variable can now be defined as 

Rldj = 1 - (residual variance/total variance), 

which is also termed the adjusted coefficient of determination. In the example, 
Rldj = 1 -(0.872/1.170) = 0.25. The original, unadjusted coefficient of determination 
(R

2
) does not take into account how many parameters are fitted as compared 

to the number of observations, its definition being 

R
2 = 1 (residual sum of squares/total sum of squares). 

When a large number of parameters is fitted, R
2 may yield a value close to 

1, even when the expected response does not depend on the explanatory variables. 
The multiple correlation coefficient, which is the product-moment correlation 
between the observed values and the fitted values, is just the square root of the 
coefficient of determination. Finally, the ratio of the mean squares of the regression 
and the residual is the variance ratio (F). If the expected responses are all equal, 
the variance ratio randomly fluctuates around the value 1, whereas it is system-
atically greater than 1, if the expected values differ; hence its use in statistical 
testing. 

3.2.2 Straight lines 

In Figure 3.5a, the explanatory variable is mean water-table, a quantitative 
variable that enables us to fit a curve through the data. A simple model for these 
data is a straight line with some scatter around the line. The systematic part 
of the response model is then 

Ey = b0 + bt x Equation 3.5 

in which 
Ey denotes the expected value of the response y 

x denotes the explanatory variable, the mean water-table 
bQ and 6, are the parameters that must be estimated 
b0 is the intercept (the value at which the line crosses the vertical axis) 
bx is the slope parameter or the regression coefficient of the straight line 

(Figure 3.1) 
bx is the expected change in y divided by the change in x. 

The error part of the model is the same as for ANOVA (Subsection 3.2.1), i.e. 
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Figure 3.5a Straight line fitted by least-squares regression of log-transformed relative cover 
on mean water-table. The vertical bar on the far right has a length equal to twice the 
sample standard deviation aT, the other two smaller vertical bars are twice the length 
of the residual standard deviation (oR). The dashed line is a parabola fitted to the same 
data (•). 

cover 
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60%. 

75 100 
•mean water t ab le 

Figure 3.5b Relative cover in relation to water-table with curves obtained by back 
transformation of the straight line and parabola of Figure 3.5a. 
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the responses are taken to be mutually independent and are normally distributed 
around their expected values (Ey) as specified by the straight line (Equation 3.5). 
The errors are thus taken to follow a normal distribution and the variance of 
the errors to be independent of the value of x. 

We again use the least-squares principle to estimate the parameters. That is, 
we choose arbitrary values for bQ and bu calculate with these values the expected 
responses at the sites by Equation 3.5, calculate the sum of squared differences 
between observed and expected responses, and stop when we cannot find values 
for b0 and Z>, that give a smaller sum of squared differences. In Figure 3.5a, 
this procedure means that we choose the line such that the sum of squares of 
the vertical distances between the data points and the line is least. (Clearly, any 
line with a positive slope is inadequate!) For many regression models, the estimates 
can be obtained by more direct methods than by the trial and error method just 
described. But, the estimates are usually obtained by using a computer program 
for regression analysis so that we do not need to bother about the numerical 
methods used to obtain the least-squares estimates. For the straight-line model, 
we need, for later reference, the equations for estimating b0 and b{ 

^o =
 y - b\ x Equation 3.6a 

b{ = XJL.O. - PKx, - x)l If=I (*,. - xf Equation 3.6b 

where 
yt and xt are the values of y and x at the /-th site 
y and x are the mean values of y and x, respectively. 

Table 3.2 shows standard output of a computer program for regression analysis, 
in which b0 is estimated at 4.411 and 6, at -0.0370. The ANOVA table can in 

Table 3.2 Straight line fitted by least-squares: parameter 
estimates and ANOVA table for the transformed relative 
cover of Figure 3.5. 

Term 

Constant 
Water-table 

ANOVA table 

Regression 
Residual 
Total 

/&j = 0.58 

Parameter 

K 
b> 

d.f. 
1 

18 
19 

estimate 

4.411 
-0.0370 

s.s 
13.45 
8.78 

22.23 

s.e. t 

0.426 10.35 
0.00705 -5.25 

m.s. F 

13.45 27.56 
0.488 
1.170 
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principle be obtained by the rules of Subsection 3.2.1 below Equation 3.4, by 
using fitted values as calculated from Equation 3.5. The following statistics are 
derived from the ANOVA table as in Subsection 3.2.1. The residual standard 
deviation is \/0-488 = 0.70, which is much smaller than the standard deviation 
of the observed response, ylATO— 1.08. 

The fraction of variance accounted for by the straight line is 0.58. The multiple 
correlation coefficient reduces in straight line regression to the absolute value 
of the product-moment correlation between x and y (0.78 in Figure 3.5a). The 
variance ratio can again be used for statistical testing, here for testing whether 
the expected responses depend on the mean water-table. The critical F at the 
5% significance level is now 4.41, because there is only 1 degree of freedom for 
the regression (Snedecor & Cochran 1980). Because the variance ratio (27.56) 
exceeds this F, the expected response does depend on the mean water-table. An 
alternative for this F test is to use a two-tailed t test of whether b{ equals 0; 
if b{ were 0, the straight line would be horizontal, so that the expected response 
would not depend on x. This t test uses the t of b{, which is the estimate of 
bx divided by its standard error (Table 3.2). This value (-5.25) is greater (in absolute 
value) than the critical value of a two-tailed / test at the 5% level obtained from 
a t table: /005(I8) = 2.10, and so b{ is not equal to zero; thus the relative cover 
of our species does significantly depend on the mean water-table. Yet another 
way of testing whether bx — 0 is by constructing a 95% confidence interval for 
b{ with Equation 3.2. The result is the interval -0.037+ 2.10 X 0.00705 = (-0.052, 
-0.022). 
The value 0 does not lie in this interval and 0 is therefore an unlikely value 
for b\. Which of the three tests to use (Ftest, t test or test through the confidence 
interval) is a matter of convenience; they are equivalent in straight-line regression. 

After regression analysis, we should make sure that the assumptions of the 
response model have not been grossly violated. In particular, it is useful to check 
whether the variance of the errors depends on x or not, either by inspecting Figure 
3.5a or by plotting the residuals themselves against x. Figure 3.5a does not give 
much reason to suspect such a dependence. 

In the analysis, we used transformed relative covers. The data and the fitted 
straight line of Figure 3.5a are back-transformed to relative covers in Figure 3.5b. 
The fitted line is curved on the original scale: it is an exponential curve. Note 
that in Figure 3.5b, the assumption that the error variance is independent of 
x does not hold; this could have been a reason for using a transformation in 
the first place. It may be instructive now to do Exercise 3.1. 

3.2.3 Parabolas and Gaussian curves 

In Subsection 3.2.2, we fitted a straight line to the responses in Figure 3.5a. 
But wouldn't a concave curve have been better? We therefore extend Equastion 
3.5 with a quadratic term in x and obtain the parabola (Figure 3.2e) 

Ey = b0 + b{ x + b2 x
1 Equation 3.7 
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Table 3.3 Parabola fitted by least-squares regression: 
parameter estimates and ANOVA table for the trans-
formed relative cover of Figure 3.5. 

Term Parameter estimate s.e. t 

Constant b0 3.988 0.819 4.88 
Water-table bt -0.0187 0.0317 -0.59 
(Water-table)2

 b2 -0.000169 0.000284 -0.59 

ANOVA table 
d.f. s.s m.s. F 

Regression 2 13.63 6.815 13.97 
Residual 17 8.61 0.506 
Total 19 22.23 1.170 

Rld] = 0.57 

We again use the least-squares principle to obtain estimates. The estimates are 
given in Table 3.3. The estimates for b0 and b] change somewhat from Table 
3.2; the estimate for b2 is slightly negative. The parabola fitted (Figure 3.5, dashed 
line) gives a slightly smaller residual sum of squares than the straight line. But, 
with the change in the number of degrees of freedom of the residual (from 18 
to 17), the residual variance is greater and the fraction of variance accounted 
for is lower. In the example, the advantage of the parabola over the straight, 
line is therefore doubtful. A formal way to decide whether the parabola significantly 
improves the fit over the straight line is by testing whether the extra parameter 
b2 is equal to 0. Here we use the i test (Subsection 3.2.2). The t of b2 (Table 
3.3) is much smaller in absolute value than the critical value, 2.11; hence the 
data provide no evidence against b2 being equal to 0. We conclude that a straight 
line is sufficient to describe the relation between the transformed cover proportions 
and mean water-table; a parabola is not needed. 

Generally the values of / for b0 and b} in Table 3.3 are not used, because 
they do not test any useful hypothesis. For example, the / test of whether b{ 

is equal to 0 in Equation 3.7 would test a particular kind of parabola against 
the general parabola of Equation 3.7, quite different from the meaning of the 
t test of the slope parameter by in Table 3.2. 

In principle, we can extend the response function of Equation 3.7 to higher-
order polynomials in x by adding terms in x3, x4, ... . There is no advantage 
in doing so for the data in Figure 3.5a. Polynomial regression of species data 
has limited use except for one special case. When we fit a parabola to log-

transformed abundances, we actually fit a Gaussian response curve to the original 

abundance data. The Gaussian response curve has the formula 

z— cexp [-0.5(x- u)
2
/t

2
] . Equation 3.8 
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species abundance 

environmental variable 

Figure 3.6 Gaussian response curve with its three ecologically important parameters: 
maximum (c), optimum («) and tolerance (t). Vertical axis: species abundance. 
Horizontal axis: environmental variable. The range of occurrence of the species is seen 
to be about At. 

where 
z is the original abundance value 
c is the species' maximum abundance 
u is its optimum (the value of x that gives maximum abundance) 
t is its tolerance (a measure of ecological amplitude). 

Note that in this chapter the symbol t is used in two ways: the / of a regression 
coefficient (Subsection 3.2.2) and the / of a Gaussian curve. Which t is intended 
should be clear from the context of the passages concerned. 

Figure 3.6 displays the Gaussian curve and its parameters. The curve is seen 
to rise and fall over a length of about At. If we take the logarithm on both sides 
of Equation 3.8, we obtain 

loge z = loge (c) - 0.5 (x - u)
2
l t

1
 = b0 + bx x+ b2 x

2 

where the third form follows by expanding 

Equation 3.9 

(x - u) 2 — ^ 2 2 u x + u
1 

and by setting: 

b0 = loge (c) - u2
l(2t

2
); bx = ujt

2
; b2 = - l /(2;2) . Equation 3.10 

By fitting a parabola to log-abundances, we obtain least-squares estimates for 
bQ, bt and b2, from which we can obtain estimates of 

the optimum, u = -bl/(2b2) 

the tolerance, t = 1 / \f(-2b2) 

the maximum, c = exp (b0 + bl u + b2 u
 2

). 
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These equations are derived from Equation 3.10 where b2 < 0. If the estimate 
of b2 is positive, the fitted curve has a minimum instead of a maximum. Approximate 
standard errors of the estimated optimum and tolerance can be derived from 
the variances and covariances of è, and b2 that are provided as options by statistical 
packages. A confidence interval for the optimum can also be calculated. Details 
of these calculations are given in Section 3.9. 

It may be instructive now to do Exercise 3.2 (except Part 3.2.8). 

3.3 Regression for presence-absence data: logit regression 

3.3.1 Nominal explanatory variables: chi-square test 

Table 3.4 shows the numbers of dune meadow fields in which the plant species 
Achillea ptarmica was present and in which it was absent. The fields are divided 
into four classes depending on agricultural use. The relevant question for these 
data is whether the frequency of occurrence of Achillea ptarmica depends 
systematically on agricultural use.'This question is analogous to the question that 
was studied in Subsection 3.2.1, although here the response of the species is not 
relative cover, but merely presence or absence. The usual thing to do is to calculate 
the relative frequency in each class, i.e. the number of fields of a given class 
in which the species is present divided by the total number of fields of that class 
(Table 3.4). But relative frequency of occurrence is simply the mean value when 
we score presence as 1 and absence as 0. Calculating means was what we did 
in Subsection 3.2.1. The response is thus y— 1 or y = 0, and the expected response, 
Ey, is the expected frequency, i.e. the probability of occurrence of the species 
in a field randomly drawn from all fields that belong to the class. Relative frequency 
is therefore an estimate of probability of occurrence. 

Table 3.4 Numbers of fields in which Achillea ptarmica 
is present and absent in meadows with different types 
of agricultural use and frequency of occurrence of each 
type (unpublished data from Kruijne et al. 1967). The 
types are pure hayfield (ph), hay pastures (hp), alternate 
pasture (ap) and pure pasture (pp). 

A chillea ptarmica 

present 
absent 
total 

frequency 

Agricultural 

ph 

37 
109 
146 

0.254 

hp 

40 
356 
396 

0.101 

use 

ap 

27 
402 
429 

0.063 

PP 

9 
558 
567 

0.016 

total 

113 
1425 
1538 

0.073 
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If the probabilities of occurrence of Achillea ptarmica were the same for all 
four classes, then we could say that its occurrence did not depend on agricultural 
use. We shall test this null hypothesis by the chi-square test. This test proceeds 
as follows. Overall, the relative frequency of occurrence is 113/1538 = 0.073 (Table 
3.4). Under the null hypothesis, the expected number of fields with Achillea ptarmica 

is in pure hayfield 0.073 X 146 = 10.7 and in hay pasture 0.073 X 396 = 29.1 
and so on for the remaining types. The expected number of fields in which Achillea 

ptarmica is absent is therefore in pure hayfield 146 - 10.7 = 135.3 and in hay 
pasture 396-29.1 = 366.9. 

We now measure the deviation of the observed values (o) and the expected 
values (e) by the chi-square statistic, that is the sum of (o - e)

2
je over all cells 

of Table 3.4. We get (37 - 10.7)2/10.7 + (109 - 135.3)2/135.3 + (40 - 29.1)2/ 
29.1 + ... = 102.1. This value must be compared with the critical value, Xa(v)> 
of a chi-square distribution with v degrees of freedom, where v = (r - l)(c -
1), r is the number of rows and c the number of columns in the table. In the 
example, v = 3 and the critical value at the 5% level is Xo.osO) — 7.81. Consult 
a %

2 table, for instance Snedecor & Cochran (1980). The chi-square calculated, 
102.1, is much greater than 7.81, and we conclude therefore that the probability 
of occurrence of Achillea ptarmica strongly depends on agricultural use. Notice 
that the chi-square statistic is a variant of the residual sum of squares: it is a 
weighted sum of squares with weights 1/e. 

The chi-square test is an approximate test, valid only for large collections of 
data. The test should not be used when the expected values in the table are small. 
A rule of thumb is that the test is accurate enough when the smallest expected 
value is at least 1. A remedy when some expected numbers are too small is to 
aggregate classes of the explanatory variable. 

3.3.2 Sigmoid curves 

We now look at the situation in which we have a presence-absence response 
variable (y) and a quantitative explanatory variable (x). Data of this kind are 
shown in Figure 3.7. Just as in Subsection 3.3.1, the expected response is the 
probability of occurrence of the species in a site with a particular value of the 
environmental variable. This probability will be described by a curve. Probabilities 
always have values between 0 and 1. So a straight-line equation 

Ey = b0 + &, x Equation 3.12 

is not acceptable, because b0 + 6, x can also be negative. This difficulty could 
be solved by taking the exponential curve 

E^ = exp (b0 + b, x) Equation 3.13 

However the right side of Equation 3.13 can be greater than 1, so we adapt 
the curve once more to 

Ey = p — [exp (b0 + b{ x)]j [1 + exp (bQ + bx x)] Equation 3.14 
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•pH 

Figure 3.7 Sigmoid curve fitted by logit regression of the presences • atp = 1) and absences 
(• at p = 0) of a species on acidity (pH). In the display, the sigmoid curve looks like 
a straight line but it is not. The curve expresses the probability (p) of occurrence of the 
species in relation to pH. 

This curve satisfies the requirement that its values are all between 0 and 1. The 
only further reason to take this curve, and not another one, is mathematical 
convenience. The curves representing Equations 3.12-3.14 are shown in Figure 
3.8; Equation 3.14 represents a sigmoid curve. All three curves are monotonie 
and have two parameters, namely bQ and b{. The part b0 + bx x is termed the 
linear predictor. For probabilities, we use the symbol p instead of Ey (Equation 
3.14). 

The systematic part of the response model is now defined. Next, we deal with 
the error part. The response can only have two values, hence, the error distribution 
is the Binomial distribution with total 1 (Subsection 2.4.3). So the variance of 
y is p(l -p). We have now completed the description of the model. 

To estimate the parameters from data, we cannot use ordinary least-squares 
regression because the errors are not normally distributed and have no constant 
variance. Instead we use logit regression. This is a special case of the generalized 
linear model (GLM, McCullagh & Neider 1983). The term logit stems from logit 
transformation, that is the transformation of/? 

l°ge \pl(\ - P)]
 = linear predictor Equation 3.15 

which is just another way of writing 

p — [exp (linear predictor)]/[l + exp (linear predictor)] Equation 3.16 

The solution to Exercise 3.3 shows that Equations 3.15 and 3.16 are equivalent. 
The left side of Equation 3.15 is termed the link function of the GLM. Logit 
regression is sometimes called logistic regression. 

In GLM, the parameters are estimated by the maximum likelihood principle. 
The likelihood of a set of parameter values is defined as the probability of the 
responses actually observed when that set of values were the true set of parameter 
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Ey exponential curve 

sigmoid curve 

- X 

Figure 3.8 Straight line (a), exponental curve (b) and sigmoid curve (c) representing Equations 
3.12, 3.13 and 3.14, respectively. 

values. The maximum likelihood principle says that we must choose that set of 
parameter values for which the likelihood is maximum. A measure for the deviation 
of the observed responses from the fitted responses is the residual deviance, which 
is -2 loge L, where L is the maximized likelihood. The residual deviance takes 
the place of the residual sum of squares in least-squares regression. The least-
square principle (Subsection 3.2.1) is equivalent to the maximum likelihood 
principle, if the errors are independent and follow a normal distribution. Least-
squares regression is thus also a special case of GLM. In general, the parameters 
of a GLM must be calculated in an iterative fashion; provisional estimates of 
parameters are updated several times by applying repeatedly a weighted least-
squares regression, in which responses with a small variance receive a larger weight 
in the residual sum of squares than responses with a large variance. In logit 
regression, the variance of the response was p{\ - p). So the weight depends 
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Ey 

Gaussian log i t curve 

Figure 3.9 Parabola (a), Gaussian curve (b) and Gaussian logit curve (c) representing 
Equations 3.7, 3.8 and 3.17, respectively. 

on the fitted value of p and hence on the parameter estimates; calculations must 
therefore be iterative. Computer programs for logit regression are available in 
statistical packages including GLIM (Baker & Neider 1978), GENSTAT (Alvey 
et al. 1977), BMDP (Dixon 1981, subprogram PLR) and SAS (Harrell 1980). 
Ter Braak & Looman (1986) give an example of a program in GLIM. 

We fitted the sigmoid curve of Equation 3.14 to the data of Figure 3.7 by 
logit regression. Table 3.5 shows the estimated parameter and the residual deviance; 
its number of degrees of freedom is n - q, where q is the number of estimated 
parameters (Subsection 3.2.1). The resulting curve (Figure 3.7) does not differ 
significantly (P > 0.05) from a horizontal line, as judged by a / test of whether 
bx equals 0. All tests in logit regression are approximate, because the error 
distribution is not normal (cf. the chi-square test of Subsection 3.3.1). Apart from 
this, there is no difference from the t test described in Subsection 3.2.2. 
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Table 3.5 Sigmoid curve fitted by logit regression: parameter 
estimates and deviance table for the presence-absense data of Figure 
3.7. 

Term 

Constant 
pH 

Residual 

Parameter 

K 
bx 

estimate 

2.03 
-0.484 

d.f. 
33 

s.e. 

1.98 
0.357 

deviance 
43.02 

t 

1.03 
-1.36 

mean deviance 
1.304 

3.3.3 Gaussian logit curves 

When we take for the linear predictor in Equation 3.16 a parabola, we obtain 
the Gaussian logit curve 

p = [exp (b0 + bl x + b2 x
2)]/[l + exp (b0 + bx x + b2 x

2
)] 

= c exp [-0.5 (x - w)2//2]/ [1 + c exp (-0.5 (x - w)2//2)] Equation 3.17 

The third form of the equation follows from Equations 3.8-3.10 and shows the 
-relation to the Gaussian curve (Equation 3.8). The relation between parabola, 
Gaussian curve and Gaussian logit curve is shown graphically in Figure 3.9 (contrast 
Figure 3.8). The Gaussian logit curve has a flatter top than the Gaussian curve 
but the difference is negligible when the maximum of the Gaussian logit curve 
is small (< 0.5). The Gaussian logit curve was fitted to the data in Figure 3.7 
by using GENSTAT and the result is shown in Figure 3.10. Table 3.6 gives the 
parameter estimates of b0, b} and b2, from which we obtain estimates for the 
optimum and the tolerance by using Equations 3.11a,b. The result is u = 5.28 
and t = 0.327. The maximum of the fitted curve in Figure 3.10 is the (estimated) 
maximum probability of occurrence of the species (pmax) and can be calculated 

0.5 

Figure 3.10 Gaussian logit curve fitted by logit regression of the presences (• at p — 1) 
and absences (• at p = 0) of a species on acidity (pH). Same data as in Figure 3.7. u 
= optimum; t = tolerance; pmax = maximum probability of occurrence. 
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Table 3.6 Gaussian logit curve fitted by logit regression: parameter 
estimates and deviance table for the presence-absence data of Figure 
3.10. The data are the same as in Figure 3.7. 

Term 

Constant 
pH 
pH2 

Residual 

K 
*. 
b2 

Estimate 

-128.8 
49.4 
4.68 

d.f. 
32 

s.e. 

51.1 
19.8 

1.90 

deviance 
23.17 

t 

-2.52 
2.50 

-2.47 

mean deviance 
0.724 

from the second form of Equation 3.17 by inserting the value of « (5.28) for 
x and the values of b0, bx and b2 from Table 3.6; we obtainpm.dX — 0.858. 

We can decide whether the Gaussian logit curve significantly improves the fit 
over the sigmoid curve by testing whether b2 equals 0. Here we use the t test 
again (Subsection 3.2.3). The t of b2 is -2.47 (Table 3.6) and we conclude that 
the fitted curve differs significantly from a sigmoid curve. It is justified to use 
a one-tailed / test here, if we only want to detect unimodal curves, i.e. curves 
with b2 <C 0 (Snedecor & Cochran 1980, Section 5.5). If b2 is significantly smaller 
than 0, then the optimum is said to be significant. An approximate 95% confidence 
interval for u is (5.0, 5.8), obtained from Section 3.9. 

A more general method of statistical testing in GLM is by the deviance test, 
in which the residual deviance of a model is compared with that of an extended 
model. The additional parameters in the latter model are significant when the 
drop in residual deviance is larger than the critical value of a chi-square distribution 
with k degrees of freedom, k being the number of additional parameters. As 
an example, the drop in deviance going from the sigmoid curve to the Gaussian 
logit curve (Tables 3.5 and 3.6) is 43.02 - 23.17 = 19.85. This drop is larger 
than Xo.osO) = 3.84. Hence the single additional parameter b2 is significant. The 
deviance test replaces the F test of least-squares regression. 

An example of analysing presence-absence data is provided in Exercises 3.4 
and 3.5. 

3.4 Regression for abundance data with many zero values 

Abundance data with many zero values (i.e. absence) always show a skew 
distribution. So one should transform them before analysing them by least-squares 
regression. But the logarithmic transformation does not work, because the 
logarithm of zero is undefined. The value 0 might be caused by rounding error, 
but even then one often does not know whether the original value was 0.1, 0.01 
or even smaller. On a log scale the difference between these values is large, and 
one does not know which value to choose. A common practice is to add a small 
value to the abundance data before logs are taken, as was done in Subsection 
3.2.1, but this is somewhat arbitrary; different values may lead to different results 
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of analysis if there are many zeros among the data. An additional problem is 
that in the model abundance values may be negative, which does not make sense 
(e.g. the prediction interval for clay in Figure 3.4). Other transformations do 
not work either. 

In least-squares regression after logarithmic transformation, the implicit assump-
tion is that the abundance data follow a log-normal distribution. The probability 
of observing the value 0 from a log-normal distribution is, however, zero. A 
distribution that allows zero values is the Poisson distribution (Subsection 2.4.3). 
Observations arising from a Poisson distribution can take the integer values 0, 
1, 2, 3, ... and have a variance that is equal to the mean. Counts of the number 
of animals in a region, for example, take integer values only. We assume for 
a moment that the data follow a Poisson distribution and seek appropriate response 
curves. The curves must not be negative, but may rise above the value 1. The 
exponential transformation used in Equation 3.13 is therefore sufficient. The 
exponential curve can be fitted to data by log-linear regression, which is again 
a special case of GLM (Subsection 3.3.2). The regression is termed log-linear 
because another way of writing Equation 3.13 is 

loge Ey = linear predictor Equation 3.18 

By using b0 + bx x + b2 x
2 in the linear predictor, we again obtain the Gaussian 

curve provided b2< 0 (Equations 3.8-3.11). The Gaussian curve can thus be fitted 
to abundance data with zero values by carrying out a log-linear regression. In 
this way we circumvent the problem of having to take logarithms of zeros. The 
optimum, tolerance and maximum are derived from the estimates of b0, b{ and 
b2 as in Subsection 3.2.3. 

The assumption that abundance data follow a Poisson distribution is often 
false (Subsection 2.4.3). Fortunately, the assumptions of log-linear regression can 
be relaxed. It is sufficient that the variance in the data is proportional to the 
mean (McCullagh & Neider 1983). When this weaker assumption is also inap-
propriate, a possible ad-hoc method is to transform the species data to presen-
ce-absence. This method sacrifices all the quantitative information. The quantitative 
information can be retained partly by also analysing 'pseudo-species' (Hill et al. 
1975). A pseudo-species is a presence-absence variable that is defined, for instance, 
by a cut-level value yc. The pseudo-species at cut-level value yc is present if the 
abundance of the species exceeds the cut-level value yc, and is absent if the 
abundance is less. By choosing a set of cut levels, we get a set of pseudo-species, 
each of which can be analysed separately by logit regression. An attractive property 
of the method of pseudo-species is that the response curve of each pseudo-species 
is unimodal whenever the response curve for the original abundances is unimodal. 
Then, the tolerances of the response curves of the pseudo-species decrease with 
increasing value of the cut level; their optima may shift when the response curve 
for abundance is asymmetric. A disadvantage of the method is that the choice 
of cut levels is arbitrary and that the results of the separate analyses cannot be 
combined easily into a simple description of the relation between the abundance 
of the species and the environmental variable under consideration. 
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In some ecological applications the quantitative information on abundance is 
of the type 'absent, a few, many'. We suggest transforming such data to 'Is the 
species present?' and 'Is the species abundant?', and to analyse each variable 
separately by logit regression. The second variable is a pseudo-species. 

3.5 Multiple regression 

3.5.1 Introduction 

In the previous sections, the response variable was expressed in various ways 
as a function of a single environmental variable. A species may, however, respond 
to more than one environmental variable. To investigate such a situation, we 
need multiple regression. In multiple regression, the response variable is expressed 
as a function of two or more explanatory variables (response-surface analysis). 
Separate analyses of the response for each of the environmental variables cannot 
replace multiple regression if the environmental variables show some correlation 
with one another and if there are interaction effects, i.e. if the effect of one variable 
depends on the value of another variable. 

We will show how least-squares regression and logit regression can be extended 
to study the effect of two environmental variables. The extension to more than 
two variables will then be obvious. Typical cases of multiple regression will be 
illustrated in the section on multiple logit regression, although they occur equally 
in multiple least-squares regression. In separate subsections, we will discuss the 
analysis of interaction effects and the inclusion of nominal explanatory variables 
in multiple regression. 

3.5.2 Multiple least-squares regression: planes and other surfaces 

An extension of the straight line to two explanatory variables is a plane (Figure 
3.11). A plane has the formula 

Ey = b0 + bx x, + b2 x2 Equation 3.19 

where 
x, and x2 are two explanatory variables 
b0, bx and b2 are parameters or regression coefficients. 

b0 is the expected response when x, = 0 and x2 — 0. bx and b2 are the rates 
of change in the expected response along the x, and x2 axes, respectively. b{ 

thus measures the change in Ey with x, for a fixed value of x2, and b2 the change 
in Ey with x2 for a fixed value of x,. 

The parameters are, again, estimated by the least-squares method, i.e. by 
minimizing the sum of squares of the differences between the observed and expected 
response. This means in geometric terms (Figure 3.11) that the regression plane 
is chosen in such a way that the sum of squares of the vertical distances between 
the observed responses and the plane is minimum. 
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Figure 3.11 Three-dimensional view of a plane fitted by least-squares regression of responses 
(•) on two explanatory variables x, and x2. The residuals, i.e. the vertical distances between 
the responses and the fitted plane are shown. Least-squares regression determines the plane 
by minimization of the sum of these squared vertical distances. 

A multiple regression analysis carried out by computer not only gives estimates 
for b0, bx and b2, but also standard errors of the estimates and associated values 
of t (Table 3.3). Fitting a parabola is a special case of multiple regression analysis 
where xl = x and x2 = x

2
. The values of t can be used to test whether a coefficient 

is zero (Subsection 3.2.1), i.e. whether the corresponding variable contributes to 
the fit of the model in addition to the fit already provided by the other explanatory 
variable(s). 

By extending the parabola we obtain the quadratic surface 

Ey = b0 + by X\ + b2 x
2 + è3 x2 + b4 x Equation 3.20 

which has five parameters. When y in this model is the logarithm of abundance, 
we are fitting through multiple regression a bivariate Gaussian response surface 
to the observed abundances, provided b2 and bA are both negative. With t tests, 
we can see whether one of the parameters is equal to zero. In particular, to detect 
whether the surface is unimodal in the direction of xh we test the null hypothesis 
(b2 ^ 0) against the alternative hypothesis (b2 <0) through the t corresponding 
to the coefficient b2, as in Subsection 3.3.3. Similarly, we use the / corresponding 
to è4 to test whether the surface is unimodal in x2. 

The optimum and tolerance of the species with respect to x, are calculated 
as in Subsection 3.2.3 by inserting in Equation 3.11a,b the values of b{ and b2 

obtained from fitting Equation 3.20. Standard errors and the confidence interval 
for the optimum can still be obtained by using the equations given in Section 
3.9. The optimum and tolerance with respect to x2 are obtained analogously by 
replacing bt by b3 and b2 by b4. 

To investigate whether x2 in this model influences the abundance of a species 
in addition to xu we need to test whether both 63 and b4 equal 0. This test 
requires simultaneous testing of two parameters, which cannot be done with two 
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separate t tests. For this, we need the F test. For an F test, we must fit two 
regression equations, a simple one with only x, and xx

2 and an extended one, 
in which x2 and x2

2 are added, and compare the residual sum of squares, RSSj 
and RSS2, respectively, by calculating 

F = [(RSS, - RSS2)/(df! - df2)]/ (RSS2/df2) Equation 3.21 

where dfx and df2 are the degrees of freedom of RSS, and RSS2, respectively. 

Under the null hypothesis that the additional parameters è3 and b4 equal 0, F 

follows an F distribution with df, - df2 and df2 degrees of freedom (Subsection 
3.2.1). The null hypothesis is rejected if the calculated F exceeds the critical value 
of this distribution. This test can be used whenever simple and extended models 
are to be compared in multiple least-squares regression. Our previous applications 
of the F test were special cases of Equation 3.21, in which the simple model 
was the no-effect model 'Ej> is constant'. 

3.5.3 Multiple logit regression: logit planes and Gaussian logit surfaces 

In Subsection 3.3.2, logit regression was obtained from least-squares regression 
by replacing Ey by loge [pi(I - p)] and there is no reason not to do so in multiple 
regression. This replacement transforms the plane of Equation 3.19 into a logit 
plane defined by the equation 

l°ge [WO - P)] = b0 + b{ X\ + b2 x2 Equation 3.22 

We will now show what multiple regression can add to the information provided 
by separate regressions with one explanatory variable. Figure 3.12 displays the 
values of x, and x2 in a sample of 35 sites and also shows which sites an imaginary 
species is present at. Fitting Equation 3.22 to the data by using GLM (Subsection 
3.3.2) gives the results shown in the first line of Table 3.7. Judged by t tests, 
both b{ and b2 differ significantly from 0, and we conclude that the presence 
of the species depends both on x, and x2. By fitting a model with xx only (Equation 
3.14), we obtain the second line of Table 3.7. The estimated probability of occurrence 
increases somewhat with x, (b{ = 0.16), but not significantly (the t of 6, is 1.33). 
We would thus have concluded wrongly that the presence of the species did not 
depend on x,. From fitting a model with x2 only, we would also have concluded 
wrongly that x2 was irrelevant for predicting presence of the species. By comparing 
the residual déviances of the models fitted (Table 3.7), we see that x, and x2 

are good explanatory variables only when taken together. Such variables are said 
to be complementary in explanatory power (Whittaker 1984). 

The values of b{ and b2 in the multiple regression clearly describe the pattern 
of species occurrence in Figure 3.12. In words, for any given value of x2, the 
probability of occurrence strongly increases with xt, and for any given value of 
x,, it strongly decreases with x2. A line drawn at about 45° in Figure 3.12 actually 
separates most of the species presences from the absences. 
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Figure 3.12 Data illustrating that explanatory variables can be complementary in explanatory 
power. The scatter diagram of xx and x2 shows the sites where a particular species is present 
(•) and absent (•). 
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Figure 3.13 Data illustrate that explanatatory variables can replace each other in multiple 
regression equations. The scatter diagram of JC, and x2 shows the sites where a particular 
species is present (•) and absent (•). 
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Table. 3.7 Multiple logit regressions of the data of Figure 3.12 to 
illustrate that explanatory variables can be complementary in 
explanatory power (d(res) = residual deviance). 

Terms in 
model 

Xj, x 2 

* i 

x2 

none 

* i 

1.53 
0.16 
-
-

b2 

-1.66 
-
-0.15 
-

t value 
of 6, 

2.98 
1.33 
-
-

/ value 
of b2 

-2.96 
-
-1.17 
-

c?(res) 

23.99 
45.25 
45.69 
47.11 

d.f. 

32 
33 
33 
34 

Table 3.8 Multiple logit regressions of the data of Figure 3.13 to 
illustrate that explanatory variables can substitute each other in 
a model (d(res) = residual deviance). 

Terms in 
model 

X|, x2 

* i 

x2 

none 

bt 

-0.61 
-0.94 
-
-

b2 

-0.625 
-
-1.016 
-

t value 
of ft, 

-1.63 
-2.85 
-
-

t value 
of b2 

-1.59 
-
-2.88 
-

d(KS) 

17.47 
20.57 
20.82 
41.88 

d.f. 

32 
33 
33 
34 

Figure 3.13 shows the occurrence of another species. When x, and x2 are used 
to explain this species' occurrence, the t 's (first line of Table 3.8) show that 
neither bx nor b2 differs significantly from 0. It should not be concluded now 
that neither x, nor x2 has an effect on the species' presence. These t tests only 
say that we do not need both x, and x2 in the model. The fits with x, only 
and with x2 only show that, taken singly x, and x2 have both an effect. Moreover, 
these fits give about the same deviance; hence, xx can substitute x2 in the model 
(Whittaker 1984). We observe in Figure 3.13 that the species occurs at low values 
of x, and x2, but cannot say which variable this is caused by, because there were 
too few sites where x, was low and x2 high or vice versa. We cannot distinguish 
their effects. This problem often arises when explanatory variables are highly 
correlated in the sample. This problem is known as the multicollinearity problem. 
For example, we may wish to know whether the probability of occurrence of 
a certain rare meadow plant decreases with potassium or with phosphate. But, 
in a survey potassium and phosphate will be strongly correlated, because they 
are usually applied simultaneously; so the question cannot be answered by a survey. 
Multicollinearity also arises when the number of explanatory variables is only 
slightly less than the number of sites. 

Figures 3.12 and 3.13 illustrate the cases that create the most surprise at first. 
Less surprising are the cases in which neither multiple regression nor separate 
regressions show up any effects, or in which the techniques demonstrate the same 
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Figure 3.14a Three-dimensional view of a bivariate Gaussian logit surface with the probability 
of occurrence (p) plotted vertically and the two explanatory variables xl and x2 plotted 
in the horizontal plane. 

effects. Finally, it may also happen that both x, and x2 show an effect on the 
species in the separate regressions, whereas in multiple regression only one of 
them shows an effect. This happens, for example, when x{ is the only effective 
variable, and x2 is correlated with xv The possible effect of x2 in the regression 
with x2 only is then due to its correlation with x{, as multiple regression may 
show. 

In multiple regression with more than two explanatory variables, all the previous 
cases may occur together in one analysis. Further, instead of pairs of variables 
that are substitutable or complementary, we may have triplets, quadruplets, etc. 
(Whittaker 1984). These concepts are important when one wants to select the 
best set of explanatory variables in a regression equation (Montgomery & Peck 
1982; Whittaker 1984). 

We now proceed to quadratic models. By inserting the quadratic surface of 
Equation 3.20 in Equation 3.15, we obtain a bivariate Gaussian logit surface, 
provided both b2 and è4 are negative (Figure 3.14a). This surface has ellipses 
as contour lines (lines of equal probability) with main axes parallel to the xx 

and x2 axis (Figure 3.14b). The parameters of this models can again be estimated 
by GLM. Further analysis proceeds as from Equation 3.20, except that the F 

test must be replaced by the deviance test (Subsection 3.3.3). 

3.5.4 Interaction between explanatory variables 

Two explanatory variables show interaction of effects if the effect of the one 
variable depends on the value of the other. We can test for interaction by extending 
regression equations with product terms, like x{ x2. 

By extending Equation 3.19 in this way, we obtain 

Ey = b0 + b{ X\ + b2 x2 + Z>3 xi x2 — (b0 + b2 x2) + (bi + b3 x2)xt Equation 3.23 
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Figure 3.14b Elliptical contours of the probability of occurrence p plotted in the plane 
of the explanatory variables xx and x2. One main axis of the ellipses is parallel to the 
x, axis and the other to the x2 axis. 

The final expression in Equation 3.23, obtained by simple algebra, shows that 
the relation between Ey and x, in this model is still a straight line, but that 
the intercept and slope and hence the effect of x, depend on the value of x2. 

Conversely, the effect of x2 depends on the value of x,. The parameters b{, b2 

and Z>3 in Equation 3.23 can be estimated by using any multiple regression program 
and calculating the new variable x3 = x, x2 and specifying x,, x2 and x3 as the 
explanatory variables. The interaction can be tested by a t test whether Z>3 

equals 0. 
By extending the Gaussian model of Equation 3.20 with a product term, we 

obtain in the logit case 

l°ge [WO ~P)] — b0 + b{ Xj + b2 X|2 + b3 x2 + b4 x2
2
 + b5 x{ x2 Equation 3.24 

If b2 + b4 < 0 and 4 b2 b4 - b5
2 > 0, Equation 3.24 describes a unimodal surface 

with ellipsoidal contours as in Figure 3.14b, but without the restriction that the 
main axes are horizontal or vertical. If one of these conditions is not satisfied, 
it describes a surface with a single minimum or one with a saddle point (e.g. 
Carroll 1972). When the surface is unimodal, the overall optimum (uh u2) can 
be calculated from the coefficients in Equation 3.24 by 

Mi = (*5 b3 -2 bx bA)\d 

"2 = (65&i -2bT,b2)ld 

where d — 4 b2b4- b5
2
. 

Equation 3.25a 

Equation 3.25b 
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Figure 3.15 Interaction in the Gaussian logit model. The elliptical contours of the probability 
of occurrence p with respect to the explanatory variables xi and x2 are shown. The main 
axes of the ellipses are not parallel to either the x, axis or the x2 axis. uA and uB are 
the optima with respect to x2 that correspond to levels A and B of xx. 

The optimum with respect to xx for a given value of x2 is -(b] + b5 x2)l(2 b2) 

and thus depends on the value of x2 if b5 ¥^ 0. The expression is obtained by 
rearranging Equation 3.25 in the form of a parabola and using Equations 3.10 
and 3.11. Figure 3.15 clearly shows this interaction. We can test this interaction 
by using a t test whether b5 equals 0. 

3.5.5 Nominal explanatory variables 

Multiple regression can also be used to study the simultaneous effect of nominal 
environmental variables or of both quantitative and nominal environmental 
variables. To show how nominal variables may enter the multiple regression 
equation, we express the ANOVA model of Subsection 3.2.1 as a regression 
equation. In the example of Subsection 3.2.1, the nominal variable soil type had 
three classes: clay; peat; sand. We take clay as the reference class and define 
for peat and sand two dummy variables, x2 and x3, the values of which are either 
0 or 1. The dummy variable for peat x2 takes the value 1 when the site is on 
peat and the value 0 when the site is on clay or sand. The dummy variable for 
sand x3 takes the value 1 when the site is on sand and the value 0 when the 
site is on clay or peat. A site on clay thus scores the value 0 for both dummy 
variables, a site on peat scores the value 1 for x2 and 0 for x3, etc. The systematic 
part of the model of Subsection 3.2.1 can be written as 

Ey = bt + b2 x2 + 63 x Jl - * 3 Equation 3.26 

The coefficient b{ gives the expected response on the reference class clay, the 
coefficient b2 the difference in expected response between peat and clay, and 
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coefficient Z?3 the difference between sand and clay. The coefficients bu b2 and 
è3 can be estimated by multiple least-squares regression. For the data of Figure 
3.4, we obtain bx — 1.70, b2 = 1.47, 63 = 0.63. The mean is then on clay b\ 

— 1.70, on peat bx + b2 — 3.17 and on sand bx + bi — 2.33, as can be checked 
with Table 3.1. The ANOVA table of this multiple regression analysis is precisely 
that of Table 3.1. When a nominal variable has k classes, we simply specify 
k - 1 dummy variables (Montgomery & Peck 1982, Chapter 6). 

The next example concerns the presence-absence of the plant species Equisetum 

fluviatile in fresh water ditches in the Netherlands. We will investigate the effect 
of electrical conductivity (mS nr1) and of soil type (clay, peat, sand) on the species 
by logit regression, using the model 

loge [>/0 "/>)] = K + b{ x{ + b2 xx
2
 + b3 x2 + b4 x3 Equation 3.27 

where xx is the logarithm of electrical conductivity and x2 and x3 are the dummy 
variables defined in the previous example. Here Z>3 and bA represent the effect 
of the nominal variable soil type. Figure 3.16 shows that this model consists of 
three curves with different maxima but with identical optima and tolerances. The 
coefficient b3 is the difference between the logits of the maxima of the curves 
for peat and the reference class clay; the coefficient b4 is the analogous difference 
between the curves for sand and clay. We can test whether the maxima of these 
curves are different by comparing the residual deviance of the model with x, 
and jc,2 with the residual deviance of Equation 3.27. The difference is a chi-square 
with two degrees of freedom if soil type has no effect. This is another example 
of the deviance test. 

To calculate the optimum and tolerance in Equation 3.27, we simply use Equation 
3.11; to calculate standard errors and a confidence interval for the optimum, we 
can use the equations of Section 3.9. Exercise 3.6 may serve as an example. 

0.5 

0 

log EC 

Figure 3.16 Response curves for Equisetum fluviatile fitted by multiple logit regression 
of the occurrence of E. fluviatile in freshwater ditches on the logarithm of electrical 
conductivity (EC) and soil type surrounding the ditch (clay, peat, sand). Data from de 
Lange (1972). 
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3.6 Model choice and regression diagnostics 

Many things can go wrong in regression analysis. The type of response curve 
or the error distribution may have been chosen incorrectly and there may be 
outliers that unduly influence the regression. To detect such faults is the purpose 
of regression diagnostics (Belsley et al. 1980; Cook & Weisberg 1982; Hocking 
& Pendleton 1983). What we can do, for instance, is to plot the residuals of 
a regression against the fitted values or against each of the explanatory variables 
and look for outliers and systematic patterns in these plots. The references just 
given deal mainly with regression diagnostics for quantitative response variables. 
Here we focus on presence-absence data and response curves of species. 

One would like to base the shape of a response curve of a species on physiological 
and ecological theory. But there is no generally accepted theory (Austin 1980) 
and therefore no ubiquitously applicable response curve. In the absence of theory, 
one can still proceed by empirical methods and decide upon an applicable curve 
on the basis of many empirical results. Early studies by Gause (1930), Curtis 
& Mcintosh (1951) and Whittaker (1956) showed that monotonie response curves 
are too simple as an ecological response model and that a unimodal model is 
more appropriate. Simple ecological reasoning shows that also bimodal curves 
are a realistic option: a species can be outcompeted near its physiological optimum 
by more competitive species whereas the species may be able to cope with less 
favourable environmental conditions when competition is less. The response curve 
applicable to field conditions is then the result of the physiological response curve 
and competition between species (Fresco 1982). Hill (1977) suggested, however, 
that a good ecological variable, minimizes the occurrence of bimodal species 
distributions. 

When there are no ideas a priori of the shape of the response curve, one can 
best divide the quantitative environmental variable into classes and calculate the 
frequency of occurrence for each class as in Subsection 3.3.1 (Gounot 1969; Guillerm 
1971). By inspection of the profiles of the frequencies for several species, one 
may get an idea which type of response curve is appropriate. 

Curves have several advantages over frequency profiles for quantitative envir-
onmental variables: 
- curves when kept simple, provide through their parameters a more compact 

description than frequency profiles 
- there is no need to choose arbitrary class boundaries 
- there is no loss of information because the environmental variable is not divided 

into classes 
- when the Gaussian model applies, statistical tests based on curves have greater 

power to detect that the environmental variable influences the species than 
the chi-square test based on the frequency profile. This is because the chi-
square test of Subsection 3.3.1 is an omnibus test that is able to detect many 
types of deviations from the null hypothesis, whereas the / tests and deviance 
tests of Subsections 3.3.2, 3.3.3 and Section 3.5 test the null hypothesis against 
a specified alternative hypothesis. 

A clear disadvantage of curves is that one is forced to choose a model which 
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Figure 3.17 The change in a fitted Gaussian logit curve by adding an influential point. 
Adding a single presence at pH = 7.6 (indicated by an arrow) to Figure 3.10 considerably 
decreases the estimated maximum and increases the estimated tolerance and optimum. 

may be wrong for the data at hand. For example, is the true response curve 
symmetric? When asymmetry is suspected, one can transform the explanatory 
variable, for example by taking logarithms, and one can compare the residual 
déviances before and after transformation. The detection of a deviation from a 
supposed response curve may aid our understanding of the relation of the species 
with the environment and in general triggers off a new cycle in the process of 
model building. 

Data points that unduly influence the regression require special attention with 
presence-absence data. For example, adding a presence to Figure 3.10 at pH 
7.6 drastically changes the fitted response curve (Figure 3.17). When there are 
two or more explanatory variables, we suggest you plot the variables in pairs 
as in Figures 3.12 and 3.13 and inspect the plots for outlying presences. When 
such an outlier is spotted, you must attempt to find out whether it is a recording 
error or whether the site was atypical for the conditions you intended to sample, 
and decide after such attempts whether or not to retain the outlier in the data. 
We also suggest that you always try to remove the lowest or highest x where 
the species is present to check that the fitted response stays roughly the same 
(cf. the jackknife technique, Efron 1982). 

3.7 The method of weighted averaging 

This section is devoted to estimation of species indicator values (Ellenberg 1982). 
In terms of response curves, there are two possible definitions of species indicator 
value: it is either the optimum or the centroid of the species response curve. 
These definitions coincide only if the response curve is symmetric. In Subsections 
3.2.3 and 3.5.2, we have shown how an optimum can be estimated by fitting 
a curve or a surface to the species data by regression. In the regression method, 
we have to assume a particular response curve. Ecologists have long used a simpler 
method for estimating indicator values (Ellenberg 1948; 1979). This is the method 
of weighted averaging, which circumvents the problem of having to fit a response 

61 



curve. When a species shows a unimodal curve against a particular environmental 
variable, the presences of the species will most frequently occur near the optimum 
of the curve. An intuitively reasonable estimate of the indicator value is therefore 
obtained by taking the average of the values of the environmental variable over 
those sites where the species is present. For abundance data, a weighted average 
may be taken in which values are weighted proportional to the species' abundance, 
i.e. 

u = ( ƒ , * , + y2 x2 + ... + yn *„)/()>! + yi + - + yn) Equation 3.28 

where 
u is the weighted average 
yu y2, —,y„

 a r e the abundances of the species 
x,, x2, ..., xn the values of the environmental variable at the Sites 1, 2 ... n. 

The weighted average disregards species absences. An unpleasant consequence 
of this is that the weighted average depends on the distribution of the environmental 
variable in the sample (Figure 3.18). Highly uneven distributions can even scramble 
the order of the weighted averages for different species (Figure 3.18). 

Ter Braak & Looman (1986) compared the performance of the methods of 
weighted averaging and of Gaussian logit regression to estimate the optimum 
of a Gaussian logit curve from presence-absence data. Through simulation and 
practical examples, they showed that the weighted average is about as efficient 
as the regression method for estimating the optimum: 

- when a species is rare and has a narrow ecological amplitude 
- when the distribution of the environmental variable among the sites is reasonably 

homogeneous over the whole range of occurrence of the species along the 
environmental variable. 

In other situations, weighted averaging may give misleading results (Exercise 3.2.8). 
Similar conclusions also hold for quantitative abundance data; for quantitative 
abundance data, the weighted average efficiently estimates the optimum of the 
Gaussian response curve, if the abundances are Poisson-distributed and the sites 
are homogeneously distributed over the whole range of the species. 

Despite its deficiencies, the method of weighted averaging is a simple and useful 
method to show up structure in a data table such as Table 0.1 by rearranging 
species and sites on the basis of an explanatory variable. As an example, we 
shall demonstrate this by rearranging the Dune Meadow Data in Table 0.1 on 
the basis of the moisture value of the sites (relevés). For each species, we calculate 
its weighted average for moisture, e.g. for Aira praecox 

u = (2 X 2 + 3 X 5)/(2 + 3) = 3.8 

and arrange the species in order of the values so obtained and the sites in order 
of their moisture value (sites with equal moisture are arranged in arbitrary order). 
The result is shown in Table 3.9. Plantago lanceolata is clearly restricted to the 
driest sites, Ranunculus flammula to the wettest sites, and Alopecurus geniculatus 
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Figure 3.18 The response curves of imaginary species A and B (a); the occurrence of these 
species in two samples of 80 sites, in which the environmental variable is distributed evenly 
(b) or unevenly (c). The weighted averages are indicated with lines. The two sampling 
designs yield weighted averages that are in reverse order, p = probability of occurence; 
N = number of sites; x = environmental variable. 

to sites with intermediate moisture. In Table 3.9, most of the abundance values 
( > 0) are arranged in a band along the 'diagonal'. The method of weighted averaging 
tends to show up such a diagonal structure in a table, when species show unimodal 
curves for the environmental variable. This idea is extended in Section 5.2. 

3.8 Bibliographic notes 

The least-squares technique dates back to the early nineteenth century with 
the work of K.F. Gauss. The principle of maximum likelihood was founded by 
R.A. Fisher in the 1920s. The generalized linear model (GLM) was introduced 
by Neider & Wedderburn (1972) and made it easy to fit a major class of non-
linear models to data. Among the many statistical textbooks on least-squares 
regression are Draper & Smith (1981), Seber (1977), Montgomery & Peck (1982) 
and Mosteller & Tukey (1977). Useful more general statistical texts for biologists 
are Parker (1979), Sokal & Rohlf (1981) and Snedecor & Cochran (1980). Dobson 

63 



Table 3.9 Weighted averaging used for rearranging species and sites 
in Table 0.1. The sites (columns) are arranged in order of moisture 
and the species (rows) in order of their weighted average (u*) with 
respect to moisture. Species abundance is printed as a one-digit 
number, a blank denoting absence. Site identification numbers are 
printed vertically. For abbrevations of species names see Table 0.1. 

26 
18 
28 
1 
6 
7 

23 
17 
9 
11 
13 
5 

20 
16 
27 
23 
13 
24 
4 
15 
3 

25 
2 
14 

a 
10 
12 
21 
22 
30 

spec 

Tri 
PLa 
Vic 
Rch 
Bel 
Bro 
Rum 
LoL 
Cir 
ELy 
Poa 
Rnt 
Poa 
Leo 
Tri 
Bra 
Hyp 
Sag 
Rio 
Jun 
Rir 
Sa L 
Rgr 
Jun 
Che 
ELe 
Emp 
Pot 
Ran 
CaL 

ies 

pra 
Lan 
Lat 
mil 
per 
hor 
ace 
per 
arv 
rep 
pra 
odo 
tri 
aut 
rep 
rut 
rad 
pro 
gen 
buf 
pra 
rep 
sto 
art 
aLb 
paL 
nig 
paL 
f la 
eus 

MGI5TURE 

sites 
11 11 1 111112 

12567183407328345690 
252 
55533 32 

21 1 
13222 42 
32 2222 
42 2 34 
563 22 

7526672656 2 4 
2 

444 44 6 
442344354414 42 

432 44 4 
27645 654 5449 2 
5333552232223222 62 
525232216 332261 2 
26246222 242 4434 

2 2 5 
2 5 2422 3 

2 72 3855 4 
2 44 3 

2 3 
3 35 
48 3445447 5 

4 4 33 4 
1 

4 458 4 
2 

22 
22222 4 

4 3 3 

11111112222445555555 

u* 
1 .0 
1 .2 
1.3 
1.4 
1 .5 
1.5 
1.7 
1 .7 
2.0 
2.0 
2.0 
2. 1 
2.6 
2.6 
2.7 
2.9 
3.4 
3.5 
3.7 
3.6 
3.8 
3.9 
4. 1 
4.8 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 

(1983) and McCullagh & Neider (1983) provide an introduction to GLM. 
A major contribution to the analysis of species-environment relations was made 

by Whittaker (1956; 1967). His direct gradient analysis focused on response curves 
and surfaces of species with respect to a complex of environmental variables, 
that changed gradually in geographic space. The term 'gradient' therefore then 
had a geographical meaning, but in recent use the term is equivalent to 'envir-
onmental variable'. Whittaker used simple smoothing methods to fit the curves 
and surfaces. Following Gleason (1926), Ramensky (1930) and Gause (1930), he 
stressed that species react 'individualistically' to environmental variables and that 
response surfaces of species are often unimodal. Whittaker's view opposed the 
'integrated-community hypothesis' of Clements (1928), which viewed communities 
of species as organisms of a higher scale. The integrated-community hypothesis 
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stimulated much work on succession and on the interrelations between species, 
disregarding environmental variables. Conversely, the individualistic concept (in 
its most extreme form, at least) disregards direct relations between species. 
Mcintosh (1981) discussed these apparently contrasting views. Fresco (1982) 
attempted to incorporate species-environment and inter-species relations into a 
single regression equation. 

Whittaker (1956; 1967) dealt with gradients, i.e. ordinal or quantitative en-
vironmental variables. Gounot (1969) and Guillerm (1971) proposed methods 
similar to that of Subsection 3.3.1, which are applicable for presence-absence 
species data and nominal environmental variables. They divided environmental 
variables into classes when the variables were quantitative. Our approach of using 
logit regression makes it possible to deal with quantitative and nominal variables 
in a single analysis. 

An early ecological example of fitting sigmoid curves to presence-absence data 
is found in Jowett & Scurfield (1949). They applied probit analysis (Finney 1964), 
an alternative for logit regression that usually gives similar results. Polynomial 
least-squares regression was advocated by Yarranton (1969; 1970). He noticed 
the problem of absences of species (zero abundance values). Austin (1971) stressed 
the power of regression analysis and gave several examples from plant ecology 
where abundance data were first transformed logarithmically and then analysed 
by least-squares regression using parabolas and second-order response surfaces. 
Alderdice (1972) explained and applied second-order response surfaces in marine 
ecology. Gauch & Chase (1974) provided a computer program to fit the Gaussian 
response curve by least squares to ecological data that might include zero 
abundances. Their approach has become outdated with the advent of GLM. Austin 
et al. (1984) showed the usefulness of GLM in direct gradient analysis, using 
log-linear regression and logit regression, with second-order polynomials as linear 
predictors. We believe that GLM (Section 3.5) should become a standard tool 
in applied ecology. Response surfaces fitted by GLM are particularly useful in 
models simulating the impact of various options in environmental management. 

3.9 Standard errors of estimated optimum and tolerance; confidence interval for 

the optimum 

We denote the variance of the estimates of bl and b2 in Equations 3.9, 3.17, 
3.20 or 3.24 by v n and v22 and their covariance by v12. Using Taylor expansion, 
we calculate the approximate variance of the estimated optimum and tolerance: 

var (w) = (vn + 4 u vl2 + 4 u
2 v22)/(4 b2

2
) Equation 3.28 

var (f) = v22/(-8 b2
3
) Equation 3.29 

An approximate 100(1 - a)% confidence interval for the optimum is derived 
from Fiellers theorem (Finney 1964, p.27-29). Let ta be the critical value of a 
two-sided t test at chosen probability level a with n - 3 degrees of freedom, 
where n is the number of sites. For example, ; = 2.00 for a 95% confidence 
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interval and 63 sites. Calculate 

g
=
ta

2
v22jb2

2 Equation 3.30a 

and 

D = 4 b22 v a r (û) _ g(vu -v12
2/v22). Equation 3.30b 

"lower, "upper = [" + 0-5 g v,2 /v2 2 ± 0.5 /„ (\/D)/b2]l(l - f ) Equat ion 3.31 

where the symbol ± indicates addition and subtraction in order to obtain the 
lower and upper limits of the confidence interval, respectively. If b2 is not 
significantly different from zero (g > 1), then the confidence interval is of infinite 
length and, taken alone, the data must be regarded as valueless for estimating 
the optimum. 

3.10 Exercises 

Exercise 3.1 Straight line regression 

In a study of the impact of acid rain on diatoms, van Dam et al. (1981) collected 
data on diatom composition and water chemistry in Dutch moorland pools. For 
each sample, a total of 400 diatomaceous frustules were identified under a 
microscope. The numbers of frustules of the species Frustulia rhomboides var. 
saxonica and the relative sulphate concentrations Srel = [S04

2~]/([C1~] + [S04
2~ 

] + [HC03"]) in the 16 samples taken in 1977 and 1978 were as follows (van 
Dam et al. 1981, Tables 2 and 5): 

pool V2 B6 B3 B4 VI B5B B8 Bl D6 B7 B2 D3 D2 Dl D5 D6 
Frustulia 

count 0 0 14 3 0 5 6 21 62 26 14 48 97 99 28 202 
Srcl 0.78 0.64 0.69 0.70 0.64 0.77 0.73 0.77 0.58 0.44 0.44 0.37 0.23 0.19 0.31 0.23 

Exercise 3.1.1 Construct a graph of the data, plotting [loge (Frustulia count) 
+ 1] on the vertical axis. Note that the relation looks linear. 
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Exercise 3.1.2 Fit a straight line to the data taking loge (Frustulia count + 1) as 
the response variable and the relative sulphate concentration as the explanatory 
variable. Use a pocket calculator or a computer for least-squares regression to 
verify the following results. 

constant 

^rel 

ANOVA table 

regression 
residual 
total 

K 
bt 

d.f. 
1 

14 
15 

estimate 

5.848 
-5.96 

S.S. 

24.34 
19.11 
43.45 

s.e. 

0.806 
1.41 

m.s. 
24.340 

1.365 
2.897 

t 

7.26 
-4.22 

Exercise 3.1.3 What are the systematic part and the error part of the response 
model fitted in Exercise 3.1.2? What are the fitted value and the residual for 
Pool B2? 

Exercise 3.1.4 What are the residual sum of squares, the residual variance, the 
residual standard deviation and the fraction of variance accounted for? How many 
degrees of freedom are there for the residual sum of squares? 

Exercise 3.1.5 Calculate a 95% confidence interval for the regression coefficient 
bx. Is the estimate of b{ significantly (P<~ 0.05) different from 0? 

Exercise 3.1.6 Estimate the expected responses when the relative concentrations 
of sulphate equal 0.25, 0.50 and 0.75. Calculate the 95% confidence interval of 
each of these expected responses. The standard errors of the estimates are 0.49, 
0.30 and 0.42, respectively. Back-transform the estimates obtained to counts of 
Frustulia. 

Exercise 3.1.7 Calculate 95% prediction intervals when the relative sulphate 
concentrations are equal to 0.25, 0.50 and 0.75. 
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Exercise 3.2 Parabola, Gaussian response curve and weighted averaging 

In a study aimed at reconstructing past temperatures of the sea-surface from 
fossil distributions of Radiolaria, Lozano & Hays (1976) investigated the relation 
between different taxa of Radiolaria and sea-surface temperature in present-day 
samples. The following data extracted from their Figure 11 concern the abundance 
(%) of Spongotrochus glacialis and February sea-surface temperature (temp., °C) 
at 34 sites in the Atlantic and Antarctic Oceans. 

site 
abundance 
temp 

1 
12 
0.8 

2 
14 

1.1 

3 
13 

1.6 

4 
22 

1.8 

5 
18 

1.7 

6 
19 
2.0 

7 
7 
1.6 

8 
8 
1.9 

9 
11 
2.0 

10 
15 
2.5 

11 
12 
3.7 

12 
14 
4.2 

site 13 14 15 16 17 18 19 20 21 22 23 24 
abundance 16 21 35 30 34 48 47 63 54 62 56 52 
temp. 4.1 5.8 6.1 6.6 7.9 10.2 11.0 11.9 12.8 14.8 15.9 18.1 

site 
abundance 
temp. 

25 26 
41 38 
16.9 17.1 

27 
30 
18.0 

28 29 30 31 32 33 34 
18 25 35 37 38 42 41 
18.5 20.0 21.0 19.4 19.8 19.0 21.6 

Exercise 3.2.1 Construct a graph of the data, plotting the abundance on the 
vertical axis. Note that the relation looks unimodal. Plot also the logarithm of 
abundance against temperature. 

Exercise 3.2.2 Use a computer program for least-squares regression to verify 
the following results. Fitting a parabola to the logarithm of the abundances gives: 

constant 
temp. 
temp, squared 

ANOVA table 

regression 
residual 
total 

K 
b< 
b2 

d.f. 
2 

31 
33 

estimate 
2.119 
0.2497 

-0.00894 

S.S. 

9.42 
3.06 

12.48 

s.e. 
0.133 
0.0356 
0.00164 

m.s. 
4.7101 
0.0988 
0.3783 

t 

15.95 
7.01 

-5.46 

Exercise 3.2.3 Estimate the expected responses when the temperatures are 5, 
10, 15 and 20 °C, calculate the optimum, tolerance and maximum of the fitted 
parabola and use the results to sketch the fitted parabola. 

Exercise 3.2.4 What is the residual standard deviation and the fraction of variance 
accounted for? 
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Exercise 3.2.5 Calculate a 95% confidence interval for the regression coefficient 
b2. Would a straight line be statistically acceptable for these data? 

Exercise 3.2.6 Calculate a 95% confidence interval for the optimum using 
Equation 3.31. Here one needs to know also that covariance between the estimates 
of b{ and b2 equals 0.00005704; the variances required can be obtained from 
the table of regression coefficients. Hint: write a computer program for the 
calculations required in order to avoid lengthy hand-calculation. 

Exercise 3.2.7 Back-transform the expected responses of Exercise 3.2.3 to 
abundance and sketch the fitted curve. 

Exercise 3.2.8 Calculate (after reading Section 3.7) the weighted average of 
Spongotrochus with respect to temperature, using the abundances and, a second 
time, using log abundances. Explain the difference from the optimum estimated 
above. Is the difference large? 

Exercise 3.3 Logit link function 

Verify the equivalence of Equations 3.15 and 3.16 by showing that 
l°ge [WO -ƒ>)] = c if and only if/> = (exp c)/(l + exp c). 

Exercise 3.4 Chi-square test and logit regression 

A sample of 160 fields of meadow is taken to investigate the occurrence of 
the grass species Elymus repens in relation to agricultural use (hayfield or pasture). 
The data, based on the study of Kruijne et al. (1967), are summarized in the 
following 2 X 2 table of number of fields. 

E. repens 

present 
absent 
total 

agricultural use 

hayfield 
12 
16 
28 

pasture 
96 
36 

132 

total 
108 
52 

160 

Exercise 3.4.1 Estimate the probability of occurrence of E. repens in hayfield 
and in pasture. 

Exercise 3.4.2 Is there evidence that the probability of occurrence in hayfield 
differs from that in pasture? Apply here the chi-square test of Subsection 3.3.1, 
using a significance level of 5%. 
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Exercise 3.4.3 Instead of the chi-square test we can use logit regression of the 
presences and absences of E. repens in the 160 fields on the nominal explanatory 
variable agricultural use. Agricultural use has two classes in this problem and 
therefore we define a single dummy variable USE, which takes the value 1 if 
the field is a pasture and the value 0 if the field is a hayfield. A computer program 
for logit regression gave the following output with the response variable 
presence-absence of E. repens: 

constant 
USE 

residual 

estimate 

-0.28 
1.27 

d.f. 
158 

s.e. 

0.38 
0.42 

deviance 
192.9 

t 

-0.74 
3.02 

mean deviance 
1.221 

The model corresponding to this output is loge [p/(l - p)] = c0 + c{ X USE. 

Exercise 3.4.3.1 Calculate from the output the estimates for the probability of 
occurrence of E. repens in hayfield and in pasture. Hint: use Exercise 3.3. Compare 
the estimates with those of Exercise 3.4.1. 

Exercise 3.4.3.2 Show by t test whether the probability of occurrence in hayfield 
differs from that in pasture. Compare the conclusion with that of Exercise 3.4.2. 

Exercise 3.4.3.3 The deviance corresponding to the model loge [p/(l - p)] — 

c equals 201.7 with 159 degrees of freedom. Apply the deviance test instead of 
the t test of the previous exercise. 

Exercise 3.5 Gaussian logit regression 

The acidity (pH) of the fields was recorded also for the sample of the previous 
exercise. Spatial heterogeneity in acidity was disregarded; pH was the mean of 
several systematically located points in the field. To investigate the effect of acidity 
on the occurrence of E. repens, a Gaussian logit regression was carried out. The 
results were: 

constant 
pH 
pH2 

residual 

b, 

estimate 

-57.26 
19.11 
-1.55 

d.f. 
157 

s.e. 

15.4 
5.3 
0.44 

deviance 
176.3 

t 

-3.72 
3.61 

-3.52 

mean deviance 
1.123 
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Exercise 3.5.1 At what pH did E. repens occur with the highest probability? 
Calculate also the tolerance and the maximum probability of occurrence. 

Exercise 3.5.2 Calculate from the output the estimated probabilities of occurrence 
of E. repens at pH 4.5, 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5 and use the results to sketch 
the response curve of E. repens against pH. 

Exercise 3.5.3 Is the estimated Gaussian logit response curve significantly different 
(P < 0.05) from a sigmoid response curve; hence, is the optimum significant? 
Hint: use a one-tailed t test. 

Exercise 3.6 Multiple logit regression 

When considered separately, agricultural use and acidity appear to influence 
the occurrence of E. repens in fields (Exercises 3.4 and 3.5). Hayfield and pasture 
differ, however, in acidity; hayfields tend to be more acid than pastures. It is 
therefore of interest to investigate whether this difference in acidity between 
hayfields and pastures can explain the difference in probability of occurrence of 
E. repens between hayfields and pastures. This problem can be attacked by multiple 
(logit) regression. We fitted the model 

loge [P/(1 -/>)] = Co + ci USE + bx pH + b2 pH2 

to the data and obtained the following results: 

constant 
USE 
pH 
pH2 

residual 

Co 

C\ 

by 
b2 

estimate 

-57.82 
-0.04 
19.30 
-1.56 

d.f. 
156 

s.e. 

17.10 
0.57 
5.81 
0.49 

deviance 
176.2 

t 

-3.38 
-0.07 

3.32 
-3.18 

mean deviance 
1.129 

Exercise 3.6.1 Calculate the estimated probabilities of occurrence in hayfields 
and pastures for pH 5 and for pH 6. Calculate also the optimum pH and the 
maximum probabilities of occurrence in hayfields and pastures, and the tolerance. 
Compare the results with those of Exercise 3.5.1 and 3.5.2, and sketch the response 
curves. 

Exercise 3.6.2 Show by a t test whether the probability of occurrence in hayfields 
differs from that in pastures after correction for the effect of acidity. Can acidity 
account for the difference found in Exercise 3.4.2 
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Exercise 3.6.3 Use the deviance test instead of the t test in Exercise 3.6.2. Does 
the conclusion change? 

Exercise 3.6.4 Show by a deviance test whether acidity has an effect on the 
probability of occurrence of E. repens after correction for the effect of agricultural 
use. Are the variables acidity and agricultural use substitutable in the sense of 
Subsection 3.5.3? 

3.11 Solutions to exercises 

Exercise 3.1 Straight-line regression 

Exercise 3.1.3 The systematic part is Ey — b0 + bx Srel and the error part is 
that the error (y - Ey) follows a normal distribution with mean at zero and a 
variance that does not depend on Srel. Pool B2 has a count of 14 (hence, y = 

2.71) and Snl = 0.44; hence, the fitted value is 5.848 - 5.96 X 0.44 = 3.23 and 
the residual is 2.71 - 3.23 = -0.52. The fitted number of Frustulia frustules is 
thus exp (3.23) = 25. 

Exercise 3.1.4 From the ANOVA table, we obtain the residual sum of squares 
19.11, the residual variance 1.365, the residual standard deviation \J\365 = 1.17 
and the fraction of variance accounted for is 1 - (1.365/2.897) — 0.529. The 
residual sum of squares has 14 degrees of freedom. 

Exercise 3.1.5 In Equation 3.2 with ;005(14) = 2.145, we insert the estimate for 
b} and its standard error and obtain a lower bound of -5.96 - (2.145 X 1.41) 
= -8.98 and an upper bound of-5.96 + (2.145 X 1.41) = -2.94. The 95% confidence 
interval for bl is therefore (-8.98, -2.94). The value 0 does not lie in this interval. 
Alternatively, the / for bt (-4.22) is greater in absolute value than the critical 
/ (2.145); hence, the estimate of bl is significantly (P < 0.05) different from 0. 

Exercise 3.1.6 In a pool with Sre] = 0.25 the expected response is estimated 
by 5.848 - 5.96 X 0.25 = 4.36. The standard error of this estimate is 0.49 and 
the 95% confidence interval is therefore (4.36 - 2.145 X 0.49, 4.36 + 2.145 X 
0.49) = (3.31, 5.41). For Srel = 0.50 and 0.75 the estimastes are 2.87 and 1.38, 
with confidence intervals of (2.23, 3.50) and (0.47, 2.29), respectively. Notice that 
the interval is shortest near the middle of the interval of the relative sulphate 
values actually sampled. For S r e l= 0.25, 0.50, 0.75 back-transformation to counts 
gives the estimates exp (4.36 - 1) = 77, 17 and 3, respectively. 

The latter values estimate the median number of frustules at the respective 
relative sulphate concentrations, and not the expected number of frustules. We 
assumed that the log-transformed data do follow a normal distribution. In the 
normal distribution, the mean is equal to the median (50-percentile) and trans-
formations do not change percentiles of a distribution. Back-transforming the 
limits of the 95% confidence intervals gives 95% confidence intervals for the median 
counts. For STd = 0.25 this interval is (26, 223). 
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Figure 3.19a Parabola (solid line) fitted by least-squares regression of log-transformed relative 
abundance of Spongotrochus glacialis (•) on February sea-surface temperature (temp). 95% 
confidence intervals (dashed curve) and 95% prediction intervals (dotted line) are shown. 
Data from Lozano & Hays (1976). 
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Figure 3.19b Gaussian response curve with 95% confidence and 95% prediction intervals 
obtained by back-transforming the curves of Figure 3.19a. Vertical axis: abundance (%) 
of Spongotrochus glacialis. Horizontal axis: February sea-surface temperature. 

73 



Exercise 3.1.7 With Equation 3.3 and STel = 0.25 we obtain the interval 4.36 
± 2.145 X V(l-17 2 + 0.492) = 4.36 ± 2.145 X 1.27 = (1.63, 7.08). 
Back-transforming to counts shows that 95% of the counts are expected to lie 
between 4 and 1187. The latter value is nonsensical as the maximum count is 
400. 

For STel = 0.50 and 0.75 we obtain 95% prediction intervals for the transformed 
counts of (0.28, 5.46) and (-1.28, 4.05), respectively. 

Exercise 3.2 Parabola, Gaussian response curve and weighted averaging 

Exercise 3.2.1 See Figure 3.19a,b. 

Exercise 3.2.3 The expected response at temp. = 5 is estimated by 
2.119 + 0.2497 X 5 - 0.00894 X 52 = 3.14. For temp. = 10, 15 and 20 the 
estimates are 3.72, 3.85 and 3.54, respectively. It is of interest to note that the 
standard errors of the estimates are 0.07, 0.10, 0.09 and 0.11 at temp. 5, 10, 
15 and 20, respectively. 

With Equastions 3.11a and 3.11b, the optimum is estimated by û — - b , / 
(2 b2) = -0.2497/(-2 X 0.00894) = 140, so that the optimum temperature is 
14.0 °C and the tolerance by f = l / V ( - 2 b2) = 7.48, so that the tolerance of 
temperature is 7.48 °C. The maximum of the parabola (Figure 3.19a) is estimated 
by 2.119 +0.2497 X 14.0 - 0.00894 X 14.02 = 3.86. 

Exercise 3.2.4 The residual standard deviation is \ßX)9%% = 0.314 and the fraction 
of variance accounted for is 1 - (0.0988/0.3783) = 0.739, using the results of 
the ANOVA table. 

Exercise 3.2.5 With Equation 3.2 and /005(31) = 2.04, a 95% confidence interval 
for b2 is (-0.00894 - 2.04 X 0.00164, 0.00894 + 2.04 X 0.00164) = (-0.0122, 
-0.0056). The estimate for b2 is thus significantly (P < 0.05) different from 0, in 
agreement with the t of -5.46; hence, the null hypothesis thast the relation is a 
straight line (b2 — 0) is rejected in favour of a parabola (b2 # 0). A straight line is 
thus statistically unacceptable for these data. 

Exercise 3.2.6 A 95% confidence interval for the optimum temperature is 
(12.8 °C, 16.2 °C). 

Exercise 3.2.7 The median abundances of Spongotrochus at temp. = 5, 10, 15 
and 20 are exp (3.14) — 23, 41, 47 and 34, respectively. The fitted Gaussian curve 
with the data points and 95% confidence and 95% prediction intervals (obtained 
also by back-transformation) is plotted in Figure 3.19b. 
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Exercise 3.2.8 The weighted average is (12 X 0.8 + 14 X 1.1 + ... + 41 
X 21.6)/ (12 + 14 + ... + 41) — 12.7, so that the weighted average temperature 
is 12.7 °C. 

With log-transformed abundance data the weighted average temperature is 
smaller, namely 11.0 °C. Both values are smaller than the optimum (14.0 °C) 
estimated by regression, because the temperatures are not homogeneously dis-
tributed over the range of the species; in particular, the lower temperatures are 
over-represented and the optimum lies at the higher end of the temperature interval 
that was actually sampled. So the weighted average estimator is biased. The 
difference is large in a statistical sense: the weighted averages fall outside the 
95% confidence interval for the optimum calculated in Exercise 3.2.6. 

Exercise 3.3 Logit link function 

loge[W(l -ƒ>)] = c ^ P / ( l -/>) = expc 
—• p = (exp c) ( 1 - p) — exp c - p exp c —• p + p exp c — exp c 

—/>(1 + exp c) — exp c —• p — (exp c)/(l + exp c). 

The arrows hold true also in the reverse direction; hence, the equivalence. 

Exercise 3.4 Chi-square test and logit regression 

Exercise 3.4.1 The estimated probability of occurrence is: in hayfield 12/28 = 
0.43; in pasture 96/132 = 0.73. 

Exercise 3.4.2 When the probability of occurrence in hayfield equals that in 
pasture, this probability is estimated by 108/160 — 0.675. Then, we expect that 
out of 28 fields 0.675 X 28 = 18.9 fields contain E. repens, and 28 - 18.9 = 
9.1 fields do not contain E. repens. 

With 132 fields (pastures) the expected numbers are: 89.1 with E. repens and 
42.9 without E. repens. Inserting the observed and expected numbers in the equation 
for chi-square gives (12 - 18.9)2/18.9 + ... + (36 - 42.9)2/42.9 = 9.39 which 
is much greater than the critical value at the 5% significance level of a chi-square 
distribution with (2 - 1) X (2 - 1) = 1 degree of freedom: Xo.05 (1) — 3.841. 
The conclusion is that there is strong evidence (P < 0.01) that the probability 
of occurrence in hayfield differs from that in pasture. 

Exercise 3.4.3.1 For hayfield the model reads: loge [p/(l - p)] — c0 because 
USE = 0 for hayfields. c0 is estimated by -0.28; hence the estimated probability 
of occurrence is p — exp (-0.28)/[l + exp (-0.28)] = 0.43. For pastures, the 
model reads: loge [pi(I - p)] = c0 + cl because USE = 1 for pastures. 
c0 + c, is estimated as -0.28 + 1.27 = 0.99, which gives p — exp 0.99/(1 + 
exp 0.99) = 0.73. The estimates equal those of Exercise 3.4.1, because the regression 
model simply specifies two probabilities, one for hayfields and one for pastures. 
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Exercise 3.4.3.2 The estimate of the coefficient c, of USE differs significantly 
(P< 0.05) from 0, t = 3.02 being greater than J005(158) — 1.98; hence, the estimated 
probabilities differ significantly. The conclusion is identical to that of Exercise 
3.4.2; we applied a different test for the same purpose. 

Exercise 3.4.3.3 The difference in deviance between the model with and without 
the variable USE is 201.7 - 192.9 = 8.8, which is to be compared with a chi-
square distribution with one degree of freedom. 

Exercise 3.5 Gaussian logit regression 

Exercise 3.5.1 From Equation 3.11a, the estimated optimum of pH is û — -19.11/ 
( -2X 1.55) = 6.16. 

With u = 6.16 in Equation 3.17, the maximum probability of occurrence is 
estimated by p = (exp 1.641)/(1 + exp 1.641} = 0.84, because -57.26 + 19.11 
X 6.16 - 1.55 X 6.162 = 1.641. The tolerance is t = 0.57 (Equation 3.11b). 

Exercise 3.5.2 Inserting pH = 4.5, 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5 in Equation 
3.17, we obtain estimated probabilities of 0.07, 0.39, 0.72, 0.83, 0.81, 0.64 and 
0.25. 

Exercise 3.5.3 The estimate of b2 is significantly (P < 0.05) smaller than 0, because 
the t (-3.52) is much greater in absolute value than the critical value of a one-
tailed ? test (1.65 at P = 0.05, one-tailed); hence, the estimated Gaussian logit 
response curve differs significantly from a sigmoid response curve, so that the 
optimum is significant. 

Exercise 3.6 Multiple logit regression 

Exercise 3.6.1 In hayfield (USE = 0) with pH = 5: loge [p/(l - p)] = -57.82 
+ (19.30 X 5) - (1.56 X 52) = -0.32, which gives p = 0.421. In pasture (USE 
= 1) with pH = 5: loge [pj(l - p)] = -0.32 - 0.04 = -0.36, which gives 
p = 0.411. 

For pH = 6, the estimated probabilities of occurrence are 0.860 and 0.855 
in hayfield and pasture, respectively. The optimum pH is now estimated as -19.30/ 
(-2 X 1.56) = 6.18 and the tolerance as 0.57, identical for hayfields and pastures. 
The maximum probabilities of occurrence are 0.867 and 0.862 in hayfield and 
pasture, respectively. The difference between the estimated curves is small (Figure 
3.20), the difference from the curve estimated in Exercise 3.5 is small too. 
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Figure 3.20 Gaussian logit curves of probability of occurrence of Elymus repens in hayfield 
(solid line) and pasture (broken line) against acidity (pH), as fitted by multiple logit regression. 
The probability of occurrence of Elymus repens at pH = 5 is estimated at 0.421 in hayfield 
and 0.411 in pasture; the difference is not statistically significant. Data from Kruijne et 
al. (1967). 

Exercise 3.6.2 The t of the coefficient c, of USE is much smaller than the critical 
/ at 5%. Therefore there is no evidence from these data that the probability of 
occurrence in fields with the same pH differs between hayfields and pastures. 
Acidity can therefore account for the overall difference between hayfields and 
pastures found in Exercise 3.4. The test result is not surprising after our observation 
in the previous exercise that the difference between the estimated response curves 
is small. 

Exercise 3.6.3 The deviance of the model with acidity and agricultural use is 
176.2; dropping agricultural use (variable USE) gives us the model with acidity 
only (Exercise 3.5), whose deviance is 176.3. The change in deviance (0.1) is much 
smaller than the critical value of a chi-square distribution with one degree of 
freedom, the change in the number of parameters between the models being one. 
The conclusion is the same as in Exercise 3.6.2. 

Exercise 3.6.4 The deviance of the model with acidity and agricultural use is 
176.2; dropping acidity (pH and pH2) gives us the model with agricultural use 
only (Exercise 3.4), whose deviance is 192.9. The change in deviance is 16.7, which 
must be compared with a chi-square distribution with two degrees of freedom: 
Xo2o5 (2) = 5.99. 

The conclusion is that acidity has an effect after correction for the effect of 
agricultural use. Acidity and agricultural use are not substitutable in the sense 
of Subsection 3.5.3; agricultural use cannot replace acidity in explanatory power, 
as judged by the deviance tests. 
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4 Calibration 

C.J.F, ter Braak 

4.1 Introduction 

In Chapter 3, we used regression analysis to analyse the way in which species 
respond to environmental variables. The goal of regression analysis is to express 
the response of a species as a function of one or more environmental variables. 
In this chapter, we consider the reverse problem: namely how to express values 
of an environmental variable as a function of species data. This function is termed 
the 'transfer function' or 'biotic index' and its construction is termed calibration. 
The calibration problem differs from the regression problem, because the causal 
and statistical relations between species and environment are asymmetric. 

It might be thought easier to measure environmental variables at a site than 
to infer their values from the species that occur there. But often it is not. For 
example, total values over time may be required; repeated measurements are costly, 
while species automatically integrate environmental conditions over time. This 
is one of the ideas behind biological evaluation of water quality and bio-monitoring 
in general. There are also situations where it is impossible to measure environmental 
variables by direct means, whereas a biological record does exist. An example 
is the reconstruction of past changes in acidity (pH) in lakes from fossil diatoms 
from successive strata of the bottom sediment. 

An indicator species is ideally a species that always occurs under a unique 
set of environmental conditions and does not occur elsewhere. Such an ideal 
indicator species indicates its unique set of environmental conditions without error. 
Ideal indicator species do not exist, however. Species with narrow ecological 
amplitudes exist, but such species are not always present in their specific 
environment and many of them have a low probability of occurrence there, partly 
because we do not know their specific environmental requirements fully. If such 
species occur somewhere, they indicate the environmental conditions at that place 
precisely, but their absence provides hardly any information about the environment. 
This is a major reason to use the whole community composition at a site for 
calibration purposes, including species with wider ecological, amplitudes. In 
practice, 'community composition' is restricted to mean species of a particular 
taxonomie group, e.g. diatoms or vascular plants. Our definition of indicator 
species is broader than the one used in standard bioassay applications, where 
individuals of a single species are put on test to determine the amount of some 
drug or pollutant. Environmental calibration can, however, be considered as a 
multi-species form of bioassay. 

In this chapter, we will introduce three calibration methods, one based on 
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response functions, one on indicator values and one on inverse regression. In 
the first method (Section 4.2), the response functions can be of any type, whereas 
in the other two methods particular response curves are assumed, unimodal curves 
in the one based on indicator values (Section 4.3) and straight lines in the inverse 
regression method (Section 4.4). 

4.2 Maximum likelihood calibration using response functions 

4.2.1 Introduction 

Maximum likelihood calibration is based on response functions of species against 
environmental variables. We shall assume that these functions are known, i.e. 
they have already been estimated from an appropriate and sufficiently large set 
of data by regression analysis (Chapter 3). (This set of data is termed the training 
set.) For each set of values of environmental variables, we thus know what the 
probability is of observing a particular species composition. What we want is 
to predict the set of values of environmental variables at a particular site from 
its species composition. When the maximum likelihood principle is used, the 
prediction is the set of values that would give the maximum probability of observing 
that particular species composition, if that set of values were the true condition 
(cf. Subsection 3.3.2). This principle is illustrated in Subsection 4.2.2, together 
with the concept of a prior distribution and the loss in efficiency when ignoring 
possible correlations between species. In Subsection 4.2.2, we consider the problem 
of predicting a nominal environmental variable from presence-absence species 
data. This type of calibration is also known as discriminant analysis. How to 
discriminate between classes of a nominal variable by using abundance data will 
be discussed in the next chapter, in Subsection 5.5.5. In Subsection 4.2.3, the 
maximum likelihood principle is used to predict values of a quantitative envir-
onmental variable, first from presence-absence species data and then from 
abundance data. 

One is commonly interested in a single environmental variable, whereas the 
species might respond to many more environmental variables. This problem can 
be solved in maximum likelihood calibration by using response functions of all 
the important environmental variables; the principles remain the same. But the 
response functions have first to be estimated from data by regression (Chapter 
3), and the size of the training set of data will put a limit on the number of 
environmental variables that can be taken into account. 

4.2.2 Predicting a nominal environmental variable 

As an example, suppose we want to estimate the unknown value of soil type 
from the presence of a particular species. Let us assume that soil type has three 
classes, clay, peat and sand, and that the probabilities that the species occurs 
on a field of a given size are 0.1 for clay, 0.2 for peat and 0.4 for sand. If this 
species is encountered, then the maximum likelihood estimate of the soil type 
is sand, because sand is the soil type on which the species occurs with the highest 
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probability. If the species is absent, the maximum likelihood estimate is clay, 
because clay is the soil type where the species is absent with the highest probability. 
These are the rules of assignment or classification. When the species is present, 
the proportion of wrong assignments is (0.1 + 0.2)/(0.1 + 0.2 + 0.4) = 0.43. 
If the species is absent, the proportion of wrong assignments is (0.8 + 0.6)/(0.9 
+ 0.8 + 0.6) = 0.61, a small reduction compared to random assignment, so then 
the assignment procedure is not very effective; note also that the rules defined 
above never assign to soil type peat. 

In these rules, it was implicit that clay, peat and sand occurred equally frequently. 
This may not be so. If we know beforehand that soil type clay is encountered 
three times as often as peat or sand, then we could bet on the soil type being 
clay without any further information. This knowledge about the soil types a priori 
is termed the 'prior distribution', which is 0.6, 0.2, 0.2 in the example. If we 
also know that the species is present in a particular field, the probability that 
its soil type is clay is (apart from a normalizing constant) the product of the 
prior probability of clay and the probability that the species occurs on clay, that 
is: 0.6 X 0.1 = 0.06, compared to 0.2 X 0.2 = 0.04 for peat and 0.2 X 0.4 = 
0.08 for sand. From these values, we obtain 'posterior probabilities' by dividing 
these values by their sum, 0.06 + 0.04 + 0.08 = 0.18 in the example, so that 
the posterior probabilities for clay, peat and sand are 0.33, 0.22 and 0.44, 
respectively. The maximum of these probabilities is 0.44 for sand. The extra 
information that the species is present in the field changes our preference a priori 
from clay to sand. If the prior distribution is, however, 0.8, 0.1 and 0.1, then 
the maximum likelihood estimate is always clay, even if the species is present 
at the field. It is therefore important for the construction of the assignment rule 
for what frequencies the soil types are expected to be encountered on when the 
assignment rule will be used. The prior distribution is said to be uniform when 
the frequencies are equal. This distribution is often assumed when the true 
distribution is unknown. Many of the controversies in the statistical literature 
about calibration concern the question whether it is prudent to use the distribution 
of the fields in the training set as a prior distribution (Brown 1979). Rules based 
on the maximum likelihood principle have the attractive property that they 
minimize the number of wrong assignments (misclassifications). As a consequence, 
each wrong assignment is counted equally. There are, however, situations where 
one wrong assignment (e.g. assignment to peat instead of to clay) has more serious 
consequences than another (e.g. assignment to peat instead of to sand). This aspect 
of costs can be incorporated in the construction of assignment rules (e.g. 
Lachenbruch 1975). 

In the following, we will assume equal costs for wrong assignments and a uniform 
prior distribution unless explicitly stated otherwise. So environmental conditions 
will be predicted on the basis of the response function of the species only. 

We now extend the example. Apart from the species of that example, Species 
A, there is a second species, Species B, that only occurs rarely on clay or peat 
(p = 0.01) but often on sand (p = 0.98). If a field only contains Species A, 
then the absence of Species B indicates that its soil type is not likely to be sand; 
peat is then the most logical bet. Peat is also the maximum likelihood estimate 
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if the responses of the species are independent; the probabilities of 'Species A 
present and Species B absent' for the three soil types are 0.1 X 0.99 = 0.099, 
0.198 and 0.008, respectively, the maximum being for peat. The proportion of 
wrong assignment (0.35) is less than in the first example with Species A only. 
In this example (and also in the previous one), the absence of a species thus 
provides information on the environment. 

In this example, an extra assumption was needed to calculate the probability 
of 'Species A present and Species B absent', namely that the responses of the 
two species were independent, so that the joint probability could simply be obtained 
by multiplication of the probability of 'Species A present' and the probability 
of 'Species B absent'. However the example was constructed in such a way that 
the best assignment rule would not change, even if the responses of the species 
were interdependent. In the next example, the assignment rule can be improved 
considerably if we account for known correlation between the responses of species. 

For simplicity, this example includes only two soil types, clay and sand, with 
equal probabilities of occurrence of Species A (p = 0.2) and of Species B 
(p = 0.4). If the responses of Species A and Species B are independent, there 
is no way of discriminating between clay and sand on the basis of their responses; 
each assignment rule is wrong for half the cases. But suppose now that these 
species have preference for a different water-table when on sand, and are indifferent 
to the water-table when on clay. If both species are encountered in a field, its 
soil type is not likely to be sand. The probability of both species being present 
is close to zero on sand, whereas this probability is much larger on clay (0.2 
X 0.4 = 0.08). It is therefore possible to improve the assignment rule by using 
the (negative) correlation between the species. To construct this improved rule, 
we must know four probabilities: 

- the probability of A only 
- the probability of B only 
- the probability of A and B 
- the probability of neither A nor B. 

If there are m species, we need to know 2
m probabilities to construct the maximum 

likelihood assignment rule. All these probabilities must be estimated from the 
training set, an impossible task if the number of species exceeds 10, even if the 
training set is huge. Lachenbruch (1975, p. 41-46) described solutions to this problem 
when the dependence between species is simple. If the dependence between responses 
is caused by another environmental variable, it is most natural to incorporate 
this variable explicitly in the response function and to maximize the likelihood 
for both environmental variables jointly. 

4.2.3 Predicting a quantitative environmental variable 

Presence-absence species data 

Assume that the response curve of the probability that a particular species 
is present is unimodal. Further assume that the environmental variable to be 
inferred takes the value x0 for a particular field. If the species is present, the 



maximum likelihood estimate of x0 is then the optimum of the curve. At the 
optimum, the probability of occurrence of the species is clearly maximum. If 
the species is absent, there are two maximum likelihood estimates, -°° and +°°. 

Suppose now that there are m species that respond to a single quantitative 
environmental variable x only and suppose that the responses of the species are 
mutually independent for each fixed value of x. Denote the response curve of 
the probability of occurrence of the k-th species by pk(x). The probability that 
the k-th species is absent also depends on x and equals 1 -pk(x). 

The probability of a combination of species is, by their independence, the product 
of the probabilities of occurrence of the species that are present and the probabilities 
of absence of the species that are absent. The maximum likelihood estimate of 
x0 is, again, the value for which the probability of the observed combination 
of species is maximum. In principle, we can calculate this probability for any 
value of x and determine the value of x that gives the highest probability. In 
practice, we need to write a computer program to do so. 

The ratios of probabilities for different values of x, and not the absolute 
probabilities, are relevant in the estimation because a product of probabilities 
is calculated for every value of x. For rare species, whose maximum probability 
of occurrence is small, the ratio of the probabilities of occurrence for two values 
of x can still be very large. But the probability that a rare species is absent is 
always close to I, irrespective of the value of x. The ratio of the probabilities 
of absence for different values of x is therefore always close to 1. Consequently, 
absences of rare species cannot influence the maximum likelihood estimate very 
much and so provide hardly any information on the environment at a site. 

Quantitative abundance data 

We now consider the estimation of an unknown value of a quantitative 
environmental variable (JC) from a quantitative response (y) of a single species. 
If the response function is Ey = f(x) and the error is normally distributed, we 
obtain the maximum likelihood estimate by solving the equation y — f(x0) for 
x0. In a graph of the response curve, this simply means drawing a horizontal 
line at the level of the value y and reading off x where this line cuts the response 
curve. For the straight line (Figure 3.1), this gives the estimate 

If the response curve is unimodal, the horizontal line cuts the response curve 
twice so that we obtain two estimates. This problem has led de Wit et al. (1984) 
to suggest that an indicator species should have a monotonie relation with the 
environmental variable of interest. But, if more than one species is used for 
calibration, the problem generally disappears (Brown 1982). 

For later reference (Subsection 5.3.2), we consider the case where each of m 

species shows a straight-line relation with x, and we want to predict x0 from 
the m abundance values at the site. Reading off the graph for each species would 
give m possibly different estimates of x0, and we want to combine them. The 
model for the data can be written as 
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Eyk = ak + bkx Equation 4.1 

where 
yk is the response of species k, 

ak its intercept and 
bk its slope parameter. 

By minimizing the sum of squares of differences between the observed and expected 
responses, we obtain the combined estimate (as Equation 3.6): 

x0 = I ^ . O v - ak)bkl E A V Equation 4.2 

This is the maximum likelihood estimate only in the special case that the species 
are independent and have equal error variances. For the general case see Brown 
(1982). 

4.3 Weighted averaging using indicator values 

In this calibration method, the relation between a species and a (semi-) 
quantitative environmental variable (x) is summarized by a single quantity, the 
indicator value. Intuitively, the indicator value is the optimum, i.e. the value most 
preferred by a species. The value of the environmental variable at a site (x0) 
is likely to be somewhere near the indicator values of the species that are present 
at that site. The method of weighted averaging takes it to be the average of these 
indicator values. If we have recorded abundances of the species, we may take 
a weighted average with weighting proportional to species' abundance and absent 
species carrying zero weight. The weighted average of indicator values is thus 

*o = Oi "ï + yi "2 + - + y m O /Oi + yi + - + yj Equation 4.3 

where 
yi, y2, •••, ym are the responses of the species at the site, 
u{, u2, ..., um are their indicator values. 

For presence-absence data, the average of the indicator values of the species present 
is also called 'weighted' because absent species implicitly carry zero weight. Note 
that the method of weighted averaging is also used in Section 3.7 to estimate 
the indicator value of a species, in particular, by taking a weighted average of 
values of an environmental variable (Equation 3.28). 

The weighted average was proposed as a biotic index for many types of organisms: 
for vascular plants by Ellenberg (1948) and by Whittaker (1956); for algae by 
Zelinka & Marvan (1961); and for faunal communities in streams and rivers by 
Chutter (1972). A typical example is Ellenberg's (1948; 1979) system for predicting 
soil acidity, reviewed by Böcker et al. (1983). Ellenberg has grouped Central 
European plants into nine preference groups of soil acidity and assigned the scores 
1 to 9 to these groups, the score 1 to the group with species that preferred the 
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most acid conditions and the score 9 to the group with species that preferred 
the most alkaline conditions. Ellenberg based this grouping on his field observations 
of the conditions under which particular species occurred and, to a lesser extent, 
on laboratory tests. The scores are thus the indicator values and are used to 
derive site scores by weighted averaging. In Ellenberg's system, the indicator values 
are ordinal and the resulting weighted average is a semiquantitative estimate of 
soil acidity. Ellenberg ( 1979), Rogister ( 1978) and Vevle & Aase (1980) demonstrated 
a strong relation between the weighted average for acidity based on plant 
composition and acidity actually measured in the field, thus confirming the empirical 
predictive value of the weighted average in Ellenberg's system. 

From a theoretical viewpoint, it is surprising that the absent species have been 
disregarded in the weighted average. Apparently it is supposed that absent species 
do not provide information on the environment of a site (cf. Subsection 4.2.3). 
Further, each species is regarded as an equally good indicator in weighted averaging, 
whereas it is intuitively reasonable to give species with a narrow ecological amplitude 
more weight than species with a broader ecological amplitude. Ellenberg (1979) 
circumvented this problem by disregarding indifferent species; they were not 
assigned an indicator value. Zelinka & Marvan (1961) solved this problem in 
a heuristic way by assigning species not only an indicator value but also an indicator 
weight. Finally, because the indicator values are ordinal, calculating averages is 
a dangerous arithmetic operation; ordinal scale values are rather arbitrary, so 
they could be transformed monotonically without change of meaning. However 
the order of weighted averages calculated for different sites can be scrambled 
by such a transformation. 

Ter Braak & Barendregt (1986) provided a theoretical justification of using 
the weighted average (Equation 4.3). For presence-absence data, the weighted 
average of indicator values is about as efficient as the maximum likelihood estimate 
of x0 if the response curves of the species are Gaussian logit curves (Equation 
3.17) with equal tolerances and the species presences are independent and if, in 
addition: 

- either the maximum probability of occurrence is very small for any species 
so that absent species provide no information on the environment (Subsection 
4.2.3) 

- or as illustrated in Figure 4.1, the indicator values (optima) are homogeneously 
distributed over a large interval around x0 

- and the maxima of the response curves of species are equal. 
If the condition of equal tolerances does not hold true, we must take a tolerance-
weighted version of the weighted average 

x0 = (Y.^yk ukltk
2
)l(I.f=iykltk

2
) Equation 4.4 

to retain high efficiency. Here, tk is the tolerance of species k (Equation 3.17). 
For quantitative abundance data, the method of weighted averaging can be 

justified analogously (ter Braak & Barendregt 1986). If the abundances follow 
a Poisson distribution and the response curves are Gaussian curves (Equation 
3.8) with homogeneously distributed optima, equal tolerances and maxima, the 
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weighted average again approximates the maximum likelihood estimate. This result 
may help to decide whether it is prudent to transform to presence-absence before 
the weighted average is calculated. 

The conditions (homogeneously distributed optima, equal tolerances and max-
ima) together make a species packing model (Figure 4.1). This is an ecological 
model based on the idea that species evolve to occupy maximally separate niches 
with respect to a limiting resource. Christiansen & Fenchel (1977, Chapter 3) 
provide a lucid introduction here. This idea applies also to the occurrence of 
competing species along environmental variables (Whittaker et al. 1973). Response 
carves should therefore have minimum overlap. 

Despite its theoretical basis, the species packing model is not likely to hold 
in real life. Nevertheless, the derivation of the weighted average provided above 
indicates the kind of situation in which the weighted average performs reasonably 
well. Species may not really be distributed according to the species packing model, 
but neither are they tightly clumped along environmental gradients; there is usually 
a fairly even turnover of species along gradients. In addition, Equation 4.4 shows 
how one can incorporate information on ecological amplitudes in the weighted 
average. 

In lists of indicator values, the values are often expressed on an ordinal scale. 
For weighted averaging to be useful, the scale values (and, hence, the indicator 
values) must be chosen such that most species show fairly symmetric response 
curves. If this can be achieved, the weighted average is an informative semiquan-
titative biotic index. The method of weighted averaging of indicator values is 

Figure 4.1 Species packing model: Gaussian logit curves of the probability (p) that a 
species occurs at a site, against environmental variable x. The curves shown have equispaced 
optima (spacing = 1), equal tolerances (/ = 1) and equal maximum probabilities of occurrence 
(Pn 0.5). x0 is the value of x at a particular site. 
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also attractive to reveal a possible structure in data tables such as Table 0.1 of 
this book. We simply rearrange the species in order of their indicator value for 
a particular environmental variable and the sites in order of their weighted average, 
as in Section 3.7. 

4.4 Inverse regression 

In Subsection 4.2.3, we discussed a calibration method for when abundance 
values of a species show a linear relation with the environmental variable of interest. 
An attractive alternative method is then inverse regression. In inverse regression, 
the training set is not used to construct response curves by regressing the responses 
of the species on the environmental variable; instead the environmental variable 
is taken as the response variable and the responses of the species as the explanatory 
variable. The regression equation so constructed is then directly the transfer function 
that is used for prediction. This method has attractive properties if the prior 
distribution of the environmental variable equals the distribution in the training 
set (Brown 1979). 

The method of inverse regression can easily be extended to prediction on the 
basis of the responses of more than one species. Each species then makes an 
explanatory variable, so that the inverse regression is a multiple (least-squares) 
regression of the environmental variable on the response variables of the species. 
Predictions are again derived directly from the multiple regression equation so 
obtained. This method is most efficient if the relation between each of the species 
and the environmental variable is a straight line with a normal distribution of 
error (Equation 4.1) and if the environmental variable too has a normal distribution 
(Brown 1982). 

However species do not in general have monotonie relations with environmental 
variables. For example, response surfaces of pollen types with respect to summer 
temperature and annual precipitation over large geographic regions are strongly 
non-linear (Bartlein et al. 1986). Inverse regression could not therefore be used 
to build one generally applicable transfer function to reconstruct past climates 
from pollen data. But response curves could be made about linear by limiting 
the geographic area and transforming the pollen data (Howe & Webb 1983). 
Therefore Bartlein & Webb (1985) subdivided a large geographic area into regions 
and, for the actual climatic reconstruction, chose among the transfer functions 
obtained separately for different regions by using an analogue method (a method 
to decide to which training set of modern pollen data (i.e. to which region) a 
fossil pollen sample is most similar). Inverse regression was thus just one step 
in the whole calibration procedure. A simpler procedure would be to fit non-
linear response functions first, as described by Bartlein et al. (1986), and to use 
these to reconstruct past climates by use of the maximum likelihood principle 
(Section 4.2). 
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4.5 Bibliographie notes 

The history of the method of weighted averaging has been sketched in Section 
4.3. Other biotic indices are listed in Sheenan (1984). Battarbee (1984) reviews 
various biotic indices for pH reconstruction from diatoms, including one based 
on inverse regression (see also Davis & Anderson 1985). 

Much of the statistical literature on calibration is devoted to the prediction 
of a single quantitative variable on the basis of a single quantitative response 
variable, assuming a straight-line relation and a normal distribution of error. Brown 
(1979) compared the method of inverse regression with the Classical approach 
by first fitting response functions (Subsection 4.2.3). Calibration with polynomial 
response functions is treated, for instance, by Scheffé (1973), Schwartz (1977) 
and Brown (1982). Williams (1959, Chapter 9), Brown (1979), Brown (1982), and 
Naes & Martens (1984) discuss linear multivariate calibration, the prediction of 
one or more quantitative variables from more than one quantitative response 
variable, assuming a linear model. 

Discrimination (calibration of a nominal explanatory variable) is treated by 
Lachenbruch (1975) in a general statistical context, by Titterington et al. (1981) 
in a medical context and by Kanal (1974) in electrical engineering. 

4.6 Exercises 

Exercise 4.1 Weighted averaging and maximum likelihood calibration with 

Gaussian logit curves 

With data from Kruijne et al. (1967) on the occurrence of plant species and 
soil acidity (pH) in meadow fields, ter Braak & Looman (1986) fitted a Gaussian 
logit curve with respect to pH for each of the species. The curves of seven of 
the species are shown in Figure 4.2. Their parameters are: 

Species name 

Agrostis canina 

Stellaria graminea 
Alopecurus geniculatus 

Plantago major 

Bellis perennis 

Hordeum secalinum 

Glechoma hederacea 

Code 

AC 
SG 
AG 
PM 
BP 
HS 
GH 

Optimum 

3.4 
5.7 
5.8 
6.2 
6.4 
7.1 
8.1 

Tolerance 

1.1 
0.4 
0.6 
0.7 
0.5 
0.7 
1.5 

Maximum 

0.84 
0.38 
0.58 
0.34 
0.89 
0.57 
0.55 

Although the parameters were estimated from only 100 fields, we treat them in 
this exercise as the true parameters. For three meadow fields with a unknown 
soil acidity, we want to predict the soil acidity from the presences and absences 
of these seven species. The species that are present are in Field 1 AC, SG and 
BP, in Field 2 AG and BP, and in Field 3 HS and BP (species not mentioned 
are absent). Predict the pH of each of these fields: 
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Number of sites in each class 

Figure 4.2 Probability of occurrence of seven contrasting species in relation to soil acidity 
(pH) in meadows, as fitted by logit regression. The curves can be identified by the code 
near their optimum indicated by dotted lines. The species arranged in order of their optima 
are: Agrostis canina (AC); Stellaria graminea (SG); Alopecurus geniculatus (AG); Plantago 
major (PM); Bellis perennis (BP); Hordewn secalinum (HS); Glechoma hederacea (GH). 
Nomenclature follows Heukels-van der Meijden (1983). 

Exercise 4.1.1 By the method of weighted averaging using the optima as indicator 
values. 

Exercise 4.1.2 By the tolerance-weighted version of the method of weighted 
averaging (Equation 4.4). 

Exercise 4.1.3 By the method of maximum likelihood. Hint: calculate the 
likelihood for a limited number of pH values, for example, pH = 5.0, 5.5, 6.0, 
6.5, 7.0, 7.5 and next for the most likely value of these plus and minus 0.1. Use 
Equation 3.17 of Chapter 3 to calculate probabilities of occurrence. In that equation: 
c = maximum/(1 - maximum). 

Exercise 4.2 Calibration using a straight line 

Predict, by using the results of Exercise 3.1, the relative sulphate concentration 
of a moorland pool in which Frustulia rhomboïdes var. saxonica occurs with 
70 frustules. 



Exercise 4.3 Calibration using a Gaussian response curve 

Predict, by using the results of Exercise 3.2, the February sea-surface temperatures 
of two samples in which the abundances of Spongotrochus glacialis are 20% and 
60%, respectively. 

4.7 Solutions to exercises 

Exercise 4.1 Weighted averaging and maximum likelihood calibration with 

Gaussian logit curves 

Exercise 4.1.1 The weighted average (Equation 4.3) is for Field 1 
x0 = (1 X 3.4 + 1 X 5.7 + 0 X 5.8 + 0 X 6.2 + 1 X 6.4 + 0 X 7.1 + 0 
X8.1)/(l + 1 + 0 + 0 + 1 + 0 + 0 ) = 15.5/3 = 5.17. 
The prediction is thus pH 5.17. Analogously, the weighted average for Field 2 
is 6.10 and for Field 3 is 6.75. 

Exercise 4.1.2 The tolerance weighted version of the weighted average (Equation 
4.4) gives for Field 1 
x0 = (1 X 3.4/l . l2 + 1 X 5.7/0.42 + 0 X 5.8/0.62 + ... + 0 X 8.1/1.52)/(1/ 
l.l2 + 1/0.42 + ... + 0/1.52) = 64.03/11.08 = 5.78. For Field 2 we obtain 6.15 
and for Field 3 we obtain 6.64. 

Exercise 4.1.3 With Equation 3.17, we obtain the probability of occurrence (pk) 

at pH 5.0, which is for AC 0.646, for SG 0.117, for AG 0.362, for PM 0.106, for 
BP 0.138, for HS 0.015 and for GH 0.126. The probability that the k-th species is 
absent is 1 -pk. For pH 5.0, the likelihood of the species combination of Field 1 
(AC, SG and BP present) is therefore 0.646 X 0.117 X (1 - 0.362) X (1 - 0.106) X 
0.138 = (1 - 0.015) X (1 - 0.126) = 0.0051. 
For pH 5.5, 6.0, 6.5, 7.0 and 7.5, we obtain likelihoods of 0.0244, 0.0094, 0.0008, 
0.0000, 0.0000, respectively. The maximum of these likelihoods is 0.0244, at pH 
5.5. The likelihoods at pH 5.4 and 5.6 are slightly lower and, within the precision 
of 0.1, 5.5 is the maximum likelihood prediction of the pH of Field 1. 

For Field 2, the likelihood at pH 5.0 becomes 0.0121; the maximum (0.083) 
occurs at pH 6.0. Slightly lower likelihoods are obtained for pH 5.9 and 6.1. 
The maximum likelihood prediction is thus 6.0. 

For Field 3 the likelihood at pH 5.0 becomes 0.0003; the maximum of the 
six likelihoods occurs at pH 7.0. pH 7.1 gives a slightly higher likelihood, whereas 
for pH 7.2 the likelihood decreases again. The maximum likelihood prediction 
is thus 7.1. 

Exercise 4.2 Calibration using a straight line 

In Exercise 3.1, the regression equation E loge (Frustulia count + 1) = 5.848 -
5.96 Srd was obtained. In the pool under study, the count is 70, so that y = loge (70 
+ 1) = 4.263. Replacing the left side of the regression equation by 4.263, we obtain 
Snl = (5.848 - 4.263)/5.96 = 0.27. 
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Exercise 4.3 Calibration using a Gaussian response curve 

For the sample with 20% S. glacialis, we have to solve the quadratic equation 
-0.00894 temp2 + 0.2497 temp + 2.119 = loge (20) = 2.996. There are two solutions, 
temp = 4.1 °C and 23.8 °C. The temperatures on which the regression equation 
is based lies between 0.8 and 21.6 °C. If this range is relevant prior information, 
the prediction of 23.8 °C can be discarded and the remaining prediction is 
4.1 °C. 

For the sample with 60% S.glacialis, the quadratic equation for temperature 
has no solution. This is not surprising, because the maximum of the Gaussian 
curve was 48%, which was obtained at 14 °C. The most likely temperature is 
therefore 14 °C. 
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5 Ordination 

C.J.F, ter Braak 

5.1 Introduction 

5.1.1 Aim and usage 

Ordination is the collective term for multivariate techniques that arrange sites 
along axes on the basis of data on species composition. The term ordination 
was introduced by Goodall (1954) and, in this sense, stems' from the German 
'Ordnung', which was used by Ramensky (1930) to describe this approach. 

The result of ordination in two dimensions (two axes) is a diagram in which 
sites are represented by points in two-dimensional space. The aim of ordination 
is to arrange the points such that points that are close together correspond to 
sites that are similar in species composition, and points that are far apart correspond 
to sites that are dissimilar in species composition. The diagram is a graphical 
summary of data, as in Figure 5.1, which shows three groups of similar sites. 
Ordination includes what psychologists and statisticians refer to as multidimen-
sional scaling, component analysis, factor analysis and latent-structure analysis. 

Figure 5.1 also shows how ordination is used in ecological research. Ecosystems 
are complex: they consist of many interacting biotic and abiotic components. 
The way in which abiotic environmental variables influence biotic composition 
is often explored in the following way. First, one samples a set of sites and records 
which species occur there and in what quantity (abundance). Since the number 
of species is usually large, one then uses ordination to summarize and arrange 
the data in an ordination diagram, which is then interpreted in the light of whatever 
is known about the environment at the sites. If explicit environmental data are 
lacking, this interpretation is done in an informal way; if environmental data 
have been collected, in a formal way (Figure 5.1). This two-step approach is indirect 
gradient analysis in the sense used by Whittaker (1967). By contrast, direct gradient 
analysis is impossible without explicit environmental data. In direct gradient 
analysis, one is interested from the beginning in particular environmental variables, 
i.e. either in their influence on the species as in regression analysis (Chapter 3) 
or in their values at particular sites as in calibration (Chapter 4). 

Indirect gradient analysis has the following advantages over direct gradient 
analysis. Firstly, species compositions are easy to determine, because species are 
usually clearly distinguishable entities. By contrast, environmental conditions are 
difficult to characterize exhaustively. There are many environmental variables and 
even more ways of measuring them, and one is often uncertain of which variables 
the species react to. Species composition may therefore be a more informative 
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Figure 5.1 Outline of the role of ordination in community ecology, showing the typical 
format of data sets obtained by sampling ecosystems and their analysis by direct gradient 
and indirect gradient analysis. Also shown is the notation used in Chapter 5. Point of 
site in the ordination diagram (•). 

indicator of environment than any given set of measured environmental variables. 
Ordination can help to show whether important environmental variables have 
been overlooked: an important variable has definitely been missed if their is no 
relation between the mutual positions of the sites in the ordination diagram and 
the measured environmental variables. 

Secondly, the actual occurrence of any individual species may be too unpre-
dictable to discover the relation of its occurrence to environmental conditions 
by direct means (Chapter 3) and therefore more general patterns of coincidence 
of several species are of greater use in detecting species-environment relations. 

Thirdly, for example in landscape planning, interest may from the onset be 
focused more on the question of which combinations of species can occur, and 
less on the behaviour of particular species. Regression analysis of single species 
then provides too detailed an account of the relations between species and 
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environment. The ordination approach is less elaborate and gives a global picture, 
but - one hopes - with sufficient detail for the purpose in hand. 

Between regression analysis and ordination (in the strict sense) stand the canonical 
ordination techniques. They are ordination techniques converted into multivariate 
direct gradient analysis techniques; they deal simultaneously with many species 
and many environmental variables. The^aim of canonical ordination is to detect 
the main pattern in the relations between the specIëTand the observed environment. 

5.1.2 Data approximation and response models in ordination 

Ordination techniques can be viewed in two ways (Prentice 1977). According 
to one view, the aim of ordination is to summarize multivariate data in a convenient 
way in scatter diagrams. Ordination is then considered as a technique for matrix 
approximation (as the data are usually presented in the two-way layout of a matrix). 
A second, more ambitious, view assumes from the beginning that there is an 
underlying (or latent) structure in the data, i.e. that the occurrences of all species 
under consideration are determined by a few unknown environmental variables 
(latent variables) according to a simple response model (Chapter 3). Ordination 
in this view aims to recover that underlying structure. This is illustrated in Figure 
5.2 for a single latent variable. In Figure 5.2a, the relations of two species, A 
and B, with the latent variable are rectilinear. In Figure 5.2c they are unimodal. 
We now record species abundance values at several sites and plot the abundance 
of Species A against that of Species B. If relations with the latent variable were 
rectilinear, we would obtain a straight line in the plot of Species B against Species 
A (Figure 5.2b), but if relations were unimodal, we would obtain a complicated 
curve (Figure 5.2d). The ordination problem of indirect gradient analysis is to 
infer about the relations with the latent variable (Figures 5.2a,c) from the species 
data only (Figure 5.2b,d). From the second viewpoint, ordination is like regression 
analysis, but with the major difference that in ordination the explanatory variables 
are not known environmental variables, but 'theoretical' variables. These variables, 
the latent variables, are constructed in such a way that they best explain the 
species data. As in regression, each species thus constitutes a response variable, 
but in ordination these response variables are analysed simultaneously. (The 
distinction between these two views of ordination is not clear-cut, however. Matrix 
approximation implicitly assumes some structure in the data by the mere way 
the data are approximated. If the data structure is quite different from the assumed 
structure, the approximation is inefficient and fails.) 

The ordination techniques that are most popular with community ecologists, 
are principal components analysis (PCA), correspondence analysis (CA), and 
techniques related to CA, such as weighted averaging and detrended correspondence 
analysis. Our introduction to PCA and CA will make clear that PCA and CA 
are suitable to detect different types of underlying data structure. PCA relates 
to a linear response model in which the abundance of any species either increases 
or decreases with the value of each of the latent environmentaTvanabTës (Fîgure 
5.2a). By contrast, CA is related, though in a less unequivocal way,"to a'unimodal 
response model (Figure 5.2c). In this model, any species occurs in a limited range 
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abundance 

abundance 

Figure 5.2 Response curves for two species A and B against a latent variable x (a, c) 
and the expected abundances of the species plotted against each other (b, d), for the straight 
line model (a, b) and a unimodal model (c, d). The numbers refer to sites with a particular 
value for x. The ordination problem is to make inferences about the relations in Figures 
a and c from species data plotted in Figures b and d. 

of values of each of the latent variables. PCA and CA both provide simultaneously 
an ordination for the sites and an ordination for the species. The two ordinations 
may be plotted in the same diagram to yield 'joint plots' of site and species points, 
but the interpretation of the species points is different between PCA and CA. 

PCA and CA operate directly on the species data. By contrast, multidimensional 
scaling is a class of ordination techniques that operate on a table of dissimilarity 
values between sites. To apply these techniques, we must therefore first choose 
an appropriate dissimilarity coefficient to express the dissimilarity in species 
composition between any two sites (Subsection 6.2.2). After choosing one, we 
can calculate the dissimilarity values of all pairs of sites required as input for 
multidimensional scaling. CA and PCA may also be considered as multidimensional 
scaling techniques, but ones that use a particular dissimilarity coefficient. 
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5.1.3 Outline of Chapter 5 

Section 5.2 introduces CA and related techniques and Section 5.3 PCA. Section 
5.4 discusses methods of interpreting ordination diagrams with external (envir-
onmental) data. It is also a preparation for canonical ordination (Section 5.5). 
After a discussion of multidimensional scaling (Section 5.6), Section 5.7 evaluates 
the advantages and disadvantages of the various ordination techniques and 
compares them with regression analysis and calibration. After the bibliographic 
notes (Section 5.8) comes an appendix (Section 5.9) that summarizes the ordination 
methods described in terms of matrix algebra. 

5.2 Correspondence analysis (CA) and detrended correspondence analysis (DCA) 

5.2.1 From weighted averaging to correspondence analysis 

Correspondence analysis (CA) is an extension of the method of weighted 
averaging used in the direct gradient analysis of Whittaker (1967) (Section 3.7). 
Here we describe the principles in words; the mathematical equations will be 
given in Subsection 5.2.2. 

Whittaker, among others, observed that species commonly show bell-shaped 
response curves with respect to environmental gradients. For example, a plant 
species may prefer a particular soil moisture content, and not grow at all in places 
where the soil is either too dry or too wet. In the artificial example shown in 
Figure 5.3a, Species A prefers drier conditions than Species E, and the Species 
B, C and D are intermediate. Each of the species is therefore largely confined 
to a specific interval of moisture values. Figure 5.3a also shows presence-absence 
data for Species D: the species is present at four of the sites. 

We now develop a measure of how well moisture explains the species data. 
From the data, we can obtain a first indication of where a species occurs along 
the moisture gradient by taking the average of the moisture values of the sites 
in which the species is present. This average is an estimate of the optimum of 
the species (the value most preferred), though not an ideal one (Section 3.7). 
The average is here called the species score. The arrows in Figure 5.3a point 
to the species scores so calculated for the five species. As a measure of how well 
moisture explains the species data, we use the dispersion ('spread') of the species 
scores. If the dispersion is large, moisture neatly separates the species curves and 
moisture explains the~species data well. If the dispersion is small, then moisture 
explains less. To compare the explanatory power of different environmental 
variables, each environmental variable must first be standardized; for, example 
by subtracting its mean and dividing by its standard deviation. 

Suppose that moisture is the 'best' single environmental variable measured in 
the artificial example. We might now wish to know whether we could in theory 
have measured a variable that explains the data still better. CA is now the technique 
that constructs^ the theoretical variable that best explains the species data. CA_ 
does so by choosing the best valuesTTor the sites, i.e. values ihlfl maximize The 
dispersion of the species scores (Figure 5.3b). The variable shown gives a larger 
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A B C D E 

moisture 

1 SD 
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A B C D E 

folded CA axis 
AE BD C 

Figure 5.3 Artificial example of unimodal response curves of five species (A-E) with respect 
to standardized variables, showing different degrees of separation of the species curves, 
a: Moisture, b: First axis of CA. c: First axis of CA folded in this middle and the response 
curves of the species lowered by a factor of about 2. Sites are shown as dots at y = 1 
if Species D is present and at y = 0 if Species D is absent. For further explanation, see 
Subsections 5.2.1 and 5.2.3. 

dispersion than moisture; and consequently the curves in Figure 5.3b are narrower, 
and the presences of Species D are closer together than in Figure 5.3a. 

The theoretical variable constructed by CA is termed the first ordination axis 
of CA or, briefly, the first CA axis; its values are the site scores on the first 
CA axis. 

A second and further CA axes can also be constructed; they also maximize 
the dispersion of the species scores but subject to the constraint of being uncorrelated 
with previous CA axes. The constraint is intended to ensure that new information 
is expressed on the later axes. In practice, we want only a few axes in the hope 
that they represent most of the variation in the species data. 

So we do not need environmental data to apply CA. CA 'extracts' the ordination 
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axes from the species data alone. CA can be applied not only to presence-absence 
data, but also to abundance data; for the species scores, we then simply take 
a weighted average of the values of the sites (Equation 3.28). 

5.2.2 Two-way weighted averaging algorithm 

Hill (1973) introduced CA into ecology by the algorithm of reciprocal averaging. 
This algorithm shows once more that CA is an extension of the method of weighted 
averaging. 

If we have measured an environmental variable and recorded the species 
composition, we can estimate for each species its optimum or indicator value 
by averaging the values of the environmental variable over the sites in which 
the species occurs, and can use the averages so obtained to rearrange the species 
(Table 3.9). If the species show bell-shaped curves against the environmental 
variable, the rearranged table will have a diagonal structure, at least if the optima 
of the curves differ between the species (Table 3.9). Conversely, if the indicator 
values of species are known, the environmental variable at a site can be estimated 
from the species that it contains, by averaging the indicator values of these species 
(Section 4.3) and sites can be arranged in order of these averages. But, these 
methods are only helpful in showing a clear structure in the data if we know 
in advance which environmental variable determines the occurrences of the species. 
If this is not known in advance, the idea of Hill (1973) was to discover the 'underlying 
environmental gradient' by applying this averaging process both ways in an iterative 
fashion, starting from arbitrary initial values for sites or from arbitrary initial 
(indicator) values for species. It can be shown mathematically that this iteration 
process eventually converges to a set of values for sites and species that do not 
depend on the initial values. These values are the site and species scores of the 
first CA axis. 

We illustrate now the process of reciprocal averaging. For abundance data, 
it is rather a process of two-way weighted averaging. Table 5.1a shows the Dune 
Meadow Data (Table 0.1), arranged in arbitrary order. We take as initial values 
for the sites the numbers 1 to 20, as printed vertically below Table 5.1a. As before, 
we shall use the word 'score', instead of 'value'. From the site scores, we derive 
species scores by calculating the weighted average of the site scores for each species. 
If we denote the abundance of species k at site i by yki, the score of site i by 
Xj and the score of species k by uk, then the score of species k becomes the 
weighted average of site scores (Section 3.7) 

uk = EjL, yki xj Sf=, yki Equation 5.1 

For Achillea millefolium in Table 5.1a, we obtain w, = (1 X 1 + 3 X 2 + 2 
X 5 + 2 X 6 + 2 X 7 + 4 X 1 0 + 2 X 17)/(1 + 3 + 2 + 2 + 2 + 4 + 2) 
= 117/16 = 7.31. The species scores thus obtained are also shown in Table 5.1a. 
From these species scores, we derive new site scores by calculating for each site 
the weighted average of the species scores, i.e. 
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*« = 2*=i yki uk IS^i yki Equation 5.2 

For Site 1 in Table 5.1a, we obtain x, = (1 X 7.31 + 4 X 4.38 + 7 X 6.31 
+ 4 X 7.25 + 2 X 7.25)/(l + 4 + 7 + 4 + 2 ) = 112.5/18 = 6.25. In Table 
5.1b, the species and sites are arranged in order of the scores obtained so far. 
The new site scores are also printed vertically underneath. There is already some 
diagonal structure, i.e. the occurrences of each species tend to come together 
along the rows. We can improve upon this structure by calculating new species 
scores from the site scores that we have just calculated, and so on. 

A practical numerical problem with this technique is that, by taking averages, 
the range of the scores gets smaller and smaller. For example, we started off 
with a range of 19 (site scores from 1 to 20) and after one cycle the site scores 
have a range of 14.36 - 6.25 = 8.11 (Table 5.1b). To avoid this, either the site 
scores or the species scores must be rescaled. Here the site scores have been rescaled. 
There are several ways of doing so. A simple way is to rescale to a range from 
0 to 100 by giving the site with the lowest score the value 0 and the site with 
the highest score the value 100 and by calculating values for the remaining sites 
in proportion to their scores; in the example, the rescaled scores would be obtained 
with the formula (x,. - 6.25)/0.0811. 

We shall use another way in which the site scores are standardized to (weighted) 

Table 5.2 Two-way weighted averaging algorithm of CA. 

a: Iteration process 

Step 1. Take arbitrary, but unequal, initial site scores (x;). 
Step 2. Calculate new species scores (uk) by weighted averaging of the site scores (Equation 5.1). 
Step 3. Calculate new site scores (x;) by weighted averaging of the species scores (Equation 5.2). 
Step 4. For the first axis, go to Step 5. For second and higher axes, make the site scores (x,) 

uncorrelated with the previous axes by the orthogonalization procedure described below. 
Step 5. Standardize the site scores (x,). See below for the standardization procedure. 
Step 6. Stop on convergence, i.e. when the new site scores are sufficiently close to the site scores 

of the previous cycle of the iteration; ELSE go to Step 2. 

b: Orthogonalization procedure 

Step 4.1. Denote the site scores of the previous axis by ƒ and the trial scores of the present 
axis by xt. 

Step 4.2. Calculate v = 2,1, y+l xjfijy^.+ 

where y+i = If=l yki 

and>>++='i:,"i y+. 
Step 4.3 Calculate x, „ew = x,-old - v ƒ. 
Step 4.4 Repeat Steps 4.1-4.3 for all previous axes. 

c: Standardization procedure 

Step 5.1 Calculate the centroid, z, of site scores (x,) z = !,=, y+j xjy++. 
Step 5.2 Calculate the dispersion of the site scores s

2 = I,=, y+j (x, - z)
2
/y++. 

Step 5.3 Calculate x,ncw = (x,old -z)js. 
Note that, upon convergence, .s equals the eigenvalue. 
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mean 0 and variance 1 as described in Table 5.2c. If the site scores are so 
standardized, the dispersion of the species scores can be written as 

5 = £f=i yk+
 u
k

2
ly++ Equation 5.3 

where 
yk+ is the total abundance of species k 

y++ the overall total. 

The dispersion will steadily increase in each iteration cycle until, after about 10 
cycles, the dispersion approaches its maximum value. At the same time, the site 
and species scores stabilize. The resulting scores have maximum dispersion and 
thus constitute the first CA axis. 

If we had started from a different set of initial site scores or from a set of 
arbitrary species scores, the iteration process would still have resulted in the same 
ordination axis. In Table 5.1c, the species and sites are rearranged in order of 
their scores on the first CA axis and show a clear diagonal structure. 

A second ordination axis can also be extracted from the species data. The 
need for a second axis may be illustrated in Table 5.1c; Site 1 and Site 19 lie 
close together along the first axis and yet differ a great deal in species composition. 
This difference can be expressed on a second axis. The second axis is extracted 
by the same iteration process, with one extra step in which the trial scores for 
the second axis are made uncorrelated with the scores of the first axis. This can 
be done by plotting in each cycle the trial site scores for the second axis against 
the site scores of the first axis and fitting a straight line by a (weighted) least-
squares regression (the weights are y+ijy++). The residuals from this regression 
(i.e. the vertical deviations from the fitted line: Figure 3.1) are the new trial scores. 
They can be obtained more quickly by the orthogonalization procedure described 
in Table 5.2b. The iteration process would lead to the first axis again without 
the extra step. The intention is thus to extract information from the species data 
in addition to the information extracted by the first axis. In Figure 5.4, the final 
site scores of the second axis are plotted against those of the first axis. Site 1 
and Site 19 lie far apart on the second axis, which reflects their difference in 
species composition. A third axis can be derived in the same way by making 
the scores uncorrelated with the scores of the first two axes, and so on. Table 
5.2a summarizes the algorithm of two-way weighted averaging. A worked example 
is given in Exercise 5.1 and its solution. 

In mathematics, the ordination axes of CA are termed eigenvectors (a vector 
is a set of values, commonly denoting a point in a multidimensional space and 
'eigen' is German for 'self). If we carry out an extra iteration cycle, the scores 
(values) remain the same, so the vector is transformed into itself, hence, the term 
eigenvector. Each eigenvector has a corresponding eigenvalue, often denoted by 
A. (the term is explained in Exercise 5.1.3). The eigenvalue is actually equal to 
the (maximized) dispersion of the species scores on the ordination axis, and is 
thus a measure of importance of the ordination axis. The first ordination axis 
has the largest eigenvalue (kt), the second axis the second largest eigenvalue (X2), 
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Figure 5.4 CA ordination diagram of the Dune Meadow Data in Hill's scaling. In this 
and the following ordination diagrams, the first axis is horizontal and the second axis 
vertical; the sites are represented by crosses and labelled by their number in Table 5.1; 
species names are abbreviated as in Table 0.1. 

and so on. The eigenvalues of CA all lie between 0 and 1. Values over 0.5 often \ 
denote a good separation of the species along the axis. For the Dune Meadow \ 
Data, X, = 0.53; X2 = 0.40; X3 = 0.26; X4 — 0.17. As X3 is small compared to 
Xl and X2, we ignore the third and higher numbered ordination axes, and expect 
the first two ordination axes to display the biologically relevant information (Figure 
5-4). ^ ' 

When preparing an ordination diagram, we plot the site scores and the species 
scores of one ordination axis against those of another. Because ordination axes 
differ in importance, one would wish the scores to be spread out most along 
the most important axis. But our site scores do not do so, because we standardized 
them to variance 1 for convenience in the algorithm (Table 5.2). An attractive 

\ 
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standardization is obtained by requiring that the average width of the species 
curves is the same for each axis. As is clear from Figure 5.3b, the width of the 
curve for Species D is reflected in the spread among its presences along the axis. 
Therefore, the average curve width along an axis can be estimated from the data. 
For example, Hill (1979) proposed to calculate, for each species, the variance 
of the scores of the sites containing the species and to take the (weighted) average 
of the variances so obtained, i.e. Hill proposed to calculate 

£* yk+ P , ykt (
x
i -

 u
kflyk+\ly++-

To equalize the average curve width among different axes, we must therefore 
divide all scores of an axis by its average curve width (i.e. by the square root 
of the value obtained above). This method of standardization is used in the computer 
program DECORANA (Hill 1979a). Other than in Table 5.2, the program further 
uses the convention that site scores are weighted averages of species scores; so 
we must iterate Step 3 of our algorithm once more, before applying the stan-
dardization procedure just described. This scaling has already been used in 
preparing Figure 5.4 and we shall refer to it as Hill's scaling. A short cut to 
obtain Hill's scaling from the scores obtained from our algorithm is to divide 
the site scores after convergence by v ( l - ~k)/l and the species scores by 
V^(l - ^)- The scores so obtained are expressed in multiples of one standard 
deviation (s.d.) and have the interpretation that sites that differ by 4 s.d. in score 
tend to have few species in common (Figure 5.3b). This use of s.d. will be discussed 
further in Subsection 5.2.4. 

CA cannot be applied on data that contain negative values. So the data should 
not be centred or standardized (Subsection 2.4.4). If the abundance data of each 
species have a highly skew distribution with many small values and a few extremely 
large values, we recommend transforming them by taking logarithms: 
loge (yki + 1), as in Subsection 3.3.1. By doing so, we prevent a few high values 
from unduly influencing the analysis. In CA, a species is implicitly weighted by 
its relative total abundance yk+/y++ and, similarly, a site is weighted by y+ijy++. 

If we want to give a particular species, for example, triple its weight, we must 
multiply all its abundance values by 3. Sites can also be given greater or smaller 
weight by multiplying their abundance values by constants (ter Braak 1987b). 

5.2.3 Diagonal structures: properties and faults of correspondence analysis 

Table 5.3a shows artificial data in which the occurrences of species across sites 
appear rather chaotic and Table 5.3b shows the same data after arranging the 
species and sites in order of their score on the first CA axis. The data are rearranged 
into a perfectly diagonal table, also termed a two-way Pétrie matrix. (A Pétrie 
matrix is an incidence matrix that has a block of consecutive ones in every row; 
the matrix is two-way Pétrie if the matrix also has a block of consecutive ones 
in every column, the block in the first column starting in the first row and the 
block of the last column ending in the last row.) For any table that permits 
such a rearrangement, we can discover the correct order of species and sites from 
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the scores of the first axis of CA. This property of CA can be generalized to 
quantitative data (Gifi 1981) and to (one-way) Pétrie matrices (Heiser 1981; 1986). 
For two-way Pétrie matrices with many species and sites and with about equal 
numbers of occurrences per species and per site, the first eigenvalue is close 
to 1; e.g. for Table 5.3, X, = 0.87. 

Note that CA does not reveal the diagonal structure if the ones and zeros 
are interchanged. Their role is asymmetrical, as is clear from the reciprocal averaging 
algorithm. The ones are important; the zeros are disregarded. Many ecologists 
feel the same sort of asymmetry between presences and absences of species. 

The ordination of Table 5.3 illustrates two 'faults' of CA (Figure 5.5). First, 
the change in species composition between consecutive sites in Table 5.3, Column 
b is constant (one species appears; one disappears) and one would therefore wish 
that this constant change were reflected in equal distances between scores of 
neighbouring sites along the first axis. But the site scores at the ends of the first 
axis are closer together than those in the middle of the axis (Figure 5.5b). Secondly, 
the species composition is explained perfectly by the ordering of the sites and 
species along the first axis (Table 5.3, Column b) and the importance of the second 
axis should therefore be zero. However A.2 = 0.57 and the site scores on the 
second axis show a quadratic relation with those on the first axis (Figure 5.5a). 
This fault is termed the arch effect. The term 'horseshoe' is also in use but is 
less appropriate, as the ends do not fold inwards in CA. 

Table 5.3 CA applied to artificial data (- denotes absence). Column a: The table looks 
chaotic. Column b: After rearrangement of species and sites in order of their scores on 
the first CA axis (uk and x,), a two-way Pétrie matrix appears: X, = 0.87. 

Column a Column b 

Species Sites Species Sites 
1 2 3 4 5 6 7 1 7 2 4 6 5 3 

A 1 A 1 -1.40 
B 1 1 B 11 -1.24 
C 11 1 C 1 1 1 -1.03 
D 1 1 1 - E - 1 1 1 -0.56 
E l i l F - 1 1 1 - - 0.00 
F - 1 - 1 - 1 - D 1 1 1 - 0.56 
G - - 1 - 1 1 - G 1 1 1 1.03 
H - - 1 - 1 - - H 11 1.24 
I - - 1 I 1 1.40 

1 1 0 0 0 11 

4 0 6 0 6 0 4 
0 8 0 0 0 8 0 
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Figure 5.5 Ordination by CA of the two-way Pétrie matrix of Table 5.3. a: Arch effect 
in the ordination diagram (Hill's scaling; sites labelled as in Table 5.3; species not shown), 
b: One-dimensional CA ordination (the first axis scores of Figure a, showing that sites 
at the ends of the axis are closer together than sites near the middle of the axis, c: One-
dimensional DCA ordination, obtained by nonlinearly rescaling the first CA axis. The 
sites would not show variation on the second axis of DCA. 

Let us now give a qualitative explanation of the arch effect. Recall that the 
first CA axis maximally separates the species curves by maximizing the dispersion 
(Equation 5.3) and that the second CA axis also tries to do so but subject to 
the constraint of being uncorrelated with the first axis (Subsection 5.2.1). If the 
first axis fully explains the species data in the way of Figure 5.3b, then a possible 
second axis is obtained by folding the first axis in the middle and bringing the 
ends together (Figure 5.3c). This folded axis has no linear correlation with the 
first axis. The axis so obtained separates the species curves, at least Species C 
from Species B and D, and these from Species A and E, and is thus a strong 
candidate for the second axis of CA. Commonly CA will modify this folded axis 
somewhat, to maximize its dispersion, but the order of the site and species scores 
on the second CA axis will essentially be the same as that of the folded axis. 
Even if there is a true second underlying gradient, CA will not take it to be 
the second axis if its dispersion is less than that of the modified folded first axis. 
The intention in constructing the second CA axis was to express new information, 
but CA does not succeed in doing so if the arch effect appears. 

5.2.4 Detrended correspondence analysis (DCA) 

Hill & Gauch (1980) developed detrended correspondence analysis (DCA) as 
a heuristic modification of CA, designed to correct its two major 'faults': (1) that 
the ends of the axes are often compressed relative to the axes middle; (2) that 
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the second axis frequently shows a systematic, often quadratic relation with the 
first axis (Figure 5.5). The major of these is the arch effect. 

The arch effect is 'a mathematical artifact, corresponding to no real structure 
in the data' (Hill & Gauch 1980). They eliminate it by 'detrending'. Detrending 
is intended to ensure that, at any point along the first axis, the mean value of 
the site scores on the subsequent axes is about zero. To this end, the first axis 
is divided into a number of segments and within each segment the site scores 
on Axis 2 are adjusted by subtracting their mean (Figure 5.6). In the computer 
program DECORANA (Hill 1979a), running segments are used for this purpose. 
This process of detrending is built into the two-way weighted averaging algorithm, 
and replaces the usual orthogonalization procedure (Table 5.2). Subsequent axes 
are derived similarly by detrending with respect to each of the existing axes. 
Detrending applied to Table 5.3 gives a second eigenvalue of 0, as required. 

The other fault of CA is that the site scores at the end of the first axis are 
often closer together than those in the middle of the axis (Figure 5.5b). Through 
this fault, the species curves tend to be narrower near the ends of the axis than 
in the middle. Hill & Gauch (1980) remedied this fault by nonlinearly rescaling 
the axis in such a way that the curve widths were practically equal. Hill & Gauch 
(1980) based their method on the tolerances of Gaussian response curves for the 
species, using the term standard deviation (s.d.) instead of tolerance. They noted 
that the variance of the optima of species present at a site (the 'within-site variance') 
is an estimate of the average squared tolerance of those species. Rescaling must 
therefore equalize the within-site variances as nearly as possible. For rescaling, 
the ordination axis is divided into small segments; the species ordination is expanded 
in segments with sites with small within-site variance and contracted in segments 
with sites with high within-site variance. Subsequently, the site scores are calculated 
by taking weighted averages of the species scores and the scores of sites and 
species are standardized such that the within-site variance equals 1. The tolerances 
of the curves of species will therefore approach 1. Hill & Gauch (1980) further 
define the length of the ordination axis to be the range of the site scores. This 
length is expressed in multiples of the standard deviation, abbreviated as s.d. 

X 

X x x 

X X X X X 

X 

X x x 

X X X X X 

X X 

• . * . . * • 
• • • 

axis 1 
Figure 5.6 Method of detrending by segments (simplified). The crosses indicate site scores 
before detrending; the dots are site scores after detrending. The dots are obtained by 
subtracting, within each of the five segments, the mean of the trial scores of the second 
axis (after Hill & Gauch 1980). 
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The use of s.d. is attractive: a Gaussian response curve with tolerance 1 rises 
and falls over an interval of about 4 s.d. (Figure 3.6). Because of the rescaling, 
most species will about have this tolerance. Sites that differ 4 s.d. in scores can 
therefore be expected to have no species in common. Rescaling of the CA axis 
of Table 5.3 results in the desired equal spacing of the site scores (Figure 5.5c); 
the length of the axis is 6 s.d. 

DCA applied to the Dune Meadow Data gives, as always, the same first eigenvalue 
(0.53) as CA and a lower second eigenvalue (0.29 compared to 0.40 in CA). The 
lengths of the first two axes are estimated as 3.7 and 3.1 s.d., respectively. Because 
the first axis length is close to 4 s.d., we predict that sites at opposite ends of 
the first axis have hardly any species in common. This prediction can be verified 
in Table 5.1c (the order of DCA scores on the first axis is identical to that of 
CA); Site 17 and Site 16 have no species in common, but closer sites have one 
or more species in common. The DCA ordination diagram (Figure 5.7) shows 
the same overall pattern as the CA diagram of Figure 5.4. There are, however, 
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Figure 5.7 DCA ordination diagram of the Dune Meadow Data. The scale marks are 
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differences in details. The arch seen in Figure 5.4 is less conspicuous, the position 
of Sites 17 and 19 is less aberrant. Further, Achillea millefolium is moved from 
a position close to Sites 2, 5, 6, 7 and 10 to the bottom left of Figure 5.7 and 
is then closest to Site 1; this move is unwanted, as this species is most abundant 
in the former group of sites (Table 5.1). 

In an extentive simulation study, Minchin (1987) found that DCA, as available 
in the program DECORANA, can flatten out some of the variation associated 
with one of the underlying gradients. He ascribed this loss of information to 
an instability in either, or both, detrending and rescaling. Pielou (1984, p. 197) 
warned that DCA is 'overzealous' in correcting the 'defects' in CA and that it 
'may sometimes lead to the unwitting destruction of ecologically meaningful 
information'. 

DCA is popular among practical field ecologists, presumably because it provides 
an effective approximate solution to the ordination problem for a unimodal 
response model in two or more dimensions - given that the data are reasonably 
representative of sections of the major underlying environmental gradients. Two 
modifications might increase its robustness with respect to the problems identified 
by Minchin (1987). First, nonlinear rescaling aggravates these problems; since 
the edge effect is not too serious, we advise against the routine use of nonlinear 
rescaling. Second, the arch effect needs to be removed, but this can be done 
by a more stable, less 'zealous' method of detrending, which was also briefly 
mentioned by Hill & Gauch (1980): detrending-by-polynomials. The arch is caused 
by the folding of the first axis (Figure 5.3c), so that the second CA axis is about 
a quadratic function of the first axis, the third CA axis a cubic function of the 
first axis, and so on (Hill 1974). The arch is therefore most simply removed by 
requiring that the second axis is not only uncorrelated with the first axis (x,), 
but also uncorrelated with its square (x,2) and, to prevent more folding, its cube 
(x,3). In contrast with 'detrending-by-segments', the method of detrending-by-
polynomials removes only specific defects of CA that are now theoretically 
understood. Detrending by polynomials can be incorporated into the two-way 
weighted averaging algorithm (Table 5.2) by extending Step 4 such that the trial 
scores are not only made uncorrelated with the previous axes, but also with 
polynomials of previous axes. The computer program CANOCO (ter Braak 1987b) 
allows detrending by up to fourth-order polynomials. 

5.2.5 Joint plot of species and sites 

An ordination diagram mirrors the species data (although often with some 
distortion), so we can make inferences about the species data from the diagram. 
With Hill's scaling (Subsection 5.2.2), site scores are weighted averages of the 
species scores. Site points then lie in the ordination diagram at the centroid of 
the points of species that occur in them. Sites that lie close to the point of a 
species are therefore likely to have a high abundance of that species or, for 
presence-absence data, are likely to contain that species. Also, in so far as CA 
and DCA are a good approximation to fitting bell-shaped response surfaces to 
the species data (Subsection 5.2.1 and Section 5.7), the species points are close 
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to the optima of these surfaces; hence, the expected abundance or probability 
of occurrence of a species decreases with distance from its position in the plot 
(Figure 3.14). 

Using these rules to interpret DCA diagrams, we predict as an example the 
rank order of species abundance for three species from Figure 5.7 and compare 
the order with the data in Table 5.1. The predicted rank order for Juncus bufonius 

is Sites 12, 8, 13, 9, 18 and 4; in the data Juncus bufonius is present at four 
sites, in order of abundance Sites 9, 12, 13 and 7. The predicted rank order for 
Rumex acetosa is Sites 5, 7, 6, 10, 2 and 11; in the data R. acetosa occurs in 
five sites, in order of abundance Sites 6, 5, 7, 9 and 12. Ranunculus flammula 

is predicted to be most abundant at Sites 20, 14, 15, 16 and less abundant, if 
present at all, at Sites 8, 12 and 13; in the data, R. flammula is present in six 
sites, in order of abundance Sites 20, 14, 15, 16, 8 and 13. We see some agreement 
between observations and predictions but also some disagreement. What is called 
for is a measure of goodness of fit of the ordination diagram. Such a measure 
is, however, not normally available in CA and DCA. 

In interpreting ordination diagrams of CA and DCA, one should be aware 
of the following aspects. Species points on the edge of the diagram are often 
rare species, lying there either because they prefer extreme (environmental) 
conditions or because their few occurrences by chance happen to be at sites with 
extreme conditions. One can only decide between these two possibilities by 
additional external knowledge. Such species have little influence on the analysis; 
if one wants to enlarge the remainder of the diagram, it may be convenient not 
to display them at all. Further, because of the shortcomings of the method of 
weighted averaging, species at the centre of the diagram may either be unimodal 
with optima at the centre, or bimodal, or unrelated to the ordination axes. Which 
possibility is most likely can be decided upon by table rearrangement as in Table 
5.1c or by plotting the abundance of a species against the axes. Species that 
lie between the centre and the outer edge are most likely to show a clear relation 
with the axes. 

5.2.6 Block structures and sensitivity to rare species 

CA has attractive properties in the search for block structures. A table is said 
to have block structure if its sites and species can be divided into clusters, with 
each cluster of species occurring in a single cluster of sites (Table 5.4). For any 
table that allows such a clustering, CA will discover it without fail. With the 
four blocks in Table 5.4, the first three eigenvalues of CA equal 1 and sites from 
the same cluster have equal scores on the three corresponding axes. An eigenvalue 
close to 1 can therefore point to an almost perfect block structure or to a diagonal 
structure in the data (Subsection 5.2.3). The search for block structures or 'near-
block structures' by CA forms the basis of the cluster-analysis program TWINSPAN 
(Chapter 6). 

This property of CA is, however, a disadvantage in ordination. If a table contains 
two disjoint blocks, one of which consists of a single species and a single site, 
then the first axis of CA finds this questionably uninteresting block. For a similar 
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Table 5.4 Data table with block structure. Outside the Sub-tables A„ A2, A3 

and A4, there are no presences, so that there are four clusters of sites that 
have no species in common (kt = 1, X2 = 1, X3 = 1). 

Sites 

Species 

A, 

0 

A2 

0 

A3 

A4 

reason, CA is sensitive to species that occur only in a few species-poor sites. 
In the 'down-weighting' option of the program DECOR ANA (Hill 1979a), species 
that occur in a few sites are given a low weight, so minimizing their influence, 
but this does not fully cure CA's sensitivity to rare species at species-poor sites. 

5.2:7 Gaussian ordination and its relation with CA and DCA 

In the introduction to CA (Subsection 5.2.1), we assumed that species show 
unimodal response curves to environmental variables, intuitively took the dispersion 
of the species scores as a plausible measure of how well an environmental variable 
explains the species data, and subsequently defined CA to be the technique that 
constructs a theoretical variable that explains the species data best in the sense 
of maximizing the dispersion. Because of the shortcomings of CA noted in the 
subsequent sections, the dispersion of the species scores is not ideal to measure 
the fit to the species data. We now take a similar approach but with a better 
measure of fit and assume particular unimodal response curves. We will introduce 
ordination techniques that are based on the maximum likelihood principle 
(Subsections 3.3.2 and 4.2.1), in particular Gaussian ordination, which is a 
theoretically sound but computationally demanding technique of ordination. We 
also show that the simpler techniques of CA and DCA give about the same result 
if particular additional conditions hold true. This subsection may now be skipped 
at first reading; it requires a working knowledge of Chapters 3 and 4. 
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One dimension 

In maximum likelihood ordination, a particular response model (Subsection 
3.1.2) is fitted to the species data by using the maximum likelihood principle. 
In this approach, the fit is measured by the deviance (Subsection 3.3.2) between 
the data and the fitted curves. Recall that the deviance is inversely related to 
the likelihood, namely deviance = -2 loge (likelihood). If we fit Gaussian (logit) 
curves (Figure 3.9) to the data, we obtain Gaussian ordination. In Subsection 
3.3.3, we fitted a Gaussian logit curve of pH to the presence-absence data of 
a particular species (Figure 3.10). In principle, we can fit a separate curve for 
each species under consideration. A measure of how badly pH explains the species 
data is then the deviance (Table 3.6) summed over all species. Gaussian ordination 
of presence-absence data is then the technique that constructs the theoretical 
variable that best explains the species data by Gaussian logit curves, i.e. that 
minimizes the deviance between the data and the fitted curves. 

A similar approach can be used for abundance data by fitting Gaussian curves 
to the data, as in Section 3.4, with the assumption that the abundance data follow 
a Poisson distribution. A Gaussian curve for a particular species has three 
parameters: optimum, tolerance and maximum (Figure 3.6), for species k denoted 
by uk, tk and ck, respectively. In line with Equation 3.8, the Gaussian curves 
can now be written as 

Eyki = ck exp [-0.5(Xj - uk)
2
/tk

2
] Equation 5.4 

where x, is the score of site i on the ordination axis (the value of the theoretical 
variable at site i). 

To fit this response model to data we can use an algorithm akin to that to obtain 
the ordination axis in CA (Table 5.2). 
Step 1: Start from initial site scores xt. 

Step 2: Calculate new species scores by (log-linear) regression of the species data 
on the site scores (Section 3.4). For each species, we so obtain new values 
for uk, tk and ck. 

Step 3: Calculate new site scores by maximum likelihood calibration (Subsection 
4.2.1). 

Step 4: Standardize the site scores and check whether they have changed and, 
if so, go back to Step 2, otherwise stop. 

In this algorithm, the ordination problem is solved by solving the regression 
problem (Chapter 3) and the calibration problem (Chapter 4) in an iterative fashion 
so as to maximize the likelihood. In contrast to the algorithm for CA, this algorithm 
may give different results for different initial site scores because of local maxima 
in the likelihood function for Equation 5.4. It is therefore not guaranteed that 
the algorithm actually leads to the (overall) maximum likelihood estimates; hence, 
we must supply 'good' initial scores, which are also needed to reduce the 
computational burden. Even for modern computers, the algorithm requires heavy 
computation. In the following, we show that a good choice for initial scores are 
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the scores obtained by CA. 
The CA algorithm can be thought of a simplification of the maximum likelihood 

algorithm. In CA, the regression and calibration problems are both solved by 
weighted averaging. Recall that in CA the species score (uk) is a position on 
the ordination axis x indicating the value most preferred by that particular species 
(its optimum) and that the site score (x,) is the position of that particular site 
on the axis. 

We saw in Section 3.7 that the optimum or score of a species (uk) can be 
estimated efficiently by weighted averaging of site scores provided that (Figure 
3.18b): 
Al . the site scores are homogeneously distributed over the whole range of 
occurrence of the species along the axis x. 

In Section 4.3, we saw that the score (x,) of a site is estimated efficiently by 
weighted averaging of species optima provided the species packing model holds, 
i.e. provided (Figure 4.1): 
A2. the species' optima (scores) are homogeneously distributed over a large interval 
around x,. 
A3, the tolerances of species tk are equal (or at least independent of the optima; 
ter Braak 1985). 
A4, the maxima of species ck are equal (or at least independent of the optima; 
ter Braak 1985). 

Under these four conditions the scores obtained by CA approximate the 
maximum likelihood estimates of the optima of species and the site values in 
Gaussian ordination (ter Braak 1985). For presence-absence data, CA approx-
imates similarly the maximum likelihood estimates of the Gaussian logit model 
(Subsection 3.3.3). CA does not, however, provide estimates for the maximum 
and tolerance of a species. 

A problem is that assumptions Al and A2 cannot be satisfied simultaneously 
for all sites and species: the first assumption requires that the range of the species 
optima is amply contained in the range of the site scores whereas the second 
assumption requires the reverse. So CA scores show the edge effect of compression 
of the end of the first axis relative to the axis middle (Subsection 5.2.3). In practice, 
the ranges may coincide or may only partly overlap. CA does not give any clue 
about which possibility is likely to be true. The algorithm in Table 5.2 results 
in species scores that are weighted averages of the site scores and, consequently, 
the range of the species scores is contained in the range of the site scores. But 
it is equally valid mathematically to stop at Step 3 of the algorithm, so that 
the site scores are weighted averages of the species scores and thus all lie within 
the range of the species scores; this is done in the computer program DECORANA 
(Hill 1979). The choice between these alternatives is arbitrary. It may help 
interpretation of CA results to go one step further in the direction of the maximum 
likelihood estimates by one regression step in which the data of each species are 
regressed on the site scores of CA by using the Gaussian response model. This 
can be done by methods discussed in Chapter 3. The result is new species scores 
(optima) as well as estimates for the tolerances and maxima. As an example, 
Figure 5.8 shows Gaussian response curves along the first CA axis fitted to the 
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abundance 

• CA ax is 1 

Figure 5.8 Gaussian response curves for some Dune Meadow species, fitted by log-linear 
regression of the abundances of species (Table 5.1) on the first CA axis. The sites are 
shown as small vertical lines below the horizontal axis. 

Dune Meadow Data in Table 5.1. The curve of a particular species was obtained 
by a log-linear regression (Section 3.4) of the data of the species on the site scores 
of the first CA axis by using b0 + bl x + b2 x

2 in the linear predictor (Equation 
3.18). 

Two dimensions 

In two dimensions, Gaussian ordination means fitting the bivariate Gaussian 
surfaces (Figure 3.14) 

Ej>jw = c
k exp (-0.5[(xn - ukl)

2
 + (xi2 - uk2)

2
]/tk

2
) Equation 5.5 

where 
(ukl, uk2) are the coordinates of the optimum of species k in the ordination diagram 
ck is the maximum of the surface 
tk is the tolerance 
(xn, xl2) are the coordinates of site i in the diagram. 

These Gaussian surfaces look like that of Figure 3.14, but have circular contours 
because the tolerances are taken to be the same in both dimensions. 

One cannot hope for more than that the two-axis solution of CA provides 
an approximation to the fitting of Equation 5.5 if the sampling distribution of 
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the abundance data is Poisson and if: 
Al . site points are homogeneously distributed over a rectangular region in the 
ordination diagram with sides that are long compared to the tolerances of the 
species, 
A2. optima of species are homogeneously distributed over the same region, 
A3, the tolerances of species are equal (or at least independent of the optima), 
A4, the maxima of species are equal (or at least independent of the optima). 

However as soon as the sides of the rectangular region differ in length, the 
arch effect (Subsection 5.2.3) crops up and the approximation is bad. Figure 5.9b 
shows the site ordination diagram obtained by applying CA to artificial species 
data (40 species and 50 sites) simulated from Equation 5.5 with ck — 5 and tk 

= 1 for each k. The true site points were completely randomly distributed over 

4.0 
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: \ 
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4 

• • • 

• 
• • 

• •• 
.* • * • 

a • • • • • • 

• 
• • 

• 
8.0 

2.0 

-4 .0 

Figure 5.9 CA applied to simulated species data, a: True configuration of sites (•). b: 
Configuration of sites obtained by CA, showing the arch effect. The data were obtained 
from the Gaussian model of Equation 5.5 with Poisson error, 5, h and optima 
that were randomly distributed in the rectangle [-1,9] X [-0.5,4.5]. The vertical lines in 
Figures a and b connect identical sites. 
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a rectangular region with sides of 8 and 4 s.d. (Figure 5.9a). The CA ordination 
diagram is dominated by the arch effect, although the actual position of sites 
within the arch still reflects their position on the second axis in Figure 5.9a. The 
configuration of site scores obtained by DCA was much closer to the true 
configuration. DCA forcibly imposes Conditions Al, A2 and A3 upon the solution, 
the first one by detrending and the second and third one by rescaling of the 
axes. 

We also may improve the ordination diagram of DCA by going one step further 
in the direction of maximum likelihood ordination by one extra regression step. 
We did so for the DCA ordination (Figure 5.7) of Dune Meadow Data in Table 
0.1. For each species with more than 4 presences, we carried out a log-linear 
regression of the data of the species on the first two DCA axes using the response 
model 

loëe Ej/u = K + blk xn + b3k xi2 + b4k (xn
2
 + xa

2
) Equation 5.6 

where xn and xa are the scores of site / on the DCA axes 1 and 2, respectively. 

If b4k < 0, this model is equivalent to Equation 5.5 (as in Subsection 3.3.3). 
The new species scores are then obtained from the estimated parameters in Equation 
5.6 by ukl = -bXkl{2bAk), uk2 = -b2/(2b4k) and tk = l/\/(-2b4k). 

If bAk > 0, the fitted surface shows a minimum and we have just plotted the 
DCA scores of the species. Figure 5.10a shows how the species points obtained 
by DCA change by applying this regression method to the 20 species with four 
or more presences. A notable feature is that Achillea millefolium moves towards 
its position in the CA diagram (Figure 5.4). In Figure 5.10b, circles are drawn 
with centres at the estimated species points and with radius tk. The circles are 
contours where the expected abundance is 60% of the maximum expected 
abundance ck. Note that exp (-0.5) = 0.60. 

From Figure 5.10b, we see, for example, that Trifolium repens has a high tolerance 
(a large circle, thus a wide ecological amplitude) whereas Bromus hordaceus has 
a low tolerance (a small circle, thus a narrow ecological amplitude). With regression, 
the joint plot of DCA can be interpreted with more confidence. This approach 
also leads to a measure of goodness of fit. A convenient measure of goodness 
of fit is here 

V=\-ÇLk DkX)l ÇLk Dk0) Equation 5.7 

where DkQ and Dkl aie the residual déviances of the kth species for the null model 
(the model without explanatory variables) and the model depicted in the diagram 
(Equation 5.6), respectively. These déviances are obtained from the regressions 
(as in Table 3.7). We propose to term V the fraction of deviance accounted for 
by the diagram. For the two-axis ordination (only partially displayed in Figure 
5.10b) V = (1 - 360/987) = 0.64. For comparison, V = 0.51 for the one-axis 
ordination (partially displayed in Figure 5.8). 
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Figure 5.10 Gaussian response surfaces for several Dune Meadow species fitted by log-
linear regression of the abundances of species on the site scores of the first two DCA 
axes (Figure 5.7). a: Arrows for species running from their DCA scores (Figure 5.7) to 
their fitted optimum, b: Optima and contours for some of the species. The contour indicates 
where the abundance of a species is 60% of the abundance at its optimum. 

The regression approach can of course be extended to more complicated surfaces 
(e.g. Equation 3.24), but this will often be impractical, because these surfaces 
are more difficult to represent graphically. 

5.3 Principal components analysis (PCA) 

5.3.1 From least-squares regression to principal components analysis 

Principal components analysis (PCA) can be considered to be an extension 
of fitting straight lines and planes by least-squares regression. We will introduce 

116 



Figure 5.10b 

PCA, assuming the species data to be quantitative abundance values. 
Suppose we want to explain the abundance values of several species by a 

particular environmental variable, say moisture, and suppose we attempt to do 
so by fitting straight lines to the data. Then, for each species, we have to carry 
out a least-squares regression of its abundance values on the moisture values 
and obtain, among other things, the residual sum of squares, i.e. the sum of 
squared vertical distances between the observed abundance values and the fitted 
line (Figure 3.1; Subsection 3.2.2). This is a measure of how badly moisture explains 
the data of a single species. To measure how badly moisture explains the data 
of all species, we now use the total of the separate residual sums of squares over 
all species, abbreviated the total residual sum of squares. If the total residual 
sum of squares is small, moisture can explain the species data well. 

Now, suppose that, among a set of environmental variables, moisture is the 
variable that best explains the species data in the sense of giving the least total 
residual sum of squares. As in all ordination techniques, we now wish to construct 
a theoretical variable that explains the species data still better. PCA is the ordination 
technique that constructs the theoretical variable that minimizes the total residual 
sum of squares after fitting straight lines to the species data. PCA does so by 
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choosing best values for the sites, the site scores. This is illustrated in Figure 
5.11 for the Dune Meadow Data. The site scores are indicated by ticks below 
the horizontal axis. The fitted lines are shown for six of the 30 species and the 
observed abundance values and residuals for one of them. Any other choice of 
site scores would result in a larger sum of squared residuals. Note that Figure 
5.11 shows only 20 out of all 20 X 30 = 600 residuals involved. The horizontal 
axis in Figure 5.11 is the first PCA axis, or first principal component. The score 
of a species in PCA is actually the slope of the line fitted for the species against 
the PCA axis. A positive species score thus means that the abundance increases 
along the axis (e.g. Agrostis stolonifera in Figure 5.11); a negative score means 
that the abundance decreases along the axis (e.g Lolium perenne in Figure 5.11) 
and a score near 0 that the abundance is poorly (linearly) related to the axis 
(e.g. Sagina procumbens in Figure 5.11). 

If a single variable cannot explain the species data sufficiently well, we may 
attempt to explain the data with two variables by fitting planes (Subsection 3.5.2). 
Then, for each species we have to carry out a least-squares regression of its 
abundance values on two explanatory variables (Figure 3.11), obtain its residual 
sum of squares and, by addition over species, the total residual sum of squares. 
The first two axes of PCA are now the theoretical variables minimizing the total 
residual sum of squares among all possible choices of two explanatory variables. 
Analogously, the first three PCA axes minimize the total residual sum of squares 
by fitting the data to hyperplanes, and so on. PCA is thus a multi-species extension 
of multiple (least-squares) regression. The difference is that in multiple regression 

0.4 

Figure 5.11 Straight lines for several Dune Meadow species, fitted by PCA to the species 
abundances of Table 5.1. Also shown are the abundances of Lolium perenne and their 
deviations from the fitted straight line. The horizontal axis is the first principal component. 
Fitting straight lines by least-squares regression of the abundances of species on the site 
scores of the first PCA axis gives the same results. The slope equals the species score 
of the first axis. The site scores are shown by small vertical lines below the horizontal 
axis. 
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the explanatory variables are supplied environmental variables whereas in PCA 
the explanatory variable are theoretical variables estimated from the species data 
alone. It can be shown (e.g. Rao 1973) that the same result as above is obtained 
by defining the PCA axes sequentially as follows. The first PCA axis is the variable 
that explains the species data best, and second and later axes also explain the 
species data best but subject to the constraint of being uncorrelated with previous 
PCA axes. In practice, we ignore higher numbered PCA axes that explain only 
a small proportion of variance in the species data. 

5.3.2 Two-way weighted summation algorithm 

We now describe an algorithm that has much in common with that of CA 
and that gives the ordination axes of PCA. The algorithm also shows PCA to 
be a natural extension of straight-line regression. 

If the relation between the abundance of a species and an environmental variable 
is rectilinear, we can summarize the relation by the intercept and slope of a straight 
line. The error part of the model is taken to consist of independent and normally 
distributed errors with a constant variance. The parameters (intercept and slope) 
are then estimated by least-squares regression of the species abundances on the 
values of the environmental variable (Subsection 3.2.2). Conversely, when the 
intercepts and slopes are known, we can estimate the value of the environmental 
variable from the species abundances at a site by calibration (Subsection 4.2.3). 
If it is not known in advance which environmental variable determines the 
abundances of the species, the idea is as in CA (Subsection 5.2.2) to discover 
the 'underlying environmental gradient' by applying straight-line regression and 
calibration alternately in an iterative fashion, starting from arbitrary initial values 
for sites or from arbitrary initial values for the intercepts and slopes of species. 
As in CA, the iteration process eventually converges to a set of values for species 
and sites that does not depend on the initial values. 

The iteration process reduces to simple calculations when we first centre the 
abundances of each species to mean 0 and standardize the site scores to x = 

0 and 2, (x, - x)
2
 = 1. Then, the equations to estimate the intercept and the 

slope of a straight line (Equations 3.6a,b) reduce to b0 — 0 and bx — £,• yi x„ 
because in the notation of Subsection 3.2.2 y = 0, x — 0 and £,- (x, - x)

2
 = 

1. Hence we ignore the intercepts and concentrate on the slope parameters. From 
now on, bk will denote the slope parameter for species k and yki the centred 
abundance of species k at site i (i.e. yk+ = 0). In this notation, the slope parameter 
of species k is calculated by 

bk = Z,", ykl xt Equation 5.8 

As an example, Table 5.5a shows the Dune Meadow Data used before with 
an extra column of species means and, as arbitrary initial scores for the sites, 
values obtained by standardizing the numbers 1 to 20 (bottom row). For Achillea 

millefolium, the mean abundance is 0.80 and we obtain 
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bx = (1 - 0.80) X (-0.37) + (3 - 0.80) X (-0.33) + (0 - 0.80) X (-0.29) + ... 
+ (0-0.80) X (0.37) = -1.98. 

From the slopes thus obtained (Table 5.5a, last column), we derive new site 
scores by least-squares calibration (Equation 4.2 with ak = 0). The site scores 
so obtained are proportional to 

x
i = £<"=i-^/ b

k Equation 5.9 

because the denominator of Equation 4.1 has the same value for each site. This 
denominator is unimportant in PCA, because the next step in the algorithm is 
to standardize the site scores, as shown in Table 5.6c. For Site 1 in Table 5.5a, 
we get from Equation 5.9 the site score xx = (1 - 0.80) X (-1.98) + (0 - 2.40) 
X (1.55) + (0 - 0.25) X (1.49) + ... + (0 - 0.50) X (2.29) = -0.19. Note that 
the species mean abundance is subtracted each time from the abundance value. 
In Table 5.5b, the species and sites are arranged in order of the scores obtained 
so far, in which the slopes (bk) form the species scores. The abundance of the 
species in the top row (Lolium perenne) has the tendency to decrease along the 
row, whereas the abundance of the species in the bottom row ( Eleocharis palustris) 

has the tendency to increase across the row. The next cycle of the iteration is 
to calculate new species scores (bk), then new site scores, and so on. As in CA, 
the scores stabilize after several iterations and the resulting scores (Table 5.5c) 
constitute the first ordination axis of PCA. In Table 5.5c, the species and sites 
are arranged in order of their scores on the first axis. Going from top row to 
bottom row, we see first a decreasing trend in abundance across the columns 
(e.g. for Lolium perenne), then hardly any trend (e.g. for Sagina procumbens) 

and finally an increasing trend (e.g. for Agrostis stolonifera). A graphical display 
of the trends has already been shown in Figure 5.11. The order of species in 
Table 5.5c is quite different from the order in the table arranged by CA (Table 
5.1c), but the difference in ordering of the sites is more subtle. 

In the above iteration algorithm of PCA (Table 5.6), weighted sums (Equations 
5.8 and 5.9) replace the weighted averages in CA (Table 5.2; Equations 5.1 and 
5.2). For this analogy to hold, let us consider the data yki as weights (which 
can be negative in PCA), so that the species scores are a weighted sum of the 
site scores and, conversely, the site scores are a weighted sum of the species scores 
(Table 5.6). The standard terminology used in mathematics is that xt is a linear 
combination of the variables (species) and that bk is the loading of species k. 

After the first axis, a second axis can be extracted as in CA, and so on. (There 
is a subtle difference in the orthogonalization procedure, which need not concern 
us here.) The axes are also eigenvectors to which correspond eigenvalues as in 
CA (Subsection 5.2.2). The meaning of the eigenvalues in PCA is given below. 
The axes are also termed principal components. 

So PCA decomposes the observed values into fitted values and residuals 
(Equations 3.1 and 3.2). In one dimension, we have the decomposition 

yki = bk x,:+ residual Equation 5.10 
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Table 5.6 Two-way weighted summation algorithm of PCA. 

a: Iteration process 

Step 1. Take arbitrary initial site scores (*,), not all equal to zero. 
Step 2. Calculate new species scores (bk) by weighted summation of the site scores (Equation 5.8). 
Step 3. Calculate new site scores (x,) by weighted summation of the species scores (Equation 5.9). 
Step 4. For the first axis go to Step 5. For second and higher axes, make the site scores (x,) 

uncorrelated with the previous axes by the orthogonalization procedure described below. 
Step 5. Standardize the site scores (x,). See below for the standardization procedure. 
Step 6. Stop on convergence, i.e. when the new site scores are sufficiently close to the site scores 

of the previous cycle of the iteration; ELSE go to Step 2. 

b: Orthogonalization procedure 

Step 4.1. Denote the site scores of the previous axis by ƒ and the trial scores of the present 
axis by x,. 

Step 4.2. Calculate v = Z£, xj,. 
Step 4.3 Calculate x,new = x,old - vf. 
Step 4.4 Repeat Steps 4.1-4.3 for all previous axes. 

c: Standardization procedure 

Step 5.1 Calculate the sum of squares of the site scores s
2
 = 1.-L, x,2. 

Step 5.2 Calculate x,new = xiMJs. 
Note that, upon convergence, s equals the eigenvalue. 

where yki is the (mean corrected) observed value and bk xt the fitted value. 

As an example, the values fitted by the first PCA axis (Table 5.5c) for the 
centred abundances of Agrostis stolonifera (b2 = 8.67) at Site 6 (x6 = -0.31) 
and Site 16 (JC16 = 0.45) are: 8.67 X (-0.31) = -2.75 and 8.67 X 0.45 = 3.99, 
respectively. Adding the mean value of A. stolonifera (2.40), we obtain the values 
-0.35 and 6.39, respectively, which are close to the observed abundance values 
of 0 and 7 at Site 6 and Site 16. In PCA, the sum of squared residuals in Equation 
5.10 is minimized (Subsection 5.3.1). Analogously, one can say that PCA maximizes 
the sum of squares of fitted values and the maximum is the eigenvalue of the 
first axis. In two dimensions (Figure 5.12), we have the decomposition 

yki = (bki xn + bk2 xi2) + residual Equation 5.11 

where 
bkl and bkl are the scores of species k 

xn and xa are the scores of site i on Axis 1 and Axis 2, respectively. 

On the second axis, the score of A. stolonifera is 6.10 and the scores of Sites 
6 and 16 are -0.17 and 0.033 (Figure 5.12), so that the fitted values become 8.67 
X (-0.31) + 6.10 X (-0.17) = -3.72 and 8.67 X 0.45 + 6.10 X 0.033 = 4.10. 
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Figure 5.12 PCA-ordination diagram of the Dune Meadow Data in covariance biplot scaling 
with species represented by arrows. The b scale applies to species, the x scale to sites. 
Species not represented in the diagram lie close to the origin (0,0). 

The first two PCA axes thus give approximate abundance values of -3.72 + 2.40 
— -1.3 and 4.10 + 2.40 = 6.5, slightly worse values than those obtained from 
the first axis, but most of the remaining abundance values in the data table will 
be approximated better with two axes than with a single axis. The sum of squares 
of fitted values now equals X, + X2. Further, the total sum of squares (2^.2, ykf) 

equals the sum of all eigenvalues. (This equality means that we can reconstruct 
the observed values exactly from the scores of species and sites on all eigenvectors 
and the mean abundance values.) The fraction of variance accounted for (explained) 
by the first two axes is therefore (>i, + ?.2)/(sum of all eigenvalues). This measure 
is the equivalent of R2 in Section 3.2. For the Dune Meadow Data, Xt — All, 

X2 = 344 and the total sum of squares = 1598. So the two-axes solution explains 
(471 + 344)/1598 = 51% of the variance. The first axis actually explains 471/ 
1598 = 29% of the variance and the second axis 344/1598 = 22%. 
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5.3.3 Best lines and planes in m-dimensional space 

Here we present a geometric approach to PCA. In this approach, the aim of 
PCA is seen as being to summarize multivariate data in a graphical way. The 
approach is best illustrated with data on two species only. Figure 5.13a displays 
the abundances of Species A and B at 25 sites in the form of a scatter diagram, 
with axes labelled by the species names. The simplest summary of data is by 
the mean abundances of A (25) and B (15). Knowing the means, we may shift 
the axes to the centroid of the data points, i.e. to the point with the coordinates 
(25,15), provided we remember that the origin (0,0) of the new coordinate system 
is the point (25,15) in the old coordinate system. Next we draw a line through 
the new origin in the direction of maximum variance in the plot. This line is 
the first principal component (PCI), or first PCA axis, and perpendicularly we 
draw PC2. Next we rotate the plot, so that PCI is horizontal (Figure 5.13b). 
Figure 5.13b is an ordination diagram with arrows representing the species. These 
arrows are the shifted and rotated axes of the species in the original diagram. 
PC2 shows so much less variation than PCI that PC2 can possibly be neglected. 
This is done in Figure 5.13c showing a one-dimensional ordination; the points 
in Figure 5.13c were obtained from Figure 5.13b by drawing perpendicular lines 
from each point on the horizontal axis (projection onto PCI). In this way, the 
first coordinate of the points in Figure 5.13b is retained in Figure 5.13c; this 
coordinate is the site score on PCI. The first coordinate of the arrows in Figure 
5.13b is the species loading on PCI, which is also represented by an arrow in 
Figure 5.13c. These arrows indicate the direction in which Species A and Species 
B increase in abundance; hence Figure 5.13c still shows which sites have high 
abundances of Species A and of Species B (those on the right side) and which 
sites have low abundance (those on the left side). 

The example is, of course, artificial. Usually there are many species (m ^ 3), 
so that we need an m-dimensional coordinate system, and we want to derive 
a two-dimensional or three-dimensional ordination diagram. Yet the principle 
remains the same: PCA searches for the direction of maximum variance; this 
is PCI, the best line through the data points. It is the best line in the sense 
that it minimizes the sum of squares of perpendicular distances between the data 
points and the line (as is illustrated in Figure 5.13a for m = 2). So the first 
component in Figure 5.13a is neither the regression line of Species B on Species 
A nor that of Species A on Species B, because regression minimizes the sum 
of squares of vertical distances (Figure 3.1). But, as we have seen in Subsection 
5.3.1, PCA does give the best regression of Species A on PCI and of Species 
B on PCI (Figure 5.11). After the first component, PCA seeks the direction of 
maximum variance that is perpendicular onto the first axis; that is PC2, which 
with PCI forms the best plane through the data points, and so on. In general, 
the site scores are obtained by projecting each data point from the w-dimensional 
space onto the PCA axes and the species scores are obtained by projecting the 
unit vectors: for the first species (1,0,0,...); for the second species (0,1,0,0,...), etc., 
onto the PCA axes (Figure 5.13). 
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Figure 5.13 Artificial abundance data for two species A and B at 25 sites, a: First principal 
component, running through the centroid of the sites in the direction of the greatest variance 
(at 34° of the axis of Species A), b: Rotated version of Figure a with the first principal 
component horizontally, c: One-dimensional PCA ordination with species represented by 
arrows. The scores are simply those of the first axis of b. 
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5.3.4 Biplot of species and site scores 

The scores obtained from a PCA for species and sites can be used to prepare 
a biplot (Gabriel 1971). The biplot serves the same function as the joint plot 
in CA (Subsection 5.2.5), but the rules to interpret the biplot are rather different. 
We limit the discussion to the two-dimensional biplot as it is more difficult to 
visualize three-dimensional or higher ones. The prefix 'bi' in biplot refers to the 
joint representation of sites and species, and not to the dimension of the plot; 
for example, Figure 5.13c shows a one-dimensional biplot. 

The ranges of the scores for sites and for species (scores and loadings) in PCA 
are often of a different order of magnitude. For example in Table 5.3c, the range 
of the species scores is 17.9 whereas the range of the site scores is 0.8. A biplot 
is therefore constructed most easily by drawing separate plots of sites and of 
species on transparent paper, each one with its own scaling. In each of the plots, 
the scale unit along the vertical axis must have the same physical length as the 
scale unit along the horizontal axis, as in CA. A biplot is obtained by superimposing 
the plots with the axes aligned. A biplot may therefore have different scale units 
for the sites (x scale) and species (b scale). Figures 5.12 and 5.15 provide examples 
for the Dune Meadow Data. 

In Subsection 5.3.1, we showed that for each species PCA fits a straight line 
in one dimension to the (centred) abundances of the species (Figure 5.11; Equation 
5.10) and in two dimensions a plane with respect to the PCA axes (Figure 3.11; 
Equation 5.11). The abundance of a species as fitted by PCA thus changes linearly 
across the biplot. We represent the fitted planes in a biplot by arrows as shown 
in Figure 5.12. The direction of the arrow indicates the direction of steepest ascent 
of the plane, i.e. the direction in which the abundance of the corresponding species 
increases most, and the length of the arrow equals the rate of change in that 
direction. In the perpendicular direction, the fitted abundance is constant. The 
arrows are obtained by drawing lines that join the species points to the origin, 
the point with coordinates (0,0). 

The fitted abundances of a species can be read from the biplot in very much 
the same way as from a scatter diagram, i.e. by projecting each site onto the 
axis of the species. (This is clear from Figure 5.13a.) The axis of a species in 
a biplot is in general, however, not the horizontal axis or the vertical axis, as 
in Figure 5.13a, but an oblique axis, the direction of which is given by the arrow 
of the species. As an example of how to interpret Figure 5.12, some of the site 
points are projected onto the axis of Agrostis stolonifera in Figure 5.14. Without 
doing any calculations, we can see the ranking of the fitted abundances of A. 

stolonifera among the sites from the order of the projection points of the sites 
along the axis of that species. From Figure 5.14, we thus infer that the abundance 
of A. stolonifera is highest at Site 16, second highest at Site 13, and so on to 
Site 6, which has the lowest inferred abundance. The inferred ranking is not perfect 
when compared with the observed ranking, but not bad either. 

Another useful rule to interpret a biplot is that the fitted value is positive if 
the projection point of a site lies, along the species' axis, on the same side of 
the origin as the species point does, and negative if the origin lies between the 
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X 19 

Figure 5.14 Biplot interpretation of Figure 5.12 for Agrostis stolonifera. For explanation, 
see text. 

projection point and the species point. As we have centred the abundance data, 
the fitted abundance is higher than the species mean in the former case and lower 
than the species mean in the latter case. For example, Site 3 and Site 20 are 
inferred to have a higher than average abundance of A. stolonifera, whereas Sites 
2 and 19 are inferred to have a lower than average abundance of this species. 
These inferences are correct, as can be seen from Table 5.5. One can also obtain 
quantitative values for the abundances as represented in the biplot, either 
algebraically with Equation 5.11 or geometrically as follows (ter Braak 1983). 
For this, we need the distance of the species point from the origin. In Figure 
5.12, we see from the b scale that A. stolonifera lies at a distance of about 10 
from the origin. We need further the projection points of sites onto the species' 
axis (Figure 5.14). From the x scale, we see that, for example, the projection 
point of Site 20 lies a distance of about 0.2 from the origin. The fitted value 
is now about 10 X 0.2 = 2. Adding the mean of A. stolonifera (2.4), we obtain 
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4.4 as the fitted abundance for A. stolonifera at Site 20; the observed value is 
5. This biplot accounts in this way for 51% of the variance in abundance values 
of all species. This value was computed at the end of Subsection 5.3.2. Note, 
however, that the fraction of variance accounted for usually differs among species. 
In general, the abundances of species that are far from the origin are better 
represented in the biplot than the abundances of species near the origin. For 
example, the fractions accounted for are 80% for Agrostis stolonifera, 78% for 
Poa trivialis, 25% for Bromus hordaceus, 4% for Brachythecium rutabulum and 
3% for Empetrum nigrum. 

The scaling of the species and site scores in the biplot requires attention. From 
Equation 5.11, we deduce that scaling is rather arbitrary; for example, the fitted 
values remain the same if we jointly plot the species points (3bkl, 5bk2) and the 
site points (x,,/3, xa/5). Yet, there are two types of scaling that have special 
appeal. 

In the first type of scaling, the site scores are standardized to unit sum of 
squares and the species scores are weighted sums of the site scores (Table 5.6). 
The sum of squared scores of species is then equal to the eigenvalue of the axis. 
In this scaling, the angle between arrows of each pair of species (Figure 5.12) 
provides an approximation of their pair-wise correlation, i.e. 

r ~ cos 9 

with r the correlation coefficient and 8 the angle. 

Consequently, arrows that point in the same direction indicate positively correlated 
species, perpendicular arrows indicate lack of correlation and arrows pointing 
in the opposite direction indicate negatively correlated species. This biplot is termed 
the covariance biplot and is considered in detail by Corsten & Gabriel (1976). 

In the second type of scaling, the species scores are standardized to unit sum 
of squares and the site scores are standardized, so that their sum of squares equals 
the eigenvalue of each axis. Then, the site scores are the weighted sum of the 
species scores. This scaling was used implicitly in Subsection 5.3.3 and is intended 
to preserve Euclidean Distances between sites (Equation 5.16), i.e. the length of 
the line segment joining two sites in the biplot then approximates the length of 
the line segment joining the sites in m-dimensional space, the axes of which are 
formed by the species. When scaled in this way, the biplot is termed a Euclidean 
Distance biplot (ter Braak 1983). Figure 5.15 shows this biplot for the Dune 
Meadow Data. 

The Euclidean Distance biplot is obtained from the covariance biplot by simple 
rescaling of species and site scores. Species k with coordinates (bkl,bk2) in the 
covariance biplot gets the coordinates (bk, / \l\,bk2\ V ^ 2 ) m t n e Euclidean Distance 
biplot, and site i with coordinates (xn,xj2) gets coordinates (xi{\JXuxi2\/~k2) in 
the Euclidean Distance biplot. Figure 5.15 does not look very different from Figure 
5.12, because the ratio of \ A i and \fX2 is close to 1. 
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Figure 5.15 Euclidean Distance biplot of Dune Meadow Data. 

5.3.5 Data transformation 

We have so far described the standard form of PCA as treated in statistical 
textbooks (e.g. Morrison 1967). In ecology, this form is known as 'species-centred 
PCA'. In a variant of this, 'standardized PCA', abundances of each species are 
also divided by its standard deviation. In species-centred PCA, each species is 
implicitly weighted by the variance of its abundance values. Species with high 
variance, often the abundant ones, therefore dominate the PCA solution, whereas 
species with low variance, often the rare ones, have only minor influence on the 
solution. This may be reason to apply standardized PCA, in which all species 
receive equal weight. However the rare species then unduly influence the analysis 
if there are a lot of them, and chance can dominate the results. We therefore 
recommend species-centred PCA, unless there is strong reason to use standardized 
PCA. Standardization is necessary if we are analysing variables that are measured 
in different units, for example quantitative environmental variables such as pH, 
mass fraction of organic matter or ion concentrations. Noy Meir et al. (1975) 
fully discuss the virtues and vices of various data transformations in PCA. 

The fraction of variance accounted for by the first few axes is not a measure 
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of the appropriateness of a particular data transformation. By multiplying the 
abundances of a single species by a million, the first axis of a species-centred 
PCA will in general account for nearly all the variance, just because nearly all 
the variance after this transformation is due to this species and the first axis 
almost perfectly represents its abundances. 

If some environmental variables are known to influence the species data strongly, 
the axes of a PCA will probably show what is already known. To detect unknown 
variation, one can for each species first apply a regression on the known 
environmental variables, collect the residuals from these regressions in a two-
way table and apply PCA to this table of residuals. This analysis is called partial 
PCA and is standardly available in the computer program CANOCO (ter Braak 
1987b). The analysis is particularly simple if, before sampling, groups of sites 
are recognized. Then, the deviations of the group means should be analysed instead 
of the deviations from the general mean. An example is the analysis of vegetation 
change in permanent plots by Swaine & Greig-Smith (1980). 

5.3.6 R-mode and Q-mode algorithms 

The iteration algorithm in Table 5.6 is a general-purpose algorithm to extract 
eigenvectors and eigenvalues from an m X n matrix Y with elements yki. The 
algorithm is used in the computer program CANOCO (ter Braak 1987b) to obtain 
the solution to species-centred PCA if the rows are centred and to standardized 
PCA if the rows are standardized, but also to non-centred PCA (Noy Meir 1973) 
if the data are neither centred nor standardized. However many computer programs 
for PCA use other algorithms, most of which implicitly transform the data. Centring 
by variables is done implicitly when PCA is carried out on the matrix of covariances 
between the variables. Also, standardization by variables is implicit in an analysis 
of the correlation matrix. The role of species in our discussion therefore corresponds 
to the role of variables in a general-purpose computer program for PCA. The 
rest of Subsection 5.3.6 may be skipped at a first reading. 

Algorithms that are based on the covariance matrix or correlation matrix are 
termed R-mode algorithms. More generally, R-mode algorithms extract eigen-
vectors from the species-by-species cross-product matrix A with elements 

aki = ̂ iykiyn (k,l=\ ,..., m) 

where, as before, yki is the data after transformation. 

By contrast, Q-mode algorithms extract eigenvectors from the site-by-site cross-
product matrix C with elements 

cy=^kykiykj('J= U-,n). 

A particular Q-mode algorithm is obtained from Table 5.6 by inserting Equation 
5.8 in Equation 5.9. In this way, Steps 2 and 3 are combined into a single step, 
in which 
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new xt = T,£=lcijXj. 

It can be shown that the eigenvalues of the Matrix A equal those of the Matrix 
C, and further that the eigenvectors of C can be obtained from those of A by 
applying Equation 5.9 to each eigenvector and, conversely, that the eigenvectors 
of A can be obtained from those of C by applying Equation 5.8 to each eigenvector 
of C. The terms R-mode and Q-mode therefore refer to different algorithms and 
not to different methods. If the number of species is smaller than the number 
of sites, R-mode algorithms are more efficient than Q-mode algorithms, and 
conversely. 

5.4 Interpretation of ordinations with external data 

Once data on species composition have been summarized in an ordination 
diagram, the diagram is typically interpreted with help of external knowledge 
on sites and species. Here we discuss methods that facilitate interpretation when 
data on environmental variables are collected at different sites. Analogous methods 
exist when there is external data on the species, for example growth form of 
plant species or indicator values for environmental variables from previous studies 
or from the literature (Table 5.7). 

Simple interpretative aids include: 
- writing the values of an environmental variable in the order of site scores 

of an ordination axis below the arranged species data table (Table 5.7) 
- writing the values of an environmental variable near the site points in the 

ordination diagram (Figure 5.16) 
- plotting the site scores of an ordination axis against the values of an 

environmental variable (Figure 5.17) 
- calculating (rank) correlation coefficients between each of the quantitative 

environmental variables and each of the ordination axes (Table 5.8) 
- calculating mean values and standard deviations of ordination scores for each 

class of a nominal environmental variable (ANOVA, Subsection 3.2.1) and 
plotting these in the ordination diagram (Figure 5.16). 

An ordination technique that is suited for the species composition data extracts 
theoretical environmental gradients from these data. We therefore expect straight 
line (or at least monotonie) relations between ordination axes and quantitative 
environmental variables that influence species. Correlation coefficients are therefore 
often adequate summaries of scatter plots of environmental variables against 
ordination axes. 

Three of these simple interpretative aids are directed to the interpretation of 
axes instead of to the interpretation of the diagram as a whole. But the ordination 
axes do not have a special meaning. Interpretation of other directions in the 
diagram is equally valid. A useful idea is to determine the direction in the diagram 
that has maximum correlation with a particular environmental variable (Dargie 
1984). For they'th environmental variable, zp that direction can be found by multiple 
(least-squares) regression of z- on the site scores of the first ordination axis (x,) 
and the second ordination axis (x2), i.e. by estimating the parameters bx and 
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Table 5.7 Values of environmental variables and Ellenberg's indicator values of species 
written alongside the ordered data table of the Dune Meadow Data, in which species and 
sites are arranged in order of their scores on the second DCA axis. Al: thickness of Al 
horizon (cm), 9 meaning 9 cm or more; moisture: moistness in five classes from 1 — dry 
to 5 = wet; use: type of agricultural use, 1 = hayfield, 2 = a mixture of pasture and 
hayfield, 3 = pasture; manure: amount of manure applied in five classes from 0 = no 
manure to 5 = heavy use of manure. The meadows are classified by type of management: 
SF, standard farming; BF, biological farming; HF, hobby farming; NM, nature management; 
F, R, N refer to Ellenberg's indicator values for moisture, acidity and nutrients, respectively. 

Species Site (i) F R N 

00001000010111111121 
k 12350749638162485703 

1 Rch 
11 Ely 
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17 Lol 
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Table 5.8 Correlation coefficients (100 X r) of en-
vironmental variables with the first four DCA axes 
for the Dune Meadow Data. 

Variable 

1 Al 
2 moisture 
3 use 
4 manure 
5 SF 
6 BF 
7 HF 
8 NM 

Eigenvalue 

Axes 

1 

58 
76 
35 

6 
22 

-28 
-22 

21 

0.54 

2 

24 
57 

-21 
-68 
-29 
-24 
-26 

73 

0.29 

3 

7 
7 

-3 
-7 

5 
39 

-55 
17 

0.08 

4 

9 
-7 
-5 

-64 
-60 

22 
-14 

56 

0.05 

* BF "m
F 

x 

0 
X 

0 3 

X x 

' SF 
lx • 

manure 

Figure 5.16 The amount of manure written on the DCA ordination of Figure 5.7. The 
trend in the amount across the diagram is shown by an arrow, obtained by a multiple 
regression of manure on the site scores of the DCA axes. Also shown are the mean scores 
for the four types of management, which indicate, for example, that the nature reserves 
(NM) tend to lie at the top of the diagram. 
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Figure 5.17 Site scores of the second DCA axis plotted against the amount of manure. 

b2 of the regression equation (as in Subsection 3.5.2) 

Ez,. K + b{ ?2 X2 Equation 5.12 

The direction of maximum correlation makes an angle of 9 with the first axis 
where 6 = arctan (i>2/èj) and the maximum correlation equals the multiple 
correlation coefficient (Subsection 3.2.1). This direction can be indicated in the 
ordination diagram by an arrow running from the centroid of the plot, for instance 
with coordinates (0,0), to the point with coordinates {by,b2), as illustrated for 
manure in Figure 5.16. This is an application of the biplot idea; the environmental 
variable is represented in the diagram by an arrow that points in the direction 
of maximum change (Subsection 5.3.4). Several environmental variables can be 
accommodated in this way in a single ordination diagram. 

In Chapter 3, presence and abundance of a single species represented the response 
variable to be explained by the environmental variables. By applying an ordination 
technique to the abundances of many species, we have reduced many response 
variables to a few ordination axes. It is therefore natural to consider the ordination 
axes as new derived response variables and to attempt to explain each of them 
by use of multiple regression analysis. For example, we can fit for the first axis 
(x,) the response model 

Ex, CQ + CI Z\ + c2z2 + ... + cqzq Equation 5.13 

where zy is the y'th (out of q) environmental variables and Cj is the corresponding 
regression coefficient. The multiple correlation coefficient and the fraction of 
variance accounted for by the regression (Subsection 3.2.1) indicate whether the 
environmental variables are sufficient to predict the variation in species composition 
that is represented by the first ordination axis. Table 5.9 shows an example. 

135 



Table 5.9 Multiple regression of the first CA axis on four 
environmental variables of the dune meadow data, which shows 
that moisture contributes significantly to the explanation of the 
first axis, whereas the other variables do not. 

Term 

constant 
Al 
moisture 
use 
manure 

ANOVA table 

Regression 
Residual 
Total 

R
2
 = 0.75 

RU = 0.66 

Parameter 

co 
C\ 

c2 

c3 

c4 

d.f. 

4 
15 
19 

S.S. 

17.0 
6.2 

23.2 

Estimate 

-2.32 
0.14 
0.38 
0.31 

-0.00 

m.s. 

4.25 
0.41 
1.22 

s.e. 

0.50 
0.08 
0.09 
0.22 
0.12 

F 

10.6 

t 

-4.62 
1.71 
4.08 
1.37 

-0.01 

There are good reasons not to include the environmental variables in the 
ordination analysis itself, nor to reverse the procedure by applying ordination 
to the environmental data first and by adding the species data afterwards: the 
main variation in the environmental data is then sought, and this may well not 
be the major variation in species composition. For example, if a single envir-
onmental variable is important for the species and many more variables are included 
in the analysis, the first few axes of the environmental ordination mainly represent 
the relations among the unimportant variables and the relation of the important 
variable with the species' data would not be discovered. It is therefore better 
to search for the largest variation in the species' data first and to find out afterwards 
which of the environmental variables is influential. 

5.5 Canonical ordination 

5.5.1 Introduction 

Suppose we are interested in the effect on species composition of a particular 
set of environmental variables. What can then be inferred from an indirect gradient 
analysis (ordination followed by environmental gradient interpretation)? If the 
ordination of the species data can be readily interpreted with these variables, 
the environmental variables are apparently sufficient to explain the main variation 
in the species' composition. But, if the environmental variables cannot explain 
the main variation, they may still explain some of the remaining variation, which 
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can be substantial, especially in large data sets. For example, a strong relation 
of the environmental variables with the fifth ordination axis will go unnoticed, 
when only four ordination axes are extracted, as in some of the computer programs 
in common use. This limitation can only be overcome by canonical ordination. 

Canonical ordination techniques are designed to detect the patterns of variation 
in the species data that can be explained 'best' by the observed environmental 
variables. The resulting ordination diagram expresses not only a pattern of variation 
in species composition but also the main relations between the species and each 
of the environmental variables. Canonical ordination thus combines aspects of 
regular ordination with aspects of regression. — 

We introduce, consecutively, the canonical form of CA, the canonical form 
of PCA (redundancy analysis) and two other linear canonical techniques, namely 
canonical correlation analysis and canonical variate analysis. After introducing 
these particular techniques, we discuss how to interpret canonical ordination axes 
and the possible effect of data transformations. 

5.5.2 Canonical correspondence analysis (CCA) 

To introduce canonical correspondence analysis (CCA), we consider again the 
artificial example by which we have introduced CA (Subsection 5.2.1). In this 
example (reproduced in Figure 5.18a), five species each preferred a slightly different 
moisture value. The species score was defined to be the value most preferred 
and was calculated by averaging the moisture values of the sites in which the 
species is present. Environmental variables were standardized to mean 0 and 
variance 1 (Table 5.2c) and the dispersion of the species scores after standardization 
was taken to express how well a variable explains the species data. 

Now suppose, as before, that moisture is the best single variable among the 
environmental variables measured. In Subsection 5.2.1, we proceeded by con-
structing the theoretical variable that best explains the species data and, in Section 
5.4, we attempted to explain the variable so obtained by a combination of measured 
environmental variables (Equation 5.13). But, as discussed in Subsection 5.5.1, 
such attempts may fail, even if we measure environmental variables influencing 
the species. So why not consider combinations of environmental variables from 
the beginning? In the example, someone might suggest considering a combination 
of moisture and phosphate, and Figure 5.18b actually shows that, after stan-
dardization, the combination (3 X moisture + 2 X phosphate) gives a larger 
dispersion than moisture alone. So it can be worthwhile to consider not only 
the environmental variables singly but also all possible linear combinations of 
them, i.e. all weighted sums of the form 

Xj = c0 + Ci zu + c2 z2i + ... + cq z • Equation 5.14 

where 
z„ is the value of environmental variable ƒ at site i 

J1 J 

Cj is the weight (not necessary positive) belonging to that variable 
Xf is the value of the resulting compound environmental variable at site ;'. 
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Figure 5.18 Artificial example of unimodal response curves of five species (A-E) with respect 
to standardized environmental variables showing different degrees of separation of the species 
curves, a: Moisture, b: Linear combination of moisture and phosphate, chosen a priori, 
c: Best linear combination of environmental variables, chosen by CCA. Sites are shown 
as dots, at y — 1 if Species D is present and at y = 0 if Species D is absent. 

CCA is now the technique that selects the linear combination of environmental 
variables that maximizes the dispersion of the species scores (Figure 5.18c; ter 
Braak 1987a). In other words, CCA chooses the best weights (c;) for the 
environmental variables. This gives the first CCA axis. 

The second and further CCA axes also select linear combinations of envir-
onmental variables that maximize the dispersion of the species scores, but subject 
to the constraint of being uncorrelated with previous CCA axes (Subsection 5.2.1). 
As many axes can be extracted as there are environmental variables. 

CA also maximizes the dispersion of the species scores, though irrespective 
of any environmental variable; that is, CA assigns scores (x,) to sites such that 
the dispersion is absolutely maximum (Subsection 5.2.1). CCA is therefore 
'restricted correspondence analysis' in the sense that the site scores are restricted 
to be a linear combination of measured environmental variables (Equation 5.14). 
By incorporating this restriction in the two-way weighted averaging algorithm 
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of CA (Table 5.2), we obtain an algorithm for CCA. More precisely, in each 
iteration cycle, a multiple regression must be carried out of the site scores obtained 
in Step 3 on the environmental variables (for technical reasons with y+ijy++ as 
site weights). The fitted values of this regression are by definition a linear 
combination of the environmental variables (Equation 5.14) and are thus the new 
site scores to continue with in Step 4 of Table 5.2a. As in CA, the scores stabilize 
after several iterations and the resulting scores constitute an ordination axis of 
CCA. The corresponding eigenvalue actually equals the (maximized) dispersion 
of the species scores along the axis. The eigenvalues in CCA are usually smaller 
than those in CA because of the restrictions imposed on the site scores in CCA. 

The parameters of the final regression in the iteration process are the best weights, 
also called_c^iiojakM^o^fficients, and the multiple correlation of this regression 
is called the species-environment correlation. This is the correlation between the 
site scores that are w^TgTïtecf"âverages of the species scores and the site scores 
that are a linear combination of the environmental variables. The species-en-
vironment correlation is a measure of the association between species and 
environment, but not an ideal one; axes with small eigenvalues may have 
misleadingly high species-environment correlations. The importance of the as-
sociation is expressed better by the eigenvalue because the eigenvalue measures 
how much variation in the species data is explained by the axis and, hence, by 
the environmental variables. 

CCA is restricted correspondence analysis but the restrictions become less strict 
the more environmental variables are included in the analysis. If q ̂  n - 1, then 
there are actually no restrictions any more; CCA is then simply CA. The arch 
effect may therefore crop up in CCA, as it does in CA (Gauch 1982). The method 
of detrending (Hill & Gauch 1980) can be used to remove the arch and is available 
in the computer program CANOCO (ter Braak 1987b). But in CCA, the arch 
can be removed more elegantly by dropping superfluous environmental variables. 
Variables that are highly correlated with the arched axis (often the second axis) 
are most likely to be superfluous. So a CCA with the superfluous variables excluded 
does not need detrending. 

In Subsection 5.2.7, we saw that CA approximated the maximum likelihood 
solution of Gaussian ordination when Conditions A1-A4 hold true. If we change 
the Gaussian ordination model by stating that the site scores must be a linear 
combination of the environmental variables, the maximum likelihood solution 
of the model so obtained is again approximated by CCA when these conditions 
hold true (ter Braak 1986a). The data on species composition are thus explained 
by CCA through a Gaussian response model in which the explanatory variable 
is a linear combination of the environmental variables. Furthermore, tests of real 
data showed that CCA is extremely robust when these assumptions do not hold. 
The vital assumption is that the response model is unimodal. For a simpler model 
where relations are monotonie, the results can still be expected to be adequate 
in a qualitative sense, but for more complex models the method breaks down. 

As an example, we use the Dune Meadow Data, which concerns the impact 
of agricultural use on vegetation in dune meadows on the Island of Terschelling 
(the Netherlands). The data set consists of 20 relevés, 30 plant species (Table 
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0.1) and 5 environmental variables (Table 0.2), one of which is the nominal variable 
'type of management' consisting of four classes. CCA can accommodate nominal 
explanatory variables by defining dummy variables as in multiple regression 
(Subsection 3.5.5). For instance, the dummy variable 'nature management' (Table 
5.7) indicates that meadows received that type of management. The first eigenvalue 
of CCA is somewhat lower than that of CA (0.46 compared to 0.54). Multiple 
regression of the site scores of the first CA axis on the environmental variables, 
as we proposed in Section 5.4, resulted in a multiple correlation of 0.87. If the 
multiple regression is carried out within the iteration algorithm, as in CCA, the 
multiple correlation increases to 0.96, which is the species-environment correlation. 
The CCA scores for species and sites look similar to those of CA: not surprisingly, 
since the multiple correlation obtained with CA is already high. We conclude 
that, in this example, the measured environmental variables account for the main 
variation in the species composition. This is true for the second axis also. The 
second eigenvalue of CCA is 0.29, compared to 0.40 for CA -and the second 
species-environment correlation is 0.89, compared to a multiple correlation of 
0.83 in CA. Table 5.10 shows the canonical coefficients that define the first two 
axes and the correlations of the environmental variables with these axes. These 
correlations are termed intra-set correlations to distinguish them from the inter-
set correlations, which are the correlations between the environmental variables 
and the site scores that are derived from the species scores. (The inter-set correlation 
is R times the intra-set correlation; R is the species-environment correlation of 
the axis). From the correlations in Table 5.10, we infer that the first axis is a 
moisture gradient and that the second axis is a manuring axis, separating the 
meadows managed as a nature reserve from the standardly farmed meadows. This 
can be seen also from the CCA ordination diagram (Figure 5.19a). 

Table 5.10 Canonical correspondence analysis: canonical coef-
ficients (100 X c) and intra-set correlations (100 X r) of 
environmental variables with the first two axes of CCA for 
the Dune Meadow Data. The environmental variables were 
standardized first to make the canonical coefficients of different 
environmental variables comparable. The class SF of the 
nominal variable 'type of management' was used as reference 
class in the analysis (Subsection 3.5.5). 

Variable 

Al 
moisture 
use 
manure 
SF 
BF 
HF 
NM 

Coefficients 

Axis 1 

9 
71 
25 
-7 
-

-9 
18 
20 

Axis 2 

-37 
-29 

5 
-27 

-
16 
19 
92 

Correlations 

Axis 1 

57 
93 
21 

-30 
16 

-37 
-36 

56 

Axis2 

-17 
-14 
-41 
-79 
-70 

15 
-12 

76 
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The species and sites are positioned as points in the CCA diagram as in CA 
and their joint interpretation is also as in CA; sites with a high value of a species 
tend to be close to the point for that species (Subsection 5.2.5). The environmental 
variables are represented by arrows and can be interpreted in conjunction with 
the species points as follows. Each arrow determines an axis in the diagram and 
the species points must be projected onto this axis. As an example, the points 
of a few species are projected on to the axis for manuring in Figure 5.19b. The 
order of the projection points now corresponds approximately to the ranking 
of the weighted averages of the species with respect to amount of manure. The 
weighted average indicates the 'position' of a species curve along an environmental 
variable (Figure 5.18a) and thus the projection point of a species also indicates 
this position, though approximately. Thus Cirsium arvense, Alopecurus genicu-

lates, Elymus repens and Poa trivialis mainly occur in these data in the highly 
manured meadows, Agrostis stolonifera and Trifolium repens in moderately 
manured meadows and Ranunculus flammula and Anthoxanthum odoratum in 
meadows with little manuring. One can interpret the other arrows in a similar 
way. From Figure 5.19a, one can see at a glance which species occur mainly 
in wetter conditions (those on the right of the diagram) and which prefer drier 
conditions (those on the left of the diagram). 

The joint plot of species points and environmental arrows is actually a biplot 
that approximates the weighted averages of each of the species with respect to 
each of the environmental variables. The rules for quantitative interpretation of 
the CCA biplot are the same as for the PCA biplot described in Subsection 5.3.4. 
In the diagram, the weighted averages are approximated as deviations from the 
grand mean of each environmental variable; the grand mean is represented by 
the origin (centroid) of the plot. A second useful rule to interpret the diagram 
is therefore that the inferred weighted average is higher than average if the projection 
point lies on the same side of the origin as the head of an arrow and is lower 
than average if the origin lies between the projection point and the head of an 
arrow. As in Subsection 5.3.2, a measure of goodness of fit is (kl + ^2)/(sum 
of all eigenvalues), which expresses the fraction of variance of the weighted averages 
accounted for by the diagram. In the example, Figure 5.19a accounts for 65% 
of the variance of the weighted averages. (The sum of all canonical eigenvalues 
is 1.177.) 

The positions of the heads of the arrows depend on the eigenvalues and on 
the intra-set correlations. In Hill's scaling (Subsection 5.2.1), the coordinate of 
the head of the arrow for an environmental variable on axis s is rjs 

y/Xs (1 - Xs), with rjs the intra-set correlation of environmental variable j with 
axis s and Xs is the eigenvalue of axis s. The construction of biplots for detrended 
canonical correspondence analysis is described by ter Braak (1986a). Environmental 
variables with long arrows are more strongly correlated with the ordination axes 
than those with short arrows, and therefore more closely related to the pattern 
of variation in species composition shown in the ordination diagram. 

Classes of nominal environmental variables can also be represented by arrows 
(ter Braak 1986a). The projection of a species on such an arrow approximates 
the fraction of the total abundance of that species that is achieved at sites of 
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Figure 5.19 CCA of the Dune Meadow Data, a: Ordination diagram with environmental 
variables represented by arrows. The c scale applies to environmental variables, the u scale 
to species and sites. The types of management are also shown by closed squares at the 
centroids of the meadows of the corresponding types of management, b: Inferred ranking 
of the species along the variable amount of manure, based on the biplot interpretation 
of Part a of this figure. 

that class. However it is sometimes more natural to represent each class of a 
nominal variable by a point at the centroid (the weighted average) of the sites 
belonging to that class (Figure 5.19a). Classes consisting of sites with high values 
for a species are then positioned close to the point of that species. In Figure 
5.19a, the meadows managed as a nature reserve are seen to lie at the top-right 
of the diagram; the meadows of standard farms lie at the bottom. 

A second example (from ter Braak 1986a) concerns the presence or absence 
of 133 macrophytic species in 125 freshwater ditches in the Netherlands. The 
first four axes of detrended correspondence analyses (DCA) were poorly related 
(multiple correlation R < 0.60) to the measured environmental variables, which 
were: electrical conductivity (K), orthophosphate concentration (PHOSPHATE), 
both transformed to logarithms, chloride ratio (CHLORIDE, the share of chloride 
ions in K) and soil type (clay, peaty soil, sand). By choosing the axes in the 
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light of these environmental variables by means of CCA, the multiple correlations 
increased considerably, R being 0.82 and 0.81 for the first two axes. The eigenvalues 
dropped somewhat - for the first two axes, from 0.34 and 0.25 in DCA to 0.20 
and 0.13 in CCA. Apparently, the environmental variables are not sufficient to 
predict the main variation in species composition extracted by DCA, but they 
do predict a substantial part of the remaining variation. From the CCA ordination 
diagram (Figure 5.20), it can be seen that K and PHOSPHATE are strongly 
correlated ( > 0.8) with the first CCA axis. Species with a high positive score 
on that axis are therefore almost restricted to ditches with high K and PHOS-
PHATE, and species with a large negative score to ditches with low K and 
PHOSPHATE. Species with intermediate scores are either unaffected by K and 
PHOSPHATE or restricted to intermediate values of K and PHOSPHATE. The 
second CCA axis is strongly correlated (r = 0.9) with CHLORIDE. The arrow 
for PEAT shows that species whose distribution is the most restricted to peaty 
soils lie in the top-left corner of the diagram. The arrows for SAND and CLAY 
are to be interpreted analogously. 
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Figure 5.20 CCA ordination diagram of the ditch vegetation data (sites are not shown). 

5.5.3 Redundancy analysis (RDA) 

Redundancy analysis (RDA) is the canonical form of PCA and was invented 
by Rao (1964). RDA has so far been neglected by ecologists, but appears attractive 
when used in combination with PCA. 

As in PCA (Subsection 5.3.1), we attempt to explain the data of all species 
by fitting a separate straight line to the data of each species. As a measure of 
how badly a particular environmental variable explains the species data, we take 
the total residual sum of squares, as in PCA (Figure 5.11). The best environmental 
variable is then the one that gives the smallest total residual sum of squares. 
From this, we can derive a canonical ordination technique, as in Subsection 5.5.2, 
by considering also linear combinations of environmental variables. RDA is the 
technique selecting the linear combination of environmental variables that gives 
the smallest total residual sum of squares. 

PCA also minimizes the total residual sum of squares, but it does so without 
looking at the environmental variables (Subsection 5.3.1). We can obtain the RDA 
axes by extending the algorithm of PCA (Table 5.6) in a similar fashion to how 
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we modified the CA algorithm in Subsection 5.5.2; in each iteration cycle, the 
site scores calculated in Step 3 are regressed on the environmental variables with 
Equation 5.13 and the fitted values of the regression are taken as the new site 
scores to continue in Step 4 of the algorithm. (In contrast to CCA, we must 
now use equal site weights in the regression.) So the site scores are restricted 
to a linear combination of the environmental variables and RDA is simply PCA 
with a restriction on the site scores. The species-environment correlation is obtained 
in the same way as for CCA; but, in RDA, this correlation equals the correlation 
between the site scores that are weighted sums of the species scores and the site 
scores that are a linear combination of the environmental variables. 

We illustrate RDA with the Dune Meadow Data, using the same environmental 
variables as in Subsection 5.5.2. The first two axes of PCA explained 29% and 
21% of the total variance in the species data, respectively. RDA restricts the axes 
to linear combinations of the environmental variables and the RDA axes explain 
therefore less, namely 26% and 17% of the total variance. The first two spe-
cies-environment correlations are 0.95 and 0.89, both a little higher than the 
multiple correlations resulting from regressing the first two PCA axes on the 
environmental variables. We conclude, as with CCA, that the environmental 
variables account for the main variation in the species composition. From the 
canonical coefficients and intra-set correlations (Table 5.11), we draw the same 
conclusions as with CCA, namely that the first axis is mainly a moisture gradient 
and the second axis a manuring gradient. 

The RDA ordination diagram (Figure 5.21) can be interpreted as a biplot 
(Subsection 5.3.4). The species points and site points jointly approximate the species 
abundance data as in PCA, and the species points and environmental arrows 

Table 5.11 Redundancy analysis: canonical coefficients (100 
X c) and intra-set correlations (100 X r) of environmental 
variables with the first two axes of RDA for the Dune Meadow 
Data. The environmental variables were standardized first to 
make the canonical coefficients of different environmental 
variables comparable. The class SF of the nominal variable 
'type of management' was used as reference class in the analysis 
(as in Table 5.10). 

Variable 

Al 
moisture 
use 
manure 
SF 
BF 
HF 
NM 

Coefficients 

Axis 1 

-1 
15 
5 

-8 
-

-10 
-10 

-4 

Axis 2 

-5 
9 

-6 
16 
-
0 

-2 
-13 

Correlations 

Axis 1 

54 
92 
15 

-26 
25 

-48 
-40 

51 

Axis 2 

-6 
12 
29 
86 
76 

-11 
13 

-79 
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moisture 

Figure 5.21 RDA ordination diagram of the Dune Meadow Data with environmental 
variables represented by arrows. The scale of the diagram is: 1 unit in the plot corresponds 
to 1 unit for the sites, to 0.067 units for the species and to 0.4 units for the environmental 
variables. 

jointly approximate the covariances between species and environmental variables. 
If species are represented by arrows as well (a natural representation in a PCA 
biplot), the cosine of the angle between the arrows of a species and an environmental 
variable is an approximation of the correlation coefficient between the species 
and the environmental variable. One gets a qualitative idea of such correlations 
from the plot by noting that arrows pointing in roughly the same direction indicate 
a high positive correlation, that arrows crossing at right angles indicate near-
zero correlation, and that arrows pointing in roughly opposite directions indicate 
a high negative correlation. If arrows are drawn for Poa trivialis, Elymus repens 

and Cirsium arvense in Figure 5.21, they make sharp angles with the arrow for 
manuring; hence, the abundances of these species are inferred to be positively 
correlated with the amount of manure. We can be more confident about this 
inference for Poa trivialis than for Cirsium arvense because the former species 
lies much further from the centre of the diagram than the latter species. As in 
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PCA, species at the centre of the diagram are often not very well represented 
and inferences from the diagram about their abundances and correlations are 
imprecise. From Figure 5.21, we infer also that, for instance, Salix repens, 

Hypochaeris radicata and Aira praecox are negatively correlated with the amount 
of manure. 

A measure of goodness of fit of the biplot of species and environmental variables 
is (kl + X2)/(sum of all eigenvalues), which expresses the fraction of variance 
of all covariances between species and environment accounted for by the diagram. 
For the example, Figure 5.21 accounts for 71% of this variance. 

The scaling of Figure 5.21 conforms to that of the Euclidean distance biplot 
(Subsection 5.3.4): the sum of squares of the species scores is unity and site points 
are obtained by weighted summation of species scores. The positions of the heads 
of arrows of the environmental variables depend on the intra-set correlations (Table 
5.11) and the eigenvalues. With .this scaling, the coordinate of the head of the 
arrow for an environmental variable on axis s must be rjs \J(kJri) where rJs is 
the intra-set correlation of environmental variable j with axis s, n is the number 
of sites, and Xs the eigenvalue of axis s. The diagram scaled in this way gives 
not only a least-squares approximation of the covariances between species and 
environment, but also approximations of the (centred) abundances values, of the 
Euclidean Distances among the sites as based on the species data (Equation 5.15), 
and of covariances among the environmental variables, though the latter two 
approximations are not least-squares approximations. Other types of scaling are 
possible but appear less attractive. 

5.5.4 Canonical correlation analysis (COR) 

The species-environment correlation was a by-product in CCA and RDA, but 
is central in canonical correlation analysis (COR). The idea of COR is to choose 
coefficients (scores) for species and coefficients for environmental variables so 
as to maximize the species-environment correlation. In COR, the species-envir-
onment correlation is defined as in RDA, as the correlation between site scores 
ix-*) that are weighted sums of species scores: (x,* = Y,k bk yki) and site scores 
(Xj) that are a linear combination of the environmental variables (x, = c0 + 
Sy Cj Zj,). An algorithm to obtain the COR axes is given in Table 5.12. The resulting 
species-environment correlation is termed the canonical correlation, and is actually 
the squareroot of the first eigenvalue of COR. Step 2 of the algorithm makes 
the difference from RDA: in RDA, the species scores are simply a weighted sum 
of the site scores, whereas in COR the species scores are parameters estimated 
by a multiple regression of the site scores on the species variables. This regression 
has the practical consequence that, in COR, the number of species must be smaller 
than the number of sites. It can be shown that the restriction on the number 
of species is even stronger than that: the number of species plus the number 
of environmental variables must be smaller than the number of sites. This 
requirement is not met in our Dune Meadow Data and is generally a nuisance 
in ecological research. By contrast, RDA and CCA set no upper limit to the 
number of species that can be analysed. Examples of COR can be found in Gittins 
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Table 5.12 An iteration algorithm for canonical correlation analysis (COR). 

Step 1. Start with arbitrary initial site scores (x,), not all equal to zero. 
Step 2. Calculate species scores by multiple regression of the site scores on the species variables. 

The species scores (bk) are the parameter estimates of this regression. 
Step 3. Calculate new site scores (x*) by weighted summation of the species scores (Equation 5.9). 

The site scores in fact equal the fitted values of the multiple regression of Step 2. 
Step 4. Calculate coefficients for the environmental variables by multiple regression of the site 

scores (x') on the environmental variables. The coefficients (c) are the parameter estimates 
of this regression. 

Step 5. Calculate new site scores (x,) by weighted summation of the coefficients of the environmental 
variables, i.e. by x, = S;l, c- z7. The site scores in fact equal the fitted values of the multiple 
regression of Step 4. 

Step 6. For second and higher axes, orthogonalize the site scores (x,) as in Table 5.6. 
Step 7. Standardize the site scores (x,) as in Table 5.6. 
Step 8. Stop on convergence, i.e. when the new site scores are sufficiently close to the site scores 

of the previous cycle of the iteration process; ELSE go to Step 2. 

(1985). COR allows a biplot to be made, from which the approximate covariances 
between species and environmental variables can be derived in the same way as 
in RDA (Subsection 5.5.3). The construction of the COR biplot is given in 
Subsection 5.9.3. 

In our introduction to COR, species and environmental variables enter the 
analysis in a symmetric way (Table 5.12). Tso (1981) presented an asymmetric 
approach in which the environmental variables explain the species data. In this 
approach COR is very similar to RDA, but differs from it in the assumptions 
about the error part of the model (Equations 5.10 and 5.14): uncorrelated errors 
with equal variance in RDA and correlated normal errors in COR. The residual 
correlations between erors are therefore additional parameters in COR. When 
the number of species is large, there are so many of them that they cannot be 
estimated reliably from data from few sites. This causes practical problems with 
COR that are absent in RDA and CCA. 

5.5.5 Canonical variate analysis (CVA) 

Canonical variate analysis (CVA) belongs to the classical linear multivariate 
techniques along with PCA and COR. CVA is also termed linear discriminant 
analysis. 

If sites are classified into classes or clusters, we may wish to know how the 
species composition differs among sites of different classes. If we have recorded 
the abundance values of a single species only, this question reduces to how much 
the abundance of the species differs between classes, a question studied in Subsection 
3.2.1 by analysis of variance. If there are more species, we may wish to combine 
the abundance values of the species to make the differences between classes clearer 
than is possible on the basis of the abundance values of a single species. CVA 
does so by seeking a weighted sum of the species abundances; however not one 
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that maximizes the total variance along the first ordination axis, as PCA does, 
but one that maximizes the ratio of the between-class sum of squares and the 
within-class sum of squares of the site scores along the first ordination axis. (These 
sums of squares are the regression sum of squares and residual sum of squares, 
respectively, in an ANOVA of the site scores, cf. Subsection 3.2.1.). 

Formally, CVA is a special case of COR in which the set of environmental 
variables consists of a single nominal variable defining the classes. So from 
Subsection 3.5.5, the algorithm of Table 5.12 can be used to obtain the CVA 
axes. We deduce that use of CVA makes sense only if the number of sites is 
much greater than the number of species and the number of classes (Schaafsma 
& van Vark 1979; Varmuza 1980). Consequently, many ecological data sets cannot 
be analysed by CVA without dropping many species. Examples of CVA can be 
found in Green (1979), Pielou (1984) and Gittins (1985). 

In contrast to CVA, CCA and RDA can be used to display differences in species 
composition between classes without having to drop species from the analysis. 
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Figure 5.22 CCA ordination diagram of the Dune Meadow Data optimally displaying 
differences in species composition among different types of management. 
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For this, we must code classes as dummy environmental variables, as in Subsection 
3.5.5. Such an analysis by CCA is equivalent to the analysis of concentration 
proposed by Feoli & Orlóci (1979). As an example, Figure 5.22 displays the 
differences in vegetation composition between the meadows receiving different 
types of management in our Dune Meadow Data. The first axis (Xl = 0.32) is 
seen to separate the meadows receiving nature management from the remaining 
meadows and second axis (k2 = 0.18) separates the meadows managed by standard 
farming from those managed by hobby farming and biological farming, although 
the separations are not perfect. The species displayed on the right side of the 
diagram occur mainly in the meadows receiving nature management and those 
on the upper left in the meadows managed by standard farming, and so on. Figure 
5.22 displays almost the same information as Figure 5.19a, as can be seen by 
joining Site Points 16 and 18 in both diagrams. Moisture and manuring are 
presumably the major factors bringing about vegetation differences between types 
of management. 

5.5.6 Interpreting canonical axes 

To interpret the ordination axes, one can use the canonical coefficients and 
the intra-set correlations. The canonical coefficients define the ordination axes 
as linear combinations of the environmental variables by means of Equation 5.14 
and the intra-set correlations are the correlation coefficients between the envir-
onmental variables and these ordination axes. As before, we assume that the 
environmental variables have been standardized to a mean of 0 and a variance 
of 1 before the analysis. This standardization removes arbitrariness in the units 
of measurement of the environmental variables and makes the canonical coefficients 
comparable among each other, but does not influence other aspects of the analysis. 

By looking at the signs and relative magnitudes of the intra-set correlations 
and of the canonical coefficients standardized in this way, we may infer the relative 
importance of each environmental variable for prediction of species composition. 
The canonical coefficients give the same information as the intra-set correlations, 
if the environmental variables are mutually uncorrelated, but may provide rather 
different information if the environmental variables are correlated among one 
another, as they usually are in field data. Both a canonical coefficient and an 
intra-set correlation relate to the rate of change in species composition by changing 
the corresponding environmental variable. However it is assumed that other 
environmental variables are being held constant in the former case, whereas the 
other environmental variables are assumed to covary with that one environmental 
variable in the particular way they do in the data set in the latter case. If the 
environmental variables are strongly correlated with one another, for example 
simply because the number of environmental variables approaches the number 
of sites, the effects of different environmental variables on the species composition 
cannot be singled out and, consequently, the canonical coefficients will be unstable. 
This is the multicollinearity problem discussed in the context of multiple regression 
in Subsection 3.5.3. The algorithms to obtain the canonical axes show that canonical 
coefficients are actually coefficients of a multiple regression (Subsection 5.5.2), 
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so both suffer identical problems. If the multicollinearity problem arises (the 
program CANOCO (ter Braak 1987b) provides statistics to help detecting it), 
one should abstain from attempts to interpret the canonical coefficients. But the 
intra-set correlations do not suffer from this problem. They are more like simple 
correlation coefficients. They can still be interpreted. One can also remove 
environmental variables from the analysis, keeping at least one variable per set 
of strongly correlated environmental variables. Then, the eigenvalues and spe-
cies-environment correlations will usually only decrease slightly. If the eigenvalues 
and species-environment correlations drop considerably, one has removed too 
many (or the wrong) variables. 

Their algorithms indicate that COR and CVA are hampered also by strong 
correlations among species, whereas CCA and RDA are not. So in CCA and 
RDA, the number of species is allowed to exceed the number of sites. 

5.5.7 Data transformation 

As in CA and PCA, any kind of transformation of the species abundances 
may affect the results of CCA and RDA. We refer to Subsections 5.2.2 and 5.3.5 
for recommendations about this. The results of COR and CVA are affected by 
non-linear transformations of the species data, but not by linear transformations. 
Canonical ordination techniques are not influenced by linear transformations of 
the environmental variables, but non-linear transformation of environmental 
variables can be considered if there is some reason to do so. Prior knowledge 
about the possible impact of the environmental variables on species composition 
may suggest particular non-linear transformations and particular non-linear 
combinations, i.e. environmental scalars in the sense of Loucks (1962) and Austin 
et al. (1984). The use of environmental scalars can also circumvent the multi-
collinearity problem described in Subsection 5.5.6. 

5.6 Multidimensional scaling 

In Section 5.1, ordination was defined as a method that arranges site points 
in the best possible way in a continuum such that points that are close together 
correspond to sites that are similar in species composition, and points which are 
far apart correspond to sites that are dissimilar. A particular ordination technique 
is obtained by further specifying what 'similar' means and what 'best' is. The 
definition suggests that we choose a measure of (dis)similarity between sites 
(Subsection 6.2.2), replace the original species composition data by a matrix of 
dissimilarity values between sites and work further from the dissimilarity matrix 
to obtain an ordination diagram. This final step is termed multidimensional scaling. 

In general, it is not possible to arrange sites such that the mutual distances 
between the sites in the ordination diagram are equal to the calculated dissimilarity 
values. Therefore a measure is needed that expresses in a single number how 
well or how badly the distances in the ordination diagram correspond to the 
dissimilarity values. Such a measure is termed a loss function or a stress function. 
In metric ordination techniques such as CA and PCA, the loss function depends 
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on the actual numerical values of the dissimilarities, whereas, in non-metric 
techniques, the loss function depends only on the rank order of the dissimilarities. 

In CA and PCA, one need not calculate a matrix of dissimilarity values first, 
yet those techniques use particular measures of dissimilarity. In CA, the implied 
measure of dissimilarity is the chi-squared distance and, in PCA, the Euclidean 
Distance, as follows immediately from Subsection 5.3.3. The chi-square distance 
S,y between site i and site j is defined as 

V = y++ Vk=\<Jkily+i - y/cjly+j)
2
 lyk+ Equation 5.15 

and the Euclidean Distance 8,y between these sites is 

5,/ = EJL, (ykl - ykj)
2 Equation 5.16 

The chi-squared distance involves proportional differences in abundances of species 
between sites, whereas the Euclidean Distance involves absolute differences. 
Differences in site and species totals are therefore less influential in CA than 
in PCA, unless a data transformation is used in PCA to correct for this effect. 

A simple metric technique for multidimensional scaling is principal coordinate 
analysis (PCO), also called classical scaling (Gower 1966; Pielou 1977, p.290-
395). PCO is based on PCA, but is more general than PCA, in that other measures 
of dissimilarity may be used than Euclidean Distance. In PCO, the dissimilarity 
values 5,y are transformed into similarity values by the equation 

Cjj = -0.5 (8? - 5f+/n - 5
2
+j/n + 82

++/rc2) Equation 5.17 

where the index + denotes a sum of squared dissimilarities. The matrix with 
elements Cy is then subjected to the Q-mode algorithm of PCA (Subsection 5.3.6). 
If the original dissimilarities were computed as Euclidean Distances, PCO is 
identical to species-centred PCA calculated by the Q-mode algorithm. 

In most techniques for (non-metric) multidimensional scaling, we must specify 
a priori the number of ordination axes and supply an initial ordination of sites. 
The technique then attempts to modify the ordination iteratively to minimize 
the stress. In contrast to the iterative algorithms for CA, PCA and PCO, different 
initial ordinations may lead to different results, because of local minima in the 
stress function (Subsection 5.2.7); hence, we must supply a 'good' initial ordination 
or try a series of initial ordinations. From such trials, we then select the ordination 
with minimum stress. 

The best known technique for non-metric multidimensional scaling is ascribed 
to Shepard (1962) and Kruskal (1964). The stress function, which is minimized 
in their technique, is based on the Shepard diagram. This is a scatter diagram 
of the dissimilarities (8,̂ ) calculated from the species data against the distances 
ay between the sites in the ordination diagram. 

The ordination fits perfectly (stress = 0), if the dissimilarities are monotonie 
with the distances, i.e. if the points in the Shepard plot lie on a monotonically 
increasing curve. If they do not, we can fit a monotonie curve through the points 
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by least-squares. This is called monotonie or isotonic regression (Barlow et al. 
1972). We then use as stress, a function of the residual sum of squares (for example, 
Kruskal's stress formula 1, which is the residual sum of squares divided by the 
total sum of squared distances). The algorithm to seek the ordination that minimizes 
the stress proceeds further as described above. Note that the method can work 
equally well with similarities, the only modifications being that a monotonically 
decreasing curve is fitted in the Shepard diagram. There are two methods to deal 
with equal dissimilarity values (ties). In the primary approach to ties, the 
corresponding fitted distances need not be equal, whereas they must be equal 
in the secondary approach. The primary approach to ties is recommended, because 
equal dissimilarity values do not necessarily imply equal habitat differences, in 
part'cular if the equalities arise between pairs of sites that have no species in 
common (Prentice 1977). 

The Shepard-Kruskal method is based on the rank order of all dissimilarities. 
But calculated dissimilarities may not be comparable in different parts of a gradient, 
for example if there is a trend in species richness. This potential problem can 
be overcome by making a separate Shepard diagram for each site, in which we 
plot the dissimilarities and distances between the particular site and all remaining 
sites. Each Shepard diagram the distances leads to a stress value and the total 
stress is taken to be a combination of the separate stress values. This is the local 
non-metric technique proposed by Sibson (1972). Prentice (1977; 1980) advocated 
a particular similarity coefficient for use in Sibson's technique. This coefficient is 

'j 
Y.k mm{yki,yk} Equation 5.18 

Kendall (1971) proved that this coefficient contains all the information required 
to reconstruct the order of sites when abundances of species follow arbitrary 
unimodal response curves. 

5.7 Evaluation of direct gradient and indirect gradient analysis techniques 

Table 5.13 summarizes the techniques described in Chapters 3, 4 and 5 by type 
of response model and types of variables. We can classify response models as 
linear and non-linear. Each linear technique (from multiple regression to COR) 
has non-linear counterparts. A, non-linear model that has special^ relevance in 
community ecology is the unimodal model. In principle, unimodal models can 
be fitted to data by the general methods used for non-linear models (in particular 
by maximum likelihood methods). For regression analysis, these methods are 
available (GLM, Chapter 3) but, in ordination, they are not so readily available 
and tend to require excessive computing. Therefore we have also introduced much 
simpler methods for analysing data for which unimodal models are appropriate. 

; These simple methods start from the idea that the optima of species response 
| curves can be estimated roughly by weighted averaging and we have shown (Section 
! 3.7) that under particular conditions the estimates are actually quite good. This 
I idea resulted in CA, DCA and CCA. 

Multidimensional scaling is left out of Table 5.13, because it is unclear what 
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Table 5.13 Summary of gradient analysis techniques classified by type of response model 
and types of variables involved. MR, normal multiple regression; IR, inverse regression; 
PCA, principal components analysis; RDA, redundancy analysis; COR, canonical correlation 
analysis; WAE, weighted averaging of environmental values; GLM, generalized linear 
modelling; ML, maximum likelihood; WAI, weighted averaging of indicator values; CA, 
correspondence analysis; DCA, detrended correspondence analysis; CCA, canonical cor-
respondence analysis; DCCA, detrended canonical correspondence analysis; env.vars, 
environmental variables; comp, gradients, composite gradients of environmental variables, 
either measured or theoretical. 

Regression 
Calibration 
Ordination 
Canonical 

ordination 

Response model 

linear unimodal 

MR 
IR 
PCA 
RDA 

COR 

WAE, GLM, ML 
WAI, ML 
CA, DCA, ML 
CCA, DCCA, 

ML 
variants 

ofCCA,ML 

Number of variables 

response 
(species) 

one at a time 
3>1* 
many 
many 

many* 

explanatory 
(env. vars) 

1* 
rarely >1 
none 
many* 

many* 

composite 
(comp.gradients) 

one per species 
none 
a few for all species 
a few for all species 

a few 

less than number of sites, except for WAE, WAI and some applications of ML. 

response models multidimensional scaling can cope with. Whether (non-metric) 
multidimensional scaling may detect a particular underlying data structure depends 
in an unknown way on the chosen dissimilarity coefficient and on the initial 
ordinations supplied. Non-metric multidimensional scaling could sometimes give 
better ordinations than DCA does, but the question is whether the improvements 
are worth the extra effort in computing power and manpower (Clymo 1980; Gauch 
etal. 1981). 

Unimodal models are more general than monotonie ones (Figure 3.3), so it 
makes sense to start by using unimodal models and to decide afterwards whether 
one could simplify the model to a monotonie one. Statistical tests can help in 
this decision (Subsection 3.2.3). In ordination, we might therefore start by using 
CA, DCA or CCA. This initial analysis will provide a check on how unimodal 
the data are. If the lengths of the ordination axes are less than about 2 s.d., 
most of the response curves (or surfaces) will be monotonie, and we can consider 
using PCA or RDA. The advantage of using PCA and RDA is that in their 
biplot they provide more quantitative information than CA, DCA and (D)CCA 
in their joint plot, but this advantage would be outweighed by disadvantages 
when the data are strongly non-linear (ordination lengths greater than about 4 
s.d.). 

As illustrated by the Dune Meadow Data whose ordination lengths are about 
3 s.d., DCA and PCA may result in similar configurations of site points (Figures 
5.7 and 5.15). That they result in dissimilar configurations of species points, even 
if the ordination lengths are small, is simply due to the difference in meaning 
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of the species scores in DCA and PCA (Subsections 5.2.5 and 5.3.5). 
Table 5.13 also shows the types of variables involved in regression, calibration, 

ordination and canonical ordination. We distinguish between response variables, 
explanatory variables and 'composite' variables, which in community ecology 
typically correspond to species presences or abundances, measured environmental 
variables and 'composite gradients', respectively. A composite gradient is either 
a linear combination of measured environmental variables or a theoretical variable. 
Which technique is the appropriate one to use largely depends on the research 
purpose and the type of data available. Ordination and cluster analysis (Chapter 
6) are the only available techniques when one has no measured environmental 
data. Calibration must be considered if one wants to make inferences about values 
of a particular environmental variable from species data and existing knowledge 
of species-environment relations. Regression and canonical ordination are called 
for if one wants to build up and extend the knowledge of species-environment 
relations (Subsections 3.1.1 and 5.1.1). 

Whether to use regression or to use canonical ordination depends on whether 
it is considered advantageous to analyse all species simultaneously or not. In 
a simultaneous analysis by canonical ordination, one implicitly assumes that all 
species are reacting to the same composite gradients of environmental variables 
according to a common response model. The assumption arises because canonical 
ordination constructs a few composite gradients for all species. By contrast in 
regression analysis, a separate composite gradient is constructed for each species. 
Regression may therefore result in more detailed descriptions and more accurate 
predictions of each particular species, at least if sufficient data are available. 
However ecological data that are collected over a large range of habitat variation 
require non-linear models; building jjood non-linear_models_by regression is not 
easy, because it requires construction of composite gradients that are non-linear 
combinations of environmental variables (Subsection 3.5.4). In CCA, the composite 
gradients are linear combinations of environmental variables, giving a much simpler 
analysis, and the non-linearity enters the model through a unimodal model for 
a few composite gradients, taken care of in CCA by weighted averaging. Canonical 
ordination is easier to apply and requires less data than regression. It jjroxides-
a_summary of the species-environment relations. The summary may lack the kind 
of detail that can in principle be provided by regression; on the other hand, the 
advantages of using regression, with its machinery of statistical tests, may be 
lost in practice, through the sheer complexity of non-linear model building and 
through lack of data. Because canonical ordination gives a more global picture 
than regression, it may be advantageous to apply canonical ordination in the 
early exploratory phase of the analysis of a particular data set and to apply 
regression in subsequent phases to selected species and environmental variables. 

As already shown in the examples in Subsection 5.5.2, canonical ordination 
and ordination followed by environmental interpretation can be used fruitfully 
in combination. If the results do not differ much, then we know that no important 
environmental variables have been overlooked in the survey. But note that those 
included could merely be correlated with the functionally important ones. A further 
proviso is that the number of environmental variables (q) is small compared to 
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the number of sites (n). If this proviso is not met, the species-environment 
correlation may yield values close to 1, even if none of the environmental variables 
affects the species. (Note the remarks about R2 in Subsection 3.2.1.) In particular, 
canonical ordination and ordination give identical ordination axes if q ̂  n - 1. 
If the results of ordination and canonical ordination do differ much, then we 
may have overlooked major environmental variables, or important non-linear 
combinations of environmental variables already included in the analysis. But 
note that the results will also differ if CA or DCA detect a few sites on their 
first axis that have an aberrant species composition and if these sites are not 
aberrant in the measured environmental variables. After deleting the aberrant 
sites, the ordinations provided by (D)CA and CCA may be much more alike. 

The question whether we have overlooked major environmental variables can 
also be studied by combining ordination and canonical ordination in a single 
analysis. Suppose we believe that two environmental variables govern the species 
composition in a region. We may then choose two ordination axes as linear 
combinations of these variables by canonical ordination, and extract further 
(unrestricted) axes as in CA or PCA, i.e. by the usual iteration process, making 
the axes unrelated to the previous (canonical) axes in each cycle. The eigenvalues 
of the extra axes measure residual variation, i.e. variation that cannot be explained 
by linear combinations of the environmental variables already included in the 
analysis. Such combined analyses are called partial ordination. Partial PCA 
(Subsection 5.3.5) is a special case of this. 

A further extension of the analytical power of ordination is partial canonical 
ordination. Suppose the effects of particular environmental variables are to be 
singled out from 'background' variation imposed by other variables. In an 
environmental impact study, for example, the effects of impact variables are to 
be separated from those of other sources of variation, represented by 'covariables'. 
One may then want to eliminate ('partial out') the effects of the covariables and 
to relate the residual variation to the impact variables. This is achieved in partial 
canonical ordination. Technically, partial canonical ordination can be carried out 
by any computer program for canonical ordination. The usual environmental 
variables are simply replaced by the residuals obtained by regressing each of the 
impact variables on the covariables. The theory of partial RDA and partial CCA 
is described by Davies & Tso (1982) and ter Braak (1988). Partial ordination 
and partial canonical ordination are available in the computer program CANOCO 
(ter Braak 1987b). The program also includes a Monte Carlo permutation procedure 
to investigate the statistical significance of the effects of the impact variables. 

5.8 Bibliographic notes 

A simple ordination technique of the early days was polar ordination (Bray 
& Curtis 1957; Gauch 1982), which has been recently reappraised by Beals (1985). 
PCA was developed early this century by K. Pearson and H. Hotelling (e.g. Mardia 
et al. 1979) and was introduced in ecology by Goodall (1954). PCA was popularized 
by Orlóci (1966). CA has been invented independently since 1935 by several authors 
working with different types of data and with different rationales. Mathematically 
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CA is the same as reciprocal averaging, canonical analysis of contingency tables, 
and optimal or dual scaling of nominal variables (Gifi 1981; Gittins 1985; Greenacre 
1984; Nishisato 1980). Benzécri et al. (1973) developed CA in a geometric context. 
Neither of these different approaches to CA is particularly attractive in ecology. 
Hill (1973) developed an ecological rationale (Subsection 5.2.2). The dispersion 
of the species scores by which we introduced CA in Subsection 5.2.1 is formally 
identical to the 'squared correlation ratio' (n2) used by Torgerson (1958, Section 
12.7) and Nishisato ( 1980, p.23) and also follows from the reciprocal gravity problem 
in Heiser (1986). RDA is also known under several names (Israels 1984): PCA 
of instrumental variables (Rao 1964), PCA of y with respect to x, reduced rank 
regression (Davies & Tso 1982). Ter Braak (1986a) proposed CCA. COR was 
derived by H. Hotelling in 1935 (Gittins 1985). Campbell & Atchley (1981) provide 
a good geometric and algebraic introduction to CVA and Williams (1983) discusses 
its use in ecology. Methods to obtain the maximum likelihood solutions for 
Gaussian ordination have been investigated, under the assumption of a normal 
distribution, a Poisson distribution and a Bernoulli distribution for the species 
data, by Gauch et al. (1974), Kooijman (1977) and Goodall & Johnson (1982), 
respectively. However the computational burden of these methods and, hence, 
the lack of reliable computer programs have so far prevented their use on a routine 
basis. Ihm & van Groenewoud (1984) and ter Braak (1985) compared Gaussian 
ordination and CA. Non-metric multidimensional scaling started with the work 
by Shepard (1962) and Kruskal (1964). Schiffman et al. (1981) provide a clear 
introduction. They refer to local non-metric scaling as (row) conditional scaling. 
Meulman & Heiser (1984) describe a canonical form of non-metric multidimen-
sional scaling. Early applications of non-metric multidimensional scaling in ecology 
were Anderson (1971), Noy-Meir (1974), Austin (1976), Fasham (1977), Clymo 
(1980) and Prentice (1977; 1980). The simple unfolding model (response models 
with circular contours) can in principle be fitted by methods of multidimensional 
scaling (Kruskal & Carroll 1969; Dale 1975; de Sarbo & Rao 1984; Heiser 1987), 
but Schiffman et al. (1981) warn of practical numerical problems that may reduce 
the usefulness of this approach. Most of the problems have, however, been 
circumvented by Heiser (1987). 

Many textbooks use matrix algebra to introduce multivariate analysis techniques, 
because it provides an elegant and concise notation (Gordon 1981; Mardia et 
al. 1979; Greenacre 1984; Rao 1973; Gittins 1985). For ecologists, the book of 
Pielou (1984) is particularly recommended. All techniques described in Chapter 
5 can be derived from the singular-value decomposition of a matrix, leading to 
singular vectors and singular values (Section 5.9). The decomposition can be 
achieved by many numerical methods (e.g. Gourlay & Watson 1973), one of which 
is the power algorithm (Table 5.6). The power algorithm is used in Chapter 5 
because it provides the insight that ordination is simultaneously regression and 
calibration, and because it does not require advanced mathematics. The power 
algorithm can easily be programmed on a computer, but is one of the slowest 
algorithms available to obtain a singular-value decomposition. Hill (1979a) and 
ter Braak (1987b) use the power algorithm with a device to accelerate the process. 
The iteration processes of Tables 5.2 and 5.6 are examples of alternating least-
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squares methods (Gifi 1981) and are related to the EM algorithm (Everitt 1984). 
The power algorithm is also a major ingredient of partial least squares (Wold 
1982). 

Computer programs for PCA, COR and CVA are available in most statistical 
computer packages. CA and DCA are available in DECORANA (Hill 1979). 
The program CANOCO (ter Braak 1987b) is an extension of DECORANA and 
it also includes PCA, PCO, RDA, CCA, CVA and partial variants of these 
techniques. All these techniques can be specified in terms of matrix algebra (Section 
5.9). With the facilities for matrix algebra operations in GENSTAT (Alvey et 
al. 1977) or SAS (SAS Institute Inc. 1982), one can therefore write one's own 
programs to analyse small to medium-sized data sets. Schiffman et al. (1981) 
describe various programs for multidimensional scaling. 

Chapter 5 uses response models as a conceptual basis for ordination. Carroll 
(1972) defined a hierarchy of response models, from the linear model (Equation 
5.11), through the model with circular contour lines (Equation 5.5) to the full 
quadratic model (Equation 3.24) with ellipsoidal contours of varying orientation. 
He terms these models the vector model, the (simple) unfolding model and the 
general unfolding model, respectively (also Davison 1983). By taking even more 
flexible response models, we can define even more general ordination techniques. 
However the more flexible the model, the greater the computational problems 
(Prentice 1980). Future research must point out how flexible the model can be 
to obtain useful practical solutions. 

5.9 Ordination methods in terms of matrix algebra 

What follows in this section is a short introduction to ordination methods in 
terms of matrix algebra: 

- to facilitate communication between ecologists and the mathematicians they 
may happen to consult 

- to bridge the gap between the approach followed in Chapter 5 and the 
mainstream of statistical literature on multivariate methods 

- to suggest computational methods based on algorithms for singular-value 
decomposition of a matrix or to extract eigenvalues and eigenvectors from 
a symmetric matrix. 

To start, please read Section 5.8 first. 

5.9.1 Principal components analysis (PCA) 

Let Y = \ykl) be an m X n matrix containing the data on m species (rows of 
the matrix) and n sites (columns of the matrix). In the most familiar form of 
PCA, species-centred PCA, the data are abundances with the species means already 
subtracted, so that yk+ — 0 as in Subsection 5.3.1. PCA is equivalent to the 
singular-value decomposition (SVD) of Y (e.g. Rao 1973; Mardia et al. 1979; 
Greenacre 1984) 

Y = P A 0 5 Q ' Equation 5.19 
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where P and Q are orthonormal matrices of dimensions m X r and nXr, respectively, 
with r = min (m,n), i.e. P 'P = I and Q'Q = I, and A is a diagonal matrix 
with diagonal elements Xs (s = 1 ... r), which are arranged in order of decreasing 
magnitude Xx ̂  X2 =̂  ̂ 3 ̂  ••• ̂  0. 

The columns of P and Q contain the singular vectors of Y, and X®-
5 is the sth 

singular value of Y. If the .sth column of P is denoted by ps, an m vector, and 
the sth column of Q by q̂ , an n vector, Equation 5.19 can be written as 

- . 5 = 1 ^°'5 P* 0 / Equation 5.20 

The least-squares approximation of Y in Equation 5.11 of Subsection 5.3.2 
is obtained from Equation 5.20 by retaining only the first two terms of this 
summation, and by setting bs = X®-

5
 ps and x̂  = q̂  (s — 1,2). 

The kth element of b[ then contains the species score bkl, and the it h element 
of X[ contains the site score xn on the first axis of PC A. Similarly, b2, and x2 

contain the species and sites scores on the second axis of PCA. The species and 
sites scores on both axes form the coordinates of the points for species and sites 
in the biplot (Subsection 5.3.4). The interpretation of the PCA biplot follows 
from Equation 5.11: inner products between species points and site points provide 
a least-squares approximation of the elements of the matrix Y (Gabriel 1971; 
1978). Equation 5.20 shows that the total sum of squares Y.ki yk} equals 
X{+ ... + Xr, the sum of all eigenvalues, and that the total residual sum of squares 

\ i but - (
b
k\ xn + bk2 xi2)f = Xj+ X4 + ... + Xr. 

An appropriate measure of goodness of fit is therefore (Xl + A.2)/(sum of all 
eigenvalues). From P 'P = I, Q'Q = I and Equation 5.20, we obtain 

bs = Yxs Equation 5.21 

and 

>tJxi = Y'b i. Equation 5.22 

Hence, the species scores are a weighted sum of the site scores and the site scores 
are proportional to a weighted sum of the species scores (Table 5.6 and Subsection 
5.3.2). Equation 5.21 and Equation 5.22 show that b^ and xs are eigenvectors 
of YY' and Y'Y, respectively, and that Xs is their common eigenvalue; whence, 
the R-mode and Q-mode algorithms of Subsection 5.3.6. 

The SVD of the species-by-species cross-product matrix YY' is P A P ' , as 
follows from Equation 5.19 by noting that Q'Q = I. A least-squares approximation 
of the matrix YY' in two dimensions is therefore given by the matrix bjb'i + 
b2 b '2 . Since \Y'/(n - 1) contains covariances between species, the biplot of \s 

and b^ is termed the covariance biplot (Corsten & Gabriel 1976; ter Braak 1983). 
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The SVD of the site-by-site cross-product matrix Y'Y is Q A Q'. A biplot 
of Y and Y'Y is therefore obtained by redefining bs and x,, as bs = ps and 
\s — Xs°-5q^. The inter-site distances in this biplot approximate the Euclidean 
Distances between sites as defined by Equation 5.16; hence the name Euclidean 
Distance biplot. The approximation is, however, indirect namely through Equation 
5.17 with Cjj the (/, y')th element of Y'Y. A consequence of this is that the inter-
site distances are always smaller than the Euclidean Distances. 

5.9.2 Correspondence analysis (CA) 

In CA, the species-by-sites matrix Y contains the abundance values yki in which 
ykj ^ 0. The data is not previously centred in CA. Let M = diag (yk+), an 
m X m diagonal matrix containing the row totals of Y, N = diag (y+/), an n 

X n diagonal matrix containing the column totals of Y. 
As stated in Subsection 5.2.1, CA chooses standardized site scores x that 

maximize the dispersion of species scores, which are themselves weighted averages 
of the site scores (Equation 5.1). In matrix notation, the vector of species scores 
u — (uk)[k = 1, ..., rri] is 

u - M-'Yx Equation 5.23 

and the dispersion is 

8 = u'Mu/x'Nx = x'Y'M-'Yx /x'Nx Equation 5.24 

where the denominator takes account of the standardization of x (Table 5.2c), 
provided x is centred (1 'Nx = 0). 

The problem of maximizing 5 with respect to x has as solution the second 
eigenvector of the eigenvalue equation 

Y'M-1Yx = ),N x Equation 5.25 

with 8 = X (Rao 1973, Section lf.2 and p.74; Mardia et al. 1979, Theorem A9.2). 

This can be seen by noting that the first eigenvector is a trivial solution (x = 
1; X — 1); because the second eigenvector is orthogonal to the first eigenvector 
in the N metric, the second eigenvector maximizes 5 subject to 1'Nx = 0. What 
is called the first eigenvector of CA in Section 5.2 is thus the second eigenvector 
of Equation 5.25, i.e. its first non-trivial eigenvector. The second non-trivial 
eigenvector of Equation 5.25 is similarly seen to maximize 5, subject to being 
centred and to being orthogonal to the first non-trivial eigenvector, and so on 
for subsequent axes. Equation 5.25 can be rewritten as 

X x = N'Y'u Equation 5.26 
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Equations 5.23 and 5.26 form the 'transition equations' of CA. In words: the 
species scores are weighted averages of the site scores and the site scores are 
proportional to weighted averages of the species scores (Table 5.2 and Exercise 
5.1.3). 

The eigenvectors of CA can also be obtained from the SVD 

M-o.5 y N-°-5 = P A 0 5 Q' Equation 5.27 

by setting û  = Xs
0
-

5 M"05
 ps and xs — N"°5

 ̂ , where p^ and q̂  are the sth columns 
of P and Q, respectively (s — 1, ..., r). 

This can be seen by inserting the equations for û  and xs in Equations 5.23 and 
5.26, and rearranging terms. It is argued in Subsection 5.2.7 that it is equally 
valid to distribute Xs in other ways among us and xs, as is done, for example, 
in Hill's scaling (Subsection 5.2.2). 

CA differs from PCA in the particular transformation of Y in Equation 5.27 
and in the particular transformation of the singular vectors described just below 
that equation. 

5.9.3 Canonical correlation analysis (COR) 

As in species-centred PCA, let Y be an m X n matrix in which the kth row 
contains the centred abundance values of the kth species (i.e. yk+ = 0) and let 
Z be a q X n matrix in which the yth row contains the centred values of the 
y'th environmental variable (i.e. z-+ = 0). Define 

S12 = YZ ', S„ = YY ', S22 = ZZ' and S2, = S'12. Equation 5.28 

The problem of COR is to determine coefficients for the species b —{bk)[k — 

1, ..., m] and for the environmental variables c =(c-)[/ — 1, ..., q] that maximize 
the correlation between x* = Y'b and x = Z'c. The solution for b and c is known 
to be the first eigenvector of the respective eigenvalue equations 

S12 S22
_' S 2 | b = l S | | b Equation 5.29 

S2| Sn~' S|2 c — X S22 c Equation 5.30 

The eigenvalue X equals the squared canonical correlation (Rao 1973; Mardia 
et al. 1979; Gittins 1985). 

Note that b can be derived from a multiple regression of x on the species, 
or from c, by 

b = (YY')"1 Yx = S,,"1 S12 c Equation 5.31 

and, similarly, c can be derived from a multiple regression of x* on the environmental 
variables, or from b, by 
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Xe = (ZZ y 1 Zx* = S22••» S2I b Equation 5.32 

It can be verified that b and c from Equations 5.31 and 5.32 satisfy Equations 
5.29 and 5.30, by inserting b from Equation 5.31 into Equation 5.32 and by inserting 
c from Equation 5.32 into Equation 5.31; but note that we could have distributed 
X in other ways among Equations 5.31 and 5.32. Equations 5.31 and 5.32 form 
the basis of the iteration algorithm of Table 5.12. Step 7 of Table 5.12 takes 
care of the eigenvalue: at convergence, x is divided by X (Table 5.6c). Once 
convergence is attained, c should be divided by X to ensure that the final site 
scores satisfy x = Z'c (Step 5);hence the X in Equation 5.32. The second and 
further axes obtained by Table 5.12 also maximize the correlation between x 
and x*, but subject to being uncorrelated to the site scores of the axes already 
extracted. 

COR can also be derived from the SVD of 

S,f05 S12 S22-°'5 = P A05 Q' Equation 5.33 

The equivalence of Equation 5.31 with Equation 5.33 can be verified by pre-
multiplying Equation 5.33 on both sides with Sn"

0-5 and post-multiplying Equation 
5.33 on both sides with Q and by defining 

B = Sn-°-5 P A05 and C = S22
0-5 Q. Equation 5.34 

The 5th column of B and of C contain the canonical coefficients on the 5th axis 
of the species and environmental variables, respectively. The equivalence of 
Equation 5.32 with Equation 5.33 can be shown similarly. 

COR allows a biplot to be made in which the correlations between species 
and environmental variables are approximated. The problem to which the canonical 
correlation biplot is the solution can be formulated as follows: determine points 
for species and environmental variables in ̂ -dimensional space in such a way 
that their inner products give a weighted least-squares approximation to the 
elements of the covariance matrix S12. In the approximation, the species and 
the environmental variables are weighted inversely with their covariance matrices 
S n and S22, respectively. Let the coordinates of the points for the species be 
collected in the m X t matrix G and those for the environmental variables in 
the q X t matrix H. The problem is then to minimize 

| |S, r°-5 (S,2 - GH') S22-°-5||2 = US,,-»-* S,2 S22-°-5 - (S,,-0-5 G)(S22-0-5 H)' | | 2 

Equation 5.35 

with respect to the matrices G and H, where ||»|| is the Euclidean matrix norm, 
e.g. ||Y||2 = Z t , ^ . 

From the properties of an SVD (Subsection 5.9.1), it follows that the minimum 
is attained when S,f05 G and S22"

0'5 H correspond to the first t columns of the 
matrices PA05 and Q of Equation 5.33, respectively. The required least-squares 
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approximation is thus obtained by setting G and H equal to the first t columns 
of S,,05 PA05 and S22

0-5 Q, respectively. Again, A can be distributed in other 
ways among P and Q. For computational purposes, note that 

Sno.5 p Ao.5 = S ] | S|i-o.5 p Ao.5 = S [ B = Y Y ' B = YX Equation 5.36 

and 

S22
0-5 Q = S22 S22-°-5 Q = S22 C = ZX Equation 5.37 

where X = Z'C. Because X'X = I, the biplot can thus be constructed from the 
inter-set correlations of the species and the intra-set correlations of the envir-
onmental variables (which are the correlations of the site scores x with the species 
variables and environmental variables, respectively). This construction rule requires 
the assumption that the species and environmental variables are standardized to 
unit variance, so that S12 is actually a correlation matrix. The angles between 
arrows in the biplot are, however, not affected by whether either covariances 
or correlations between species and environment are approximated in the canonical 
correlation biplot. 

5.9.4 Redundancy analysis (RDA) 

RDA is obtained by redefining S n in subsection 5.9.3 to be the identity matrix 
(Rao 1973, p.594-595). In the RDA biplot, as described in Subsection 5.5.3, the 
coordinates of the point for the species and the variables are given in the matrices 
P and S22°5 Q A05, respectively. 

5.9.5 Canonical correspondence analysis (CCA) 

CCA maximizes Equation 5.24 subject to Equation 5.14, provided x is centred. 
If the matrix Z is extended with a row of ones, Equation 5.14 becomes x 

= Z'c, with c = (Cj)\j = 0, 1, ..., q\. By inserting x = Z'c in Equation 5.24 
and (re)defining, with Y non-centred, 

S,2 = YZ ', S,, = M = diag (yk+) and S22 = ZNZ ' Equation 5.38 

we obtain 

S = c'S2] S n" ' S,2 c / c ' S22 c Equation 5.39 

The solutions of CCA can therefore be derived from the eigenvalue Equation 
5.30 with S,2, S u and S22 defined as in Equation 5.38. If defined in this way, 
CCA has a trivial solution c' = (1, 0, 0, ..., 0), X = 1, x = 1 and the first non-
trivial eigenvector maximizes 8 subject to 1'Nx = 1'NZ'c = 0 and the maximum 
S equals the eigenvalue. A convenient way to exclude the trivial solution is to 
subtract from each environmental variable its weighted mean z- = £, y+i Zpjy++ 
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(and to remove the added row of ones in the matrix Z). Then, the matrix Z 
has weighted row means equal to 0: 2, y+i z-; = 0. The species scores and the 
canonical coefficients of the environmental variables can be obtained from Equation 
5.33 and Equation 5.34, by using the definitions of Equation 5.38. 

As described in Subsection 5.5.2, the solution of CCA can also be obtained 
by extending the iteration algorithm of Table 5.2. Steps 1, 4, 5 and 6 remain 
the same as in Table 5.2. In matrix notation, the other steps are 

Step 2 b = M ' Y x Equation 5.40 

Step 3a x* = N ' Y'b Equation 5.41 

Step 3b c = (ZNZ ') ' ZN x* Equation 5.42 

Step 3c x = Z ' c Equation 5.43 

with b = u, the m vector containing the species scores uk(k — 1, ..., m). 

Once convergence has been attained, to ensure that the final site scores satisfy 
x = Z'c, c should be divided by X, as in COR (below Equation 5.32). This amounts 
to replacing c in Equation 5.42 by Xc (as in Equation 5.32). To show that the 
algorithm gives a solution of Equation 5.30, we start with Equation 5.42, modified 
in this way, insert x* of Equation 5.41 in Equation 5.42, next insert b by using 
Equation 5.40, next insert x by using Equation 5.43 and finally use the definitions 
of S n , S,2 and S22 in CCA. 

CCA allows a biplot to be made, in which the inner products between points 
for species and points for environmental variables give a weighted least-squares 
approximation of the elements of the mX q matrix 

W = M-'YZ', 

the (kj)ih element of which is the weighted average of species k with respect 
to the (centred) environmental variable j . In the approximation, the species are 
given weight proportional to their total abundance (yk+) and the environmental 
variables are weighted inversely with their covariance matrix S22. The possibility 
for such a biplot arises because 

M0-5 W S22-°
5 = S,,-0-5 S12 S22-°-5 Equation 5.44 

so that, from Equations 5.44 and 5.33, after rearranging terms, 

W = (SM-°-5 P) A05 (S22
0-5 Q)' Equation 5.45 

Apart from particular considerations of scale (Subsection 5.2.2), the coordinates 
of the points for species and environmental variables in the CCA biplot are thus 
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given by the first t columns of Sn"
0-5 P A05 and S22

ü-5 Q, respectively. The matrix 
S n °

5 P A05 actually contains the species scores, as follows from Equation 5.34. 
The other matrix required for the biplot can be obtained by 

S22
05Q = S22 S22 °-

5 Q = S22 C = ZNZ'C = ZNX Equation 5.46 

5.10 Exercises 

Exercise 5.1 Correspondence analysis: the algorithm 

This exercise illustrates the two-way weighted-averaging algorithm of CA (Table 
5.2) with the small table of artificial data given below. 

Species 

A 
B 
C 
D 

Sites 

1 

1 
0 
0 
3 

2 

0 
0 
2 
0 

3 

0 
1 
0 
0 

4 

1 
0 
1 
1 

5 

0 
1 
0 
1 

The data appear rather chaotic now, but they will show a clear structure after 
having extracted the first CA ordination axis. The first axis is dealt with in Exercises 
5.1.1-3, and the second axis in Exercises 5.1.4-6. 

Exercise 5.1.1 Take as site scores the values 1, 2, ..., 5 as shown above the 
data table. Now, standardize the site scores by using the standardization procedure 
described in Table 5.2c. 

Exercise 5.1.2 Use the site scores so standardized as initial site scores in the 
iteration process (Table 5.2a). Carry out at least five iteration cycles and in each 
cycle calculate the dispersion of the species scores. (Use an accuracy of three 
decimal places in the calculations for the site and species scores and of four decimal 
places for s.) Note that the scores keep changing from iteration to iteration, but 
that the rank order of the site scores and of the species scores remains the same 
from Iteration 4 onwards. Rearrange the species and sites of the table according 
to their rank order. Note also that the dispersion increases during the iterations. 

Exercise 5.1.3 After 19 iterations, the site scores obtained are 0.101, -1.527, 
1.998, -0.524, 1.113. Verify these scores for the first CA axis (within an accuracy 
of two decimal places) by carrying out one extra iteration cycle. What is the 
eigenvalue of this axis? Verify that Equation 5.1 holds true for the species scores 
and site scores finally obtained, but that Equation 5.2 does not hold true. Modify 
Equation 5.2 so that it does hold true. 
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Exercise 5.1.4 We now derive the second CA axis by using the same initial site 
scores as in Exercise 5.1.2. Orthogonalize these scores first with respect to the 
first axis by using the orthogonalization procedure described in Table 5.2b, and 
next standardize them (round the site scores of the first axis to two decimals 
and use four decimals for v and s and three for the new scores). 

Exercise 5.1.5 Use the site scores so obtained as initial site scores to derive the 
second axis. The scores stabilize in four iterations (within an accuracy of two 
decimal places). 

Exercise 5.1.6 Construct an ordination diagram of the first two CA axes. The 
diagram shows one of the major 'faults' in CA. What is this fault? 

Exercise 5.2 Adding extra sites and species to a CA ordination 

Exercise 5.2.1 We may want to add extra species to an existing CA ordination. 
In the Dune Meadow Data, Hippophae rhamnoides is such a species, occurring 
at Sites 9, 18 and 19 with abundances 1, 2 and 1, respectively. Calculate from 
the site scores in Table 5.1c the score for this species on the first CA axis in 
the way this is done with CA. Plot the abundance of the species against the 
site score. What does the species score mean in this plot? At which place does 
the species appear in Table 5.1c? Answer the same questions for Poa annua, which 
occurs at Sites 1, 2, 3, 4, 7, 9, 10, 11, 13 and 18 with abundances 3, 3, 6, 4, 
2, 2, 3, 2, 3 and 4, respectively, and for Ranunculus acris, which occurs at Sites 
5, 6, 7, 9, 14 and 15 with abundances 2, 3, 2, 2, 1 and 1, respectively. 

Exercise 5.2.2 Similarly, we may want to add an extra site to an existing CA 
ordination. Calculate the score of the site where the species Bellis perennis, Poa 

pratensis and Rumex acetosa are present with abundances 5, 4 and 3, respectively 
(imaginary data). (Hint: recall how the site scores were obtained from the species 
scores in Exercise 5.1.3.) Species and sites so added to an ordination are called 
passive, to distinguish them from the active species and sites of Table 5.1. The 
scores on higher-order axes are obtained in the same way. 

Exercise 5.2.3 Rescale the scores of Table 5.1c to Hill's scaling and verify that 
the resulting scores were used in Figure 5.4. 

Exercise 5.3 Principal components analysis 

Add the extra species and the extra site of Exercise 5.2 to the PCA ordination 
of Table 5.5c. Plot the abundance of the extra species against the site scores. 
What does the species score mean in this plot? At which places do the species 
appear in Table 5.5c? 
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Exercise 5.4 Length of gradient in DCA 

Suppose DCA is applied to a table of abundances of species at sites and that 
the length of the first axis is 1.5 s.d. If, for each species, we made a plot of 
its abundance against the site scores of the first axis, would most plots suggest 
monotonie curves or unimodal curves? And what would the plots suggest if the 
length of the axis was 10 s.d.? 

Exercise 5.5 Interpretation of joint plot and biplot 

Exercise 5.5.1 Rank the sites in order of abundance of Juncus bufonius as inferred 
from Figure 5.7, as inferred from Figure 5.15 and as observed in Table 5.1a. 
Do the same for Eleocharis palustris. 

Exercise 5.5.2 If Figure 5.15 is interpreted erroneously as a joint plot of DCA, 
one gets different inferred rank orders and, when Figure 5.7 is interpreted 
erroneously as a biplot, one also gets different rank orders. Is the difference in 
interpretation greatest for species that lie near the centre of an ordination diagram 
or for species that lie on the edge of an ordination diagram? 

Exercise 5.6 Detrended canonical correspondence analysis 

Cramer (1986) studied vegetational succession on the rising sea-shore of an 
island in the Stockholm Archipelago. In 1978 and 1984, the field layer was sampled 
on 135 plots of 1 m2 along 4 transects. The transects ran from water level into 
mature forest. One of the questions was whether the vegetational succession keeps 
track with the land uplift (about 0.5 cm per year) or whether it lags behind. 
In both cases, the vegetation zones 'run down the shore', but in the latter case 
too slowly. Because succession in the forest plots was not expected to be due 
to land uplift, only the 63 plots up to the forest edge were used. These plots 
contained 68 species with a total of about 1000 occurrences on the two sampling 
occasions. An attempt was made to answer the question by using detrended 
canonical correspondence analysis (DCCA) with two explanatory variables, namely 
altitude above water level in 1984 (not corrected for land uplift; so each plot 
received the same value in 1978 as in 1984) and time (0 for 1978, 6 for 1984). 
The altitude ranged from -14 to 56 cm. The first two axes gave eigenvalues 0.56 
and 0.10, lengths 4.4 and 0.9 s.d. and species-environment correlations 0.95 and 
0.74, respectively. Table 5.14 shows that the first axis is strongly correlated with 
altitude and almost uncorrelated with time, whereas the second axis is strongly 
correlated with time and almost uncorrelated with altitude. However the canonical 
coefficients tell a more interesting story. 

Exercise 5.6.1 With Table 5.14, show that the linear combination of altitude 
and time best separating the species in the sense of Section 5.5.2 is 

x = 0.054 z, + 0.041 z2 Equation 5.47 
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Table 5.14 Detrended canonical correspondence analysis of rising shore 
vegetation data: canonical coefficients (100 X c) and intra-set correlations 
(100 X r) for standardized environmental variables. In brackets, the 
approximate standard errors of the canonical coefficients. Also given are 
the mean and standard deviation (s.d.) of the variables. 

Variable 

Altitude (cm) 
Time (years) 

Coefficients 

Axis 1 Axis 2 

100 (3) 4 (4) 
12 (3) -34 (3) 

Correlat: 

Axis 1 

99 
7 

ions 

Axis 2 

19 
-99 

mean 

22 
3 

s.d. 

18.5 
2.9 

where z, is the numeric value of altitude (cm) and z2 is the numeric value of 
time (years) and where the intercept is, arbitrary, set to zero. 

Hint: note that Table 5.14 shows standardized canonical coefficients, i.e. canonical 
coefficients corresponding to the standardized variables z* — (z, - 22)/18.5 and 
z2' = (z 2 -3) /2 .9 . 
Similarly, show that the standard errors of estimate of c, = 0.054 is 0.0016 and 
of c2 = 0.041 is 0.010. 

Exercise 5.6.2 Each value of x in Equation 5.47 stands for a particular species 
composition (Figures 5.8 and 5.18) and changes in the value of x express species 
turnover along the altitude gradient in multiples of s.d. With Equation 5.47, 
calculate the species turnover between two plots that were 15 cm and 25 cm 
above water level in 1984, respectively. Does the answer depend on the particular 
altitudes of these plots or only on the difference in altitude? What is, according 
to Equation 5.47, the species turnover between these plots in 1978? 

Exercise 5.6.3 With Equation 5.47, calculate the species turnover between 1978 
and 1984 for a plot with an altitude of 15 cm in 1984? Does the answer depend 
on altitude? 

Exercise 5.6.4 With Equation 5.47, calculate the altitude that gives the same 
species turnover as one year of succession. 

Exercise 5.6.5 Is there evidence that the vegetational succession lags behind uplift? 

Exercise 5.6.6 Roughly how long would it take to turn the species composition 
of the plot closest to the sea into that of the plot that is on the edge of the 
forest? Hint: use the length of the first axis. Is there evidence from the analysis 
that there might also be changes in species composition that are unrelated to 
land uplift? Hint: consider the length of the second axis. 
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5.11 Solutions to exercises 

Exercise 5.1 Correspondence analysis: the algorithm 

Exercise 5.1.1 The centroid of the site scores is z = ( 4 X 1 + 2 X 2 + 1 
X 3 + 3 X 4 + 2 X 5 ) / 1 2 = 2.750 and their dispersion is ̂ [ 4 X ( 1 - 2.750)2 

+ ... + 2 X (5 - 2.750)2]/12 = 2.353, thus s = 1.5343. The standardized initial 
score for the first site is thus JC, = (1 - 2.750)/1.5343 = -1.141. The other scores 
are listed on the second line of Table 5.15. 

Exercise 5.1.2 In the first iteration cycle at Step 2, we obtain for Species C, 
for example, the score [2 X (-0.489) + 1 X 0.815)]/(2 + 1) = -0.054, and for 
Site 5 at Step 3, the score (0.815 - 0.228)/(l + 1) = 0.294. The dispersion of 
the species scores in the first iteration cycle is 8 = (2 X 0.1632 + 2 X 0.8152 

+ 3 X 0.0542 + 5 X 0.2282)/12 = 0.138. See further Table 5.15. In the iterations 
shown z = 0.000, apart from Iteration 3, where z = -0.001 (Step 5). The rearranged 
data table shows a Pétrie matrix (Subsection 5.2.3). 

Exercise 5.1.3 The standardized site scores obtained in the 19th and 20th iteration 
are equal within the accuracy of two decimal places; so the iteration process has 
converged (Table 5.15). The eigenvalue of the first axis is X., = 0.7799, the value 
of j calculated last. Equation 5.2 does not hold true for the final site and species 
scores. But the site scores calculated in Step 3 are weighted averages of the species 
scores and are divided in the 20th iteration by s = 0.7799 to obtain the final 
site scores. On convergence, ^ equals the eigenvalue X; thus the final site and 
species scores satisfy the relation A. x, = Ejj?=1 yki ukj'L^yki. Applying Steps 3, 
(4) and 5 to the eigenvector (the scores xt) thus transforms the eigenvector into 
a multiple of itself. The multiple is the 'eigenvalue' of the eigenvector. Note that 
8 equals X within arithmetic accuracy. 

Exercise 5.1.4 In Step 4.2, we obtain v = [4 X (-1.141) X 0.10 + 2 X (-0.489) 
X (-0.53) + 1 X 0.163 X 2.00 + 3 X 0.815 X (-0.53) + 2 X 1.466 X 1.11]/ 
12 = 0.2771 and for Site 1 at Step 4.3, the score -1.141 -0.277 1 X 0.10 = 
-1.169. See further the first four lines of Table 5.16. 

Exercise 5.1.5 See Table 5.16. 

Exercise 5.1.6 The configuration of the site points looks like the letter V, with 
Site 1 at the bottom and Sites 2 and 3 at the two extremities. This is the arch 
effect of CA (Section 5.2.3). 

Exercise 5.2 Adding extra sites and species to a CA ordination 

Exercise 5.2.1 In CA, Equation 5.1 is used to obtain species scores from site 
scores. Thus the score for Hippophae rhamnoides is [1 X 0.09 + 2 X (-0.31) 
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Table 5.15 Two-way weighted averaging algorithm applied to the data of Exercise 5.1 to 
obtain the first ordination axis of CA. The initial site scores (Line 1) are first standardized 
(Line 2). The values in brackets are rank numbers of the scores of the line above. Column 
1, iteration number; Column 2, step number in Table 5.2 ; Column 3, x is site score and 
u is species score; Column 4, dispersion of the species scores (8) when preceded by u, 
or otherwise the square root of the dispersion of the site scores of the line above (s). 

Colum 

1 

0 
0 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 

20 
20 
20 

2 

1 
5 
2 
3 
5 
2 
3 
5 
2 
3 
5 
2 
3 
5 
2 
3 
5 

2 
3 
5 

n 

3 

X 

X 

u 

X 

X 

u 

X 

X 

u 

X 

X 

u 

X 

X 

u 

X 

X 

u 

X 

X 

4 

1.5343 
0.1375 

0.3012 
0.6885 

0.6953 
0.7171 

0.7193 
0.7342 

0.7383 
0.7498 

0.7529 
0.7606 

0.7800 

0.7799 

Sites 

1 

1.000 
-1.141 

-0.212 
-0.704 

-0.393 
-0.567 

-0.322 
-0.448 

-0.251 
-0.340 

-0.185 
-0.246 
(3) 

0.081 
0.104 
(3) 

2 

2.000 
-0.489 

-0.054 
-0.179 

-0.283 
-0.408 

-0.465 
-0.646 

-0.628 
-0.851 

-0.764 
-1.015 
(1) 

-1.193 
-1.530 
(1) 

3 

3.000 
0.163 

0.815 
2.706 

1.841 
2.646 

1.868 
2.597 

1.865 
2.526 

1.840 
2.444 
(5) 

1.556 
1.995 
(5) 

4 

4.000 
0.815 

-0.148 
-0.491 

-0.402 
-0.580 

-0.426 
-0.592 

-0.436 
-0.591 

-0.440 
-0.584 
(2) 

-0.409 
-0.524 
(2) 

5 

5.000 
1.466 

0.294 
0.976 

0.758 
1.089 

0.815 
1.133 

0.852 
1.154 

0.875 
1.162 
(4) 

0.867 
1.112 
(4) 

Species 

A 

-0.163 
(2) 

-0.598 
(1) 

-0.574 
(1) 

-0.520 
(2) 

-0.466 
(2) 

-0.211 
(2) 

B 

0.815 
(4) 

1.841 
(4) 

1.868 
(4) 

1.865 
(4) 

1.840 
(4) 

1.556 
(4) 

C 

-0.054 
(3) 

-0.283 
(3) 

-0.465 
(2) 

-0.628 
(1) 

-0.764 
(1) 

-1.193 
(1) 

D 

-0.228 
(1) 

-0.325 
(2) 

-0.238 
(3) 

-0.161 
(3) 

-0.091 
(3) 

0.178 
(3) 

+ 1 X (-0.68)]/(l + 2 + 1) = -0.30, for Poa annua -0.33 and for Ranunculus 

acris -0.19. All three species come in Table 5.1c between Elymus repens and 
Leontodon autumnalis. The plots asked for suggest unimodal response curves 
for Hippophae rhamnoides and Poa annua, but a bimodal curve for Ranunculus 

acris. The species score is the centroid (centre of gravity) of the site scores in 
which they occur. The score gives an indication of the optimum of the response 
curve for the former two species, but has no clear meaning for the latter species. 
In general, species with a score close to the centre of the ordination may either 
be unimodal, bimodal or unrelated to the axes (Subsection 5.2.5). 

Exercise 5.2.2 The weighted average for the site is [3 X (-0.65) + 5 X (-0.50) 
+ 4 X (-0.39)]/(3 + 5 + 4) = -0.50, which must be divided as in Exercise 5.1.3 
by X (= 0.536) to obtain the site score -0.93. If we calculated the score for the 

170 



Table 5.16 Two-way weighted averaging algorithm applied to the data of Exercise 5.1 to obtain 
the second ordination axis of CA. The first line shows the site scores of the first ordination 
axis (/). The scores on the second line are used as the initial scores after orthogonalizing them 
with respect to the first axis (Line 3) and standardizing them (Line 4). Column 5 is v, defined 
in Table 5.2; the other columns are defined in Table 5.15. 

Column Sites Species 

1 2 

0 4.1 
0 4.1 
0 4.3 
0 5.3 
1 2 
1 3 
1 4 
1 5 
2 2 
2 3 
2 4 
2 5 
3 2 
3 3 
3 4 
3 5 
4 2 
4 3 
4 4 
4 5 

3 

f 
X 

X 

X 

u 

X 

X 

X 

u 

X 

X 

X 

u 

X 

X 

X 

u 

X 

X 

X 

4 

0.9612 
0.0837 

0.2182 
0.5956 

0.5967 
0.5980 

0.5982 
0.5984 

0.5985 

5 

0.2771 

0.0001 

-0.0011 

-0.0014 

-0.0016 

1 

0.10 
-1.141 

-1.216 

-0.243 
-0.243 
-1.114 

-0.647 
-0.647 
-1.084 

-0.645 
-0.645 
-1.078 

-0.642 
-0.642 
-1.073 

2 

-1.53 
-0.489 
-1.169 
-0.068 

0.288 
0.288 
1.320 

0.825 
0.823 
1.379 

0.832 
0.830 
1.387 

0.836 
0.834 
1.393 

3 

2.00 
0.163 

-0.065 
-0.407 

0.399 
0.399 
1.829 

1.043 
1.045 
1.751 

1.042 
1.045 
1.747 

1.045 
1.048 
1.751 

4 5 

-0.53 1.11 
0.815 1.466 

-0.391 0.962 
1.001 1.205 

-0.036 0.056 
-0.036 0.056 
-0.165 0.257 

-0.155 0.197 
-0.156 0.198 
-0.261 0.332 

-0.159 0.203 
-0.160 0.205 
-0.267 0.343 

-0.156 0.206 
-0.157 0.208 
-0.262 0.348 

A B C D 

1.158 

-0.107 0.399 0.288 -0.288 

-0.639 1.043 0.825 -0.650 

-0.673 1.042 0.832 -0.636 

-0.672 1.045 0.836 -0.632 

second axis by the same method, the extra site would come somewhat below 
Site 5 in the ordination diagram (Figure 5.4). 

Exercise 5.2.3 The site scores of Table 5.1c must be divided by \ / ( l - X)/X 

= V (0.464/0.536) = 0.93 and the species scores by y/X(l - X) -

V (0.536 X 0.464) = 0.50 (Subsection 5.2.2). For Site 20, for example, we obtain 
the score 1.95/0.93 = 2.10 and for Juncus articulatus 1.28/0.50 = 2.56. In Hill's 
scaling, the scores satisfy Equation 5.2 whereas Equation 5.1 must be modified 
analogously to the modification of Equation 5.2 in Exercise 5.1.3 

Exercise 5.3 Principal components analysis 

The mean abundance of Hippophae rhamnoides is 0.2. With Equation 5.8, 
we obtain the score (0-0.2) X (-0.31) + (0 -0.2) X (-0.30) + ... + (2-0.2) 
X (-0.04) + (1-0.2) X 0.00 + ... + (0-0.2) X 0.45 = -0.03. Similarly we obtain 
the scores -3.22 for Poa annua and -1.48 for Ranunculus acris. The plots suggest 
monotonie decreasing relations for the latter two species, and a unimodal relation 

171 



(if any) for the first species. If straight lines are fitted in these plots, the slope 
of regression turns out to equal the species score (Subsection 5.3.1). The species 
come at different places in Table 5.5c. For example, Poa annua comes just after 
Bromus hordaceus. The score for the extra site is calculated by dividing the weighted 
sum (Equation 5.9) by the eigenvalue: 3.90/471 = 0.008. 

Exercise 5.4 Length of gradient in DCA 

In DCA, axes are scaled such that the standard deviation (tolerance) of the 
response curve of each species is close to one and is on average equal to one. 
Each response curve will therefore rise and decline over an interval of about 
4 s.d. (Figure 3.6; Figure 5.3b). If the length of the first axis equals 1.5 s.d., 
the length of the axis covers only a small part of the response curve of each 
species. Most plots will therefore suggest monotonie curves, although the true 
response curves may be unimodal (Figure 3.3). If the length of the first axis is 
10 s.d., the response curves of many species are contained within the length of 
the axis, so that many of the plots will suggest unimodal response curves. 

5.5 Interpretation of joint plot and biplot 

Exercise 5.5.1 Inferred rank orders of abundance are for Juncus bufonius 

from Figure 5.7 (DCA) sites 12 > 8 > 13 > 9 > 4 « 18 
from Figure 5.15 (PCA) sites 13 « 3 > 4 > 19 « 12 
from Table 5.1a (data) sites 9 = 12 > 1 3 > 7 — 

and for Eleocharis palustris 

from Figure 5.7 (DCA) sites 16 > 14 « 15 > 20 > 8 
from Figure 5.15 (PCA) sites 16 > 20 > 15 > 14 > 19 
from Table 5.1a (data) Sites 16 > 15 > 8 = 14 = 20. 

Exercise 5.5.2 The difference in interpretation is greatest for species that lie at 
the centre of the ordination diagram. In a DCA diagram, the inferred abundance 
drops with distance from the species point in any direction, whereas in a PCA 
diagram the inferred abundance decreases or increases with distance from the 
species point, depending on the direction. This difference is rather unimportant 
for species that lie on the edge of the diagram, because the site points all lie 
on one side of the species point. One comes to the same conclusion by noting 
that a species point in a DCA diagram is its inferred optimum; if the optimum 
lies far outside the region of the sites the inferred abundance changes monotonically 
across the region of site points {Eleocharis palustris in Figure 5.7). 

Exercise 5.6 Dett-ended canonical correspondence analysis 

Exercise 5.6.1 From Table 5.14, we see that the best linear combination is 
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x = 1.00 z* + 0.12 z2*. In terms of unstandardized variables, we obtain x = 
1.00 X (z, - 22)/18.5 + 0.12 X (z2 - 3)/2.9 = (1.00/18.5)z, + (0.12/2.9)z2 - 22/ 
18.5 - 0.12 X 3/2.9 = 0.054 z, + 0.041 z2 - 1.31. The standard error of c^ is 
0.03/18.5 = 0.00162 and of c2 is 0.03/2.9 = 0.010. 

Exercise 5.6.2 The value of x for the plot that was 15 cm above water level 
in 1984 is x = 0.054 X 15 + 0.041 X 6 = 1.056 s.d. For the plot 25 cm above 
water level, we obtain x = 0.054 X 25 + 0.041 X 6 = 1.596 s.d. Hence, the 
species turnover is 1.596 - 1.056 = 0.54 s.d. According to Equation 5.47, turnover 
depends only on the difference in altitude between the plots: 0.054 X (25 - 15) 
= 0.54, and does not depend on the particular altitudes of the plots nor on the 
year of sampling. The species turnover between plots differing 10 cm in altitude 
is therefore 0.54 s.d. on both occasions of sampling. 

Exercise 5.6.3 The value of x for a plot with an altitude of 15 cm in 1984 was 
1.056 s.d. in 1984 (Exercise 5.6.2) and was 0.054 X 15 + 0.041 X 0 = 0.81 s.d. 
in 1978. (Note that in the model altitude was not corrected for uplift; hence 
z, = 15 in 1984 and in 1978.) The species turnover is 1.056 - 0.81 = 0.246 s.d., 
which equals 0.041 X 6 s.d. and which is independent of altitude. Hence, each 
plot changes about a quarter standard deviation in 6 years. 

Exercise 5.6.4 The species turnover rate is 0.041 s.d. per year, whereas the species 
turnover due to altitude is 0.054 s.d. per centimetre. The change in altitude that 
results in 0.041 s.d. species turnover is therefore 0.041/0.054 = 0.76 cm. An 
approximate 95% confidence interval can be obtained for this ratio from the 
standard error of c, and c2 and their covariance by using Fieller's theorem (Finney 
1964). Here the covariance is about zero. In this way, we so obtained the interval 
(0.4 cm, 1.1 cm). 

Exercise 5.6.5 From Exercise 5.6.4, we would expect each particular species 
composition to occur next year 0.76 cm lower than its present position. Uplift 
(about 0.5 cm per year) is less; hence, there is no evidence that the vegetational 
succession lags behind the land uplift. The known uplift falls within the confidence 
interval given above. Further, because the value 0 cm lies outside the confidence 
interval, the effect of uplift on species composition is demonstrated. Uplift 
apparently drives the vegetational succession without lag. 

Exercise 5.6.6 The length of the first axis is 4.4 s.d. From Exercise 5.6.3, we 
know that each plot changes about 0.25 s.d. in 6 years. The change from vegetation 
near the sea to vegetation at the edge of the forest therefore takes roughly (4.4/ 
0.25) X 6 years = 100 years. The second axis is 0.9 s.d. and mainly represents 
the differences in species composition between the two sampling occasions that 
are unrelated to altitude and land uplift. More precisely, the canonical coefficient 
of time on the second axis is -0.34/2.9 = -0.117. It therefore accounts for 0.117 
X 6 s.d. = 0.70 s.d. of the length of the second axis, whereas time accounted 
for 0.25 s.d. of the length of the first axis. There are apparently more changes 
going on than can be accounted for by uplift. 
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6 Cluster analysis 

O.ER. van Tongeren 

6.1 Introduction 

6.1.1 Aims and use 

For ecological data, cluster analysis is a type of analysis that classifies sites, 
species or variables. Classification is intrinsic in observation: people observe objects 
or phenomena, compare them with other, earlier, observations and then assign 
them a name. Therefore one of the major methods used since the start of the 
study of ecology is the rearrangement of data tables of species by sites, followed 
by the definition of community types, each characterized by its characteristic species 
combination (Westhoff & van der Maarel 1978; Becking 1957). Scientists of different 
schools have different ideas about the characterization of community types and 
the borders between these types. In vegetation science, for instance, the Scan-
dinavian school and the Zürich-Montpellier school differ markedly, the Scan-
dinavians emphasizing the dominants and the Zürich-Montpellier school giving 
more weight to characteristic and differential species, which are supposed to have 
a narrower ecological amplitude and are therefore better indicators for the 
environment. Cluster analysis is an explicit way of identifying groups in raw data 
and helps us to find structure in the data. However even if there is a continuous 
structure in the data, cluster analysis may impose a group structure: a continuum 
is then arbitrarily partitioned into a discontinuous system of types or classes. 

Aims of classification are: 
- to give information on the concurrence of species (internal data structure) 
- to establish community types for descriptive studies (syntaxonomy and map-

ping) 
- to detect relations between communities and the environment by analysis of 

the groups formed by the cluster analysis with respect to the environmental 
variables (external analysis). 

In Chapter 6, an introduction will be given to several types of cluster analysis. 
This chapter aims at a better understanding of the properties of several methods 
to facilitate the choice of a method, without pretending to show you how to 
find the one and only best structure in your data. It is impossible to choose 
a 'best' method because of the heuristic nature of the methods. If there is a markedly 
discontinuous structure, it will be detected by almost any method, a continuous 
structure will almost always be obscured by cluster analysis. 
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6.1.2 Types of cluster analysis 

There are several types of cluster analysis, based on different ideas about the 
cluster concept. Reviews are found mainly in the taxonomie literature (Lance 
& Williams 1967; Dunn & Everitt 1982). Here a brief summary will be given 
of the main groups. 

A major distinction can be made between divisive and agglomerative methods. 
Divisive methods start with all objects (in ecology mostly samples; in taxonomy 
operational taxonomie units, OTUs) as a group. First this group is divided into 
two smaller groups, which is repeated subsequently for all previously formed groups, 
until some kind of 'stopping rule' is satisfied. The idea of this way of clustering 
is that large differences should prevail over the less important smaller differences: 
the global structure of a group should determine the subgroups. Alternatively 
agglomerative methods start with individual objects, which are combined into 
groups by collection of objects or groups into larger groups. Here 'local' similarity 
prevails over the larger differences. Divisive methods will be described in Section 
6.3, and agglomerative methods in Section 6.2. Most agglomerative methods require 
a similarity or dissimilarity matrix (site by site) to start from. Several indices 
of (dis)similarity will be introduced in Subsection 6.2.3. 

A second way of distinguishing methods is to classify them by hierarchical 
and non-hierarchical methods. Hierarchical methods start from the idea that the 
groups can be arranged in a hierarchical system. In ecology, one could say that 
a certain difference is more important than another one and therefore should 
prevail: be expressed at a higher hierarchical level. Non-hierarchical methods do 
not impose such a hierarchical structure on the data. For data reduction, non-
hierarchical methods are usually used. 

Non-hierarchical classification handles 
- redundancy: sites that are much like many other sites are grouped without 

considering the relations to other less similar sites 
- noise: before subsequent hierarchical clustering, a 'composite sample' may be 

constructed 
- outliers, which can be identified because they appear in small clusters or as 

single samples. 

6.2 Agglomerative methods 

6.2.1 Introduction 

Agglomerative cluster analysis starts from single objects, which are agglomerated 
into larger clusters. In many sciences, agglomerative techniques are employed much 
more frequently than divisive techniques. The historical reason for this is the 
inefficient way early polythetic divisive techniques used computer resources, while 
the agglomerative ones were more efficient. Now, the opposite seems true. 
Nevertheless, there is a very large range of agglomerative techniques, each 
emphasizing other aspects of the data and therefore very useful. 

All agglomerative methods share the idea that some kind of (dis)similarity 
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function between (groups of) objects (usually sites) is decisive for the fusions. 
Different methods, however, are based on different ideas on distance between 
clusters. Within most methods, there is also a choice between different 'indices 
of similarity or dissimilarity' (distance functions). Most of this section is devoted 
to similarity and dissimilarity indices. 

6.2.2 Similarity and dissimilarity 

Grouping of sites and species in many ecological studies is a matter of personal 
judgement on the part of the investigator: different investigators may have different 
opinions or different aims; they therefore obtain different results. There are, 
however, many different objective functions available with which to express 
similarity. 

Ideally similarity of two sites or species should express their ecological relation 
or resemblance; dissimilarity of two sites or species is the complement of their 
similarity. Since this idea of similarity includes an ecological relation, it is important 
which ecological relation is focused upon - so the objectives of a study may 
help to determine the applicability of certain indices. Most of the indices used 
in ecology do not have a firm theoretical basis. My attitude towards this problem 
is that practical experience, as well as some general characteristics of the indices, 
can help us choose the right ones. Numerous indices of similarity or dissimilarity 
have been published, some of them are widely used, others are highly specific. 

The aim of this section is to make the concepts of similarity and dissimilarity 
familiar and to examine some of the popular indices. Although most indices can 
be used to compute (dis)similarities between sites as well as between species, they 
are demonstrated here as if the site is the statistical 'sampling unit'. Computations 
of similarity can be made directly from the species-abundance values of sites or 
indirectly, after using some ordination technique from the site scores on the 
ordination axes. With indirect computation, dissimilarities refer to distances 
between sites in the ordination space. 

Comparison of sites on the basis of presence-absence data 

If detailed information on species abundance is irrelevant for our problem or 
if our data are qualitative (e.g. species lists), we use an index of similarity for 
qualitative characters. The basis of all similarity indices for qualitative characters 
is that two sites are more similar if they share more species and that they are 
more dissimilar if there are more species unique for one of both (two species 
are more similar if their distribution over the sites is more similar). One of the 
earliest indices is the index according to Jaccard (1912). This Jaccard index is 
the proportion of species out of the total species list of two sites, which is common 
to both sites: 

S J = cj (a + b + c) Equation 6.1 
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where 
S J is the similarity index of Jaccard 
c is the number of species shared by the two sites 
a and b are the numbers of species unique to each of the sites. 

Often the equation is written in a different way: 

S J = cj(A + B - c) Equation 6.2 

where c is the number of species shared and A and B are the total numbers 
of species for the samples: A = a + c and B = b + c). 

Sorensen (1948) proposed another similarity index, often referred to as coefficient 
of community (CC). 

SS=CC=2c/(A +B) or 2c/(a+b +2c). Equation 6.3 

Instead of dividing the number of species shared by the total number of species 
in both samples, the number of species shared is divided by the average number 
of species. Faith (1983) discusses the asymmetry of these three indices with respect 
to presence or absence. 

Comparison of samples on the basis of quantitative data 

Quantitative data on species abundances always have many zeros (i.e. species 
are absent in many sites); the problems arising from this fact have been mentioned 
in Section 3.4. Therefore an index of similarity for quantitative characters should 
also consider the qualitative aspects of the data. The similarity indices in this 
subsection are different with respect to the weight that is given to presence or 
absence (the qualitative aspect) with regard to differences in abundance when 
the species is present. Some of them emphasize quantitative components more 
than others. Two of them are very much related to the Jaccard index and the 
coefficient of community, respectively: similarity ratio (Ball 1966) and percentage 
similarity (e.g. Gauch 1982). The other indices can easily be interpreted geomet-
rically. 

The similarity ratio is: 

SRtj = Y.k yki ykjl (Zk yk,
2
 + Y.k ykf - l.k yki yk) Equation 6.4 

where yki is the abundance of the k-Xh species at site i, so sites i and y are compared. 
For presence-absence data (0 indicating absence and 1 presence), this can be 
easily reduced to Equation 6.1, indicating that the Jaccard index is a special case 
of the similarity ratio. For Sorensen's index, Equation 6.3, the same can be said 
in respect to percentage similarity: 

PSV - 200 E* min (yki, y^lÇL^ + Z ^ ) Equation 6.5 
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Figure 6.1 Five sites (1-5) in a three-dimensional space of which the axes are the three 
species A, B and C. Site 1 is characterized by low abundance of species A and species 
C, and absence of species B. In site 2, species A is dominant, species B is less important 
and species C is absent. Sites 3 and 4 are monocultures of species B and C, respectively. 
Site 5 has a mixture of all three species. 

where min (yki, ykj) is the minimum of ykj and ykj. 

Some indices can be explained geometrically. To explain these indices, it is 
necessary to represent the sites by a set of points in a multi-dimensional space 
(with as many dimensions as there are species). One can imagine such a space 
with a maximum of three species (Figure 6.1) but conceptually there is no difference 
if we use more species (see Subsection 5.3.3). 

The position of a site is given by using the abundances of the species as coordinates 
(Figure 6.1), and therefore sites with similar species composition occupy nearby 
positions in species space. The Euclidean Distance, ED, between two sites is an 
obvious measure of dissimilarity: 

ED
 = V % (j/w - J*/)2 Equation 6.6 

Figure 6.1 shows that quantitative aspects play a major role in Euclidean Distance: 
the distance between Sites 1 and 2, which share one species, is much larger than 
the distance between Sites 1 and 3, not sharing a species. 

More emphasis is given to qualitative aspects by not considering a site as a 
point but as a vector (Figure 6.2). Understandably, the direction of this vector 
tells us something about the relative abundances of species. The similarity of 
two sites can be expressed as some function of the angle between the vectors 
of these sites. Quite common is the use of the cosine (or Ochiai coefficient): 

cos - OS - T.k yki ykjl ^Z^J Y,kyk] Equation 6.7 

A dissimilarity index that is more sensitive to qualitative aspects than the 
Euclidean Distance is the cord distance: 
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Figure 6.2 The same space as in Figure 6.1. Samples are now indicated by vectors. Crosses 
indicate where the sample vectors intersect the unit sphere (broken lines). Note that the 
distance between 1' and 2' is much lower than the distance between either of them and 
3 '. The angle between sample vectors 1 and 3 is indicated by a. 

CD = V £k DW(s* yèY
2 - ykjlVk ykjTY Equation 6.8 

This cord distance is geometrically represented by the distance between the points 
where the sample vectors intersect the unit sphere (Figure 6.2). 

Conversion of similarity to dissimilarity and vice versa 

For some applications, one may have to convert a similarity index to a 
dissimilarity index. This conversion must be made if, for instance, no dissimilarity 
index with the desired properties is available, but the cluster algorithm needs 
an index of dissimilarity. For cluster algorithms merely using the rank order of 
dissimilarities, any conversion reversing the rank order is reasonable, but care 
must be taken for cluster algorithms that use the dissimilarities in a quantitative 
way (as forming an interval or ratio scale (Subsection 2.4.2). We mention two 
ways of making the conversion: 

- subtracting each similarity value from a certain value: in this way the intervals 
between the values are preserved. Bray & Curtiss (1957), for instance, subtract 
similarity values from the expected similarity among replicate samples, the 
so-called internal association. In practice, the best estimate of internal as-
sociation (IA) is the maximum similarity observed. Thus percentage similarity 
is converted to percentage distance, PD, using this subtraction: 

PD = IA~ PS Equation 6.9 
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- taking the reciprocal of each similarity value. In this way, the ratios between 
similarity values are preserved in the dissimilarity matrix. 

6.2.3 Properties of the indices 

Despite many studies (e.g. Williams et al. 1966; Hajdu 1982) addressing the 
problem of which index should be used, it is still difficult to give a direct answer. 
The choice of index must be guided by best professional judgment (or is it intuition?) 
of the investigator, by the type of data collected and by the ecological question 
that should be answered. Dunn & Everitt (1982) and Sneath & Sokal (1973) advise 
to choose the simplest coefficient applicable to the data, since this choice will 
generally ease the interpretation of final results. 

However one can say a little bit more, though still not very much: the objectives 
of a study may help in deciding which index is to be applied. The length of 
the sampled gradient is important: the relative weight that is given to abundance 
(quantity) should be larger for short gradients, the relative weight given to presence 
or absence should be larger for long gradients (Lambert & Dale 1964; Greig-
Smith 1971). Other criteria that should be considered are species richness (Is it 
very different at different sites?) and dominance or diversity of the sites (Are 
there substantial differences between sites?). The easiest way of getting some feeling 
for these aspects is to construct hypothetical matrices of species abundances and 
see how the various indices respond to changes in different aspects of the data. 
However this gives only an indication and one must be aware of complications 
whenever more characteristics of the data are different between samples. 

To demonstrate the major responses to dominance/diversity, species richness 
and length of gradient a set of artificial species-by-site data, each referring to 
one major aspect of ecological samples, is given, together with graphs, to indicate 
the responses of the indices (Tables 6.1-6.4). To obtain comparable graphs (Figures 

Table 6.1 Artificial species-by-sites table. Total abundance for each sample is 10, the number 
of species (a-diversity) is lower on the right side and the 'evenness' is constant (equal scores 
for all species in each sample). 

Site 

Species 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

1 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

2 

1.11 
1.11 
1.11 
1.11 
1.11 
1.11 
1.11 
1.11 
1.11 

3 

1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 

4 

1.43 
1.43 
1.43 
1.43 
1.43 
1.43 
1.43 

5 

1.67 
1.67 
1.67 
1.67 
1.67 
1.67 

6 

2.00 
2.00 
2.00 
2.00 
2.00 

7 

2.50 
2.50 
2.50 
2.50 

8 

3.33 
3.33 
3.33 

9 

5.00 
5.00 

10 

10.00 
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Figure 6.3 Standardized (dis)similarity (ordinate) between the first site and each of the 
other sites in Table 6.1 in corresponding order on the abscissa. Note that squared Euclidean 
Distance (ED) is strongly affected by higher abundances, a: similarity indices, b: dissimilarity 
indices. 

Table 6.2 Artificial species-by-sites table. Evenness and species number are 
constant, the sample totals varying largely. 

Site 1 10 

Species 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

9 
9 
9 
9 
9 
9 
9 
9 
9 
9 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

CC Jacc cos 

Figure 6.4 Standardized (dis)similarity (ordinate) between the first site and each of the 
other sites in Table 6.2 in corresponding order on the abscissa. Note that coefficient of 
community (CC), Jaccard index (Jacc) and cosine are at their maximum for all sites compared 
with the first site, a: similarity indices, b: dissimilarity indices. 
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Table 6.3 Artificial species-by-sites table. Number of species (2) and total 
abundance (10) are constant but the evenness varies. 

Site 1 

Species 
A 1 
B 9 

1 

>> 
*-
<T3 

r-

1= 

n 

PS \ V 
Y \ 

Jacc CC 

\ cos 

V\ \ \ \ 

v \ S P \ \ 

n 

Figure 6.5 Standardized (dis)similarity (ordinate) between the first site and each of the 
other sites in Table 6.3 in corresponding order on the abscissa. Note the difference with 
Figure 6.4: the cosine is not at its maximum value for other sites as compared to the 
first site, a: similarity indices, b: dissimilarity indices. 

Table 6.4 Artificial species-by-sites table. A regular gradient with equal 
species numbers in the samples, equal scores for all species: at each 'step' 
along the gradient one species is replaced by a new one. 

Site 1 3 

Species 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
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6.3-6.6), all indices are scaled from 0 to 1. Comparisons are always made between 
the first site of the artificial data and the other sites within that table. The captions 
to Tables 6.1-6.4 and Figures 6.3-6.6 give more information on the properties 
of the artificial data. Table 6.5 summarizes the major characteristics of the indices 
but it is only indicative. 

0 

a l l indices 

0 

Figure 6.6 Standardized (dis)similarity (ordinate) between the first site and each of the 
other sites in Table 6.4 in corresponding order on the abscissa. Except for Euclidean Distance 
(ED), all indices are linear until a certain maximum (or minimum) is reached, a: similarity 
indices, b: dissimilarity indices. 

Table 6.5 Characteristics of the (dis)similarity indices. The asterisk (*) indicates qualitative 
characteristics. Sensitivity for certain properties of the data is indicated by: — not sensitive; 
+ sensitive; + + and + + + strongly sensitive. 

sensitivity to sample total 
sensitivity to dominant species 
sensitivity to species richness 
similarity — 
dissimilarity 
quantitative 
qualitative 
abbreviation 

Similarity Ratio 
Percentage Similarity 
Cosine 
Jaccard Index 
Coefficient of Community 
Cord Distance 
Percentage Dissimilarity 
Euclidean Distance 
Squared Euclidean Distance 

"H 

SR 
PS 
Cos 
SJ 

cc 
CD 
PD 
ED 
ED2 

* 
* 
* 

* 
* 
* 
* 
* 

++ 
++ 
+ 
++ 
+ 
+ 
++ 
++ 

++ 
+ 
+ 
-
-
+ 
+ 
++ 

++ 
+ 
-
— 
-
— 
+ 
++ 
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6.2.4 Transformation, standardization and weighting 

Transformation, standardization and weighting of data are other ways of letting 
certain characteristics of the data express themselves more or less strongly. This 
paragraph is meant to give you some idea of how certain manipulations can be 
made with the data and what are the reasons for and the consequences of 
transformations and standardizations. 

Transformation 

Transformations are possible in many different ways. Most transformations used 
in ecology are essentially non-linear transformations: the result of such trans-
formations is that certain parts of the scale of measurement for the variables 
are shrunk, while other parts are stretched. 

Logarithmic transformation. 

y f —
 aloge ytj or (if zeros are present) y f = aloge {ytj + 1) Equation 6.10 

This transformation is often used for three essentially different purposes: 
- to obtain the statistically attractive property of normal distribution for log-

normally distributed variables (as in Subsection 2.4.4) 
- to give less weight to dominant species, in other words to give more weight 

to qualitative aspects of the data 
- in environmental variables, to reflect the linear response of many species to 

the logarithm of toxic agents or (in a limited range) to the logarithm of nutrient 
concentrations. 

Square-root transformation. 

y if — ytj'l
2 Equation 6.11 

This transformation is used 
- before analysis of Poisson-distributed variables (e.g. number of individuals 

of certain species caught in a trap over time) 
- to give less weight to dominant species. 

Exponential transformation. 

y if = a
y
«. Equation 6.12 

If a is a real number greater than 1, the dominants are emphasized. 

Transformation to an ordinal scale. The species abundances are combined into 
classes. The higher the class number, the higher the abundance. A higher class 
number always means a higher abundance, but an equal class number does not 
always mean an equal abundance: intervals between classes are almost meaningless. 
Dependent on the class limits, one can influence the results of a classification 
in all possible ways. An extreme is the transformation to presence-absence scale 
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(1/0). A transformation to ordinal scale always includes loss of information: if 
continuous data are available any other transformation is to be preferred. However 
it can be very useful to collect data on an ordinal scale (as is done in the 
Zürich-Montpellier school of vegetation science) for reduction of the work in 
the field. 

Standardization 

Several aspects of standardization have been treated in Subsection 2.4.4. Here 
we discuss some other types of standardization that are used in cluster analysis. 
Standardization can here be defined as the application of a certain standard to 
all variables (species) or objects (sites) before the computation of the (dis)similarities 
or before the application of cluster analysis. Possible ways of standardizing are 
as follows. 
Standardization to site total. The abundances for each species in a site are summed 
and each abundance is divided by the total: in this way relative abundances for 
the species are computed, a correction is made for 'size' of the site (total number 
of individuals collected at the site or total biomass). Care should be taken if 
these sizes are very different, because rare species tend to appear in large sites: 
(dis)similarity measures that are sensitive to qualitative aspects of the data might 
still be inappropriate. 
Standardization to species total. For each species the abundances are summed 
over all sites and then divided by the total. This standardization strongly over-
weights the rare species and down-weights the common species. It is therefore 
recommended to use this standardization only if the species frequencies in the 
table do not differ too much. This type of standardization can be applied when 
different trophic levels are represented in the species list, because the higher trophic 
levels are less abundant (pyramids of biomass and numbers). 
Standardization to site maximum. All species abundances are divided by the 
maximum abundance reached by any species in the site. This standardization 
is applied for the same reason as standardization to site total. It is less sensitive 
to species richness, but care should be taken if there are large differences in the 
'evenness' of sites. If an index is used with a large weighting for abundance, sites 
with many equal scores will become extremely different from sites with a large 
range in their scores. 
Standardization to species maximum. The reason for this standardization is that, 
in the opinion of many ecologists, less abundant species (in terms of biomass 
or numbers) should be equally weighted. As the standardization to species total, 
this type of standardization is recommended when different trophic levels are 
present in the species list. This standardization also makes data less dependent 
on the kind of data (biomass or numbers or cover) collected. 
Standardization to unit site vector length. By dividing the species abundance 
in a site by the square root of their summed squared abundances, all end-points 
of the site vectors are situated on the unit sphere in species-space. Euclidean 
Distance then reduces to cord distance. 
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Weighting 

There are several reasons for weighting species or sites. Depending on the reason 
for down-weighting several kinds of down-weighting can be applied. 
Down-weighting of rare species. A lower weight dependent on the species 
frequency, is assigned to rare species to let them influence the final result to a 
lesser extent. This should be done if the occurrence of these species is merely 
by chance and if the (dis)similarity index or cluster technique is sensitive to rare 
species. 
Down-weighting of species indicated by the ecologist. A lower weight is assigned 
to species (or sites) that are less reliable (determination of a species is difficult; 
a sample is taken by an inexperienced field-worker) or to species that are ecologically 
less relevant (planted trees; the crop species in a field). This kind of down-weighting 
is ad hoc and arbitrary. 

6.2.5 Agglomerative cluster algorithms 

All agglomerative methods are based on fusion of single entities (sites) or clusters 
(groups of sites) into larger groups. The two groups that closest resemble each 
other are always fused, but the definition of (dis)similarity between groups differs 
between methods. 

Often the results of hierarchical clustering are presented in the form of a 
dendrogram (tree-diagram, e.g. Figure 6.8). Such a dendrogram shows the relations 
between sites and groups of sites. The hierarchical structure is indicated by the 
branching pattern. 

Single-linkage or nearest-neighbour clustering 

The distance between two clusters is given by the minimum distance that can 
be measured between any two members of the clusters (Figure 6.7). A dendrogram 
of the classification of the Dune Meadow Data with single-linkage clustering, 

Figure 6.7 Distances (solid lines) between clusters in single linkage: samples within the 
same cluster are indicated with the same symbol. 
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Figure 6.8 Dendrogram of single linkage, using the Dune Meadow Data and the similarity 
ratio. 

Figure 6.9 Hypothetical example of 'chaining', a problem occurring in single-linkage 
clustering. 

using similarity ratio, is given in Figure 6.8. The dendrogram shows us that there 
are not very well defined clusters: our data are more or less continuous. Single-
linkage clustering can be used very well to detect discontinuities in our data. 
For other research in community ecology, it is not appropriate because of its 
tendency to produce straggly clusters, distant sites being connected by chains of 
sites between them (Figure 6.9). 
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Complete-linkage or furthest-neighbour clustering 

In contrast to the definition of distance in single-linkage clustering, the definition 
in complete-linkage clustering is as follows. The distance between two clusters 
is given by the maximum distance between any pair of members (one in each 
cluster) of both clusters (Figure 6.10). The dendrogram (Figure 6.11) suggests 
clear groups but, as can be seen in Figure 6.8, this may be an artefact. The group 
structure is imposed on the data by complete linkage: complete linkage tends 
to tight clusters, but between-cluster differences are over-estimated and therefore 
exaggerated in the dendrogram. 

Figure 6.10 Distances (solid lines) between clusters in complete linkage: samples within 
the same cluster are indicated with the same symbol. 
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Figure 6.11 Complete-linkage dendrogram of the Dune Meadow Data using the similarity 
ratio. 
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Figure 6.12 Average-linkage dendrogram of the Dune Meadow Data using the similarity 
ratio. 

Average-linkage clustering 

In average-linkage clustering, the between-group (dis)similarity is defined as 
the average (dis)similarity between all possible pairs of members (one of each 
group). This method is most widely used in ecology and in systematics (taxonomy). 
The algorithm maximizes the 'cophenetic correlation', the correlation between 
the original (dis)similarities and the (dis)similarities between samples, as can be 
derived from the dendrogram. For any sample pair, it is the lowest dissimilarity 
(or highest similarity) required to join them in the dendrogram (Sneath & Sokal 
1973). As can be seen in the dendrogram of average linkage (Figure 6.12), this 
method is intermediate between complete and single linkage. The preceding 
explanation refers to UPGMA, the unweighted-pair groups method (Sokal & 
Michener 1958). There are variants of this technique in which a weighted average 
is computed (e.g. Lance & Williams 1967). 

Centroid clustering 

In centroid clustering, between-cluster distance is computed as the distance 
between the centroids of the clusters. These centroids are the points in species 
space defined by the average abundance value of each species over all sites in 
a cluster (Figure 6.13). Figure 6.14 shows subsequent steps in centroid clustering. 
For the Dune Meadow Data, the dendrogram (which is not presented) closely 
resembles the average-linkage dendrogram (Figure 6.12). 
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Figure 6.13 Between-cluster distances (solid lines) in centroid clustering: samples within 
the same cluster are indicated with the same symbol; cluster centroids are indicated by 
squares. 
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O 

Figure 6.14 Subsequent steps in centroid clustering. Sites belonging to the same cluster 
are indicated with the same open symbol. Cluster centroids are indicated by the corresponding 
filled symbols. Upon fusion of two clusters, the symbols of sites change to indicate the 
new cluster to which they belong. 
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Ward's method or minimum variance clustering 

Ward's method, also known as Orlóci's (1967) error sum of squares clustering, 
is in some respects similar to average-linkage clustering and centroid clustering. 
Between-cluster distance can either be computed as a squared distance between 
all pairs of sites in a cluster weighted by cluster size (resembling average-linkage 
clustering) or as an increment in squared distances towards the cluster centroid 
when two clusters are fused (resembling centroid clustering). Penalty by squared 
distance and cluster size makes the clusters tighter than those in centroid clustering 
and average linkage, and more like those obtained in complete linkage. The 
algorithm proceeds as follows: with all samples in a separate cluster, the sum 
of squared distances is zero, since each sample coincides with the centroid of 
its cluster. In each step, the pair of clusters is fused, which minimizes the total 
within-group sum of squares (Subsection 3.2.1, residual sum of squares), which 
is equal to minimizing the increment (dis) in the total sum of squares: 

dE
 =

 E
p+q - Ep- Eq 

where 
E is the total error sum of squares 
Ep+q is the within-group sums of squares for the cluster in which p and q are 
fused together 
E and E the sums of squares for the individual clusters p and q. 

The within-group sum of squares for a cluster is: 

Ep=l/NYlEpYk(ykl-ykf 

where the first summation is over all members of cluster/? and the second summation 
is over all species. 

The dendrogram of Ward's clustering, average linkage and complete linkage 
using squared Euclidean Distance are given in Figure 6.15. 

6.3 Divisive methods 

6.3.1 Introduction 

Divisive methods have long been neglected. The reason for this is that they 
were developed in the early years of numerical data analysis. At that time they 
failed either because of inefficiency (too many computational requirements) or 
because the classification obtained was inappropriate. Williams & Lambert (1960) 
developed the first efficient method for divisive clustering: association analysis. 
This method is monothetic: divisions are made on the basis of one attribute (e.g. 
character or species). Although it is not used very often now, some authors still 
use association analysis or variations of association analysis (e.g. Kirkpatrick et 
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al. 1985). Subsection 6.3.2 briefly describes association analysis. Efficient polythetic 
methods for divisive clustering appeared after Roux & Roux (1967) introduced 
the partitioning of ordination space for purposes of classification. Lambert et 
al. (Williams 1976b) wrote a program to perform a division based on partitioning 
of the first axis of principal component analysis. A divisive clustering is obtained 
by repeating this method of partitioning on the groups obtained in the previous 
step. More recently, Hill (Hill et al. 1975; Hill 1979b) developed a method based 
on the partitioning of the first axis of CA. Since this method has some remarkable 
features and in most cases leads to very interprétable solutions it will be treated 
in detail in Subsection 6.3.3. 

6.3.2 Association analysis and related methods 

Association analysis (Williams & Lambert 1959 1960 1961) starts selecting the 
species that is maximally associated to the other species: association between species 
is estimated as the qualitative correlation coefficient for presence-absence data, 
regardless of its sign. For each species, the sum of all associations is computed. 
The species having the highest summed association values is chosen to define 
the division. One group is the group of sites in which the species is absent, the 
other group is the group of sites in which the species is present. Because it is 
sensitive to the presence of rare species and to the absence of more common 
ones this method is not often used in its original form. Other functions defining 
association, chi-square and information statistics have been proposed. These 
functions produce better solutions. Groups obtained in monothetic methods are 
less homogeneous than groups resulting from polythetic methods, because in the 
latter case more than one character determines the division. Therefore if a polythetic 
method is available it should always be preferred over a monothetic one (Coetzee 
& Werger 1975; Hill et al. 1975). 

6.3.3 Two Way INdicator SPecies ANalysis 

This section deals with the method of Two Way INdicator SPecies ANalysis 
(TWINSPAN). The TWINSPAN program by Hill (1979b) not only classifies the 
sites, but also constructs an ordered two-way table from a sites-by-species matrix. 
The process of clustering sites and species and the construction of the two-way 
table are explained step by step to illustrate TWINSPAN's many features, some 
of which are available in other programs too. However the combination of these 
features in TWINSPAN has made it one of the most widely used programs in 
community ecology. 

Figure 6.15 Comparison of average linkage, complete linkage and Ward's method using 
squared Euclidean Distance, a: average linkage, b: complete linkage, c: Ward's method. 
The dendrograms for average linkage and complete linkage are similar. By the use of squared 
Euclidean Distance, the larger distances have a higher weighting in average linkage. The 
result of Ward's method is different from both other methods, even at the four-cluster 
level. 
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Pseudo-species 

One of the basic ideas in TWINSPAN stems from the original idea in 
phytosociology that each group of sites can be characterized by a group of 
differential species, species that appear to prevail in one side of a dichotomy. 
The interpretation of TWINSPAN results is, in this respect, similar to the 
interpretation of a table rearranged by hand. Since the idea of a differential species 
is essentially qualitative, but quantitative data must be handled effectively also, 
Hill et al. (1975) developed a qualitative equivalent of species abundance, the 
so-called pseudo-species (see Section 3.4). Each species abundance is replaced 
by the presence of one or more pseudo-species. The more abundant a species 
is, the more pseudo-species are defined. Each pseudo-species is defined by a 
minimum abundance of the corresponding species, the 'cut level'. This way of 
substituting a quantitative variable by several qualitative variables is called conjoint 
coding (Heiser 1981). An advantage of this conjoint coding is that if a species' 
abundance shows a unimodal response curve along a gradient, each pseudo-species 
also shows a unimodal response curve (see Section 3.4), and if the response curve 
for abundance is skewed, then the pseudo-species response curves differ in their 
optimum. 

Making a dichotomy; iterative character weighting 

A crude dichotomy is made by ordinating the samples. In TWINSPAN, this 
is done by the method of correspondence analysis (Hill 1973; Section 5.2) and 
division of the first ordination axis at its centre of gravity (the centroid). The 
groups formed are called the negative (left-hand) and positive (right-hand) side 
of the dichotomy. After this division the arrangement is improved by a process 
that is comparable to iterative character weighting (Hogeweg 1976) or to the 
application of a transfer algorithm (Gower 1974) that uses a simple discriminant 
function (Hill 1977). What follows is an account of this process of iterative character 
weighting in some more details; the reader may skip the rest of this passage at 
first reading. 

A new dichotomy is constructed by using the frequencies of the species on 
the positive and negative sides of the first, crude dichotomy: differential species 
(species preferential for one of the sides of the dichotomy) are identified by 
computing a preference score. Positive scores are assigned to the species with 
preference for the positive side of the dichotomy, negative scores for those 
preferential for the negative side. An absolute preference score of 1 is assigned 
to each pseudo-species that is at least three times more frequent on one side 
of the dichotomy as on the other side. Rare pseudo-species and pseudo-species 
that are less markedly preferential are down-weighted. A first ordering of the 
sites is obtained by adding the species preference scores to each other as in PCA 
(Chapter 5, Equation 5.9). This weighted sum is standardized so that the maximum 
absolute value is 1. A second ordering is constructed by computing for each site 
the average preference scores (similar to the computation of weighted averages 
in correspondence analysis (Chapter 5, Equation 5.2)) without down-weighting 
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of the rare species. In comparison to the first ordering, this one polarizes less 
strongly when there are many common (non-preferential) species, which is to 
be expected at the lower levels of the hierarchy. At the higher levels of the hierarchy 
it polarizes more strongly than the first ordination because more rare species 
can be expected at the higher levels. Hill's preference scores have a maximum 
absolute value of 1, so the scores for the sites in this second ordering range from 
— 1 to 1. The scores in both orderings are added to each other and this so-called 
refined ordination is divided at an appropriate point near its centre (see Hill 1979b). 
The refined ordination is repeated using the refined classification. With the 
exception of a few 'borderline' cases, this refined ordination determines the 
dichotomy. For borderline cases (sites that are close to the point where the refined 
ordination is divided), the final decision is made by a third ordination: the indicator 
ordination. The main aim of this indicator ordination is, however, not to assign 
these borderline cases to one of the sides of the dichotomy, but to reproduce 
the dichotomy suggested by the refined ordination by using simple discriminant 
functions based on a few of the most highly preferential species. 

Hill (1979b) warns of confusion arising from the terms 'Indicator Species 
Analysis' in TWINSPAN's name, because indicator ordination is an appendage, 
not the real basis, of the method. He suggests the name 'dichotomized ordination 
analysis' as a generic term to describe a wide variety of similar methods (e.g. 
the program POLYDIV of Williams (1976b)). The indicator species (the set of 
most highly preferential species that reproduce as good a refined ordination as 
possible) can be used afterwards in the field to assign a not-previously-sampled 
stand to one of the types indicated by TWINSPAN. 

The construction of a species-by-sites table 

For the construction of a species-by-sites table two additional features are 
necessary. First, the dichotomies must be ordered and, second, the species must 
be classified. The order of the site groups is determined by comparison of the 
two site groups formed at any level with site groups at two higher hierarchical 
levels. Consider the hierarchy in Figure 6.16. Assume that the groups 4, 5, 6 
and 7 have already been ordered. The ordering of subsequent groups is now decided 
upon. Without ordering we are free to swivel each of the dichotomies, and therefore 

/ \ / \ 

9 10 11 12 13 14 15 

Figure 6.16 TWINSPAN dichotomy; cluster numbers are the numbers used by TWINSPAN. 
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Table 6.6 TWINSPAN table of the demonstration 
samples. Options are default TWINSPAN options, 
except the cut levels, which are 1, 2, 3, ... 9. Zeros 
and ones on the right-hand side and at the bottom 
of the table indicate the dichotomies. 

1111 I 111112 
17895B70123483234560 

3 Rir pra .2.3 00000 
12 Emp nig ... 2 00000 
13 Hyp rad 22.5 00000 
28 Vic Lat 2. 1 .... 1 00000 
5 Rnt odo .4.44324 00001 
18 PLa Lan 323.5553 00010 
1 Och miL .2. .222413 000110 

26 Tri pra 252 000110 
6 BeL per . .2.2. .2.322 000111 
7 Bro hor ....2.24.4.3 000111 
9 Cir arv 2 000111 
11 ELy rep ....4...4444.6 001 
17 LoL per 7.2.2666756542 001 
19 Poa pra 413.2344445444.2.... 001 
23 Rum ace . . . .563 22 001 
16 Leo aut 52563333.522322222.2 01 
20 Poa tri 645427654549.-2. 01 
27 Tri rep 3.222526.521233261.. 01 
29 Bra rut 4.632622..22224..444 01 
4 RLo gen 2725385. .4. 10 

24 Sag pro 2. .3 52242. ... 10 
25 5aL rep . .33 5 10 
2 Rgr sto 4843454475 110 
10 ELe paL 4. . .4584 11100 
21 Pot paL 22.. 11100 
22 Ran f La 2. .22224 11100 
30 CaL eus 4 .33 11100 
14 Jun art 44 . . .334 11101 
8 Che aLb 1. . . . 1111 
15 Jun buf 2 443.... 1111 

00000000000011111111 
00001111111100001111 

00001111 

this hierarchical structure only indicates that 8 should be next to 9, 10 next to 
11, etc. The groups (e.g. 10 and 11) are ordered 11, 10 if group 11 is more similar 
to group 4 than group 10 and also less similar to group 3 than group 10. The 
ordering 10, 11 is better when the reverse holds. In this way, the ordering of 
the dichotomy is determined by relatively large groups, so that it depends on 
general relations more than on accidental observations. 

After completing the site classification the species are classified by TWINSPAN 
in the light of the site classification. The species classification is based on fidelity, 
i.e. the degree to which species are confined to particular groups of sites. In other 
aspects the classification of the species closely resembles the site classification. 
A structured table is made from both classifications by ordering the species groups 
in such a way that an approximate 'positive diagonal' (from upper left to lower 
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right) is formed. A TWINSPAN table of the Dune Meadow example is given 
in Table 6.6. 

6.4 Non-hierarchical clustering 

A non-hierarchical clustering can be constructed by selecting sites to act as 
an initial point for a cluster and then assigning the other sites to the clusters. 
The methods vary in details. Gauch (1979) starts picking up a random site and 
clusters all sites within a specified radius from that site. COMPCLUS, as his 
program is called (composite clustering), repeats this process until all sites are 
accounted for. In a second phase, sites from small clusters are reassigned to larger 
clusters by specifying a larger radius. Janssen (1975) essentially proposes the same 
approach but picks up the first site from the data as initiating point for the first 
cluster. This method is applied in CLUSLA (Louppen & van der Maarel 1979). 
As soon as a site lies further away from the first site than specified by the radius, 
this site is the initiating point for the next cluster. Subsequent sites are compared 
to all previously formed clusters. In this way there is a strong dependence on 
the sequence in which the sites enter the classification. A second step in CLUSLA 
is introduced to reallocate the sites to the 'best' cluster. This is done by comparing 
all sites with all clusters: if they are more similar to another cluster then to their 
parent cluster at that moment, they are placed in the cluster to which they are 
most similar. In contrast to COMPCLUS, not only within-cluster homogeneity, 
but also between cluster distances are used by CLUSLA. A method combining 
the benefits of both methods is used in FLEXCLUS (van Tongeren 1986). From 
the total set of sites a certain number is selected at random or indicated by the 
user. All other sites are assigned to the nearest of the set. By relocation until 
stability is reached, a better clustering is achieved. Outliers are removed by reduction 
of the radius of the clusters afterwards. Variations of these methods are numerous; 
others have been presented by, for example, Benzécri (1973), Salton & Wong 
(1978) and Swain (1978). 

Although hierarchical clustering has the advantage over non-hierarchical clus-
tering that between-group relations are expressed in the classification, there is 
no guarantee that each level of the hierarchy is optimal. A combination of 
hierarchical and non-hierarchical methods can be made by allowing sites to be 
relocated, to improve clustering. Since clusters change by relocations, this can 
be repeated in an iterative process until no further changes occur. 

If there is a clear group structure at any level of the hierarchy, no relocations 
will be made. An example of such a method is relocative centroid sorting. This 
method is demonstrated in Figure 6.17. Because of the possibility of relocations, 
a dendrogram cannot be constructed. By using relocative centroid sorting in a 
slightly different way - assigning each site to a cluster at random or by a sub-
optimal, quick method - as shown in Figure 6.17, computing time can be saved 
because computation of a site-by-site (dis)similarity matrix can be replaced by 
computation of a site-by-cluster matrix. This is used in the table rearrangement 
program TABORD (van der Maarel et al. 1978), and also in CLUSLA (Louppen 
& van der Maarel 1979) and FLEXCLUS (van Tongeren 1986). 
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A 

A 

A 
AA 

Figure 6.17 Three steps in relocative centroid sorting, a: arbitrary initial clustering, b: after 
relocation, c: after fusion of the most similar clusters. Samples in the same cluster are 
indicated by the same open symbol.The corresponding closed symbols indicate the cluster 
centroids. 

6.5 Optimality of a clustering 

It is difficult to decide which solution of the cluster analysis to choose. There 
are very different criteria used to do so: one can distinguish between external 
and internal criteria. 

External criteria are not dependent on the method of clustering. Other data 
are used to test whether the clustering result is useful. 
- In syntaxonomy (Westhoff & van der Maarel 1978), we look for sufficient 

differences in floristic composition to be able to interpret the results, for instance 
within the meaning of syntaxa, characteristic and differential species. 

- In synecology, if we only used the information on the species composition 
for our clustering, we have the possibility to test for differences in other variables 
between the clusters (e.g. analysis of variance for continuous data or chi-square 
test for nominal variables, cf. Subsection 3.3.1). 

- In survey mapping, we can have restrictions on the number of legend units, 
dependent on scale and technical facilities. 

Internal criteria are dependent on the data used for obtaining the clustering 
and usually also the method of clustering. There are almost as many methods 
to decide which cluster method or which hierarchical level is best as there are 
methods for clustering. Some of these methods use statistical tests, but usually 
it would be better to use the word pseudo-statistics: the conditions for application 
of the tests are never satisfied because the same characters that are used to group 
the data are used to test for differences. Most other methods (a review can be 
found in Popma et al. 1983) use two criteria for the determination of the optimum 
solution: 

- Homogeneity of the clusters (average (dis)similarity of the members of a cluster 
or some analogue). 

- Separation of the clusters (average (dis)similarity of each cluster to its nearest 
neighbour, or some analogous criterion). 
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There are many possible definitions of homogeneity and separation of clusters, 
and each definition might indicate another clustering as the best one. The use 
of methods to determine the optimum clustering should therefore be restricted 
to evaluation of subsequent steps in one type of analysis (Hogeweg 1976; Popma 
etal. 1983). 

6.6 Presentation of the results 

Results of a classification can be presented in different ways. We have already 
mentioned: 

- the species-by-sites table, giving as much information as possible on all separate 
sites and species abundances. In vegetation science, additional environmental 
information and information on the number of species in a site is usually 
provided in the head of the table. 

- The dendrogram, a representation in which the hierarchical structure of the 
site groups is expressed. 

When there are many sites, a species-by-sites table becomes quite large and 
it is not very easy to interpret the table. This is the reason for the construction 
of a so-called synoptical table. A synoptical table summarizes the results for each 
cluster. Classical synoptical tables in the Braun-Blanquet school of vegetation 
science present a presence class and minimum and maximum values for cover/ 
abundance in each vegetation type for all species. Table 8.3 is an example of 
such a table. In Table 8.3 the presence classes I to V represent within cluster 
species frequencies (0-20, 20-40, 40-60, 60-80, 80-100%, respectively). Many other 
ways of presenting the summarized data in a synoptical table are possible. For 
example, one can form cross-tabulations of species groups by clusters, or instead 
of presence class and minimum and maximum scores, average values and standard 
deviations can be entered into the table. 

A dendrogram and a species-by-sites table cannot be used for presentation in 
more than one dimension. Therefore it can be very useful to present the results 
of the classification in an ordination diagram of the same set of sites. In such 
a diagram, more complex relations with the environment can be clearly elucidated 
(cf. Figure 8.7). 

6.7 Relation between community types and environment 

The relation between community types as they are defined by cluster analysis 
on the basis of species data and their environment can be explored in several 
ways. A hierarchical classification can be evaluated at each level: at each dichotomy, 
a test can be done for differences between the two groups or all clusters at a 
certain level are evaluated simultaneously. In a non-hierarchical classification we 
are restricted to simultaneous comparison of all resulting clusters.The range of 
methods goes from exploratory analysis (Subsection 6.7.1) to statistical tests of 
significance (Subsection 6.7.2). 
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Table 6.7 FLEXCLUS table, similarity ratio, centroid sorting with relocations. Sample 1, 
which formed a separate cluster, is added to the second cluster by hand. Environmental data 
are summarized and added to the table. 

B i t e s : 
11 1 11 : 
: 79617085:123483: 

Leo 
Bra 
Tri 
Ogr 
Och 
Ont 
PLa 
Poa 
LoL 
Bel 
ELy 
OLo 
Poa 
Sag 
Jun 
Jun 
CaL 
ELe 
Ran 
Oir 
Bro 
Hyp 
Pot 
Rum 
5a L 
Tri 
Vic 
Che 
Cir 
Emp 

aut 
rut 
rep 
sto 
mil 
odo 
Lan 
pra 
per 
per 
rep 
gen 
tri 
pro 
buf 
art 
eus 
paL 
fLa 
pra 
hor 
rad 
pal-
ace 
rep 
pra 
Lat 
aLb 
arv 
nig 

!2B353353I 
3942262 ! 
2532622 I 

!2 2 24 2: 
I443 24 4! 
!2 535335! 
1 344432: 
B76622! 

222! 
4! 

4 54 6! 
3 2 I 

52232 ! 
2222! 

52123: 
4843: 

13 

44544 
75B42 
322 

4444 B: 
27253 ! 

276545 I 
522! 

A: 

4 
2 

I23 
24 2! 4 3 

I 25 2 : 

6 3 5: 
3 3 i 
5 2 2I 
2 11 : 

11 ; 1112 
23 ! 4560 

45 ! 4475 
4 : 444 
32:61 
45!4475 

2 : 

85! 
49! 
42: 
43: 

i4 33 
i4584 
!2224 

:22 

Environmental parameters: 

Dept 01 
mean 
s.d. 
% HF 
% NM 

Moisture 
cL 1 
cL 2 
cL 3 
cL 4 
cL 5 

Manure 
cL 1 
cL 2 
cL 3 
cL 4 

4.0 
1. 1 

38 
38 

** 

* 

** 
* 

3.8 
0.B 

33 
0 

* 
** 

* 
* 

* 
* 
* 
*** 

5.9 
0. 1 
0 
0 

* 
* 

* 

7.5 
3.B 
0 
75 

**** 

* 
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6.7.1 The use of simple descriptive statistics 

For a continuous variable, mean and standard deviation can be computed for 
each cluster, if there is no reason to expect outliers or skewed distributions. For 
skewed distributions the alternative is to inspect the median and the mid-range, 
or range for each cluster. Table 6.7 gives means and standard deviations for the 
depth of the Al soil horizon. There seems to be a weak relation between the 
clusters and the depth of the A1 horizon. A good alternative for continuous variables 
is the construction of stem and leaf diagrams for each cluster separately. 

For ordinal and nominal variables, such as moisture class and fertilization class 
in the Dune Meadow Data, the construction of histograms give us quick insight 
into the relations. Table 6.7 clearly shows that moisture might be the most important 
environmental variable affecting the species composition. For nominal variables, 
frequencies or within cluster proportions of occurrence might also give insight 
in the relations. The proportion of plots managed by the Department of Forests, 
the Dutch governmental institution administering the country's nature reserves 
is, for instance, high in cluster 4, which are the nutrient-poor meadows. 

In the preceding subsections, all variables have been evaluated separately and 
on one hierarchical level. A different, quick way to evaluate all levels of a hierarchical 
classification in the light of all appropriate environmental variables is the use 
of simple discriminant functions for each dichotomy as performed by DISCRIM 
(ter Braak 1982 1986). In the DISCRIM method, simple discriminant functions 
are constructed in which those environmental variables are selected that optimally 
predict the classification. Figure 6.18 shows the TWINSPAN classification of the 
sites (Table 6.6) in the form of a dendrogram and it shows at each branch the 
most discriminating variables selected by DISCRIM. 

1(12) moisture class 3+ 8(8) 

0(4) manure class 2+ 7(8) 

3(4) hobby 0(4) 

0(4) NM 3(4) 

Figure 6.18 This is the same TWINSPAN site classification as in Table 6.6, but now presented 
as a dendrogram. At each branch the most discriminating variables, selected by DISCRIM, 
are shown. Numbers at the branches indicate the number of sites for which the conditions 
are true. Numbers in brackets indicate the number of sites in the clusters. 
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6.7.2 The use of tests of significance 

Tests of significance are introduced in Chapter 3, Section 3.2. To test whether 
any environmental variable might be controlling the species composition (or might 
be controlled by the species composition, or simply related to the species 
composition) in the communities, we take as null hypothesis that the species 
composition is independent from the environmental variable. Rejecting the null 
hypothesis indicates that the environmental variable is related to the species 
composition of our community types in some way or another. 

Analysis of variance 

Analysis of variance is explained in Subsection 3.2.1. It can be used to detect 
relations between community types and continuous environmental variables. The 
systematic part consists of the expected values of the environmental variable, 
one for each community type and the error part is the variation in the values 
within each community type. Analysis of variance is based on the normal 
distribution. Therefore environmental variables must often be transformed, e.g. 
by using the logarithm of their values (see Subsection 2.4.4). 

Chi-square test 

Subsection 3.3.1 describes the chi-square test for r X k contingency tables. The 
chi-square test is used to test the null hypothesis: that a nominal environmental 
variable is not related to the community types. Care should be taken if the numbers 
of data are small or if the frequency of occurrence of the nominal variable is 
low (see Subsection 3.3.1). 

The rank sum test for two independent samples 

Analysis of variance and the t test (cf. Subsection 3.2.1) are not very resistant 
to outliers, because they are very much affected by gross errors in the observations. 
An alternative is to use a distribution-free method, like the rank sum test for 
two independent samples.' As its name indicates, this test, developed by Wilcoxon, 
but also known as the Mann-Whitney test, can be used to test for differences 
between two groups. The test is described below. 

All observations in both groups are put into a single array in increasing order 
(indicating also from which group they are) and rank numbers are given to the 
observations (the smallest observation has rank number 1). Tied observations 
(equal values) are given their average rank number. For equal sample sizes the 
smallest sum of rank numbers of both groups is directly referred to a table for 
the Mann-Whitney test. For unequal sample sizes the sum of the rank numbers 
is computed for the smallest sample (T,). A second T(T2) is computed: 

T2 — «! (n,+n2+l) - r, 
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where nx and n2 are the sizes of the smaller and the larger sample, respectively. 

The test criterion T is the smaller of Tx and T2. For sample sizes outside the 
limits of the table, an approximate normal deviate Z is referred to the tables 
of the normal distribution to obtain the significance probability P: 

Z = ( | U - T | - 0 . 5 ) / G 

where u = (nl+n2+l)j2 and o = y/(n2 u/6). 

With this test two small groups (minimum sizes of 4 and 4, 3 and 5 or 2 and 
8) can be compared without any assumption on the distribution of the envir-
onmental variable. For further details on this test and other tests of significance 
refer to a statistical handbook (e.g. Snedecor & Cochran 1980). 

6.8 Bibliography 

Scientific classification of communities can be traced back in history to von 
Humboldt (1807): he used associations of plants to define community types. Jaccard 
( 1912) took the first step in the direction of multivariate analysis by the development 
of his index of similarity. Many years later he was followed by Sorensen (1948), 
who developed his 'method of establishing groups of equal amplitude in plant 
sociology' based on similarity of species content. The increasing access scientists 
have had to computers over the last thirty years has led to rapid developments 
in multivariate methods. An early work that is devoted to the use of multivariate 
methods in taxonomy is a book written by Sokal & Sneath (1963). In the late 
sixties, and 1970s there was a rapid increase in the use of cluster analysis (and 
ordination) by ecologists. Pielou (1969), Goodall (1970) and Williams (1976a) 
give a theoretical background to these methods. 

Numerical classification in the phytosociological context is elucidated by Goodall 
(1973) and Mueller-Dombois & Ellenberg(1974). Everitt (1980) and Dunn & Everitt 
(1982) are more recent introductions to numerical taxonomy. Gauch (1982) gives 
an introduction to classification of communities and mentions many applications 
of cluster analysis. 
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6.9 Exercises 

Exercise 6.1 Sing le-linkage clustering with Jaccard similarity 

Exercise 6.1a Compute the Jaccard similarities for the sites in the artificial species-
by-site table given below. Since the similarities are symmetrical and the diagonal 
elements all equal 1, you should only compute the elements below the diagonal 
of the site-by-site similarity matrix (cf. Exercise 6.1c for the species). 

Site 

Species A 
B 
C 
D 
E 
F 
G 

1 

1 
2 

1 

2 

4 

1 
1 
3 
1 

3 

1 

1 

1 
3 

4 

1 

4 
1 

5 

2 

1 

1 

6 

•-'. 

5 
3 

Exercise 6.1b Perform single-linkage clustering for the sites. 

Exercise 6.1c The species similarities are: 

B D 

B 0 
C O O 
D 0.60 0 0.25 
E 0.40 0.33 0 0.17 
F 0.60 0.25 0 0.33 0.75 
G 0.60 0 0.25 1.0 0.17 0.33 

Perform single-linkage clustering for the species. 

Exercise 6.Id Rearrange the sites and the species to represent the hierarchical 
structure. Try also to obtain the best possible ordering. 
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Exercise 6.2 Complete-linkage clustering with percentage similarity 

Exercise 6.2a Compute the missing elements (denoted by*) of the site-by-site 
similarity matrix (percentage similarity) for the table of Exercise 6.1a. 

2 29 
3 40 * 
4 0 25 17 
5 50 58 60 * 
6 0 60 * 63 29 

Exercise 6.2b Perform complete-linkage clustering for all sites. 

Exercise 6.3 Single-linkage clustering with Euclidean Distance 

Exercise 6.3a Compute the missing elements (denoted by*) of the site-by-site 
Euclidean Distance matrix for the table of Exercise 6.1a. 

2 
3 
4 
5 
6 

1 

5.3 
* 
4.9 
2.5 
6.3 

2 

4.2 
5.7 
3.8 
4.7 

3 

5.3 
2.5 
6.3 

4 

4.9 
2.5 

5 

* 

Exercise 6.3b Perform single linkage and try to find out why the result is so 
different from Exercise 6.1. 

Exercise 6.4 Divisive clustering 

This exercise is a demonstration of a simple classification procedure using a 
divisive strategy with iterative character weighting (this procedure is different from 
the procedures used in TWINSPAN and by Hogeweg (1976)). The species-by-
sites table of Exercise 6.1 is used here too. 

Step a Divide the sites in two groups, a positive and a negative one. You may 
choose a random division or monothetic division based on the presence of one 
species. In the solution we intially place Sites 1,3 and 6 in the negative group 
and Sites 5,2 and 4 in the positive group. 

Step b Compute the sum of abundances for each species for both sides of the 
dichotomy (SPOS for the positive scores, SNEG for the negative scores). 
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Step c Compute a preference score for each species: ref = (SPOS—SNEG)/ 
(SPOS+SNEG). 

Step d Compute a weighted sum (or weighted average of the species abundances) 
for each site. 

Step e Find maximum and minimum site score (MAX and MIN) and the midpoint 
of the site scores (MID = (MAX+MIN)/2). 

Step f Assign all sites with a score less than the midpoint to the 'negative' group 
and all the other sites to the 'positive' group. 

Step g Repeat steps b-f until the division is stable. 

Step h Repeat steps a-g for each subgroup. 

Exercice 6.5 Cluster interpretation with nominal environmental data 

Do the chi-square test for moisture classes 1 and 2 combined, and 3, 4, and 
5 combined, for: 

Exercise 6.5a The first division of TWINSPAN (Table 6.6) 

Exercise 6.5b The first three clusters of Table 6.7 combined and the last cluster 
(highest hierarchical level). What is your null-hypothesis? Has it to be rejected 
or not? Is it correct to use the chi-square test in this case? 

Exercise 6.6. Cluster interpretation with ordinal environmental data 

Perform Wilcoxon's test for 'Depth of A l ' for the first division of TWINSPAN 
(Table 6.6). 
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6.10 Solutions to exercises 

Exercise 6.1 Single-linkage clustering with Jaccard similarity 

Exercise 6.1a The number of species per site (A) and the values of c and 
(A+B-c) in the notation of Subsection 6.2.2 are given below: 

Site number 

A (or B) 

{A+B-c) 

Jaccard similarity is obtained )y dividing 
corresponding elements of the tables: c and (A+B-c) 

Jaccard 2 
3 
4 
5 
6 

1 

0.33 
0.40 
0.00 
0.50 
0.00 

0.80 
0.33 
0.06 
0.60 

Exercise 6.lb In order to obtain 
find the highest remaining sim 

17 

40 
0.00 
0.50 0.20 

the single-linkage clustering we only have to 
larity as demonstrated in the following table: 

Fusion 

1 
2 
3 
4 
5 

Highest 

0.80 
0.75 
0.60 
0.50 
0.50 

similarity Between sites 

2,3 
3,5 
2,6 
1,5 
4,6 

Clusters fused 

2,3 
(2,3),5 
(2,3,5),6 
1,(2,3,5,6) 
(1,2,3,5,6),4 
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Exercise 6.1c 

Fusion Highest similarity Between species Clusters fused 

1 
2 
3 
4 
5 
6 

1.0 
0.75 
0.60 
0.60 
0.33 
0.25 

D,G 
E,F 
A,D 
A,F 
B,E 
C,D 

D,G 
E,F 
A,(D,G) 
(A,D,G),(E,F) 
(A,D,E,F,G),B 
(A,B,D,E,F,G),C 

Exercise 6. Id The hierarchy can be represented in a dendrogram in which each 
dichotomy can be swivelled. In order to obtain the best possible ordering each 
site is placed next to its nearest neighbour. 

2 next to 3: 
5 next to 3 
6 next to 2 
1 next to 5 
4 next to 6 
or the reverse 

2 
2 
6 
6 
4 
1 

3 
3 
2 
2 
6 
5 

5 
3 
3 
2 
3 

5 
5 
3 
2 

1 
5 
6 

1 
4 

If we use the same procedure for the species, there is a problem for species C. 

D 
E 
A 
A 
B 

next to 
next to 
next to 
next to 
next to 

G:D G 
F: E F 
D:A D G 
F: E F A 
E: B E F 

o r G D 
or F E 
o r G D A 

D G or G D A F 
A D G o r G D A F 

E 
E B 

C between A and D is not a good solution because A resembles D much more 
than C does. 
C next to G is better, but still there are two possibilities, C between D and G 
or C at the end. Because C resembles A less than D and G do, C is placed 
at the end of the ordering: 
B E A D G C or C G A F E B 

J 

The rearranged table: 

c 
G 
D 
A 
F 
E 
B 

1 
1 
1 
2 

5 

1 
1 
2 

3 

3 
1 
1 
1 

2 

1 
1 
4 
3 
1 

6 

2 
3 
5 

4 

1 
4 
1 



Exercise 6.2 Complete linkage clustering with percentage similarity 

Exercise 6.2a Computation of the similarities: 

PS23: Sum of scores site 2: 10 
Sum of scores site 3: 6 
Minimum scores: A = 1, B = 0, C = 0, D = 1, E = 0, F = 1, G = 1 
Sum of minimum scores: c — 1+0+0+1+0+1 + 1 = 4 
PS23 = 200X4/(10+6) = 50 

PS36: c =1+0+0+0+0+1 = 2 
PS36 = 200X2/(6+10) = 25 

PS4 5: no common species: c = 0 PS4 5 = 0 

The complete similarity matrix is now: 

2 
3 
4 
5 
6 

1 
29 
40 

0 
50 

0 

2 

50 
25 
58 
60 

3 

17 
60 
25 

4 

0 
63 

5 

29 

Exercise 6.2b The first step is the same as with single linkage: the two most 
similar samples are fused. Then we construct a new similarity matrix: 

(4,6) 

fusion 1:4 and 6, 

1 
2 29 
3 40 

(4,6) 0 
5 50 

similarity 63 

2 3 

50 
25') 17") 
58 25 0'") 

Note: ')min (25,60) = 25 
")min (17,25)= 17 
'")min ( 0,29) = 0 

Fusion 2: 5 and 2, similarity 58 

new similarity matrix: 
1 (2,5) 3 

(2.5) 29') 
3 40 50") 

(4.6) 0 0 17 
Note: ') min (29,50) = 29 

") min (50,60) = 50 
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Fusion 3 : (2,5) and 3, similarity 50 

new similarity matrix: 
1 (2,3,5) 

(2,3,5) 29 
(4,6) 0 0 

Fusion 4: (2,3,5) and 1, similarity 29 

last fusion: (1,2,3,5) and (4,6), similarity 0 

Exercise 6.3 Single-linkage clustering with Euclidean Distance 

Exercise 6.3a 

ED, 3 = [(0-l)2+(0-0)2+(l-0)2+(2-l)2+ (0-0)2 +(0-l) 2+(l-3) 2]" 2 

' = ( l + 0 + l + l + 0 + l + 4 ) " 2 = 8"2 = 2.8 

ED5 6 = [(2-0)2+(0-0)2+(0-5)2+(0-3)2+ (1-0)2]1'2 = (4+1+25+9+1)"2 

' = 40"2 = 6.3 

Exercise 6.3b Instead of looking for the highest similarity values, we look for 
the lowest dissimilarity values. 

Fusion 

1 
2 
3 
4 
5 

Dissimilarity 

2.5 
2.5 
2.5 
4.2 
4.7 

Between sites 

1,5 
3,5 
4,6 
2,3 
2,6 

Clusters fused 

1,5 
(1,5),3 
4,6 
(1,3,5),2 
(1,2,3,5),(4,6) 

Now Sites 4 and 6 group together because of the dominance of Species E. Sites 
2 and 3 are more different and fuse therefore later, because of the different 
abundances for Species A, F and G. Sites 1 and 5 are fused first, because of 
their low species abundances, and so on. 
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Exercise 6.4 Divisive clustering 

Steps a-g The species-by-sites table (Table 6.8) is rearranged according to the 
solution from Exercise 6.1. 

Table 6.8 Species-by-sites table rearranged according to the solution for Exercise 6.1, with 
SPOS, SNEG and PREF computed in Steps b and c of the iteration algorithm of Exercise 6.4. 

step 1 b step 1 c step 2 b step 2 c step 3 b step 3 c 

SPOS SNEG PREF SPOS SNEG PREF SPOS SNEG PREF 

1 
2 

1 
1 
2 

3 
1 
1 
1 

1 
1 
4 
3 
1 

2 
3 
5 

1 
4 
1 

2 
2 
6 
4 
5 
1 

4 
3 
3 
4 
5 
0 

-0.33 
-0.20 
0.33 
0 
0 
1 

2 
2 
8 
7 

10 
1 

4 
3 
1 
1 
0 
0 

-0.33 
-0.20 
0.78 
0.75 
1 
1 

1 
1 
6 
7 

10 
1 

5 
4 
3 
1 
0 
0 

-0.67 
-0.75 
0.33 
0.75 

1 
1 

Step la Initial choice: Sites 1, 3 and 6 in the negative group; Sites 2, 4 and 5 in the 
positive group. 

Step lb - lc See Table 6.8. 
Step Id For Sites 1-6 the weighted sums of the preference scores are —1.73, 0.79, 

-0.86, 1, 0.13 and 0.66, respectively. 
Step le MID = (-1.73 + l)/2 = - 0 . 3 6 . 
Step If Sites 1 and 3 in the negative group; the other sites in the positive group. 
Step 2b-2c See Table 6.8. 
Step 2d For Sites 1-6 the weighted sums are -1 .73, 5.84, 0.34, 5.75, 1.03 and 8.81, 

respectively. 
Step2e MID = ( -1 .73+ 8.81)/2 = 3.56. 
Step 2f Sites 1, 3 and 5 in the negative group; the other sites in the positive group. 
Step 3b-3c See Table 6.8. 
Step 3d For Sites 1-6 the weighted sums are -3.17, 2.15, -1.68, 5.75, -0.76 and 7.91, 

respectively. 
Step3e MID = ( -3 .17+ 7.91)/2 = 2.37. 
Step 3f Same as Step 2f, so the classification is stable now. 

Step h This is solved in essentially the same way for further subdivisions. 

Exercise 6.5 Cluster interpretation with nominal environmental data 

We start by making two-way cross-tabulations of the observed frequencies (o): 

T W I N S P A N (Table 6.6) F L E X C L U S (Table 6.7) 

Cluster number: 
Moisture class: 1+2 

3+4+5 
Total: 

0 
11 
1 

12 

1 
0 
8 
8 

total 
11 
9 

20 

1+2+3 
11 
5 

16 

4 
0 
4 
4 

total 
11 
9 

20 



The expected cell frequencies can be obtained by dividing the product of the 
corresponding row and column totals by the overall total, e.g. (llX12)/20 = 
6.6 (first cell of the 'TWINSPAN' table) The two-way cross-tabulation of the 
expected cell frequencies (e) becomes: 

Cluster number: 
Moisture class: 1+2 

3+4+5 
Total: 

0 
6.6 
5.4 
12 

1 
4.4 
3.6 

8 

total 
11 
9 

20 

1+2+3 
8.8 
7.2 
16 

4 
2.2 
1.8 

4 

total 
11 
9 

20 

For a two-by-two table all deviations from the expected values are equal (check 
this for yourself): o-e = 4.4 and (o-e)

2 = 19.36 (TWINSPAN), o-e = 2.2 and 
(o-e)

2
 = 4.84 (FLEXCLUS, highest level). 

X 2= 19.36(1/6.6+1/4.4+1/5.4+1/3.6)= 16.30 (TWINSPAN) 

%2 = 4.84(1/8.8+1/2.2+1/7.2+1/1.8) = 6.11 (FLEXCLUS, highest level). 

Our null hypothesis is that the classification is not related to moisture class. We 
have 1 degree of freedom since the number of rows and the number of columns 
both are equal to 2 : v = (number of rows - 1) X (number of columns - 1). 
Referring to a table of the chi-square distribution we see that the null hypothesis 
should be rejected (P < 0.005 for the TWINSPAN classification and 0.01 < P 

< 0.025 for the FLEXCLUS classification), which means that the types are related 
to moisture level for both classifications. 

We should not use the chi-square test because the expected cell frequencies 
are too low. 

Exercise 6.6 Cluster interpretation with ordinal environmental data 

The following table shows the sites ordered by increasing depth of the A1 horizon; 
the sites belonging to the right-hand side of the TWINSPAN dichotomy are 
indicated with an asterisk. Rank numbers are assigned, in case of ties the average 
rank number is used. Site 18 is not included in the list since its value for this 
variable is missing. 

Site 
Al 
Rank 

7 1 
2.8 2.8 
1.5 1.5 

10 2 11 20* 9*19 17 4 8* 6 3 
3.3 3.5 3.5 3.5 3.7 3.7 4.0 4.2 4.2 4.3 4.3 

3 5 5 5 7.5 7.5 9 10. 10. 12. 12. 

16* 12* 13* 5 14* 15* 
5.7 5.8 6.0 6.3 9.3 12. 
14 15 16 17 18 19 

Rank numbers 10. and 12. indicate 10.5 and 12.5 respectively. Value of T{ (for 
the smaller, right-hand-side group) is the sum of the rank numbers: 105. 
Value of T2 = 8(8+11 + 1)^105 = 55. T, which is referred to a table of Wilcoxon's 
test, is the smaller of these two: 55 Looking up this value in the table, we conclude 
that we cannot reject our null hypothesis. There is no evidence that the types 
are related to the depth of the Al horizon. 
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7 Spatial aspects of ecological data 

P.A. Burrough 

7.1 Introduction 

Many kinds of environmental mapping, such as those practised by physical 
geographers, geologists, soil scientists, biogeographers, ecologists and land-use 
specialists, use the choropleth map as the major means of recording and displaying 
the spatial variation of the phenomenon under study. Choropleth mapping assumes 
that uniform areas can be delineated by sharp boundaries (i.e. that all important 
change occurs at the boundaries of the delineated spatial units, Figure 7.1.). 
Sometimes the boundaries may be those of administrative areas or land-use types, 
but very frequently they will have been interpreted from external aspects of the 
landscape such as can be seen from stereo aerial photographs, remotely sensed 
imagery, or in the field. 

The major, and frequently forgotten, principle of choropleth mapping is that 
the values of the quantitative variables under study are necessarily assumed to 
be constant within the delineated areas (or the values have a constant mean with 
a small, residual error variation). Because all important changes are assumed to 
take place at boundaries between delineated units, choropleth maps model variation 
by a stepped surface. In statistical terms, the choropleth map can be represented 

Figure 7.1 A simple choropleth map and its cross-section through the line A-B. All important 
variation is assumed to occur at the boundaries. 
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by the technique of one-way analysis of variance (see Subsections 3.2.1 and 3.5.5), 
in which the value of a quantitative variable Z at a point x is given by 

Z— b0 + bj + e Equation 7.1 

where 
b0 is the overall mean of the attribute for the study area as a whole 
bj is the difference between the mean of delineated area j , in which point x falls, 

and the overall mean ÇLbj — 0) 
E is an independent, normally distributed random error term having zero mean 

and variance a2. 

This simple model of the variation of environmental phenomena over the 
landscape is frequently inadequate because spatial change does not always take 
place at well-defined, abrupt boundaries. Boundaries that have been interpreted 
from one set of criteria may be inadequate for resolving the variation of other 
attributes (Beckett & Burrough 1971). Reclassification of delineated areas, (e.g. 
Dent 1985) and drawing boundaries in different places (e.g. Bie & Beckett 1973) 
may give maps that have a completely different visual appearance, but which 
may still inadequately describe the variation over the landscape of the phenomenon 
of interest. 

A common and well-established approach to the problem of spatial variation 
within mapping unit boundaries is to remap the area at larger scales (e.g. Vink 
1963), thereby repeating the choropleth principle, but with smaller spatial sub-
divisions. As Burrough (1983a) has pointed out, this process of nested delineation 
can go on indefinitely - it is a simple approach to dealing with complex problems 
(see Mandelbrot 1982). 

The basic weakness of the choropleth approach, as expressed by Equation 7.1, 
is that it requires the scientist to link all spatial variation to class definitions 
and boundaries, and to assume that all sampling points within the class boundaries 
are statistically independent of each other. The choropleth principle ignores totally 
the possibility of gradual change, or trend, within a landscape unit and the 
phenomenon of spatial autocovariance, i.e. that points close together in space 
are more likely to have similar values of an attribute than points located further 
apart. 

The realization of gradual change within major geographically defined landscape 
units has important consequences. First, a spatial model incorporating gradual 
spatial change would seem in many circumstances to be intuitively nearer reality 
than one that requires all points to have the same probability of having a certain 
value. For example, gradual change is intuitively more acceptable for such processes 
as the deposition of alluvium by rivers, or the variation of climate with altitude 
or distance from a coast. To be fair, many published soil, vegetation and integrated 
resource maps (e.g. those made during reconnaissance surveys by the Australian 
C.S.I.R.O. Division of Land Research, or the Land Resources Division, U.K.) 
do contain information about within-unit spatial variation. Because of the nature 
of the surveys, however, this spatial variation is usually only given as a qualitative 
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description in the memoir that accompanies the printed map. 
One major reason for using choropleth mapping techniques is that they allow 

the surveyor to make generalizations from a large number of point observations 
(soil borings, quadrat counts, etc.). Before computers became generally available 
for processing large amounts of complex spatial data, classification and choropleth 
mapping was the only approach to the problem of mapping the spatial variation 
of complex ecological phenomena. More recently, the availability of the computer 
and of new mathematical techniques for modelling gradual spatial change, have 
allowed us to approach the problem of within-landscape-unit variation in ways 
that do not suffer from the restrictions of the choropleth technique. This chapter 
describes two of these ways, namely trend-surface analysis and the study of spatial 
autocovariance, and it explains how they can be used to help discover the spatial 
structure of a phenomenon or be applied for extending the data sampled at points 
to map larger areas. 

7.2 Trend-surface analysis 

7.2.1 Introduction 

The simplest way to model gradual, long-range spatial variation is to fit a 
regression line, surface or volume to the observed point data. This technique, 
known as trend-surface analysis, because of its frequent application to data gathered 
from two-dimensional space, is a special case of the usual multiple regression 
techniques in which observed values of the variable of interest, Z, are regressed 
against the independent position variables, which act as the explanatory variables 
(Section 3.2 and Subsection 3.5.2). The resulting line, surface or volume represents 
the long-range, gradually changing aspects of the spatial variation of Z (the 
systematic part of the model). The short-range, random component is then 
represented by the deviations from regression (the error part of the model). 

7.2.2 One-dimensional trends 

Consider the value of an environmental variable Z that has been measured 
along a transect. Assume that Z increases monotonically with X, so that a plot 
of Z against X has the form shown in Figure 7.2. The long-range variation of 
Z over X can be expressed by a regression line. The regression line can be fitted 
in several ways. If the line is to be a 'best fit' it means that the squared deviations 
of the data points from the line must be a minimum. Clearly, deviations from 
the regression line can be calculated in three ways. These are: 
- the deviation of Z from the fitted line 
- the joint deviation of Z and X from the fitted line 
- the deviation of X from the fitted line. 

Because Zis the variable to be explained by X (location), the first case is appropriate, 
so that we have the regression model 

Z = b0 + bxX + s Equation 7.2 
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Figure 7.2 The deviations from a linear trend. A: minimum deviation in Z. B: minimum joint 
deviation in X and Z. C: minimum deviation in X. For trend surfaces, A is required. 

where, in addition, the error E is assumed to be independent and normally 
distributed. The parameters b0 and b{ of this model can be estimated by the 
least-squares methods of Subsection 3.2.2. The t value of b, (see Subsection 3.2.2.) 
or the correlation coefficient between Z and X show whether there is a long-
range trend or that short-range erratic components dominate. The long-range 
variation or 'trend' is expressed by the slope of the regression line bx. 

7.2.3 Extensions to non-normally distributed variables 

So far, the simplest case has been considered, i.e. when Z is normally distributed 
and linearly dependent on X. Very often environmental variables are non-normally 
distributed. The causes are diverse, but physical properties of soil, for example, 
are often log-normally distributed. In these situations it is usual to first examine 
the distribution of Z to check for normality, and then if the distribution is markedly 
skewed, to apply a transformation to bring the distribution back to normality. 
For example, a positively skewed distribution can often be transformed to a normal 
distribution by taking the logarithm of the variable (see Section 2.4). The 
transformed data are then used for the regression. Note that the actual requirement 
for using the least-squares method to fit Equation 7.2 is that the errors - and 
not the observed values - have a normal distribution. Because the errors cannot 
be examined in advance, and because the distribution of variable and errors are 
often of the same kind, in practice the distribution of Z is used to choose the 
transformation required. Care must be taken when interpreting the results to realize 
that the slope and intercept parameter refer to the transformed values. 

7.2.4 Non-linear dependence of Z and X 

In many circumstances Z is not a linearly increasing or decreasing function 
of X, but one that may vary in another way with location (Figure 7.3). In these 
situations higher-order regression lines can be used to describe the long-range 
variations. An example is: 
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Figure 7.3 Quadratic ( ) and cubic (- ) trend polynomials in one dimension. 

Z=b0 + blX+b2X
2
 + e Equation 7.3 

which is known as a second-order equation. As before, the problem is to minimize 
the sums of squares and the goodness of fit as indicated by the multiple correlation 
or the fraction of variance accounted for (see Subsection 3.2.1). Higher-order 
equations can also be used. By increasing the number of terms it is possible to 
fit any complicated curve exactly. Against this is the real problem of matching 
up the mathematical model with physical reality, i.e. finding a plausible inter-
pretation. Subsection 3.2.3 explains how to find a compromise between a small 
number of terms and a large correlation. 

7.2.5 Two-dimensional surfaces 

For two dimensions, represented by orthogonal axes XA and X2, the value of 
the variable Z might be expressed as a polynomial function: 

Z ~ ^r + s sSp brsX^X^ + £ 

which is fitted by least squares. 

Equation 7.4 

The first few functions are: 

b0 + b\X\ + b2X2 

flat 

linear (1st order) 

b0 + bxXx + b2X2 + b3X\ + 64X, X2 + b5X\ quadratic (2nd order) 

These are illustrated in Figure 7.4. The integer p is the order of the trend surface. 
There are (p+\)(p+2)j2 terms in the function for the trend surface. 

(figuur 7.4) 

The problem of finding the bi coefficients is a standard problem in multiple 
regression (see Subsection 3.5.2). Ripley (1981) warns that polynomial regression 
is 'an ill-conditioned least squares problem that needs careful numerical analysis'. 
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Figure 7.4 1st, 2nd and 3rd order trend surfaces showing some sample points and their 
deviations from the fitted surfaces. 

He recommends that all distances be re-scaled in the range -1 to + 1 . Ripley 
also points out that if the number of parameters in the polynomial equals the 
number of data points the surface will be an exact fit; when this is so the value 
of R2 (the coefficient of determination) and the distinction between long-range 
and short-range variation is meaningless. 

7.2.6 Trend surfaces as interpolators 

Just as in ordinary regression, the regression equation of the trend surface can 
be used to predict, or interpolate, values of the property at unsampled sites. Trend 
surfaces are not exact interpolators, however, because the surface usually does 
not go through the data points. The deviations between observed values and the 
interpolated values are known as residuals. The better the fit of the surface to 
the data, the lower the sums of squares of the deviations of the residuals. This 
least-squares criterion is often used to judge the goodness of fit of the trend surface 
to the data. As in the case of simple two-variable regression, the fraction of the 
variance accounted for estimates how much of the variation in the data has been 
taken up, or 'explained', by the regression surface. 

The overall significance of the fit of a multiple regression trend surface can 
be tested by the usual variance ratio, F (see Section 3.2): 
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F — Mean square regression / Mean square residual. 

This F test assumes that the residuals are independently and normally distributed 
with zero mean and constant variance a2 (i.e. the residuals have no spatial 
correlation). This is unrealistic because there is much evidence to show that 
deviations from trend surfaces tend to be correlated over short distances. Plotting 
the deviations from a low-order trend surface may reveal more about the spatial 
behaviour of the variable in question than the trend itself, which may only be 
describing obvious, or easily understood, variation. Strongly positively autocorre-
lated residuals may lead to attempts to fit surfaces of too high an order. 

7.2.7 Use of trend surfaces 

Trend surfaces are mostly used to describe gradual, long-range variation. 
Although they are easy to compute, they suffer from a number of problems, both 
procedural and conceptual, so that they should only be used with great care. 
These problems can be summarized as follows: 

Tyrrhenian Sea 

L i vorno 

Massa Mari t t i ma 

study area 

Grosse to 

4 3 . 5 ' 

431-

4 2 . 5 " 

10.5° l l u 11.5° E 

Figure 7.5 Location of the sites in northern Italy from which the test data were collected. 
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Conceptual problems 

- Fitting a trend surface has little point unless the trend can be shown to have 
a physical explanation. 

- The regression models assume that all deviations from regression (the residuals) 
are normally distributed and spatially independent. That this is not the case 
can be often seen by mapping the residuals, which may often reveal spatial 
clustering. This clustering can reveal important characteristics of the data. 

Practical problems 

- When data points are few, extreme values can seriously distort the surface. 

upper terrace 

directions used when 
estimating semivario 
grams 

lower terrace 

125 m 

Figure 7.6 Design of the 25 x 6 sampling grid. The sample spacing is 125 m. The boundary 
between the Pleistocene terrace and the Holocene river valley is shown as ( ). 
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- The surfaces are extremely susceptible to edge effects. Higher-order polynomials 
can turn abruptly near area edges leading to unrealistic values. 

- Trend surfaces are inexact interpolators. Because they are long-range models, 
extreme values of distant data points can exert an unduly large influence and 
result in poor, local estimates of the value of the property of interest. 

The following example uses soil data from a study of soil variation made in 
northern Italy (Kilic 1979). The study area is located near Follonica, Italy, about 
200 km north of Rome. Figure 7.5 shows the general location. Figure 7.6 shows 
the detailed layout of the 25 x 6 sampling grid (spacing 125 m) and its location 
over the boundary of an upper alluvial terrace with a lower, recent alluvial terrace. 
Both terraces have a general north-south trend in altitude, from hilly land in 
the north down to a coastal alluvial plain in the south. 

The soil was examined at each grid point by auger to a depth of 120 cm. 
Although a full profile description was made at each point, the following discussion 
will be restricted to a single soil property that clearly illustrates the anisotropy 
and variation at several scales. The property chosen is the percentage clay content 
of the top-soil (0-20cm). 

u i u u u 
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21-22 

23-24 

25-26 

27-28 
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37-38 

39-40 
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Figure 7.7 1st, 2nd and 3rd order trend surfaces fitted to all 150 data points for percentage 
clay of the top-soil. 

221 



Figure 7.7 shows the 1st, 2nd, 3rd and 4th order trend surfaces that were fitted 
to the original data. 

7.2.8 Local trends 

An alternative to fitting a global trend surface is to fit a series of local trend 
surfaces. A regular grid of points at which interpolations will be made is laid 
over the study area. A regular square area, or 'window', is chosen and is laid 
over the first grid point at the lower left-hand corner of the area to be mapped. 
A trend surface is fitted to those data points falling within the window, and it 
is then used to estimate the value of the property of interest at a point on a 
regular grid located at the centre of the window. The window is then moved 
up to lie over the next grid point and the process repeated. The advantage of 
the method is that major outliers do not affect results except within their own 
locality. The disadvantage is that there is no easy way to choose the optimum 
size of the window, nor the order of the local trend. Figure 7.8 shows 1st order 
and 2nd order local trends computed for the data from the study in Italy. 

7.3 Spatial autocovariation 

7.3.1 Introduction 

Very frequently, the spatial variation of ecological attributes varies continuously 
within a spatial unit in a way that cannot easily be described by a simple regression 
polynomial. Often the short-range variation of an attribute, as seen at a set of 
observation points, varies essentially in a correlated, but random manner, at least 
at the scale at which the observations have been made. That is to say, sample 
points that are close together tend to be more similar than points further apart, 
but there is no easy, direct relation between sample site location and the value 

Figure 7.8 Local trend surfaces fitted within a search radius of 450 m. A: 1st order local trend. 
B: 2nd order local trend. For more details see Figure 7.7. 
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x-

Figure 7.9 The mean components of spatial variation, a: variation composed of a structural 
difference in mean values ( ), random, but spatially correlated variation (wavy 
line) and uncorrelated variation or 'noise' (saw-tooth line). Samples taken at observation 
sites (•) reflect the sum of all sources of variation, b: as a, but the structural variation 
is displayed here as a linear trend. The random but spatially correlated variation and the 
noise component are as with a. 

of the attribute, as would be implied by a trend surface. 
This line of thought brings us to a model of spatial variation that contains 

at least three components. The first is a major structural component that represents 
the average value of the variable within a physiographically or ecologically defined 
area or mapping unit (Figure 7.9a). Alternatively, this major structure might be 
better described by a trend (Figure 7.9b). Superimposed on the major structure 
is a second kind of structural variation that, at the scale of observation, cannot 
be identified with a deterministic component of the landscape. This second kind 
of variation is spatially correlated, gradual variation. Finally, there may also be 
a third component that consists of essentially uncorrelated random variation, such 
as would be caused by observational or analytical error and by spatial variations 
at scales too small to be resolved by the sampling network. 

If the vector x describes a position in one, two or three dimensions, the value 
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of a variable Z at point x can be represented by 

Z(x) = m(x) + s'(x) + s" Equation 7.5 

where 
m(x) is the term describing the major 'deterministic', structural component 
e'(x) is the term describing the spatially correlated, but random, variation 
s" is a residual, spatially independent noise term that is assumed to be normally 
distributed with zero mean and variance a

2
. 

Variables whose variation can be described in this way are often called regionalized 
variables (Journel & Huibregts 1978). 

Very often, we can assume that the major 'structural' component can be specified 
by reference to a constant mean or a given trend for the landscape unit in question, 
so the problem becomes one of describing the remaining variation in the best 
way possible. In particular, it is important to know the relative balance between 
the spatially correlated s'(x) and the uncorrelated z" terms. In order to do this, 
it is necessary to make some assumptions about the nature of the variation of 
the variable under study. The most important assumption is that the statistical 
properties of the spatially correlated variation, e '(x), are the same within the whole 
of the major landscape or 'structural' unit. This is often known as the hypothesis 
of statistical stationarity, which, as will be seen, can be approached in various 
ways. Without such assumptions it would not be possible to apply statistical 
methods to spatial analysis. 

7.3.2 Stationarity 

The idea of statistical stationarity or uniformity, as stated above, is a necessary 
assumption. Consider a series of observation points laid out at equal intervals 
along a linear transect. Suppose that a soil property Z is estimated at each point 
x. Formally we can say that if the joint distribution of the n random variables 
Z(x,) ... Z(xn) is the same as the joint distribution of Z(x, + h) ... Z(x„ + h) 

for all x1 ... xn and h, then the series is said to be strictly stationary. Put simply, 
the statistical properties of the series are not affected by moving the sample points 
a distance h from x,- to x, + h. It is usual to replace the above definition with 
that of 'second-order stationarity' or 'weak stationarity', in which the mean is 
constant, the autocovariance depends only on sampling interval, and the variance 
is finite and constant. The major difference with conventional, non-spatial statistics 
is the recognition that the variance includes a covariance term that depends on 
sample spacing. 

7.3.3 Statistical moments of spatial series 

The statistical properties of a spatial series are described by the following 
moments. 

First-order moment: the mean, which is given by 
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E[Z(x)] = u Equation 7.6 

where E means the expectation of the value of attribute Z at point x. Put simply, 
the expectation is the most likely value. The mean is estimated by 

z = S"=| Z(Xj)/n Equation 7.7 

where n is the number of observations in the sample. 
Second-order moments: there are three second-order moments, the variance, 

the (auto)covariance, and the semivariance. The variance is defined by 

var Z{x) = E [Z(x) - u]2 Equation 7.8 

It is estimated by 

C (0) = E"=1 [Z(x) -If In Equation 7.9 

The covariance between the value of Z and two points Xj and x2, spaced distance 
h apart, is defined by 

C(xu x2) = E [Z(x,) - u] [Z(x2) - u] Equation 7.10 

For a one-dimensional transect in which xt — x^+hi, h being the lag, the covariance 
at lag h is estimated by 

C{h) = Y.%\ [Z(xt+h) - z] [Z(.x,)-z\/(n-h) Equation 7.11 

When the lag is equal to 0, then the covariance C{h) = C(0), i.e. the variance. 
It is sometimes necessary to compare the spatial behaviour of different attributes 

that have been measured on different scales, and thus have different variances. 
This can be done by scaling the covariances to autocorrelations by dividing by 
the variance, i.e. 

r{h) = C{h)l C(0) Equation 7.12 

The autocorrelation varies between -1 and + 1 . 
The semivariance is defined as one-half the variance of the increment Z{x{)-Z{x2) 

and is written as 

(equation 7.13) 

For points separated by distance h, this can be written 

y(A) = Vi E[Z(x+/0 - Z(x)]2 Equation 7.14 

The semivariance is estimated by 
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Figure 7.10 The variation of semivariance y(h) and autocovariance C(h) with lag h for 
a second-order stationary process. 

Y(A) = I^ f [Z(x,+h) - Z(Xl)]
2
/[2(n-h)] Equation 7.15 

It can be seen that for a second-order stationary series y(h) — C(0)-C(/z) 

and that 

r(h) = 1 - y(h)/ C(0) Equation 7.16 

When the autocovariance is plotted against sampling interval or lag, the resulting 
graph is known as an autocovariogram. The equivalent graph for semivariance 
is called a semivariogram. The autocovariogram and semivariogram of a second-
order stationary series are mirror equivalents (Figure 7.10). 

7.3.4 Autocovariograms and semivariograms 

The following simple example shows how autocovariances and semivariances 
are calculated for various lags for a one-dimensional series. Consider the series 
shown in Figure 7.11. 

(figuur 7.11) 

1. The mean is estimated by 24/8 = 3. 

2. The variance is estimated by 

C(0) = [(1-3)2 + (3-3)2 + (4-3)2 + (6-3)2 + (4-3)2 + (3-3)2 + (3-1)2 + (2-3)2]/8 = 
20/8 = 2.5. 

3. The covariance at lag 1 is estimated by 

C(\) = [(3-3) (1-3) + (4-3) (3-3) + (6-3) (4-3) + (4-3) (6-3) + (3-3) (4-3) + (1-3) 
(3-3) + (2-3) (I-3)]/7 = 8/7 = 1.143. 
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Figure 7.11 A simple example of a one-dimensional spatial series. 

The autocorrelation at lag 1, r(l) = 1.143/2.5 = 0.46. The covariance at lag 2 
is estimated by C(2) = [(4-3) (1-3) + (6-3) (3-3) + (4-3) (4-3) + (3-3) (6-3) 
+ (1-3) (4-3) + (2-3) (3-3)]/6 = - 3/6 = - 0.5. The autocorrelation at lag 2, 
r(2) = -0.5/2.5 = -0.2. 

4. The semivariance at lag 1 is estimated by 
Y(l) = [(1-3)2 + (3-4)2 + (4-6)2 + (6-4)2 + (4-3)2 + (3-1)2 + (l-2)2]/(2X7) = 19/ 
14= 1.357. 

The semivariance at lag 2 is estimated by 

f(2) = [(1-4)2 + (3-6)2 + (4-4)2 + (6-3)2 + (4-1)2 + (3-2)2]/(2X6) = 37/12 = 3.08. 

The calculation proceeds in similar manner for larger lags. 

7.3.5 Example of the use of autocorrelation analysis 

The example chosen here is taken from a study of gradual variation of thermal 
emittance from the ploughed surface of experimental fields at the Wageningen 
Agricultural University's Experimental Farm at Swifterbant, in the Flevopolders, 
the Netherlands (ten Berge et al. 1983). The thermal emittance was recorded by 
a Daedalus line scanner carried in an aeroplane at 1500 ft on 26 March 1982 
at 1300 hours. The resolution of the scanner on the ground was an area of about 
1.5 x 1.5 m. Figure 7.12a shows the equivalent temperatures recorded for a set 
of 50 pixels lying along a 200 m transect, spaced 4 m apart. Figure 7.12b shows 
the autocorrelogram of these data; it shows that sites close together appeared 
to vary similarly, as is shown by Figure 7.12a. Indeed, the data could be modelled 
by a polynomial regression equation or 'trend'. 

Figure 7.12c is a plot of data collected from a hand held scanner from the 
same sites and at the same time. Unlike the aeroplane data, these data are more 
scattered. The autocorrelogram (Figure 7.12d) shows that even for points only 
a few metres apart there is no significant correlation. 

These results seem strange until one remembers that the aperture of the hand-
held scanner was only 15 cm x 15 cm; i.e. it sampled an area only 1/100 of 
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Figure 7.12 Transects and sample autocorrelograms for thermal scanner data from the Ir. 
A.P. Minderhoudhoeve Experimental Research Farm, Swifterbant, the Netherlands. A & B: 
estimated equivalent temperature as recorded by airborne DAEDALUS scanner (transect and 
autocorrelogram, respectively). C & D: estimated ground temperature recorded by hand-held 
thermal scanner (transect and autocorrelogram, respectively). 

that sampled by the airborne scanner. The hand-held scanner was reacting 
to temperature variations caused by the low sun on the sides of the ploughed 
furrows - it was sampling a different phenomenon from that sampled by the 
scanner in the aeroplane. There was little point in calibrating the aeroplane data 
against the 'ground truth' because the two measurements refer to different spatial 
scales. 

7.3.6 Considerations of non-stationarity 

Whether spatial variation can be regarded as meeting stationarity assumptions 
is often a matter of scale. If we consider Figure 7.13, it will immediately become 
obvious that the concept of stationarity must be related to the scale of the 
observations. If we consider the trace as a whole, then the assumption of second-
order stationarity appears plausible. But if we were to sample intensively between 
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Figure 7.13 Stationarity is a question of scale. While the total transect, C-D, could reason-
ably be said to be 'stationary', the section A-B, if analysed separately, would have a clear trend. 

points A and B we would be dealing with a trend. If we look at the section 
C'-D in detail, we could regard the variation as second-order stationary at the 
same scale as that used for the trend of section A-B. 

Four important aspects of non-stationarity can be recognized: 
- non-normal distribution of the variable being studied 
- non-stationarity of the mean 
- non-stationarity of the variance 
- anisotropy (the variations are dependent on direction). 

Non-normal distributions are common for many environmental properties, e.g. 
soil properties such as moisture tension. Transforming the variable by taking square 
roots, logarithms, logit or arc-tangents may help to transform non-normal 
distributions to approximations of the normal distribution (see Section 2.4). 

Non-stationarity of the mean can be removed by 'pre-whitening'. This can mean 
subtraction of the original values from the fitted trend to leave the residuals, 
or by subtracting class means. All these techniques essentially attempt to filter 
out long-range variation. By implication, it is hoped that these components of 
long-range variation can easily be 'explained' in terms of easily recognizable aspects 
of the environment. Another common method to remove trends is 'differencing'. 
The initial series Z(x,) is replaced by Z(xj)-Z(Xj+h), where h is the sampling interval. 
It is usually tacitly assumed that these first-order differences are normally distributed 
with mean 0 and variance o2. Short-range variations can be removed by 'smoothing' 
(i.e. by using moving averages). 

Non-stationarity of the mean leads to problems when estimating the covariance 
and the autocorrelation, because both estimates depend on a constant mean. Non-
stationarity of the variance leads to a meaningless expression for the autocorre-
lation, r(h) = C(h)j C(0), because the denominator is not constant. 

The semivariance does not have either of these problems because it relies only 
on the differences between successive points. Consequently, when non-stationarity 
of the variance is expected, it is advisable to work with the semivariance instead 
of the covariance. If the mean can be assumed to be stationary, or the series 
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can be transformed to give a stationary mean, the assumption of second-order 
stationarity can be replaced by a weaker hypothesis known as the intrinsic 
hypothesis. 

The intrinsic hypothesis assumes that the increment Z(x+h)-Z(x) has mean 
zero and a finite variance that does not depend on x, i.e. 

var[Z(x+h) - Z(x)] = E[Z(x+h) - Z(x)f = 2 y(h) Equation 7.17 

Note that the second-order stationarity implies the intrinsic hypothesis but the 
reverse is not so. Here, the second-order stationarity is limited to the increments 
of the random variable Z(x). If data follow the intrinsic hypothesis, the semi-
variogram does not necessarily have an asymptote as in Figure 7.10. 

7.3.7 The semivariogram, its properties and uses 

Because of its ease of calculation and lack of problems when the variance is 
non-stationary (non-stationarity of the mean can be adjusted for), the semivariance 
is a better tool for describing the spatial variation of regionalized variables than 
the autocorrelation. The semivariogram has two main applications: 

- optimum interpolation 
- structure recognition. 

The ideal semivariogram of a second-order stationary process has the form 
shown in Figure 7.14a. The semivariance rises gradually to a point, called the 
range, at which it levels out. This level is called the sill, and is theoretically equal 
to the variance of the series. The range is the distance within which sample points 
are spatially dependent. The presence of the sill, and a constant variance at lags 
greater than the range means that observations separated by distances greater 
than the range can be treated as being statistically independent. The physical 
implication is that the sample spacing is too large to resolve any pattern or structure 
in the attribute being studied. Consequently, sampling intervals that are greater 
than the range should not be used for mapping, unless there is very clear evidence 
from the external appearance of the landscape that sensible delineations can be 
made. For other applications, such as estimating the mean of an area, however, 
samples should be spaced more widely than the range, to avoid the effects of 
spatial correlation. If the data are not second-order stationary, but conform only 
to the intrinsic hypothesis, then the semivariogram will have no clear sill (Figure 
7.14d). 

Theoretically, the semivariogram should pass through the (0,0) point, because 
differences between points and themselves are always zero. Very often, the 
semivariogram appears to cut the y(h) axis at a positive value of y(h). This means 
that at the shortest sampling interval (lag = 1) there is a residual variation that 
is random and not spatially correlated. This nugget variance (the term comes 
from gold mining), shown in Figure 7.14a, is the sum of two components, the 
measurement errors associated with estimating Z(x), and all sources of unseen 
variation that occur between the sampled points. The nugget variance is equivalent 
to the term s" in Equation 7.5. 
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Many experimentally determined semivariograms do not show a simple mo-
notonie linear increase of semivariance with lag, but the experimental estimates 
of semivariance are scattered along a definite region. It is necessary both for 
the analysis of structure and for the use of the semivariogram for interpolation 
mapping (see Section 7.4) to fit a mathematical model to the experimentally 
observed data. The model can be fitted to the data using either least squares 
or maximum likelihood criteria; Webster & Burgess (1984) explain why they prefer 
to use maximum likelihood criteria. 

Commonly used theoretical semivariogram models have been classified by 
Journel & Huijbregts (1978) into three classes. 

Models with a sill (also called transition models) 

- Spherical model (Figure 7.14b) 

y{h) = c0 + c, [ (3A/2a) - 0.5 (h/a)
3
] for 0 < /z < a 

= c0 + e, for h ̂  a Equation 7.18 

where 
a is the range 
h is the lag 
c0 is the nugget variance 

c0+C| equals the sill. 

- Linear model with sill (one-dimensional series only, Figure 7.14a) 

y(h) = c0 + bh for 0 < h < a 

= c0 + c, for h ̂  a Equation 7.19 

- Exponential model (Figure 7.14c) 
y(h) = c0 +C, [1 - exp (-h/a)] Equation 7.20 

- Gaussian model 

y(h) — c0 + c,[l - exp (-h
2
/a

2
)] Equation 7.21 

Models without a sill 

- Linear model 

y(h) = c0 + bh Equation 7.22 

- Logarithmic model 

y(h) = c0 + e, loge h Equation 7.23 
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Model with zero range or 100% nugget effect 

This model (Figure 7.14f) is all sill, any structure having been unresolved at the 
scale of sampling. 

y(h) = c0 Equation 7.24 

The spherical model and the exponential model have been found to be most 
useful for fitting the experimentally observed semivariograms of soil data (Webster 
& Burgess 1984), followed by the linear model without sill for situations in which 
the variance is not stable (intrinsic hypothesis). Data that vary smoothly, such 
as ground-water levels and land forms, often have semivariograms with an inflection 
that can best be modelled by the Gaussian model. 

In some situations the sampling may have detected two separate scales of 
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Figure 7.14 Some forms of semivariograms (right) and the possible kinds of spatial variation 
they describe (left). A: abrupt boundaries at discrete, regular spacings, or range a. The typical 
semivariogram model in one dimension is linear with a sill. Then the nugget variance describes 
the residual between boundary variation. B: the same as A, but with no single clearly defined 
distance between abrupt changes. The range, a, is the distance at which the semivariance ceases 
to rise further. The spherical model is best for this kind of variation (also for A type in two 
dimensions). C: abrupt changes occur at all distances, with spacings between changes distrib-
uted according to the Poisson distribution. The exponential model is best for this kind of 
variation. D: a linear trend gives a semivariogram that increases in steepness with increasing 
lag. E: a periodic signal results in a cyclic semivariogram. F: structureless variation or 'noise' 
results in a semivariogram that is 100% nugget variance. 
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variation, the one nested within the other. The resulting semivariograms often 
show a clear range for each scale and can be modelled by a set of simple 
semivariograms (cf. Burrough 1983b; Journel & Huijbregts 1978; McBratney et 
al. 1982). Data having a periodic variation will have a semivariogram or au-
tocovariogram that also shows the cyclic variation (Figure 7.14e). One method 
of looking for periodic variations in data is through the Fourier transform of 
the autocovariogram (Chatfield 1981). If the data contain a linear trend, this will 
be reflected by a semivariogram that increases in steepness with increasing lag 
(Figure 7.14d). If the data contain a second-order trend, such as occurs with 
increasing and then decreasing clay content across a depositional area, this may 
be reflected by a semivariogram that rises to a maximum and then falls and later 
again rises in value. These variations are usually better termed pseudo-periodic 
than periodic because often there is no true cyclic variation present. 

7.3.8 Isotropic and anisotropic variation 

If the form of the spatial variation is the same in all directions it is said to 
be isotropic. If the variation in different directions is not the same it is said to 
be anisotropic. Isotropic variation occurs in situations where there has been no 
strong directional control on the form of the spatial pattern. An example might 
be the variation of soil texture on a weathered granite, granite being a typical 
parent material that does not vary much in different directions. Anisotropic 
variation occurs when there is strong directional control. An example might be 
the variation of the soil down-slope as compared with along the slope, or the 

/ ° i 

Figure 7.15 Estimating the semivariance or autocovariance in the direction lying between 
9, and 92. A band, breadth d = d2 — dh is placed at average distance h from the chosen 
sample point. y(h) is estimated from all pairs of points arising from the chosen point and 
those falling within the band (here 3). 
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variation across the strike of dipping sediments compared with those parallel with 
the outcrops. If variation is isotropic, the estimates of semivariance should yield 
similar values for sill, range and nugget when computed for all directions. If 
the variation is anisotropic, the semivariograms will reflect this by returning 
different ranges, and possibly also different sills and nuggets for each direction 
considered. 

Anisotropy can be looked for in two ways. The simplest method is to lay out 
several linear transects over the landscape in different directions (two perpendicular 
to each other or three at 120° are common practice) and compute the semivariance 
in each direction. The resulting semivariograms can then be compared. If they 
show different ranges, then they may reflect anisotropy and should be interpreted 
separately. If they return the same results then they can be combined. Care should 
be taken when interpreting anisotropy because true anisotropy should not be 
confused with the normal variation in the form of the semivariogram that comes 
from sampling. Semivariograms can also be computed from arrays of points on 
grids or other irregular two-dimensional arrays. The semivariance is calculated 
for point-pairs falling in given distance classes (instead of a fixed distance as 
with linear transects) and for given directions (see Figure 7.15). 

7.3.9 The semivariogram as a structural tool 

Because the semivariogram can reveal information about the range, sill and 
nugget semivariances, it is a useful tool for analysing the spatial pattern of soil 
properties, particularly when their patterns are not clearly revealed in the landscape. 
The semivariogram is thus a tool that complements the existing landscape tools 
of aerial-photo and landscape analysis. 

7.3.10 An example of using semivariograms to analyse spatial variation in soil 

This example uses the data from northern Italy described in Subsection 7.2.7 
to illustrate the effects of anisotropy and variation at several scales on the form 
of the semivariograms. 

Semivariances were calculated for two directions, Direction 2 (Figure 7.6), 
parallel with the boundary (interpreted from aerial photos) between the upper 
and lower terrace, and Direction 3, almost perpendicular to this boundary. These 
semivariograms are given for the total area and for the upper and lower terrace 
separately in Figures 7.16a, b and c, respectively. 

The semivariogram for the total area (Figure 7.16a) computed in Direction 
2, parallel with the terrace boundary, keeps increasing, at least to a lag exceeding 
1800 m. The semivariogram computed perpendicular to the boundary shows a 
rise to a lag of 600 m, remains constant for another 350 m and then declines. 
Clearly, the variation in percentage clay is markedly different in the two directions, 
as can be seen from the maps already shown in Figures 7.7 and 7.8. The 
semivariogram for north-south variation (Direction 2) continues to increase, 
suggesting a north-south trend, which perhaps can be explained in terms of 
differential deposition as one goes from the higher (north) to lower (south) parts 
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of the area. The variation in Direction 3 appears to be affected by two components, 
i.e. variation within the lower terrace and variation between the terraces. 

To see what the effects of between-terraces differences are on the form of the 
semivariograms, the semivariances were estimated for each terrace separately. The 
results are illuminating. Variation of percentage clay on both directions on the 

y ( h ) 

70-

50-

30 

10-

l 

i 

k 

• 

i 

• 

k 

• 

i 

• \ 
• 

À 

• 

A 

• 
• 

k k 

a total area 

• • • 
• • 

i k * 

r(h) 

70 

50-

30-

10-

• 
k 

* *k 

J • 

i 

• • 
i 

• 
A 

k 

• 

b upper terrace 

Direction 
• 2 
k 3 

f ( h ) 

70-

50-

30 

10 

i 

i 

k * 

i 

• 

i 

• 

i 

• 

k 

• 
• 
k 

• 

i 

c lower terrace 

250 500 750 1000 1250 1500 1750 m 

distance (m) 

Figure 7.16 Sample semivariograms of the percentage clay of the top-soil of the data from 
northern Italy estimated for a: the total area, b: the upper (Pleistocene) terrace only, c: the 
lower (Holocene) valley area only. Semivariograms are estimated for two directions (see 
Figure 7.6). 
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upper terrace results in semivariograms that show 100% nugget variance (Figure 
7.16b). The implication is that the variation of top-soil clay on the upper terrace 
cannot be distinguished from that of a non-correlated random variable - i.e. at 
this sample spacing (125 m) one cannot distinguish between long-range variation 
('signal'variation) and unrecognizable short-range variation, or noise. As everything 
looks the same - equally noisy - the upper terrace area sampled is said to be 
homogeneous with respect to a sampling interval of 125 m. In contrast, the variation 
of percentage clay on the lower terrace (Figure 7.16c) shows even more clearly 
than for the total area the effects of anisotropy. Note, too, that the absolute 
values of the semivariance on the lower terrace are estimated to be higher than 
those on the upper terrace, or for the area as a whole. The semivariograms on 
the lower terrace show the trend (Direction 2) that occurs because of deposition 
parallel to the Pecora River and to the terrace boundary, and a pseudo-cyclical 
variation (Direction 3) perpendicular to the stream. Both patterns can clearly 
be seen in the contour plot. 

7.4 Spatial interpolation 

7.4.1 Introduction 

As was shown in Section 7.2, trend surfaces can be used to interpolate the 
value of an attribute at unvisited sites. This was seen to be not entirely satisfactory, 
however, largely because of the problems of linking the polynomials to an 
understanding of physical process, the long-range nature of the surfaces, and the 
effect that a few extreme values could have on local estimates. 

7.4.2 Weighted moving averages 

As we have already noted, observations located close together tend to be more 
alike than observations spaced further apart, even if they happen to be within 
the same delineation of the same mapping unit. It is natural to feel that the 
contribution that a given sample point makes to an average interpolated value 
at an unvisited site should be weighted by a function of the distance between 
that observation and the site. So we can compute a weighted moving average: 

Z(x0)= i;=1 w,Z(Xi)l Z^, w, Equation 7.25 

where the weights w, are given by a function (p(d(x,x,)) of the distance between 
xQ and Xj. A requirement for this function is that q>(d) — 0 as d —• °°, which 
is given by the commonly used reciprocal or negative exponential functions, 
exp(-ad) and exp(-aûP) for some constant a >0. Perhaps the most common form 
of (p(d) is the inverse squared distance weighting: 

Z (Xj) = IJL, [ Z (x,)/4]/Z" :, ( 1 / 4 ) Equation 7.26 

where the x; are the points at which the surface is to be interpolated (usually 
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these points lie on a regular grid and dtj is the distance between xt and Xj). 

The form of the interpolated surface can depend on the function, or on the 
parameters of the function used (Figure 7.17), and on the size of the domain 
or window, i.e. the area from which points are used for calculating the weighted 
average (Ripley 1981). Ripley also points out that the values estimated by moving 
averages are susceptible to clustering in the data points, and also to whether 
the observations are affected by a planar trend. He describes some ways of avoiding 
these drawbacks using methods of distance-weighted least-squares. 

The size of the domain not only affects the value of the average value estimated 
at a point, but also controls the amount of computer time required for interpolation. 
Usually the size of the domain or window is set to include a certain minimum 
and maximum number of data points in an effort to balance computational 
efficiency against precision. The number of points used, n, may vary between 
4 and 22, but is usually in the range 8-12, particularly if the original data lie 
on a regular grid. Alternatively, one may be able use a fixed number of data 
points to compute the average. This will make no difference to estimates from 
data on a regular grid, but when data are irregularly distributed, each interpolation 
will be made using a window of different size, shape and orientation. 

The clustering problem in irregularly spaced data points has partly been solved 
by Shepard (1968), Giloi (1978) and Pavlidis (1982). 

The interpolated values at the grid points can be displayed directly as grey-

d-° - 5 d " 1 d" 2 

Figure 7.17 These plots show how the value of the weighting parameters in inverse-distance 
interpolation affects the appearance of the resulting maps. The more quickly the value of the 
inverse-distance function declines with distance, the greater the likelihood that the map will 
show 'spotty' peaks and hollows centred on data-points (asterisks). There is no a-priori way 
of knowing which value of the weighting function is 'best'. 
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scale raster maps (e.g. the maps shown in Figures 7.7 and 7.8) or on a colour 
raster screen or printer. The interpolated grid cell values can be used as an overlay 
in a raster database for cartographic modelling. Alternatively, another computer 
program can be used to thread isolines (lines of equal value) through the interpolated 
surface; these isolines can be drawn with a pen plotter. 

7.4.3 Optimum interpolation methods using spatial autocovariance 

The local weighted moving average interpolation methods discussed above 
provide reasonable results in many cases, but they leave several important questions 
open. In particular, the methods generate the following important uncertainties: 
- how large should the domain or window be? 
- what shape and orientation should it have for optimum interpolation? 
- are there better ways to estimate the w, weights than as a simple function 

of distance? 
- what are the errors (uncertainties) associated with the interpolated values? 

These questions led the French geomathematician Georges Matheron and the 
South African mining engineer D.G. Krige to develop optimum methods of 
interpolation for use in the mining industry generally referred to as 'kriging'. The 
methods have recently been used in ground-water mapping, soil mapping and 
related fields. The following discussion draws on material presented by Webster 
& Burgess (1983) and Giltrap (1983). Other useful references are Corsten (1985) 
and Webster (1985). 

An optimum policy is a rule in dynamic programming for choosing the values 
of a variable to optimize a particular criterion function (Bullock & Stallybrass 
1977). The interpolation methods developed by Matheron are optimum in the 
sense that the interpolation weights wi are chosen to optimize the interpolation 
function, i.e. to provide a Best Linear Unbiased Estimate (BLUE) of the average 
value of a variable at a given point. 

In kriging, the essential step is that the model fitted to the experimental 
semivariogram is used to estimate the weights w,. The semivariogram is thus the 
source of the information about the shape and size of the window and the weights 
that must be used to estimate the value of Z at an unsampled point x0. We have: 

Z (x0)= £" w,-Z(jf;) Equation 7.27 

with Z,vi', = 1. The weights w, are chosen so that the estimate Z (x0) is unbiased 
and the estimation variance a^ is less than for any other linear combination of 
the observed values. The minimum variance of Z(x0)-Z(x0) is obtained when the 
H', satisfy (for all /) 

E "_ Wj y (x,, x;) + v|/ = y(x,, x0) Equation 7.28 

where 
the quantity yfx^Xy) is the semivariance of Z between the sampling points x, 

a n d Xj 

y(x,,x0) is the semivariance between the sampling point x, and the unvisited point 
x0. 
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Figure 7.18 The results obtained by mapping percentage clay top-soil using a: point kriging. 
b: block kriging. The variances for point and block kriging are shown in c and d, respectively. 
Note that the point-kriging estimates are zero at the data points and how missing values affect 
the local estimation variances. 

Both these quantities are obtained from the fitted semivariogram. Further, y is 
a Lagrange multiplier (an additional constant introduced for technical reasons). 
Equation 7.28 and the equation S"=1 w, = 1 together form n+\ linear equations 
with n+1 unknowns and can thus be solved for the unknown w, (/' = l,...,n) 

and \\i by the standard methods of linear algebra. The minimum variance is then 

- "=l wj y(xj, x0) + y Equation 7.29 

Corsten (1985) presents an elegant formula for predicting Z(x0) without introducing 
the Lagrange multiplier. 

Kriging is an exact interpolator in the sense that when the equations given 
above are used, the interpolated values, or best local average, will coincide with 
the values at the data points. In mapping, values will be interpolated for points 
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Figure 7.19 The results are the same as Figure 7.18, but they are displayed as three-dimen-
sional surfaces. 

on a regular grid that is finer than the spacing used for sampling, if that was 
determined by a grid. The interpolated values can then be converted to a contour 
map using the techniques already described. Similarly, the estimation error oe

2 

can also be mapped to give valuable information about the reliability of the 
interpolated values over the area of interest. 
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Clearly, kriging fulfils the aims of finding better ways to estimate interpolation 
weights and to provide information about errors. The resulting map of interpolated 
values may not be exactly what is desired, however, because the point-kriging 
(or simple-kriging) equations 7.28 and 7.29 imply that all interpolated values relate 
to an area or volume that is equivalent to the area or volume of an original 
sample. Very often, as in soil sampling, this sample is only a few centimetres 
across. Given the often large, short-range nature of soil variation or nugget variance, 
simple kriging results in maps that have many sharp spikes or pits at the data 
points (Figures 7.18a and 7.19a). The error map will also return atypical values 
at the data points because there the error variance will equal the nugget 
variance - elsewhere it will be larger (Figures 7.18c and 7.19c). This can be overcome 
by modifying the kriging equations (see Webster 1985) to estimate an average 
value of Z over a block B (a block is a region of a particular size). This is useful 
if one wishes to estimate average values of Z for experimental plots of a given 
area, or to interpolate values for a relatively coarse grid matrix that could be 
used with other rasterized maps in overlay cartographic modelling (Burrough 1986). 
Figures 7.18b and 17.19b show the results of point kriging and block kriging 
on the same data. 

The estimation variances obtained for block kriging are usually substantially 
lower than for point kriging, and the resulting smoothed interpolated surface is 
free from the pits and spikes of point kriging (Figures 7.18a, 7.18d). 

7.5 Optimum sampling 

A frequent problem in environmental surveys is to determine for any given 
area the size of the sample needed to estimate the average value of an attribute 
Z within given limits of reliability. To date, the most usual approach has been 
to assume that the map unit within which the area lies is homogeneous; the variance 
of the attribute is then estimated by locating a number of sample sites to obtain 
an unbiased estimate. The classical formula 

n = t
2
 s

2
/(g-n)

2 Equation 7.30 

is then used to estimate the sample size n needed to estimate the mean u of 
the area within limits u-g and u+g (/a is Student's / at probability level a). 

Very often, particularly with soil properties, the value of n has been so large 
that investigators have been forced either to make do with too small a sample 
for comfort, to incur large costs for analysis, to bulk samples or to abandon 
the study. Webster & Burgess (1984b) have shown that providing the semivariogram 
of the attribute of interest is known, considerable reductions in the size of n 

may be possible. The secret of their method is to choose a combination of sample-
point numbers and sample-point spacing in such a way as to minimize the kriging 
variance for the block of land for which the estimate of the mean value of the 
attribute is required. This is explained in the remainder of this section. 

Consider the case in which it is required to sample a 1 ha square block to 
obtain the best estimate of the mean of an attribute Z. The maximum dimension 
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(the diagonal) of a 1 ha square block is 141 m, so a model of the semivariogram 
is needed that extends to at least that distance. For practical purposes, sampling 
on a square grid may often prove the easiest way to gather a set of unbiased 
samples. There are two variable quantities: 

- the number of samples to be located within the block (for samples on a square 
grid, n= 1,4, 9, 16, 25) 

- the interval or grid spacing between them. 
For n = 9 samples, the nine points can be placed within the 1 ha square in 

many ways (Figure 7.20). The estimation variance can be calculated using the 
semivariogram for each configuration for a range of sample sizes, n, to yield 
a series of graphs of kriging estimation variance against grid spacing. Figure 7.21 
presents an example of the results that can be obtained when a linear model 
is fitted to the experimental semivariogram; use of other semivariogram models 
affects the precise form of the relation between kriging estimation variance and 
the grid spacing (see Webster & Burgess 1984b) but there is always a decline 
in the estimation variance with increasing grid spacing, followed by a rise. For 
the linear model, the minimum variance is found to occur when each sample 

a b c 

Figure 7.20 Four different ways of locating 9 points in a square. 

grid spacing 

Figure 7.21 Variation of kriging variance with grid spacing within square blocks for four 
sample sizes, n, using a linear semivariogram model. 
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Figure 7.22 The variation of standard error versus sample size. A: classical model. B: kriging 
model. 

point coincides with the middle of each sampling cell (Figure 7.20c). If another 
semivariogram model is chosen the optimum sample spacing will be slightly, but 
not greatly, different from that obtained with the linear model. 

Knowing the optimum configuration of the sampling points and the resulting 
kriging estimation variances allows one to calculate the relation between standard 
error and sample size for the kriged estimates of the block mean. As Figure 7.22 
shows, providing that the semivariogram does not only show 100% nugget variance, 
use of the kriging method results either in more precision being obtained from 
a given number of samples or fewer samples need to be taken to achieve a given 
level of precision, as compared to the classical estimates. Webster & Nortcliff 
(1984) report that 2-3 fold savings in sample numbers have been achieved in some 
situations. Also, Webster & Burgess (1984b) demonstrate that the kriged estimate 
is also more precise than that of a bulked sample from an equivalent number 
of observations, but this claim must also be evaluated in the light of the reduced 
costs of analysis that the bulked samples incur. 
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7.6 Discussion 

Autocovariation studies have two important advantages. First, they give insight 
into the spatial structure of the phenomenon of interest within a given area or 
map unit. Second the information coming from autocorrelation studies can be 
used for comparing the spatial variation of related phenomena, for optimum 
interpolation mapping and for optimizing the size of samples for estimating average 
values of attributes within defined areas. 

The major disadvantages of kriging, and of autocovariation studies in general, 
relate to the large amount of calculation necessary to obtain results, but thanks 
to the widespread use of computers this is becoming a non-problem. What is 
more important is the size and cost of the sample needed to establish the 
autocorrelation structure of the phenomenon of interest, and so determine the 
form of the semivariogram or autocorrelogram. It seems that at least 50-100 samples 
are needed if the semivariogram is to be estimated with any reasonable degree 
of confidence (see Taylor & Burrough 1986). Another major problem is that of 
choosing a suitable semivariogram model. Besides these, there is also the problem 
of the data containing various sources of non-stationarity that may seriously affect 
the estimates of the semivariogram. 

7.7 Bibliography and historical overview of interpolation 

The interpolation of isopleths (lines of equal value) has long been commonplace 
in topographical mapping in which the variation of relief is usually represented 
by contour lines. Height contours on topographical maps are drawn either by 
direct survey in the field or from measurements made on stereoscopic pairs of 
aerial photographs. In both situations, the surveyor can see directly the surface 
to be mapped; his job is to represent this surface as accurately as possible. In 
contrast, in many situations in ecology, soil survey or environmental science, the 
surface to be mapped cannot be seen directly. Instead it must be sampled at 
several discrete points at which the value of the environmental variable in question 
is measured. The problem is then to choose a suitable spatial model to which 
the data obtained from the point observations can be fitted and that can be used 
to estimate the value of the variable at any unvisited point. This spatial model 
may take many forms, but for many applications in ecology and environmental 
science, stochastic models of spatial variation are most suitable. Once a model 
has been chosen and fitted to the experimentally observed data, its surface is 
mapped using isopleths (contours). 

Fitting mathematically defined surfaces to point data requires a considerable 
amount of calculation, so although the principles were known in the 1930s and 
1940s, there were few serious attempts at quantitative interpolation before 
computers were widely available. In the 1960s, effective and easily used interpolation 
programs became widely available (Shephard 1968, Laboratory for Computer 
Graphics 1968). The development and extension of multiple regression allowed 
regression surfaces (trend surfaces) to be computed and mapped easily (Davis 
1986). Dissatisfaction with the conceptual models underlying trend surfaces and 
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other simple interpolation techniques used in mining geology led Matheron (1971) 
to develop his theory of regionalized variables, which is based on a study of 
spatial autocorrelation functions (see also David 1977 and Journel & Huibregts 
1978). His work has been taken up and extended to problems in soil science 
by Webster (1984; 1985) and his co-workers in England, and Nielsen and others 
in the United States (Nielsen & Bouma 1985). Overviews of the application of 
various methods of spatial analysis to a wide range of problems can be found 
in the literature: for geology, Agterberg (1982); natural resource survey, Burrough 
(1986); geography, Lam (1983); and statistical ecology, Ripley (1982). 

Most of the methods described in this chapter have been programmed in 
PASCAL for 16-bit personal computers operating under MS-DOS or IBM PC-
DOS. Details of these programs can be obtained from The Geographical Institute, 
Utrecht University, the Netherlands. Copies of the programs can be purchased 
from Ponder Associates, Zonnebaan 18, Maarssenbroek, the Netherlands. 

7.8 Exercises 

Exercise 7.1 Trend, autocorrelogram and semivariogram 

Table 7.1 shows the value of the thickness (cm) of two sedimentary layers 
measured at 20 points spaced 100 m apart along a transect. For each transect: 

Table 7.1 Thickness of two sedimentary layers at 20 
points spaced 100 m apart along a transect. 

Site No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Thickness layer 1 

5.2 
5.4 
6.1 
3.1 
5.4 
6.4 
7.2 
6.5 
4.5 
3.3 
2.2 
5.5 
6.2 
6.6 
5.5 
4.3 
6.3 
5.5 
4.2 
4.8 

Thickness layer 2 

8.3 
9.8 

11.2 
12.2 
14.2 
13.2 
12.4 
11.5 
8.7 
9.8 

10.5 
12.6 
13.5 
14.9 
13.8 
14.3 
15.7 
16.7 
15.4 
17.2 
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- plot the raw data on graph paper 
- compute and plot the autocorrelogram and the semivariogram for the first 10 

lags. 
Examine the semivariograms and autocorrelograms carefully. Note which of the two 
appear to show spatial dependence, and which appear to be statistically 
homogeneous at this sample spacing. Note that the 5% point for r with 18 degrees 
of freedom is 0.444. 

Examine the data for linear trends by computing the regression of the thickness 
of each layer against the sampling position. See whether the residuals from regres-
sion display dependence by plotting them and also by computing their semivario-
gram and autocorrelogram. 

Exercise 7.2 Anisotropy 

The data in Table 7.2 show the percentage clay found in the subsoil (at depth 3 
m) as measured along two transects located at right angles to each other across an 

Table 7.2 Percentage clay in subsoil along two 
transects N-S, E-W on an old alluvial plain. 

Site No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

clay N-S 

29 
28 
29 
33 
38 
33 
36 
28 
25 
24 
22 
23 
30 
34 
38 
40 
46 
44 
51 
45 
46 
43 
36 
32 
25 

clay E-W 

20 
22 
21 
21 
32 
36 
22 
16 
24 
27 
26 
31 
29 
38 
35 
19 
27 
62 
52 
61 
39 
34 
32 
26 
22 
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old alluvial plain. Each transect has 25 points spaced 25 m apart. For each transect: 

- plot the raw data on graph paper 
- compute the semivariogram. 

Examine the semivariogram and attempt to reconstruct the directions along which 
the spatial patterns at 3 m depth are aligned. 

7.9 Solutions to exercises 

Exercise 7.1 Trend, autocorrelogram and semivariogram 

Table 7.3 gives the mean, standard deviation, minimum and maximum of each 
layer. Table 7.4 gives the estimated semivariances for the first ten lags. When the data 
are plotted as semivariograms, the first layer shows no clear range and sill, but a 
(pseudo)cyclic variation with a wavelength of about 7 lags (700 m). In contrast, the 
semivariogram of the second series has a range of about 4 lags (400 m), with 
thereafter a steady increase in semivariance, which reflects the trend in the original 
data. Table 7.5 gives the results of estimating the autocorrelation for the two series. 
The presence of a weak linear trend in the second series is shown by the slope and 
correlation coefficient of a linear regression of the original data on sample spacing 
(Table 7.6). As shown in Table 7.7, linear detrending has little effect on the results 
obtained from Series 1, but for Series 2, linear detrending has resulted in a semi-
variogram with a clear range and sill. Now try using polynomial regression to 
remove periodicity from Series 1 and see what the resulting form of the semivari-
ogram is. 

Table 7.3 Summary statistics. 

Column 

Series 1 
Series 2 

Mean 

5.21 
12.80 

s.d. 

1.30 
2.57 

Min 

2.20 
8.30 

Max 

7.20 
17.20 

Table 7.4 Semivariance analysis. 

Lag Series 1 Series 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1.171 
2.177 
2.781 
2.484 
1.762 
1.640 
1.390 
1.952 
1.959 
1.492 

0.993 
2.289 
4.022 
5.525 
5.811 
5.626 
6.024 
6.490 
7.670 
8.211 
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Table 7.5 Autocorrelation. 

Lag 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Series 1 

0.151 
-0.130 
-0.287 
-0.217 
0.024 
0.083 
0.134 

-0.020 
0.021 
0.031 

Series 2 

0.346 
0.237 
0.090 

-0.020 
-0.026 
0.015 
0.001 
0.001 

-0.101 
-0.148 

Table 7.6 Linear regressions for detrending. 

Series 1 
Series 2 

Sampling 

position 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Series 1 

Z 

5.200 
5.400 
6.100 
3.100 
5.400 
6.400 
7.200 
6.500 
4.500 
3.300 
2.200 
5.500 
6.200 
6.600 
5.500 
4.300 
6.300 
5.500 
4.200 
4.800 

Slope 
-0.015 
0.330 

Z 

5.349 
5.334 
5.319 
5.305 
5.290 
5.276 
5.261 
5.246 
5.232 
5.317 
5.203 
5.188 
5.174 
5.159 
5.144 
5.130 
5.115 
5.101 
5.086 
5.071 

Intercept 
5.363 
9.332 

Z-Z 

-0.149 
0.066 
0.781 

-2.205 
0.110 
1.124 
1.939 
1.254 

-0.732 
-1.917 
-3.003 

0.312 
1.026 
1.441 
0.356 

-0.830 
1.185 
0.399 

-0.886 
-0.271 

R 

-0.067 
0.760 

Series 2 

Z 

8.300 
9.800 

11.200 
12.200 
14.200 
13.200 
12.400 
11.500 
8.700 
9.800 

10.500 
12.600 
13.500 
14.900 
13.800 
14.300 
15.700 
16.700 
15.400 
17.200 

Z 

9.661 
9.991 

10.321 
10.651 
10.981 
11.311 
11.641 
11.970 
12.300 
12.630 
12.960 
13.290 
13.620 
13.949 
14.279 
14.609 
14.939 
15.269 
15.599 
15.929 

Z-Z 

-1.361 
-0.191 
0.879 
1.549 
3.219 
1.889 
0.759 

-0.470 
-3.600 
-2.830 
-2.460 
-0.690 
-0.120 
0.951 

-0.479 
-0.309 
0.761 
1.431 

-0.199 
1.271 
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Table 7.7 Semivariances of detrended data (i.e. residuals 
of Table 7.6). 

Lag 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Exercise 7.2 

Series 1 

1.171 
2.174 
2.777 
2.490 
1.765 
1.638 
1.383 
1.941 
1.957 
1.474 

Anisotropy 

Series 2 

0.893 
1.975 
3.347 
4.457 
4.576 
4.164 
3.948 
3.661 
3.278 
2.666 

Table 7.8 gives the estimated semivariances along the two directions sampled. The 
sill reached in Direction 1 is about 95% clay2, while that in Direction 2 is 140% clay2, 
with a suggestion of periodicity. The range in Direction 1 is about 6 lags, or 150 m; 
in Direction 2 it is about 3 lags, or 75 m. From these data it can be concluded that 
there is a strong anisotropy in the pattern of the buried sediments, possibly of the 
form shown in Figure 7.23. 

Figure 7.23 Possible pattern of anisotropy. 
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Table 7.8 Estimated semivariances (% clay2). 

Lag 

1 
2 
3 
4 

5 

6 
7 
8 
9 
10 

N-S 

10.208 
22.696 
44.659 
64.452 
79.225 
93.974 

95.500 
100.176 
95.906 
92.767 

E-W 

59.542 
110.826 
142.432 

157.095 

162.425 
140.684 

147.389 
99.000 
122.031 
178.300 
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8 Numerical methods in practice: case-studies 

8.1 Spatial variation in vegetation, soil and precipitation across the Hawkesbury 

Sandstone Plateau in New South Wales, Australia: an analysis using ordination 

and trend surfaces 

P.A. Burrough 

8.1.1 Data collection and analysis 

The Hawkesbury Sandstone Plateau, New South Wales, Australia, is an area 
of great scenic beauty. Through its poor, infertile soils, the plateau has been little 
developed for agriculture and much of it remains under natural vegetation. This 
case study was carried out on a small part of the Hawkesbury Sandstone Plateau, 
measuring roughly 25 km x 10 km from Barren Grounds Nature Reserve in the 
east, to Fitzroy Falls in the west (Figure 8.1). The eastern boundary of the study 
area is a steep cliff, where the plateau ends, some 5 km inland from the Tasman 
Sea. This topography is the cause of intense orographic rainfall, which varies 
from about 2500 mm per year in the east, falling off to about 1500 mm in the 
west. Although the plateau is deeply dissected by ravines, its surface is gently 
rolling, with an average altitude of about 600 m, which does not vary within 
the area studied. The vegetation, which at the time of the study was largely 
undisturbed, varies considerably over the area, being a low heath in the east and 
a closed forest in the west. There is a parallel variation in the soil, from peaty 
podzols in the east, through leached podzols to leached brown soils in the west.The 
picture is complicated by short-range relief differences; the lower parts of the 
plateau are occupied by swampy peat soils supporting sedges and reeds. 

Early workers thought that the vegetation differences across the Hawkesbury 
Sandstone might be due to phosphate levels in the soil, but they had been unable 
to show any relation between vegetation and soil chemistry (Beadle 1954). The 
large trend in rainfall was only perceived in the mid-1970s, by which time data 
had been collected from sufficient meteorological stations for several years. The 
aim of this case study, reported fully by Burrough et al. (1977), was to examine 
the long-range spatial variations of soil, vegetation and climate to see if they 
covaried. Because the survey effort was limited to three people for two weeks 
in a not-very-accessible area, the survey had to be carefully planned and executed. 

To avoid problems that could be caused by sampling the short-range variations 
arising from differences in relief on the plateau, the survey concentrated on 55 
topographically similar sites on upper to middle slopes that were chosen by a 
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Figure 8.1 The location of the Barren Grounds study area in the state of New South 
Wales, Australia. 

stratified random technique. The soil profile was sampled for chemical and physical 
properties at each site. The vegetation survey required more effort. It was decided 
to concentrate on the composition of the vegetation. At 18 sites (a subset of 
the 55), 10 m x 30 m quadrats were laid out (with the long axis down-slope) 
and the plant species occurring were recorded. In total, 111 different species were 
recorded from the 18 sites. In addition to the soil and vegetation data, climatic 
data were obtained for 8 meteorological stations located on or near the study 
area. Figure 8.2 shows the distribution of the vegetation types and the vegetation 
sample sites. 
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Barren 
Grounds 

Kangaroo Valley 

Oh Open heath 

Ch Closed heath 

Chr Closed heath with > 3 0 % bare rock outcrops 

CS Closed sedgeland 

W Woodland 

OF Open forest 

CF Closed forest 

\/s\ Basalt, shale and disturbed land 

v / Scarp edge 

• Vegetation sample sites 

Figure 8.2 Map of vegetation types prepared by aerial-photo interpretation, and the location 
of vegetation sampling sites. 

Because of the large number of soil variables, the soil data were reduced to 
their principal components, and the vegetation presence-absence data were reduced 
to the first two axes by correspondence analysis, otherwise known as reciprocal 
averaging (Section 5.2). The vector loadings for the first principal component 
of the soil data (which accounted for 45.7% of the total variation in the soil 
data) showed that it had important contributions from all soil properties strongly 
affected by leaching or soil moisture: colour hue, value and chroma, thicknesses 
of the surface organic layer, leached A2 and colour B horizons, field-moisture 
content and percentage organic carbon. Sites in the east had large positive scores, 
and sites in the west had large negative scores, for the first principal component. 

Trend surfaces were computed for the height of the vegetation (observed at 
55 sites), the first principal component scores for the soil data, the site scores 
from the first correspondence analysis axis of the vegetation data and for the 
mean annual rainfall. The height of vegetation and mean annual rainfall were 
transformed to logarithms before computing the trends. All trend surfaces were 
two-dimensional linear surfaces, except for rainfall, which was computed as a 
multiple linear regression on location and altitude. Figure 8.3 shows the results. 

Figure 8.3 shows that all the linear trend surfaces slope in the same way, from 
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south-east to north-west, a direction that matches well with the prevailing wind 
direction of clockwise rotating depressions that reach the area from the South 
Pacific Ocean. The trends appear to be very stable and not very sensitive to the 
number of sample points used to compute them. The R

2 values (Figure 8.3) suggest 
that these simple, linear trends explain a large part of the soil and vegetation 
variation across the plateau. 

8.1.2 Deviations from the trends 

Some of the deviations from the regional trends of vegetation site and soil 
site scores, shown in Figure 8.3, can be interpreted in terms of local variations 
in effective rainfall or soil drainage. As Figure 8.4 shows, most sites in the east 
of the Barren Grounds area near scarp edges show deviations that reflect wetter 
soil conditions than predicted by the simple trend. 

The cause is that these parts are frequently covered by fog and low cloud that 
reduce evaporation and increase site wetness. The cliff edges in the west of the 
area also show wetter conditions than predicted by the trends. This is because 
the scarp there receives the winds directly from the sea through a gap in the 

Figure 8.4 Plot of deviations from the linear trend surface of the first principal component 
scores for the soil data. Class 1: deviations more than 1 standard deviation below surface 
(drier than trend). Class 2: deviations within 1 standard deviation below surface. Class 
3: deviations within 1 standard deviation above surface. Class 4: deviations more than 
1 standard deviation above surface (wetter than trend). The broken-lined rectangle outlines 
the area for which the trend surfaces were calculated (see Figure 8.3). 
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hills above Brogers Creek, and also because fog and cloud tends to hang about 
the tops of the 200 m high waterfalls that plunge off the plateau nearby. Drier 
than average sites appear to be the result of better than average soil drainage; 
they appear to occur near places where the sandstone is more jointed and less 
massive than usual. 

Other deviations from the trends could be less easily explained in terms óf 
better drainage or less evaporation. Two sites on the Budderoo Plateau showed 
large deviations from the vegetation site score trends, but not from those of the 
soil. Inspection of the field data showed that the only unusual aspect of these 
sites was that the sand fraction was extremely fine. A resurvey confirmed these 
texture anomalies and also suggested that the sites lay in the vicinity of remnants 
of a clay soil which was possibly derived from a former covering of the Wianamatta 
Shales. 

8.1.3 Conclusions 

Trend surfaces of ordination axes indicated that the long-range changes of soil 
and vegetation covaried in a similar way as the mean annual precipitation, and 
that it is reasonable to see a causal link between them, at least for the upper 
to mid-slope sites on the plateau. This interpretation is supported by those 
deviations from the regression surface that also suggested a definite link between 
moisture, vegetation and soil. Other deviations from the regression that could 
not easily be explained by the information available caused the authors to revisit 
the study area, where they acquired new insights. It should be realized that these 
interpretations can only be made for two reasons - one is the dominance of the 
climatic variation across the area; the other is the deliberate way in which the 
field survey was set up to exclude short-range variations that would have interfered 
with the aim of the study. 
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8.2 Processing of vegetation relevés to obtain a classification of south-west 

European heathland vegetation 

J.A.F. Oudhof and A. Barendregt 

8.2.1 Introduction 

In 1981 the section Vegetation Science of the Department of Plant Ecology, 
University of Utrecht, made a study of the heathlands of Spain and Portugal. 
This resulted in 200 new relevés for the north of Spain and 250 for Portugal. 
In addition, the department had at its disposal unpublished data collected by 
J.T. de Smidt in 1966: 135 relevés for Spain and 100 for Portugal. 

After these data had been classified by traditional hand methods (Mueller-
Dombois & Ellenberg 1974), we encountered difficulties in fitting the vegetation 
types into the classification system for the heathlands of the Iberian Peninsula 
(Rivas-Martinez 1979), and, consequently, in interpreting the results. Since it was 
not clear from the outset whether the data gave new syntaxonomic information 
about the Iberian heathlands, which might make the classification system of Rivas-
Martinez inapplicable, we decided to process the 700 relevés together with all 
the existing Spanish and Portuguese heathland data from the literature, comprising 
600 relevés. In the classification system for European heathlands, the heathlands 
of southern England and Ireland, Brittany, Les Landes, northern Spain and 
Portugal are considered to belong to the same unit (alliance), the Ulicion minoris 

P.Duvign. 1944. To obtain an overall picture of the south-west European heathlands 
we decided to collect from the literature as many relevés as possible for the Atlantic 
heathlands around the Bay of Biscay. Therefore we were also able to process 
other unpublished relevés collected in England, Ireland, Brittany and Les Landes 
(300) by J.T. de Smidt. 

The purpose of the investigation was to make, with computer techniques such 
as cluster and ordination analysis, a syntaxonomic division of the main groups 
of the south-west European heathlands on the basis of 1000 new relevés and 
as many relevés as possible from the literature. We shall discuss the problems 
and the decisions we had to make to arrive at this classification. 

8.2.2 Preparation of the set of data 

In collecting the data, problems arose straight away about how heathland 
vegetation was to be described syntaxonomically. To the south, the Atlantic 
heathlands gradually change into a Mediterranean dwarf shrub vegetation. At 
many places there is a transition to woodlands and moors. The coastal heathlands 
show transitions to other formations. We decided to adopt a very broad definition 
for heathland vegetation. This enabled us to make reasoned descriptions later 
and reduced the likelihood that we would omit information as result of dubious 
decisions made at the outset. 

The relevés of the same vegetation types from the literature show large differences 
in the number of species reported. Many of the discrepancies are due to the inclusion 
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or exclusion of mosses, liverworts and lichens. Others are the result of variation 
in the surface area of the relevés, from 5 m2 to 200 m2. Sometimes it seemed 
as if only a few dominant species had been recorded. Sometimes seasonal aspects, 
such as plants that flower in the spring, had been overlooked, because of the 
time of the year at which the relevé was made (Dupont 1975). These differences 
had to be taken into account during the processing and the interpretation of 
the results. 

The data from the literature had to be processed into one set of data in a 
uniform way. As most data were presented in tables, we decided to input them 
as tables; these were later amalgamated into one table. Because the various tables 
from the literature included many synonyms, the species names had to be 
standardized. The angiosperms and ferns were named according to Flora Europaea 
(Tutin et al. 1964-1980), the mosses according to Corley et al. (1981), the liverworts 
according to Grolle (1976) and the lichens according to Hawksworth et al. (1980). 
Every species or subspecies was assigned an easily recognizable code of 8 letters, 
consisting of the first four letters of the generic and the species name. The names 
of the cryptogams were all assigned the letter X, so they could be easily collected 
together by computer and rearranged alphabetically or deleted if necessary. Another 
difficulty met when arranging a uniform set of data is the cover-abundance scale. 
The scale must be standardized, and we opted for a ten-part scale, 0-9 (van der 
Maarel 1979b; see also Subsection 2.4.2), which is easy to input as a single column. 
Every input table was given a number by which its geographical origin could 
be immediately deduced. 

After we had checked the tables we had input for possible errors, the individual 
tables were amalgamated into one table with a program that also provided an 
alphabetical species list with frequencies of occurrence. This again lets us check 
the species code for inputting errors. In this phase species and subspecies can 
be united. After these procedures we prepared one table in Cornell condensed 
format, a table representing species and relevés by numbers. This format is suitable 
for processing by the computer programs TWINSPAN (Hill 1979b), DECORANA 
(Hill, 1979a) and FLEXCLUS (van Tongeren 1986). For the south-west European 
heathlands this table consisted of 3000 relevés and 1700 species. 

8.2.3 Operations applied to the set of data 

There are three distinct phases in the processing of the set of data (see flow 
diagram, Figure 8.5): 

- operations applied to the total set of data resulting in a division into smaller 
main groups 

- processing of the main groups until homogeneous clusters are formed 
- a synoptical characterization of the clusters and after that a grouping of these 

clusters. 
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Data collection 

Data input 
Checking for errors 

Amalgamation 

Checking the data 
for errors 

Ordination 

Removal of outliers 
by visual inspection 

Divisivion into 
main groups 

Clustering of 
main groups 

Selection of 
clusters 

Synoptic tables 

Correction 

Yes 

Group of 150 Mediterranean 
dwarf shrub relevés 

Clustering of 
rest groups 

Amalgamation 

Clustering on basis 
of synoptic relevés 
(composite samples) 

1 
Ordination of 
synoptic relevés 
(composite samples) 

Figure 8.5 Flow diagram of operations applied to the set of data of south-west European 
heathlands. 
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Operations applied to the total set of data 

As the amount of main memory used by most computer programs to handle 
a set of data of this volume is too large, it was necessary to split up the set 
into smaller parts. We tried to form main groups in such a way that relevés 
strongly resembling each other were gathered into one group, preferably with 
as little overlap as possible between the main groups. To reveal the major variation 
in the set of data, ordination (correspondence analysis, Section 5.2) was carried 
out with the program DECORANA (Hill 1979a). This program was specially 
adapted to the size of the total set of data. The ordination of all relevés showed 
a clear distinction on the first two ordination axes (Figure 8.6) between about 
150 relevés, which appeared to be real Mediterranean dwarf shrub vegetation, 
and the other relevés of more Atlantic regions. The relevés for the Atlantic 
heathlands appeared to be grouped in a gradient from southern and dry to northern 
and wet. The 150 relevés for the Mediterranean dwarf shrub vegetation were 
temporarily put aside. It was known that the remaining relevés varied predominantly 
along a north-south geographical line. 

The TWINSPAN method (Hill 1979b) was used to divide the set of data into 
main groups. On our computer this program could handle, depending on the 

Axis 2 

Ireland — 

S.England 
Brittany • 

-400 -300 -200-10j 
Spain =^Z 

Mediterranean 

dwarf shrubs 

$:l.f)0--..2(J0. 300 400 .500 600 700 800 900 1000 1100 1200 1300 1400 
.'"•••'•• Axis 1 

"•Portugal 

Figure 8.6 Ordination diagram of a correspondence analysis of 3000 relevés of the south-
west European heathlands. Eigenvalue Axis 1: 0.758. Eigenvalue Axis 2: 0.597. 
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number of species, a maximum of 1000 relevés. Using the information about 
the most important variation in the set of data, we composed, from south to 
north, a series of sets of data for 600-700 relevés. To prevent that similar relevés 
would end up in other main groups by the partitioning of the total set of data, 
we made overlapping sets of data. The results made it possible to split up the 
total set of data into main groups. It turned out, for instance, that some heathland 
relevés for Spain and Portugal, which contained for example Erica umbellata 

L., differed from the other relevés in the set of data. The coastal and wet heathlands 
were also found to form quite distinct groups. The main groups contained at 
most 500 relevés, which could all be handled by the clustering program FLEXCLUS 
(van Tongeren 1986). 

Processing of the main groups to homogeneous clusters 

From the main groups, homogeneous clusters were formed using the clustering 
program FLEXCLUS. FLEXCLUS is an interactive clustering program: a quick 
initial clustering is followed by an interactive process of either relocations or fusion 
of the clusters that resemble one another most closely, or division of the most 
heterogeneous clusters. This process is stopped when clusters are formed that 
are internally as homogeneous as possible, that differ as much as possible from 
other clusters, and that have an adequate number of relevés. In most cases the 
similarity ratio was used as a distance measure, but for some detailed divisions 
we attempted to apply the Euclidean Distance. The output of the program 
summarizes the steps in the interactive process and gives a vegetation table of 
the last cluster arrangement. The vegetation table is then evaluated by hand. In 
this evaluation, subjective criteria play a role. We decided to admit only clusters 
that differed in more than one differentiating species. Moreover, all relevés in 
the cluster had to be characteristic for that 'cluster and clusters had to consist 
of a minimum of 5 relevés. Relevés that did not fit the criteria were removed 
from the clusters. This cleaning up procedure results in well-separated and 
characterized clusters, which are therefore set aside. The clusters that are not 
yet well characterized and the removed relevés are processed again with FLEX-
CLUS. By working up all the main groups into well-separated clusters, using 
each time the relevés remaining from the preceding clustering, we split up the 
set of data into 211 clusters, plus several remaining relevés. 

The main difficulties in this process will now be mentioned: 
- In heathlands, there are many transitions to other vegetation types that are 

not present in the set of data. However, these marginal influences do not 
contain essential information for the classification of the south-west European 
heathlands into syntaxonomic main types. We do not deny that this variation 
exists, but it is not important on the scale of main types. 

- The presence or absence of cryptogams affects the clustering result, especially 
in those cases where they occur only occasionally and have high cover-
abundance values. 

- Furthermore it is striking that the relevés of one author of a heathland vegetation 
usually produce one particular set of clusters, but other relevés of the same 
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vegetation by other authors produce different clusters. This may be the result 
of the highly subjective Braun-Blanquet method or of a very limited geo-
graphical distribution of the different heathland communities. 

Synoptical characterization and grouping of clusters 

From the 211 clusters obtained, we computed a synoptic (cf. Section 6.6) table 
using the presence classes of Braun-Blanquet (1964), and a table of mean cover-
abundance values in each cluster; the means are expressed on the ten-part scale 
mentioned above. These synoptic tables can be processed again with a clustering 
program to obtain a classification on a higher level. The main aim here is to 
classify these synoptic clusters in a small number of homogeneous groups. We 
attempted to characterize the results of the classification in terms of groups of 
differentiating species. The first division in main groups has nothing to do with 
the groups that result from this classification (the main groups in the first step 
of the analysis were only needed to get smaller groups that could be handled 
by the clustering programs). 

8.2.4 Preliminary results 

The result of a detrended correspondence analysis (Hill 1979a) on the set of 
data of 211 clusters (composite samples) is shown in Figure 8.7. The classification 
of these clusters resulted in 8 main groups. They are plotted on the first and 
second ordination axes. The first axis can be interpreted as a wet-dry gradient, 
with the samples containing Erica tetralix and Sphagnum species on the left side 
and the driest Portuguese heathlands on the right side. The interpretation of the 
second axis is more complicated, but this axis seems to be related to the availability 
of minerals or nutrients. The 'rich' coastal heathlands are all on the upper side 
of the graph, while the 'poor', wet heathlands (moorlands), the Erica australis 

heathlands (Iberian Mountains) and the Calluna vulgaris & Erica cinerea heathlands 
are on the lower side. The Ulex dominated vegetation types show an intermediate 
position. This might be explained by the nitrification that takes place in the root 
bulbs of these papilionaceous plants. The 8 main groups are briefly characterized 
in Table 8.1. 

8.2.5 Concluding remarks 

The whole process described above makes use of calculation procedures that 
one could call 'objective', but these so-called objective procedures are followed 
by several subjective decisions. The processing of such a large set of data is a 
cyclical process, each cycle consisting of the same actions, involving calculations, 
studying the output and interpreting it (Figure 8.5). Interpretation, in particular, 
takes a lot of time. There is also a great deal of administration involved. Since 
the input tables, species, relevés and clusters all comprise numeric information 
it is absolutely essential to adopt a systematic working procedure. 

What has been achieved? In 9 months, with approximately 2 people working 
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on the project, 3000 relevés were processed and reduced to 211 clusters, which 
together give a main syntaxonomic classification of the south-west European 
heathlands. A total review of all the important literature was made, showing the 
geographical, ecological and syntaxonomic relations of the vegetation types. In 
short, an enormous amount of clearly structured information has been assembled. 
This information may serve as a basis for future research on heathland ecology. 

Table 8.1 Preliminary scheme showing the 8 main types of heathlands, with their geographic 
and floristic characteristics. E = England; I = Ireland; F = France; S = Spain; P — Portugal. 

Type of heathland 

I Wet heathlands 

a) very wet 

b) moderate wet 

II Coastal heathlands 

a) England (left side) 

b) France (right side) 

c) Spain (all over the group) 

III Ulex galli heathlands 

IV Calluna-Erica cinerea 

Distribution 
and features 

E,I,F,S,P 

I,F,S,P 

E,I,F,S,P 

E,F,S 

E,F,S 

E,F 

Some characterizing species 

Erica tetralix 

Molinia caerulea 

(Erica ciliaris) 

Narthecium ossifragum 

Drosera rotundifolia 

Sphagnum species 

Carex binervis 

Ulex gallii 

Erica cinerea 

Holcus lanatus 

Festuca rubra 

Lotus corniculatus 

Daucus carota 

Scilla verna 

Plantago coronopus 

Armeria maritima 

Leontodon taraxacoides 

Cirsium filipendulum 

Erica vagans 

Brachypodium pinnatum 

Ulex gallii 

Erica ciliaris 

High cover-abundance values 
for Calluna vulgaris & 
Erica cinerea. Some 
clusters Ulex minor. 

Relatively more moss 
species with high cover-
abundance values except 
with respect to the wet 
Irish clusters, which are 
all in Group I. 
Hypnum cupressiforme 

Dicranum scoparium 

Pleurozium schreberi 

Pseudoscleropodium purum 
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V Erica umbellata-Ulex S,P 
minor heathlands 

VI Dry Erica umbellata P 
Chamaespartium heathlands 

VII Very dry Erica umbellata-

Halimium ocymoides 

heathlands 

VIII Erica australis S,P 
heathlands 

Erica umbellata 

Halimium alysoides 

Ulex minor 

Erica umbellata 

Halimium alysoides 

Ulex micrantha 

Chamaespartium tridentatum 

Genista triacanthos 

Tuberaria globularifolia 

Erica umbellata 

Halimium alysoides 

Halimium ocymoides 

Erica australis 

Chamaespartium tridentatum 

Erica australis 

Deschampsia flexuosa 

Vaccinium myrtillus 

Axis 2 

high 

100 
wet 

150 200 250 300 350 400 450 500 550 600 650 700 
•- dry Axis 1 

Figure 8.7 Ordination diagram of a detrended correspondence analysis of 211 relevés 
(composite samples) of the south-west European heathlands. Eigenvalue Axis 1: 0.618. 
Eigenvalue Axis 2: 0.365. For a brief description of the groups see text. Symbols: +: Ireland; 
OBHEngland;oe»France; XX- Spain; A Portugal. Where groups overlap a different symbol 
to indicate membership of the different groups is used. Group I, II: + ,o ; D, X, A Group 
III: *HX- Group IV: • • Group V, VI, VII, VIII: XA 
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8.3 Restoration and maintenance of artificial brooks in the Veluwe, the 

Netherlands 

R.H.G. Jongman and T.J. van de Nes 

8.3.1 Introduction 

Water has always been used intensively in the Netherlands, not only in the 
polders, but in the higher parts of the country too. Since the Middle Ages the 
waters of the Veluwe have been used to drive water-mills. To provide water for 
this purpose, an artificial brook system - the 'spreng' - was developed. Despite 
it being artificial, it can be considered as a semi-natural brook system. Recent 
developments have led to a change in the historical functions of nature in society, 
causing it to diminish in extent and deteriorate in quality. One of the semi-natural 
ecosystems that have deteriorated in this process is the spreng. 

The artificial brooks studied in this project are situated in the Veluwe, in the 
province of Gelderland. The Veluwe is a system of hills that are outwash deposits 
of the Saalian Ice Age. Now they rise to a height of 60-100 m. Originally, water-
mills were situated along natural lowland streams. They used undershot wheels 
and were therefore not very efficient. Moreover, water supply from natural brooks 
can vary greatly when their drainage basin is small, as it is in the Veluwe. That 
is why people set about improving the system. An artificial well (the spreng) was 
a solution to that problem. To create enough water for permanent use of the 
water-mills, existing wells were deepened or new, fully artificial wells were made, 
in some cases to depths of 7 m below the surface. To bring the water to the 
mill, a bed with a width of about 2 m and a depth of about 1 m was built 
along the higher parts of the terrain (Figure 8.8). If that was not possible, the 
brook was embanked and where the landscape gradually descended the embank-
ment was kept almost level, to create a head of water. In this way enough of 
a fall was created at the mill so that efficient overshot wheels could be used (IJzerman 
1979). This process could be repeated, which made it possible to site several mills 
along one artificial brook. On the Veluwe about two hundred mills on about 
forty artificial-brook systems have existed. Most of them were built in the sixteenth 
century, as paper-mills (Hardonk 1968). Because of scaling-up in the paper industry 
the mills ceased to function as such. Most of them were converted into laundries 
in the nineteenth century. But here too scaling-up took place and at present there 
are only a few mills left that are used in this way. Some of the artificial brooks 
are still used to keep castle moats and ornamental waters filled. Three artificial 
brooks have been dug in the last century to feed water to a canal and they are 
still in function. 

The water of the brooks is no longer used as process water or a power source; 
most of the brooks no longer have any industrial or agricultural significance. 
Even though a few of the brooks still fulfil such functions, their ecological and 
cultural-historical significance is greater. Since the 1950s, land-use and the use 
of ground and surface water has intensified in the Netherlands - also in the Veluwe. 
Those changes are a threat to the existence of the brooks. The major threat is 
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a decrease in the water supply: because of a falling water-table, between 1968 
and 1978 several brooks had problems with their water supply (Kant, 1982). As 
artificial brooks are partly situated above the water-table, the uphill parts of the 
brooks must be impermeable. Loss of the water may cause a dry brook down 
the valley. Leakage can be caused by running dry for a long period of time 
(irreversible desiccation) or by incorrect maintenance, for example through using 
machines on a vulnerable reach. Because of the weak current in the well and 
the levelled reaches silting up can occur easily. The welling-up and transport of 
water will then be hindered. Artificial brooks, being semi-natural elements, are 
therefore dependent on management by man. 

The loss of function resulted in a loss of management, sometimes for a period 
of about 30 years. To restore and conserve these brook systems insight into the 
functioning of an artificial-brook system is essential. To study the problems 
involved, in 1981 the Province of Gelderland set up the working party 'Sprengen 
en Beken op de Veluwe' [Artificial and natural brooks in the Veluwe]; the study 
is split into the four parts (Jongman & van de Nes 1982): 

- geohydrological research, to gain insight into the water supply and water quality 
of the brooks in relation to management of ground-water in general 

- ecological research, to determine ecological characteristics of the brooks to 
lay down guiding principles for specific management 

- maintenance analysis, to understand the actual state of maintenance and to 
be able to define future possibilities 

- policy analysis, to find out how the involved interests are related and if and 
what changes in policy are necessary to restore and preserve the brooks. 

Here we will emphasize the ecological research. The results have been the 
reference for the process of decision-making on priorities for restoration and a 
guideline for maintenance. In the following subsections, the methods used in the 
project and the results are discussed. 
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8.3.2 Ecological inventory 

For the brooks in this project aquatic macrofauna are the most characteristic 
organisms. This is because we are dealing with shady streaming waters in which 
microflora and macroflora play a minor role. We therefore compiled data on 
the macrofauna of the brooks. 

Part of the data come from recent publications and part were collected for 
this project. The available environmental data differ greatly in exactitude and 
completeness. They can be characterized as either binary (yes/no) or ordinal 
(ranking or estimation scale). 

Nominal variables are environment, substrate and water type. Ordinal variables 
are velocity of the stream, depth, width, thickness of detritus layer, shadow, amount 
of iron and maintenance. Many environmental variables are lacking in the data 
from the literature. Except for maintenance, most of the ordinal variables are 
merely estimated values, not measured values. In data from the literature, 
fluctuation in season and internal differences between the sites are mostly not 
taken into account. 

The sites from the data from the literature differed in size and sometimes in 
kind of organisms sampled. It was therefore necessary to select the samples on 
their usefulness for this research. Based on this, sites were selected for a 
supplementary sampling programme. The 181 sites from the literature were 
supplemented in this project by 93 sites. 

8.3.3 Data analysis 

Before data can be analysed they must be screened for peculiarities. Four samples 
were omitted because they had an extremely low quantity of organisms. In the 
original data the number of specimens per taxon varied from 1 to 999. However 
one specimen of Polycelis felina has another significance than one specimen of 
Tubifex species. A transformation into biomass would probably be the best 
approach but it was not possible in this project. Instead we used a simple ordinal 
transformation (Table 8.2), comparable with the transformation of van der Maarel 
(Table 2.1), which is used in hydrobiological research in the Netherlands. 

It turned out to be necessary to fuse some taxa because of 

Table 8.2 Ordinal transformation of data used in the 
spreng project (Cuppen & Oosterloo 1980). 

Quantity of Transformation 
organisms value 

1 - 3 1 
4-10 2 

11 - 20 3 
21-49 4 

^50 5 
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- lack of restricted knowledge about the taxonomy of some invertebrates; 
- apparent lack of acquaintance of some researchers whose data we used with 

new taxonomie literature; 
- special attention given by a few researchers to certain taxa, resulting in the 

determination of an organism at the level of species, genus and even family 
(for instance Lumbricus variegatus, Lumbricus sp. and Lumbriculidae, respec-
tively), depending on the source of the data in the literature. Fusion was 
necessary in 24 cases. After fusion, 475 taxa were left. A great number of 
these had a low frequency of occurrence. 

It was decided not to use taxa occurring in less than two or three percent 
of the sites (depending on the bulk of the data) for classification. This saves much 
computing time and hardly influences the final classification. The initial computing 
was done with all data. Based on these results the data were divided into subsets 
that were used in further analysis. 

8.3.4 Results 

The total set of data was divided in three main groups with cluster analysis. 
Named after their most important representative, the main groups were called 
Chironomus (C), Asellus (A) and Gammarus (G). All groups were analysed 
separately. The main group, Chironomus, was subdivided into two types, Asellus 

into four types and Gammarus into five types (Popma 1982). We restrict here 
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Table 8.3 Synoptic table of the Gammarus classification. Presence class (I-V) and a dominance 
index are indicated. The dominance index is the weight of a taxon in a cluster multiplied by 
its frequency in the cluster. 

Type 
number of sites 
mean number of taxa 

Gammarus pulex 

Prodiamesa olivacea 

Dicranota spp. 

Paratendipes spp. 
Paratanytarsus spp. 

Herpobdella octoculata 

Dendrocoelum lacteum 

Gammarus fossarum 

Polycelis felina 

Dixa maculata 

Agapetus fuscipes 

Eusimulium costatum 

Micropterna sequax 

Simulium ornatum 

Thaumaleidae spp. 
Crunoecia irrorata 

Elmis aenea 

Tipulidae spp. 
Baetis vernus 

Spychodidae spp. 
Krenopelopia spp. 

Helodes spp. 
Sericóstoma 

Halesus spp. 

Anabolia nervosa 

Lymnaea perega 

G5 
20 
21.4 

V 
IV 
III 

III 
II 

IV 
II 
III 

4.45 
1.54 
0.32 

0.67 
0.28 

0.88 
0.19 
1.50 

Gl 
19 
20.3 

IV 
II 

1.66 
0.29 

III 0.44 

II 
II 
IV 

V 
IV 
III 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

V 
III 
II 

0.06 
0.07 
2.25 

2.26 
1.19 
0.33 
0.32 
0.15 
0.14 
0.14 
0.13 
0.10 
0.10 
0.06 
0.06 
0.06 

1.46 
0.49 
0.04 

G3 
57 
21.5 

V 
IV 

4.33 
0.79 

III 0.27 

II 
II 
II 

II 
II 

0.10 
0.07 
0.25 

0.28 
0.12 

G2 
26 
26.7 

V 2.36 
V 2.01 
II 0.09 

II 0.14 
II 0.09 

G4 
31 
19.3 

II 0.13 
III 0.29 
II 0.08 

Tubificidae spp. Ill 0.48 
Paratendipes gr. albimanus III 0.46 
Microsectra trivialis II 0.37 
Stempellinella brevis II 0.21 
Sialis fuliginosa II 0.14 
Ceratopogonidae spp. II 0.09 
Rheocricotopus gr. fuscipes II 0.08 
Phaenopsectra spp. II 0.06 
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Limnephilidae spp. 
Corynoneura spp. 
Tanytarsus spp. 
Agabus spp. 
Helophorus brevipalpis 

Zavrelimyia spp. 
Heterotanytarsus apicalis 

Heter otrigsicadus marcidus 

Polypedilium gr. nubuculosa 

Micropsectra gr. praecox 

Prodadius spp. 

Hydracarina spp. 

Lumbriculidae spp. 

Oligochaeta spp. 
Eukiefferiella gr. discoloripes 

Limnophila spp. 

Glossiphonia complanata 

Sialis lutaria 

Chironomus spp. 

Micropsectra spp. 

V 4.25 

III 0.47 

III 0.56 

V 2.75 
II 0.38 
II 0.06 

II 0.28 

II 0.10 

II 0.08 

II 0.06 II 0.10 
II 0.31 II 0.16 
II 0.12 II 0.16 

III 0.46 
II 0.06 
III 0.60 
II 0.15 
II 0.07 
II 0.24 
II 0.12 
II 0.18 
II 0.29 

II 0.12 
[II 0.64 
III 0.85 
[I 0.10 
[I 0.10 
[I 0.34 
[I 0.33 
[I 0.36 
[I 0.25 

III 0.63 

III 0.39 

III 0.55 II 0.07 II 0.05 

IV 1.24 III 0.27 II 0.13 

II 0.15 

II 0.24 

II 0.09 II 0.06 

IV 1.92 II 0.30 

Conchapeopia spp. 
Apsectrotanypus trifascipennis 

Nemoura cinerea 

Chaetopteryx spp. 
Pisidium spp. 
Polycelis tenuis 1 nigra 

Asellus aquaticus 

Limnephilus lunatus 

Macropelopia spp. 

Velia spp. 
Anacaena globulus 

Orthocladiinae spp. 
Brillia modesta 

Plectrocnemia conspersa 

III 
III 
II 

IV 
IV 
IV 

0.36 
0.50 
0.28 

1.57 
1.01 
0.65 

III 0.58 
II 
II 

II 
II 
II 
III 
III 

0.12 
0.10 

0.11 
0.06 
0.29 
0.22 
0.35 

III 0.22 
III 0.48 
III 0.74 

III 0.63 
II 0.26 
II 0.07 

III 0.38 
III 0.75 
II 0.23 

IV 0.68 
II 0.09 
II 0.11 
III 0.21 
II 0.13 

V 
IV 
IV 

III 
II 
II 

III 
IV 
II 

III 
II 
II 
II 
II 

2.14 
1.21 
0.93 

0.46 
0.12 
0.12 

0.26 
0.78 
0.25 

0.31 
0.05 
0.20 
0.19 
0.10 

II 0.21 
II 0.26 
V 2.73 

Il 0.18 
II 0.10 
IV 0.99 

IV 0.81 
II 0.08 
II 0.33 
III 0.28 
IV 1.34 
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our attention to the Gammarus group. The clustering (Ward's method, Subsection 
6.2.5) of the Gammarus data led to a classification in five clusters (G1-G5). The 
results, which represent different brook ecosystems, were summarized in a synoptic 
table (Table 8.3). Only taxa that occurred in 20% or more of the sites were included 
in the table. 

The results of the classification were related to the environmental variables. 
The five Gammarus types differ in stream velocity and thickness of detritus layer 
as shown in Figure 8.9. Type Gl is characterized by a small detritus layer and 
a high stream velocity. G5 is restricted to low stream velocity and a small detritus 
layer. G4 is mainly found in combination with a thick detritus layer. G2 and 
G3 are related to intermediate situations, with G3 related to higher stream velocities 
than G2. G3 appears to be intermediate between Gl and G2. Gl occurs in natural 
brooks. G5 originates from ponds and castle moats that are connected with the 
natural brooks. The types G2, G3 and G4 are found in the artificial brooks. 
Because of its position between Gl and the other brook communities, the G3 
type is considered as the optimum community in an artificial brook system. 

8.3.5 Application of the results 

The results of the data analysis served as a basis for a list of priorities for 
restoration. Moreover, the typology of brook communities is still used as a reference 
for water management. 

Before it was possible to indicate priorities for the restoration of the brooks, 
some problems had to be solved: 

- which methods can be used for decision-making? 
- which criteria can be used for decision-making? 

The Province of Gelderland has a great deal of experience with this sort of 
multicriteria decision-making (van de Nes 1980). To assist policy-makers, a model 
has been developed based on the methods of Saaty (1977), called GELPAM (Gelders 
Policy Analysis Model), which compares the consequences of alternative plans, 
projects or objects on the basis of several criteria. It is described in detail in 
the literature by Ancot & van de Nes (1981). 

In this project the criteria were water supply, maintenance and ecological 
characteristics. Hydrological research by Kant (1982) provided a number of sub-
criterea for water supply: ground-water, hydraulic head (height of the water-table 
in relation to the floor of the brook), natural changes in ground-water levels, 
lowering of levels by pumping, and loss of water in the transporting reaches of 
the brook system. There were two sub-criteria for maintenance: the size of the 
areas to be maintained and costs of the restoration. An ecological characterization 
of the brooks could have been made for the actual situation or for a situation 
that could have been expected if all environmental factors were optimal. Emphasis 
was given to the actual situation, because the potential situation is given weight 
indirectly through the priorities among the sub-criteria of water supply and 
maintenance. Types Gl and G5 were only found in natural brooks. Therefore 
we concluded that the G3 type of the Gammarus group indicates the most 
characteristic artificial brook. In a similar way we inferred that the Chironomus 
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group indicates the least characteristic artificial brook. Based on this sequence, 
weights were given to community types and these led to weights for the results 
on geohydrology and maintenance. In the decision-making process, geohydrology 
was considered to be more important than maintenance. The factor ecology was 
only considered to be a weak criterion, again because it was already represented 
in the weights of the other criteria. Of the sub-criteria of geohydrology, the hydraulic 
head, as an indicator for regional ground-water potential, was considered to be 
the major one. 

In the beginning, each sub-criterion was considered separately. All projects were 

Table 8.4 Priorities for restoration of brooks in the eastern part of the Veluwe: Group 
1 has the highest priority; Group 4 has the lowest priority. A low concordance means 
that the project is sensitive to different weighting; a high concordance means that it is not. 

No. 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 

Project 

6 
11 
4 

17 
8 

26 
16 
18 
5 
7 

21 
2 
9 

19 
12 

1 

15 
27 
23 
22 

13 
10 
20 

3 
24 
14 
25 

N-Horsth. beek (N) 
Tongerense beek 
M-Heerder beek (0) 
Steenbeek 
M-Horsth. beek 

Eerbeekse beek (W) 
Beek Orderveen (Z) 
Koppelsprengen 
Z-Heerder beek 
N-Horsth. beek (Z) 
Oosterhuizenspreng 
N-Heerder beek 
E-Horsth. beek 
Ugchelense beek 
Hartense molenbeek 
Molecatense beek 

Beek Orderveen (N) 
L-Soerense beek (N) 
Loenen (Zilven) 
Loenen (Stroobroek) 

Meibeek (N) 
Vlasbeek 
Winkewijert 
M-Heerder beek (W) 
Loenen (Steenput) 
Meibeek (Z) 
Eerbeekse beek (N) 

Weight 

0.0603 
0.0509 
0.0486 
0.0481 
0.0479 

0.0458 
0.0455 
0.0450 
0.0449 
0.0436 
0.0420 
0.0405 
0.0395 
0.0393 
0.0383 
0.0375 

0.0335 
0.0289 
0.0281 
0.0275 

0.0274 
0.0267 
0.0253 
0.0247 
0.0233 
0.0197 
0.0167 

Concordance 

0.9127 
0.8349 
0.9535 
0.5499 
0.9513 

0.9262 
0.7046 
0.3566 
0.5347 
0.9180 
0.4104 
0.2539 
0.1644 
0.1488 
0.1380 
0.0329 

0.2925 
0.5432 
0.4430 
0.9510 

0.6180 
0.9613 
0.6660 
0.6705 
0.6166 
0.7373 
0.9735 

Group 

Group 1 

Group 2 

Group 3 

Group 4 

Overall Concordance: 0.6641 
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compared in pairs for each criterion on a nine-point scale expressing relative 
priority. From each matrix of these paired comparisons, weights were extracted 
for the projects in very much the same way as scores are extracted in ordination. 
The sub-criteria were also compared in pairs to obtain their relative importance. 
By applying the same ordination method to the matrices of comparisons, we were 
also able to derive weights for the sub-critera. Subsequently, the weights of each 
sub-criterion for a project were combined with the weights of just the sub-criteria 
to give overall weights for the projects; the weights express the priority of the 
projects judged (Table 8.4). In this method, a concordance measure is also given 
(Ancot & van de Nes 1981): a low concordance value indicates that the weight 
can change if priorities among criteria are changed. 

Based on this list of priorities, several brook systems were restored: three of 
the first group, three of the second group and one of the third group. This was 
implemented in part by the Polder Board and in part by private initiative. One 
brook system has been restored, although it was relegated to the third group, 
indicating that serious problems had to be solved before restoration could be 
completed. Because diminished extraction of ground water by a paper-mill caused 
the water-table in this area to rise, the water supply improved so much that it 
made restoration possible. 

The results of this research were also used to help in the decision-making for 
physical planning on a local scale and to issue permits for water extraction. It 
is also used as a point of reference to evaluate the management of the brooks. 
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abundance 5, 8, 33, 49, 62, 83, 97, 117, 
177, 194 

active species and sites 166 

adjusted R
2 34, 37 (see also fraction of 

variance accounted for) 
adjusted coefficients of determination 37 

agglomerative clustering 175, 186-191 
alliance 258 
alternating least-squares 157, 158 
amalgamation of tables 259 
analysis of concentration 150 
analysis of variance 33-37, 58, 148, 202, 

214 
anisotropy 229, 234-235, 247 
ANOVA see analysis of variance 
ANOVA table 34-37, 39, 41, 67, 68, 136 
arch effect 104-108, 114, 139, 169 
arrow in ordination diagram 127, 

134-135, 141-142, 146 
assignment rule 80, 81, 206 
association analysis 191-193 

association measure, see similarity 
asymmetry between presences and ab-

sences 84, 104, 177 
autocorrelated residuals 220, 247 
autocorrelation 7, 225-229, 245, 248 
autocorrelogram 227,247 (see also auto-

covariogram) 
autocovariance 214, 224, 225 
autocovariogram 226 

autoecology 1, 2 
average-linkage clustering 189 

axis, see ordination axis 

background variation 156 
bell-shaped response curve 32, 95 (see 

also unimodal response curve) 
Bernoulli distribution 157 (see also bi-

nomial distribution) 
bias 4, 15,24 
bimodal curve 32, 60, 109, 170 
binary variable 268 (see also dummy var-

iable) 
binomial distribution 19, 20, 45, 157 
bio-assay 78 
biomonitoring 3, 24, 78 
biotic index 78, 83, 87 
biplot 127-130, 135, 141-148, 159, 

162-164, 167 
block kriging 242 

block structure 109-110 

BLUE 239 
boundaries 213 
Braun-Blanquet method 263 
Braun-Blanquet scale 17-18, 27 
bulk sample 242 

CA, see correspondence analysis 
calibration 5, 29, 78-90, 91, 111, 119, 

154, 155 
CANOCO 108, 131, 139, 151, 156, 158 

canonical coefficient 139, 140, 145, 
150-151, 162, 167, 168 

canonical correlation 147, 161 
canonical correlation analysis (COR) 
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canonical correspondence analysis (CCA) 

137-144, 149-151, 154-157, 163-165, 
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value) 

canonical ordination 6, 93,136-151,154, 
155 

canonical variate analysis (CVA) 148-

149, 151, 157 
causality 22, 26, 29, 155 
CCA, see canonical correspondence 

analysis 
centring 20, 130 
centroid 100, 142, 169 (see also weighted 

average) 
centroid clustering 189 

checking of data 259 
chi-square distance 152 

chi-square test 43-44, 60, 69, 202 
choice of methods 5-7, 153-156, 180-183, 

219-220, 245 
chord distance 178, 181-183, 185 
choropleth map 213 

classical scaling 152 
classification 8, 10, 23,174, 258 (see also 

cluster analysis) 
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classification system 258 
cluster analysis 4, 6, 8, 23, 155, 174-212, 

258, 269 
cluster optimality 198 
coefficient of community 177, 181-183 
coefficient of determination 37 

coefficient of variation 19 

community composition 64, 78, 174 
community ecology 1, 2 
community types 174, 273 
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complementary variables 53 
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component analysis 91 (see also princi-
pal component analysis) 
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composite gradient 154, 155 
composite sample 263 
computer programs 47, 158, 193, 197, 

201,245-246 
concordance measure 274 

confidence interval 35, 40, 65-66, 67, 72-
74, 173 

constained ordination, see canonical or-
dination 
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quantitative variable) 

cophenetic correlation 189 

COR, see canonical correlation analysis 
cord distance 178, 181-183, 185 
correlation 24, 26, 37, 40, 81, 129, 132, 

147 (see also regression) 
correlation matrix 131, 163 
correlation ratio 157 
correspondence analysis (CA) 93,95-116, 

154, 157, 160-161, 165-166, 194, 254, 
261 

cosine coefficient 178, 181-183 
counts 8, 20, 50, 184 
covariables 156 

covariance 146, 159, 225, 229 
covariance biplot 124, 129, 159 
covariance matrix 131 
critical value 35, 40, 72, 75 
cross-product matrix 159, 160 
cut-level, see pseudo-species 
CVA, see canonical variate analysis 

data approximation 93 
data transformation 20-21, 49, 61, 103, 

130, 151, 184-186,216,229 
DCA, see detrended correspondence 

analysis 
DCCA, see detrended canonical corre-

spondence analysis 
decision-making 12, 272-274 
DECORANA 103, 110, 112, 158 

degrees of freedom 35-36, 44, 49, 53 
dendrogram 186-192, 199 
detection 23, 24 
detrended correspondence analysis 93, 

105-109, 115-117, 154, 158, 167, 263, 
265 

detrending 106, 108, 115, 139 
detrending-by-polynomials 108 

deviance, see residual deviance 
deviance test 49, 56, 59, 60, 70, 72, 77 
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deviation 257 (see also residual) 
d.f., see degrees of freedom 
diagonal structure 63, 97, 103, 196 
dichotomized ordination analysis 195 

differencing 229 

differential species 174, 194 
dimensionality reduction, see matrix ap-

proximation 
direct gradient analysis 29, 64, 91 (see 

also regression and canonical ordina-
tion) 

discrete variable 18 
DISCRIM201 
discriminant analysis 79, 87, 148 (see 

also canonical variate analysis) 
discriminant functions 201 
dispersion of site scores 100, 170 
dispersion of species scores 95,101, 110, 

137-138, 157, 160, 169-171 
dissimilarity 94, 151-152, 176, 178-183 
distance-weighted least-squares 238 
distribution, see frequency distribution and 

also response curve 
divisive methods 191-196 

domain 238, 239 
dominant species 103, 131, 183 
down-weighting of rare species 110, 186, 

194 
dual scaling 157 
dummy variable 58, 140, 150 
Dune Meadow Data 5, 62, 97-102, 107, 

113,115-117,120-124,127-130,133-136, 
139, 145-146, 149-150, 166, 187-193, 
196, 200-201 

E, see expected response 
ecology 1, 2, 8, 9 
ecological amplitude 42, 78, 84, 115, 203 

(see also tolerance) 
edge effects 108, 221 
eigenvector 101, 122, 161, 169 (see also 

singular vector) 
eigenvalue 100, 101, 122, 139, 141, 147, 

159, 160-164, 169 

EM algorithm 158 
environmental scalar 151 

error 30, 148, 216, 223, 239 (see also 
residual) 

error map 242 
error part of response model 30, 33 
error sum of squares, see residual sum of 

squares 
error sum of squares clustering 191 

estimation of parameters 14, 30, 34, 39, 
45,51 

Euclidean Distance 152, 178, 181-183, 
185,205 

Euclidean Distance biplot 129, 147, 160 
evaluation of methods 60-61, 153-156, 

219-220, 245 
exact interpolator 240 
expected abundance 109 (see also ex-

pected response) 
expected response 29, 32, 35, 37 
experiments 12-15, 22, 24 
explanatory power 53, 77 
explanatory variable 11, 12, 26, 29-30, 

51-59, 154 
exploratory data analysis 23 
exponential curve 33, 40, 44 

exponential model for semivariogram 
231 

exponential transformation 184 

factor analysis 91 (see also principal 
component analysis) 

F distribution 35, 53 
F test 35, 53, 219 
field survey 2, 3, 4, 15, 24 
first-order moment 224 

fitted value 34, 36, 40, 67, 122-124 
FLEXCLUS 197, 200, 259 
fraction of variance accounted for 34, 

37,41, 124, 130, 141 
frequency distribution 16, 18-20 

frequency of occurrence 43 
furthest-neighbour clustering 188 

fusion of clusters 262 
fusion of taxa 268 

Gaussian curve, see Gaussian response 
curve 
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Gaussian logit curve 33, 48-49, 84 (see 
also logit regression) 

Gaussian logit surface 53, 56, 57 
Gaussian ordination 110-115, 139, 157 
Gaussian regression 41-43, 48-50, 52-59 
Gaussian response curve 33, 41-43, 48, 

50,68,73,84, 112-113 
Gaussian response surface 52, 113, 116 
generalized linear model 9, 45-46, 50, 53, 

63, 65, 154 
GENSTAT47, 158 
geometric mean 19 
GLM, see generalized linear model 
goodness of fit 109, 115, 141, 147, 159, 

217, 218 (see also fraction of variance 
accounted for) 

gradient 64-65, 155 
gradient analysis 4, 91 (see also regres-

sion and ordination) 

hierarchical methods 175 

Hill's scaling 103, 141, 161, 166, 171 
historical notes 8-9, 60, 61, 63-65, 1 SO-

IS?, 174, 191,203,245 
horse-shoe effect 104 (see also arch ef-

fect) 

impact variable 156 
indicator species 78, 195 
indicator value 83-85, 132 
indicator variable, see dummy variable 
indicator weight 84 
indirect gradient analysis 91, 136 (see 

also ordination) 
influential data 61 
interaction 51, 56-58 
internal data structure 174 (see also indi-

rect gradient analysis) 
intercept 37 

internal association 179 

interpolation, see spatial interpolation 
interpretation of results 23-26, 53-56,71, 

132, 150, 156, 167, 199-203, 227, 
235-237 

inter-set correlation 140, 163 
interval scale 17, 179 

intra-set correlation 140, 145, 147, 150-
151, 163, 168 

intrinsic hypothesis 230 

inverse regression 86, 87, 154 
isolines 239 

isopleths 245 

isotonic regression 153 

isotropy 234 

iterative algorithm 46, 100, 111, 123, 
129, 145, 148, 152, 157, 162, 165, 194, 
197 

iterative character weighting 194 

Jaccard index 176-177, 181-183, 204 
jackknife 61 
joint plot 94, 108-109, 127, 141, 167 

kriging 7, 239-242, 245 

lag 225, 231,247 
landscape ecology 1, 2, 4, 8, 11, 12, 26 
latent structure 91, 93 

latent variable 93 (see also ordination 
axis) 

least-squares aproximation 147, 159,162, 
164 

least-squares principle 34 

least-squares regression 30, 31, 33-43, 

46,51-53,63,65,216 
length of ordination axis 106, 154, 167 
linear combination 122, 137, 144, 147, 

167 
linear model 93, 154 
linear predictor 45 

link function 45 

loading 122, 127, 254 
local minimum 111, 152 
local non-metric scaling 153, 157 
local trend surfaces 222 

logarithmic transformation 19, 21, 41, 
184, 254 

logistic regression, see logit regression 
logit regression 44-49, 53-59, 62, 65, 69-

71 
log-linear regression 50, 65, 113, 115 
log-normal distribution 19, 31, 50, 72 

295 



long-range spatial variation 215-216, 
219, 229, 252 (see also trend) 

loss function 151 

Mann-Whitney test 202 

mapping 3, 6, 174, 213, 245 
matrix algebra 157, 158, 240 
matrix approximation 93 
matrix of paired comparisons 274 
maximum likelihood 45-46, 63, 79-82, 

84,87, 112-115, 154, 157 
maximum probability of occurrence 48, 

71,84 
mean 17, 18, 20, 27, 224-225 

mean square 37 

measurement scale 13, 16-18, 27, 184 
median 19, 72 
metric techniques 151-152, 179 
minimum variance clustering 191 

misclassification 80 
ML, see maximum likelihood 
mode, see optimum 
moments, see statistical moments 
monitoring 3, 24 
monothetic 191 

monotonie regression 153 

monotonie response curve 32, 60 (see 
also sigmoid curve) 

Monte-Carlo permutation 156 
multicollinearity 55, 150-151 
multicriteria decision-making 272 
multidimensional scaling 91, 151-154, 

157-158 
multiple correlation coefficient 37, 40, 

217 
multiple least-squares regression 51-53 

multiple logit regression 53-59, 71 
multiple regression 51-59, 134-135, 139, 

140, 147, 154, 161, 215, 254 (see also 
regression, least-squares regression 
and logit regression) 

nearest-neighbour clustering 186 

nested delineation 214 

noise 175, 224 (see also error) 
nominal variable 17, 33, 43, 58, 65, 140, 

142, 149, 202, 206, 268 
nominal scale, see nominal variable 
non-centred PCA 131 

non-hierarchical clustering 175, 197 
non-linear model 63, 155, 216 (see also 

generalized linear model) 
non-linear transformation 151, 184 
non-metric multidimensional scaling 

152-154,157 

non-normal distribution 216, 229 
non-stationarity 228-229 

normal distribution 18-19, 33, 46, 72, 
214, 216, 220, 224, 229 

nugget variance 230-233, 237, 242, 244 
null hypothesis 13-14, 25, 35, 44, 202 

objectives 2, 11, 155, 180 
Ochiai coefficient 178, 181-183 
operational taxonomie unit 175 

optimality of a clustering 198 
optimum of a response curve 29, 32, 42, 

43, 47-50, 52, 57, 59, 60-62, 65, 68, 71, 
81-82,84-85,95, 109, 111-117 

order of a polynomial 41, 217 

ordinal scale, see ordinal variable 
ordinal variable 17-18, 31, 84, 206, 268 
ordination 5, 91-173, 258 
ordination axis 96, 101, 118, 122, 132, 

135, 138, 152, 156,257 
ordination diagram 91, 102, 108, 127, 

132, 142, 146, 149, 167, 261, 265 
orthogonalization procedure 100-101, 

122-123, 166 (see also detrending) 
orthonormal matrix 159 

OTU, see operational taxonomie unit 
outlier 16, 60-61, 175, 197, 202, 220 
overlapping sets of data 262 

parabola 33, 40-42, 48, 52, 68, 73 
parameters 12, 37, 42 (see also estima-

tion of parameters) 
partial canonical ordination 156 

partial F test 53 (see also F test) 
partial least squares (PLS) 158 
partial ordination 156 

partial PCA 131, 156 

296 



passive species and sites 166 
PCA, see principal components analysis 
PC A of instrumental variables 157 
PCA of y with respect to x 157 
PCO, see principal coordinate analysis 
percentage distance 179 

percentage variance accounted for, see 
fraction of variance accounted for 

percentage similarity 177, 181-183 
periodic variation 233, 234 
permutation test 156 
Pétrie matrix 103-104, 169 
plane 51-52, 125, 127 
point kriging 242 

Poisson distribution 19-20, 50, 111,114, 
157, 184 

polar ordination 156 
policy analysis 267 
polynomial regression 41, 65, 87, 217 
polythetic 193 

posterior distribution 80 

power, see statistical power analysis 
power algorithm 157, 158 
prediction 29 (see also calibration) 
prediction interval 34, 36, 67, 73 
preference score 194, 205 
presence-absence data 8, 18, 31, 43-49, 

53-62, 65, 79-85, 97, 104, 112, 142, 
176-177, 184 

principal component 118, 122, 125, 254 
principal component analysis (PCA) 93-

94, 116-132, 144, 152, 154-160, 166, 
193 

principal coordinate analysis (PCO) 152, 

158 
prior distribution 80, 86 
priorities for restoration 272-274 
probability of occurrence 43-44, 79, 82, 

84, 88-89, 109 
proof 14, 23-24 
pseudo-cyclic variation 237 
pseudo-species 50, 194 

quadrat 7 
quantitative variable 17, 37, 44, 65, 81, 

213 

Q-mode algorithm 131, 152, 159 

R
2156, 256 (see also coefficient of deter-
mination) 

range in semivariogram 230-232, 234, 
250 

rank sum test 202 

rare species 82, 109-110, 130, 183 
ratio scale 17, 179 
RDA, see redundancy analysis 
reallocation 197 
reciprocal averaging 97, 157, 254 (see 

also correspondence analysis) 
reduced-rank regression 157 
redundancy 175 
redundancy analysis (RDA) 144-148, 

151, 154, 156-158, 163 
refined ordination 195 
regionalized variables 224, 246 
regression 5, 29-77, 79, 86, 91, 93, 111, 

115, 119, 125, 132, 135, 140, 145, 154-
155 

regression coefficient 37 
regression diagnostics 60 
regression equation 30 (see also response 

function) 
regression model 20, 215 (see also re-

sponse model) 
regression sum of squares 36, 149 
relevé 7 
relocation 262 (see also reallocation) 
rescaling in DCA 106, 108, 115 (see also 

scaling of ordination axes) 
residual 34, 36-37, 52, 122-123, 156, 218, 

224 
residual deviance 46, 49, 53, 111, 115 
residual standard deviation 36 

residual sum of squares 34,36-37,41, 53, 
117, 149 

residual variance 37 

response curve 32, 60, 94 (see also uni-
modal response curve) 

response function 29, 41, 79, 82 
response model 30, 93, 153-155, 158 
response surface 51-59 

response variable 11, 12, 26, 29-30, 83, 
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135, 154 
retrospective study 15 

R-mode algorithm 131, 159 
row conditional scaling 157 
rule of assignment 80 

sample 4, 7-8, 10, 15 
sampling 3, 4, 7, 10, 15-16, 242-244 
SAS 47, 158 
scaling of ordination axes 102-103, 106, 

127-129, 141, 147, 166 
scatter diagram 31,93 
score, see site score and species score 
seasonal aspects 259 
s.d., see standard deviation 
s.e., see standard error 
second-order moments 225 

selection of variables 13, 56, 139, 201 
semivariogram 226, 230-237, 239, 242, 

243, 246 
semivariogram model 231-232, 245 
semivariance 225 

sensitivity to ..., see rare species and 
dominant species 

Shepard diagram 152-153 

short-range variation 215, 222, 229,252 
sigmoid curve 31-32, 44-47, 65 (see also 

monotonie response curve) 
significance tests 14,22,29,34-35,40,44, 

49, 53, 156, 198, 202 
significant optimum 49 

sill 230-232 

similarity 91, 175-183, 196, 198, 204 
similarity ratio 177, 181-183, 187, 200, 

262 
single-linkage clustering 186-187, 204, 

205 
singular value 157, 159 

singular-value decomposition 157, 158 

singular vector 157, 158 

site 7-8, 24, 29, 78, 91, 175,268 
site score 96, 97, 112, 118, 125, 127, 129, 

132, 139, 145, 159 
skewed distribution 18-19, 31, 33, 216 
slope parameter 37, 83, 119 
smoothing 229 

Sorensen coefficient 177, 181-183 
spatial (auto)covariance 214, 215, 222, 

224,225, 239 (see also semivariogram) 
spatial (auto)correlation 219, 224-229, 

245, 248 
spatial independence 220 
spatial interpolation 218, 221, 237-242 
spatial scale 214, 228 
spatial structure 215, 223-224, 245 
species-by-sites table 199 (see also table 

arrangement) 
species-centred PC A 130, 131, 152, 158 
species composition 150, 168 (see also 

community composition) 
species-environment correlation 139,140, 

145, 147, 156, 167 
species-environment relations 22, 29, 

64-65, 91-93, 132, 136-137, 155-156, 
174, 199-202 

species-indicator value 61 (see also indi-
cator value) 

species packing model 85 

species score 95, 97, 112, 118, 122, 137, 
155, 159, 166 

species space 125, 178 

species turnover 168 (see also standard 
deviation, response curve) 

spherical model 231-232 

square-root transformation 184 

standard deviation, normal distribution 
18-19 

standard deviation of species turnover, 
see standard deviation, response curve 

standard deviation, response curve 103, 
106-107, 154, 168, 173 (see also tole-
rance and length of ordination axis) 

standard deviation, sample 21, 36 

standard error 35, 65 
standardization of variables 21,140,145, 

150, 185 
standardization procedure 100, 123, 165 
standardized canonical coefficient 168 

standardized PCA 130 

stationarity 224, 228-230 
statistical moments 224-225 

statistical power analysis 13, 14, 25, 60 
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Statistical test, see significance test 
straight line 30, 37-40, 66, 82, 86, 87, 
117-119 
stratified random sampling 15, 253 
stress function 151, 153 

succession 167 
sum of squares 36 

supplementary point 132-134, 166 
surface, see response surface and trend 

surface 
SVD, see singular value decomposition 
synecology 1 
synoptical table 199, 270-272 
syntaxonomy 174, 198, 258, 262, 265 
systematic part of response model 30,33, 

37, 45, 67 
systematic working procedure 265 

t of a Gaussian curve, see tolerance 
/ of a parameter, see t value 
table arrangement 62, 64, 86, 98-99, 102, 

120-121, 133, 174, 193, 195-196,200 
test of significance, see significance test 
theoretical variable 95, 118, 137, 155 
ties 153, 202 
tolerance 42, 47-48, 50, 52, 65, 71, 84-85, 

88, 106, 111-115 
total residual sum of squares 117, 144, 

159 
total sum of squares 36 

total variance 37 

training set 79-81, 86 
transfer function 78, 86 
transformation, see data transformation 
transition 258, 262 
transition equations of CA 161, 165 
transition model 231 
trend 214, 223, 227, 234, 246, 252 
trend-surface analysis 7, 215-222, 254, 

257 
/ test 23, 35, 40, 41-42, 47, 49, 52-55, 

57-58, 60, 70, 202 
; value 40, 216 (see also t test) 
TWINSPAN 109, 193, 259, 261 
Two Way INdicator SPecies ANalysis 

193-196 

two-way weighted averaging algorithm 97, 
100, 101, 106, 108, 138, 165, 170 

two-way weighted summation algorithm 
119,123, 131, 144-145 

UPGMA 189 

underlying structure 93 
unfolding 157, 158 
uniformity, see stationarity 
unimodal curve, see unimodal response 

curve 
unimodal response model 60,93-94,139, 

154-155 
unimodal response curve 32, 50, 62, 81, 

95-97, 138,153,167 (see also Gaussian 
response curve) 

unweighted-pair groups clustering 189 

van der Maarel's scale 17-18, 21, 27 
variance 37, 130, 225 

variance ratio 35, 37, 40 (see also F test) 
vector 101, 125, 159, 178-179, 223 
vector model 158 (see also biplot) 

Ward's method 191-193 

weight 122, 137, 239-240, 273 (see also 
indicator weight) 

weighted average 62, 83, 97, 100, 139, 
141, 160, 164, 194 

weighted averaging 61-64, 68, 83-88, 93, 
97, 112, 154 

weighted moving averages 237-238 

weighted sum 122, 137, 145, 147, 159, 
194, 206 (see also linear combination) 

weights for species or sites 103, 130-131, 
164, 184-186 

Wilcoxon test 202 

window 222, 238, 239 
within-class sum of squares 149 (see also 

within-group sum of squares) 
within-group sum of squares 191 
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Summary of Dune Meadow Data 

Table 0.1. Dune Meadow Data. Unordered table that contains 20 relevées (columns) and 
30 species (rows). The right-hand column gives the abbreviation of the species names listed 
in the left-hand column; these abbreviations will be used throughout the book in other 
tables and figures. The species scores are according to the scale of van der Maarel (1979b). 

OOOOOOOOO11111111112 
12345678901234567890 

1 Achillea miLLefoLium 
2 Pgrostis stoLonifera 
3 Rira praecox 
4 Rlopecurus genicuLatus 
5 Rnthoxanthum odoratum 
6 Bel Lis perennis 
7 Bromus hordaceus 
8 Chenopodium aLbum 
9 Cirsium arvense 
10 Eleocharis palustris 
11 ELymus repens 
12 Empetrum nigrum 
13 Hypochaeris radicata 
14 Juncus articulatus 
15 Juncus bufonius 
16 Leontodon autumnal is 
17 Lolium perenne 
18 Plantago lanceolata 
19 Poa pratensis 
20 Poa trivialis 
21 Potentilla palustris 
22 Ranunculus fLammula 
23 Rumex acetosa 
24 Sagina procumbens 
25 Salix repens 
26 Trifolium pratense 
27 Trifolium repens 
28 Vicia lathyroides 
29 Brachythecium rutabuLum 
30 CalLiergonella cuspidata 

13. .222. .4 2. . . 
..48...43..45447...5 

2.3. 
.272...53..85..4.... 
.... 432 ..4 4.4. 
. 3222.... 2 2. . 
.4.32.2..4 

1 
. . .2 

4 458... 4 
44444... 6 

2. 
2 2.5. 

44 33... 4 
2.4. .43 

.52233332352222.2562 
75652664267 2. . 

555. .33 23. . 
44542344444.2...13.. 
2765645454.49..2.... 

22 
2... .2222... 4 

.... 563.2..2 

. . .5. . .22.242 3. 
335 

252 
.52125223633261..22. 

12 1. . 
..2226222244..44.634 

4.3...3 

Rch 
Rgr 
Rir 
Rio 
Mnt 
Bel 
Bro 
Che 
Cir 
Ele 
Ely 
Emp 
Hyp 
Jun 
Jun 
Leo 
Lol 
Pia 
Poa 
Poa 
Pot 
Ran 
Rum 
Sag 
Sal 
!ri 

Iri 
Vic 
Bra 
Cal 

mil 
sto 
pra 
gen 
odo 
per 
hor 
aLb 
arv 
pal 
rep 
nig 

rad 
art 
buf 
aut 
per 
Ian 
pra 
tri 
pal 
fla 
ace 
pro 
rep 
pra 
rep 
lat 
rut 
eus 

This card belongs in: 

Jongman, R. G. H., C. J. F. ter Braak & O. F. R. van Tongeren, 1987. Data analysis in community 
and landscape ecology. Pudoc, Wageningen. 



Table 0.2. Environmental data (columns) of 20 relevées (rows) from 
the dune meadows. The scores are explained in the description of the 
Dune Meadow research project, which can be found in a preliminary 
section of this book; asterisk denotes mean value of variable. 

Sample 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Al 
horizon 

2.8 
3.5 
4.3 
4.2 
6.3 
4.3 
2.8 
4.2 
3.7 
3.3 
3.5 
5.8 
6.0 
9.3 

11.5 
5.7 
4.0 
4.6* 
3.7 
3.5 

Moisture 
class 

1 
1 
2 
2 
1 
1 
1 
5 
4 
2 
1 
4 
5 
5 
5 
5 
2 
1 
5 
5 

Management 
type 

SF 
BF 
SF 
SF 
HF 
HF 
HF 
HF 
HF 
BF 
BF 
SF 
SF 
NM 
NM 
SF 
NM 
NM 
NM 
NM 

Use 

2 
2 
2 
2 

P 
2 
3 
3 
1 
1 
3 
2 
2 
3 
2 
3 
1 
1 
1 
1 

Manure 
class 

4 
2 
4 
4 
2 
2 
3 
3 
1 
1 
1 
2* 
3 
0 
0 
3 
0 
0 
0 
0 



ERRATA 

Page 66 

Equation 3.30b should read 
D = 4 b2

2 var (û) - g(vn - v12
2/v22)-

Instituut voor Plantenziektenkundig 

Onderzoek ' 

Binnenhaven 12, Postbus 9060 

6700 GW WAGËNINGEN 

Equation 3.30 b 

&.s:f;/con
sr:rarïdaph », * ̂  ^ < — — 

+ 0 ] on the vertical axis. Note that the relatton looks l.near. 

Page 72 , 
Exercise 3.1.3, 6th line should read 

thus exp (3.23) - 1 = 25 - 1 = 24 

Exercise 3.1.6, 8th line should read 

gives the estimates exp 

line should reau . 
(4.36) - 1 = 77, 17 and 3, respectively 

Page 225 
Equation 7.13 should read 

y(/i) = Vi var [Z(*,) - Z(x2)] 

Equation 7.13 
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