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Abstract
In the last 10 years, a tremendous progress characterized flow cytometry in its different aspects. In
particular, major advances have been conducted regarding the hardware/instrumentation and
reagent development, thus allowing fine cell analysis up to 20 parameters. As a result, this
technology generates very complex data sets that demand for the development of optimal tools of
analysis. Recently, many independent research groups approached the problem by using both
supervised and unsupervised methods. In this paper, we will review the new developments
concerning the use of bioinformatics for polychromatic flow cytometry and propose what should
be done in order to unravel the enormous heterogeneity of the cells we interrogate each day.
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Introduction
Differently to any other tissue in the body, cells being part of the immune system display a
huge diversity and hundreds of subsets can been identified even within the same lineage,
such as in CD4+ and CD8+ T cells or in dendritic cells. Identification of the heterogeneity
of the immune system components can be only achieved through flow cytometry that allows
the analysis of multiple surface and intracellular markers at the level of single cell. Major
contributions in the last 10-15 years on the field of instrumentation, reagent development,
and software analysis tools advanced the field of cell research forward – leading to the
identification of specific subsets of cells with unique biological functions in normal and
pathological conditions. The Herzenberg laboratory at Stanford University developed the
first instrument able to detect 11 antigens in the same cell (1); this technology was later
extended in the ImmunoTechnology Section at the Vaccine Research Center (VRC) at the
NIH by utilizing quantum dots conjugated to monoclonal antibodies, upgraded
instrumentation and allowed measurements up to 18 colors (2).

Meanwhile, development of new flow cytometric assays, in primis the capability to measure
the release of cytokines by stimulated immune cells (3) and the analysis of the
phosphorylation state of proteins involved in signal transduction (4), moved attention from
basic phenotyping to more complex cell functions. All these aspects together undoubtedly
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revealed multiple aspects of immune cell biology but, as a consequence, generate large and
complex data sets. These data are best analyzed with the use of bioinformatic tools.
Theoretically, millions of possible subpopulations can be identified in a single sample
stained with 18 reagents; the number of variables measured can be increased by the different
markers used in the analysis, by the experimental conditions (e.g., stimulation time,
concentration of the stimulus) or by the time points in an in vitro experiment or in a clinical
trial. For example, more detailed analysis of generated data sets through the use of Bayesian
networks revealed the existence of intracellular pathways not previously identified through
classical biochemical approaches (5). Such large data sets can be certainly analyzed by the
classical approach of sequential gating and then determining the representation of a
particular cell subset expressing marker(s) of interest. However, in many cases this approach
is both too time consuming and too subjective. The same problem arises when thousands of
samples have to be analyzed in high-throughput screening experiments, for example in the
context of data quality assessment, for which models have been recently proposed (6). More
importantly, much information can be lost as our eyes and, as a consequence, our mind can
only integrate information from two or perhaps three dimensions at a time in classical flow
cytometric plots. Thus, the need to simplify analysis is absolutely necessary. Multiple
attempts to do so have been proposed that can be roughly divided in two main categories,
i.e., supervised and unsupervised.

Most but not all of these new approaches are mainly explorative and not quantitative. Thus
they cannot be used to identify statistically significant differences among groups of samples
or cohorts of patients. Their main use is to identify trends in the data that otherwise would
be missed by the classical sequential gating strategies. These trends must then be
experimentally tested to see whether cell subsets or cells from healthy donors vs. patients
behave differently or differentially respond to external stimuli.

In this paper, we review some of these types of analyses proposed over the last few years
and discuss their pro and cons (summarized in Table 1); moreover, we will suggest what
should be done and developed in the near future to obtain as much information from our
data as possible.

Sequential gating: a universal method for analysis of flow cytometric data
Univariate histograms are widely used for the display of flow cytometric data, if only one
parameter has to be visualized (7). They are useful when the same antigen is to be analyzed
through multiple experimental samples (e.g., the sample treated with different drugs or with
different amounts of the same drug): in this case, the pattern of expression of a certain
marker can be discerned by the graphs and quantitatively expressed as percentage of cells
above a certain threshold, or alternatively, the mean (median) of the fluorescence intensity
for the antigen. Most software packages provide tools for the overlay of histograms from
multiple samples, allowing a rapid comparison of the parameter(s) of interest.

Multiple choices are available when two parameters have to be visualized at the same time.
Historically, dot plots are the most popular graphs used for this purpose. In this case, single
events are depicted as dots on the screen. Monochromatic dot plots, however, have many
limitations: for example, different cells displaying the same amount of fluorescence are
overlayed in the plot and their further distinction becomes thus difficult if not impossible.
This is particularly challenging when rare populations have to be investigated and a huge
number of events needs to be acquired. Density information overcome this problem and can
be provided graphically by either the use of contour plots or colored dot plots (7,8).
Contours identify regions with equal cell density and the representation obtained is
irrespective of the number of acquired events. Pseudocolor dot plots, as described in FlowJo
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software, can be also used: different colors are used depending on the cell density and thus
give the idea of the proportions of the different cell populations. The specific algorithms
used to generate the colors or contour lines are important; the use of “probability”
algorithms is often advantageous since the resulting graphics are highly similar irrespective
of the total number of events collected and are thereby less prone to misinterpretation.

Pro and cons of sequential gating strategy
Histograms and dot plots are a very simple and intuitive way of analyzing flow cytometric
data and allow gating of specific populations of interest that can be isolated for further
analysis, if multiple markers are used in the same panel. As indicated above, quantitative
results in terms of frequency (i.e., percentage) or grade of positivity (i.e., fluorescence
intensity) can be easily obtained. However, they do not offer the visualization of the flow
cytometric output as a whole. In fig. 1 we show that analyzing 6 antigens to define T cell
differentiation state can lead to the identification of dozens of subsets of T cells that could
follow specific and different dynamics under physiological or pathological conditions (1).
Thus, careful analysis of these complex phenotypes by this approach can be time-consuming
and may lead to the loss of important information. In this case, more sophisticated analysis
are needed to better understand the dynamics of the data under consideration.

SPICE, a useful tool for the analysis of the antigen-specific immune
response

Antigen-specific T cell response is a hot topic in T cell immunology since many years.
Historically, to investigate the functionality and specificity of cytotoxic cells, researchers
were using assays based on the release of radioactive elements (typically, 51Cr) by target
cells that were previously loaded with such tracer; the specificity of lymphocytes was
investigated by limiting dilution assays, or by the analysis of cell proliferation measured by
the incorporation of radioactive DNA precursors (typically, 3H-thymidine) in growing cells.
A revolution occurred in 1996 when Altman and colleagues described the use of MHC class
I tetramers bearing a peptide for the analysis of antigen-specific CD8+T cells (9). Despite its
great utility, this method does not directly address the function of these cells. Roughly at the
same time, Louis Picker developed a method for the direct ex-vivo analysis of antigen-
specific T cells by the intracellular analysis of cytokine production after stimulation with
antigen or antigenic peptides (10). In this report, several cytokines were analysed in the
same samples but not combined in the same assay, thus not giving any information about the
heterogeneity of the immune response. The advent of the so-called polychromatic flow
cytometry, that is advanced instrumentation and reagent development, allowed the
simultaneous determination of 5 functions (IFN-γ, TNF-α, IL-2, IL-4 and MIP-1β) and
demonstrated for the first time the complex heterogeneity of the antigen-specific T cell
response (11). The software SPICE was developed at the VRC specifically to analyze the
considerable heterogeneity of cell populations (n=31) that arise from this kind of analysis. In
particular, SPICE is ideal for exploring (and quantitatively comparing) the functional and
phenotypic profiles of subsets within a complex mixture.

Major guidelines for using SPICE
Originally, when intracellular cytokine staining (ICS) technique was first introduced,
researchers measured only one function, i.e., IFN-γ, as a surrogate marker for any T cell
response. IFN-γ was thought to be the dominant immune function of the effector T cell
response and many candidate vaccines moved to phase I-II because of their capability to
induce a strong production of this cytokine. However, simultaneous staining of two
cytokines at the same time, e.g., IFN-γ and IL-2, revealed that T cell are heterogeneous, as
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single-cytokine producing cells as well as double producers are present (12). The authors
coined the word “polyfunctional” as referred to cells that were able to produce both
cytokines at the same time. The first assessment of 5 cytokines simultaneously revealed that
both CD4+ and CD8+ T cells were even more heterogeneous and multiple subsets of T cells
with different functionality could be identified according to the cytokine-producing potential
(11). From here the idea to brake down the immune response by identifying all combinations
of cytokine-producing T cells. As we include more and more parameters, the number of
possible combinations (2n, where n is the number of parameters) grows exponentially. Thus,
computer assistance is needed to simplify the evaluation of these data sets; it is this need that
SPICE fills.

SPICE can also be used for multiple types of measurements that are not necessarily flow
cytometry-derived. However, in this section, we will describe the most common and popular
use, that is the analysis of the functionality of the immune response. In this specific case, the
immune response, as measured by the simultaneous analysis of cytokine expression by
antigen-stimulated cells, can be broken down in multiple populations, where each population
is the result of the combination of positive or negative expression of single cytokines. A
Boolean gating approach, such as that contained in FlowJo software (Tree Star Inc.,
Ashland, OR), can be used to automatically generate these combinations. Generally, data
refer to a parent population such as cytokine-producing CD4+ and CD8+ T cells. If
differentiation markers are included in the analysis, cytokine-producing cells can also be
interrogated for their differentiation phenotype (central vs. effector vs. terminally
differentiated memory cells, as an example). Data are exported and easily formatted by the
support dedicated software Pestle (VRC, NIH). Pestle also allows the automatic subtraction
of background cytokine response (the cytokine response in the unstimulated sample) from
the antigen-induced response (the response in the stimulated sample). Within SPICE,
variables are organized as categorical or as value. A category is used to organize the
immune response data (time after vaccination, type of therapy, vaccination strategy, etc.),
while value is the variable (e.g., combination of cytokine expression) whose trend has to be
analyzed. The power of SPICE comes in its organization of categories to allow for rapid
isolation of a specific subset or comparison of different subsets for one or more of the
measurement variables.

A wonderful example of SPICE application to the analysis of the immune response can be
found in Betts et al. (13). Betts and coworkers used polychromatic flow cytometry to
analyze the simultaneous production of IFN-γ, TNF-α, IL-2, MIP-1β and the degranulation
marker CD107a and showed that highly polyfunctional HIV-specific CD8+ T cells (i.e.,
cells producing 4 or 5 functional markers simultaneously) were more frequent in HIV long-
term non-progressors than in progressors.

Pro and cons of SPICE
As already explained above, SPICE is very useful to simplify the visualization of complex
data sets. Many variables, such as those resulting from the combination of positive and
negative expression of antigens, can be overlaid in a single graph and grouped depending on
the categories utilized. A picture of the whole trend in the data can thus be obtained very
quickly. An example of the SPICE output is shown in Fig. 2, where pies show the
differences in the composition of the peripheral CD4+ T cell pool between a group of
healthy donors and patients with HIV infection. However, SPICE, as obvious, is totally
dependent on the gating strategy applied and, as a consequence, does not offer an
unsupervised method of analysis of the flow cytometric data.
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Probability Binning and Frequency Difference Gating
An important analysis element in flow cytometry is the identification of differences between
samples – e.g., treatment responses, genetic variability, etc. Historically, such differences
have been quantified by changes the representation of a gated subset (or, perhaps,
phenotypic differences identified by median fluorescence intensity changes). Direct
comparison of the raw data, however, is desirable under many circumstances: it does not
presume identification of specific subsets through subjective (manual) gating; it may
identify subtle changes in subsets that are not apparent within grossly-defined gates; and it
should be able to take into account all measurement parameters. Historically, the only well-
characterized algorithms to do this comparison operated on univariate data, by essentially
doing histogram subtraction. These include the Komogorovs-Smirnoff (K-S) statistic
(14,15), Overton subraction (16), SED (17), and some limited parametric models (18,19),
which compare the density of events at each position within an intensity histogram and
report a statistical significance associated with the difference. The primary problem is that
these algorithms are typically far too sensitive (identifying differences among samples that
are not biologically different). Furthermore, extension of these algorithms to multiparameter
data is not easily done.

These nonparametric algorithms estimate event density in the fluorescence distribution by
“binning” the data into equal-sized bins. A typical univariate histogram is thereby reduced to
256 bins; the number of events in each bin is compared between a test and experimental
sample. If this were extended to two dimensions, the number of bins would be 256 × 256, or
more than 65,000; with 8 dimensions, the number of bins would be 1.8 × 1019. Even if it
were possible with today's computers to compare across this many bins, it should be noted
that one could never collect enough events so as to populate them sufficiently to do a
comparison across samples. Clearly, the number of bins can be reduce by dividing each
measurement into fewer divisions – but even dividing each measurement into 4 would result
in over 65,000 bins. Each bin would cover one-fourth of the measurement space for each
parameter, making it insensitive to subtle changes.

This problem was solved by the use of “probability binning” (PB) to dissect
multidimensional space (20,21). PB creates small bins where there are many events (and
therefore much more information about event density), and big bins where there are few
events. Indeed, in the final binning, each bin contains the same number of events. Therefore,
when comparing frequency distributions between samples, this algorithm minimizes the
maximum expected variance, with a result that the statistical power is as robust as possible.
A significant advantage of the PB algorithm is that computation time does not significantly
increase with the number of parameters.

PB provides a statistic to compare different multivariate distributions. In addition, it can be
used to rank the “distance” between different multivariate distributions. In a test example,
PB was used on 4-color immunophenotyping of B cells from identically aged, genetically
disparate strains of mice. The difference between littermates was negligible; the difference
between each strain and the F1 cross was far less than the difference between the parental
strains, as expected. This type of analysis can be used to identify genetic elements
controlling leukocyte homeostasis – without a priori knowledge of the subsets present.

A useful outcome of the PB algorithm is the identification of which of the multidimensional
bins are the ones with the biggest differences between the two samples. By grouping these
“most-different” bins together, a gate can be constructed that selectively identifies the region
of multidimensional space which has the biggest differences between two samples. This gate
can then be applied to a large set of samples – the frequency of events within this gate will
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presumably be related to how closely related a sample is to either the control or
experimental sample. This process is termed “Frequency Difference Gating” (FDG) – i.e.,
the definition of a gate based on the maximal difference in the frequency of events between
two samples (22). The utility of FDG was shown by comparing B cell distributions in 6 and
8-week old mice. PB identifies subtle changes between these distributions. FDG creates a
gate that identifies the regions with maximal variance; this gate can be applied to many
samples to both quantify the differences between samples but also to further characterize the
populations that are different.

Pros and cons of PB and FDG
A major advantage of these algorithms is that they scale to highly multidimensional data
without significant impact on computation time. They are objective methods, and provide a
robust statistic that can be used to compare distributions across samples. Finally, the ability
to generate a gate representing the “most” different regions is a powerful tool to explore and
quantify distributions. It is quite different from “cluster” analyses, in that it makes no
assumption about the separation of those events from a main population – and thereby can
identify shifts in the fluorescence distribution rather than wholesale changes in subsets.

A major disadvantage of these algorithms, as currently implemented, is that they are highly
sensitive to variations in instrument settings and sensitivity. Apparent changes in
fluorescence intensity can be biological or simply mildly different experimental staining
conditions or instrument settings. While the latter can be controlled with very careful
adherence to protocol, it may not always be possible. Future algorithms will hopefully
incorporate fluorescence normalization techniques that attempt to remove experimental and
instrumental variability in order to best reveal biological variability. As such, the most
robust comparisons are derived from samples that are processed and stained in parallel, and
analyzed sequentially on the same instrument.

Cluster analysis
Heat maps are a relatively simple and intuitive way to simultaneously visualize the trend of
multiple variables following experimental perturbation. They are known since the late
1950's and became very popular in biology after the introduction of microarray technology.
A color code is used to indicate the relative expression of a variable compared to a control
sample: generally, black for unchanged, green for downregulated and red for upregulated, as
proposed by Eisen and colleagues (23). Heat maps can also be coupled to clustering, whose
algorithms are able to group variables on the basis of similarities and differences. In this
way, patterns in the data or in patient cohorts can be discerned by an unsupervised
bioinformatic approach. For a nice overview about clustering algorithms applied to flow
cytometry see Bashashaty and Brinkman (24).

Recently, some groups used hierarchical clustering to distinguish different types of
hematological malignancies or to determine prognosis in B-CLL on the basis of the relative
expression (percentage or MFI) of surface antigens commonly used for cancer cell
differentiation/classification (25,26). Despite their great usefulness in translational medicine,
the outputs obtained with these approaches were based on the expression of individual
markers and no information was derived from the mutual expression patterns of different
surface proteins or on the complexity of cancer cell phenotypes.

Several reports describe the use of cluster analysis (CA) applied to raw flow cytometric data
as an approach to group cells with similar fluorescence patterns (27,28). This is done to
overcome the subjectivity of manual gating, as well as to identify all possible cell
populations contained in a given dataset. K-means clustering was proposed two decades ago

Lugli et al. Page 6

Cytometry A. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



as an unsupervised method to identify populations (27,28). In the K-means approach, the
number of clusters in which the data will be catalogued has to be predetermined, thus
rendering difficult the clustering of non-naturally partitioned data. Moreover, each data point
(event, in this case) can belong to only one cluster. A modified version of the K-means,
termed fuzzy K-means, allows each point to belong to multiple clusters with different grades
of association (29). Clustering of the raw data could also be done hierarchically, as it is done
for gene array studies. However, the considerable number of events that are generally
acquired at the flow cytometer renders this approach untenable in terms of processing time;
thus previous partitioning (gating) of the data should be considered. This is especially true
when multiple parameters are analyzed at the same time, as it is in polychromatic flow
cytometry.

A specific approach of data processing before CA has been proposed by a number of groups,
i.e., Boolean combination of gates identifying positive and negative expression of antigens.
In 2006, two reports described this approach prior to CA and identified the most common
lymphocyte populations in different organs of the mice or the differentiation pattern of T
cells stimulated with a combination of cytokines (30,31). In the same way, Kitsos and
colleagues determined the cell state in response to stimuli (32). These authors stimulated
HL-60 cells with different combinations of external stimuli at various concentrations and
measured cell differentiation (through the analysis of lineage markers by flow cytometry) or
apoptosis and described unusual patterns of differentiation that otherwise could have been
missed by classical analyses.

Shortly thereafter, we used polychromatic (8-color) flow cytometry and hierarchical
clustering to classify people of different ages, i.e., young (20 year old), middle age (60 year
old) adults, and centenarians, by considering the T cell flow cytometric profile as a whole
(33). Indeed, by combining the expression of CD45RA, CCR7, CD95, CD127 and CD38,
we described 48 subpopulations on both CD4+ and CD8+ T cells as obtained by Boolean
combination of gates. Besides the well-known observation that memory T cells accumulate
with age concomitant with the depletion of naïve T cells, the CA identified those
subpopulations that were expanded in the centenarian cohort compared to other cohorts (and
vice versa), thereby revealing dynamics of T cell phenotypes that occur with ageing. Subject
classification was, in this case, driven by all 48 phenotypes identified by the Boolean
combination of gates. Interestingly, we found the above cohorts clustered much better on the
basis of the CD8+ rather than the CD4+ T cell phenotype, thus indicating the former as a
more homogeneous population than the latter.

Another report used CA to analyze polychromatic flow cytometric data obtained from
profiling of healthy donors and ankylosing spondylitis (AS) patients (34). Four different
panels were used to describe multiple leukocytes populations including granulocytes, CD4+
and CD8+ T cells, NK cells, B cells and monocytes and up to 80 variables were included in
the data set and used for the subjects' classification. Healthy donors and AS patients nicely
segregated in two different clusters on the basis of the flow cytometric profile and the
authors identified those populations that were specifically expanded or contracted in the two
cohorts.

Principal component analysis
Because of bivariate plots, flow cytometric data are generally displayed two dimensions at a
time. However, as discussed before, they can be imagined in a multi-dimensional space
where each dimension corresponds to single fluorescent parameters or scatters. If we think
that flow cytometry allows analysis at the level of single cells, a huge amount of data can
thus be generated by a single file. Similarly, a single flow cytometric profile can generate
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multiple variables as a result of the Boolean combination of gating, as described above.
Thus, each subject, patient or sample can be projected onto an n-dimensional space where
each dimension is represented by a combination of antigens. Since it is not possible to
display such data in a multi-dimensional space, we adopted the use of Principal Component
Analysis (PCA) to reduce the multidimensionality of the data set (33). PCA is an
unsupervised dimension-reduction method that generates a new set of decorrelated variables
(called principal components) as linear combinations of the original variables (in our case,
represented by T cell subsets-combination of phenotypes) (35). The majority of the variation
of flow cytometric datasets (subjects) can be captured by the most dominant principal
components that become the new axes in a two or three dimensional representation. The loss
of information occurring with this transformation is minimal and allows the classification of
experimental samples by considering the flow cytometric output as a whole. The use of PCA
in flow cytometry was not new as it was proposed for the first time in 1984 and again in
1987 (36,37). Both reports aimed to reduce the multidimensionality of the raw flow
cytometric data. In particular, Kosugi et al. (37) were able to identify four different clusters
of cells in a bivariate plot resulting from the PCA of cells identified by four different
parameters, that is two fluorescent parameters (cells positive for CD3 and CD8 surface
molecules) and forward (FSC) and side (SSC) scatters. Two of these populations were
distinguishable as expressing the CD3 and CD8 antigens while the remaining two were
negative for CD3 and CD8 and were distinguishable by the different scatter properties (cells
with low FSC, presumably dead cells, and monocytes, which have higher FSC compared to
any other cell population after Ficoll isolation).

Differently, we applied the PCA to the data set described in the previous section. In our
case, we simply assumed that not all phenotypes (combination of antigens) contributed in
the same way to the definition of the data set as some of them do not change with
immunological ageing. Similarly to CA, PCA grouped subjects of different age and
identified the variables that were contributing the most to the definition of the cohort.
Moreover, PCA was able to identify the specific phenotype(s) that was (were) best
describing a certain subject. In this way, “immunological ageing” of an individual could be
determined if phenotyped for the same markers and then inserted into the data set as a test,
independent sample. Our data thus demonstrated that the flow cytometric profile considered
in its entirety could be a useful tool to classify subjects on the basis of phenotypic
characteristics. This approach not only has implications for research purposes as it can
identify the major phenotypes in a certain cohort of individuals but could also help diagnosis
as it can identify similarities and differences among unknown phenotypes.

Recently, Kalina et al. (38) phenotyped B cells from healthy donors and common variable
immunodeficiency patients by 6-colour flow cytometry and subsequently applied the
probability binning algorithm. The coordinated of “overfed” or “underfed” bins' means were
then subjected to PCA to identify the portions of the six-parameter space containing the
“overfed” or “underfed” bins. Interestingly, they found that a specific cell population was
present in the PCA plot from patients but absent in the one obtained from in the healthy
donors. After gating, they showed that this population represented CD27- CD24bright CD38
bright CD19+ transitional B cells which were specifically expanded in the immunodeficient
patients.

Pro and cons of CA and PCA
The aforementioned approaches can be very useful to simplify data analysis in
polychromatic flow cytometry experiments. In particular they can: i) identify trends in the
data that otherwise could be missed by classical approaches simply because the amount of
generated variables is very high (CA); ii) group subjects or patients on the basis of the whole
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flow cytometric profile (CA and PCA); iii) identify the differentially represented phenotypes
among cohorts of donors or patients (CA and PCA).

CA and PCA are explorative, not quantitative types of analysis. Thus, they should be used as
means to identify similarities and differences among groups. Moreover, multiple algorithms
for CA are available but not all of them are suitable for flow cytometric data. For example,
the previously cited K-means or fuzzy K-means only cluster data with spherical distribution,
which usually does not occur in flow cytometry. Thus, recognition of discrete populations
can be hardly possible with certain types of data. Clustering of the raw data can also be
hierarchical but the number of events acquired for each sample can limit this performance in
terms of processing time.

Identifying trends in the data is the most attractive capability of these approaches. However,
trends need to be experimentally tested to prove a real biological effect. Nevertheless, huge
data sets can be used to build models and to predict cellular behaviour, as proposed by Janes
et al. (39). These authors measured multiple pathways of intracellular signaling in response
to different combinations and concentrations of external stimuli including TNF-α, insulin
and EGF and determined cellular apoptotic phenotype by measuring multiple apoptotic
parameters. A model based on principal component analysis and partial least square
regression combined stimulation and intracellular signaling and was able to predict the
cellular response, i.e., apoptosis, with high accuracy. The same model also revealed
connections among previously unrelated external stimuli in determining the survival or the
death of the target cell.

Conclusions and future directions
We have reviewed some of the new developments in the field of data analysis in
polychromatic flow cytometry. The huge data sets generated by this technology can be
overwhelming (e.g., consider that a 10 colour staining allows the recognition of 1,024
different cell populations, not to mention possible differences in FSC and SSC) and some
useful aspects can be lost or ignored if the proper analysis approach is not adopted.
Certainly, the future in this field is the use of automatic tools of data analysis that can
identify cell populations and possibly underline their relative importance. We believe that
manual gating strategies will be largely reconsidered and modified over the next few years
as robust and reliable methods of automated gating are being proposed (40). In particular,
unsupervised approaches applied to raw data, such as CA and PCA (Table 1), will become
more and more popular, as they consider the fluorescence values of each single cells and do
not presume the previous partition of the data, e.g., distinction between positive and negative
expression. The main goal of these automatic tools of analysis will become the identification
of similarities and differences among samples. Certainly, an algorithm cannot substitute the
expertise of the operator in data analysis, especially when specific populations of interest
need to be identified. However, different applications such as high-throughput and high-
content screening assays for compounds nowadays require the fast extrapolation of
information (41). Especially in these disciplines, it is necessary to obtain data that go beyond
a mere positive and negative result.

Analysis of multiple parameters at the same time can be only beneficial for unraveling the
mechanism of action of specific compounds. For instance, the analysis of multiple reactive
oxygen species in the same cell revealed that quercetin, a flavonoid known as antioxidant,
can exert pro-oxidant functions in certain cellular systems by generating the superoxide
anion O2-(42). The same approach was used to describe the loss of glutathione and the
increase in oxygen free radicals in adipocytes treated with antiretroviral drugs, such as
stavudine (43). We expect that multiparameter flow cytometric assays for compound
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screening will be largely utilized in the future. As a consequence, rapid and simple methods
of analysis are absolutely required.

The same scenario can be envisaged for the role of flow cytometry in the diagnosis of
hematological malignancies. More and more markers are now combined to better
characterize malignant cells; automated analytical tools applied to multiparameter data set
will allow us to better define the type of disease, its stage and the progression rate.
Computers and algorithms combined with advanced operator expertise and instrument
standardization will certainly improve our knowledge in basic and translational research.
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Fig. 1. A simple 6 differentiation-antigen staining can identify dozens of subsets of CD8+ T cells
Magnetically-enriched CD8+ peripheral blood mononuclear cells from a healthy donor were
stained with multiple fluorescently-conjugated monoclonal antibodies directed to CD45RO,
CCR7, CD62L, CD27, CD127 and CD11a to determine T cell differentiation state. Cells
were acquired with a modified FACSAria (BD, San Josè, CA) able to detect 20 parameters
(Details on the machine configuration can be found at:
http://www3.niaid.nih.gov/labs/aboutlabs/VRC/flowCytometryCoreLaboratory/). Singlets
were selected on the basis of FSC-A and FSC-H. Monocytes, B cells and dead cells were
excluded by gating on Dump- (CD14-/CD19-) and PI- cells. CD8+ T cells were further
selected for CD3 and CD8 positivity. Naïve (Nv; 1), Central Memory (CM; 2), Effector
Memory (EM; 3) and Terminal Effectors (TE; 4) were defined on the basis of CD45RO and
CCR7 expression. Within these populations, four different subsets (a, b, c, d) can be further
defined by the expression of CD62L and CD27. As an example, subsequent analysis of
CD127 and CD11a expression in the CD62L-,CD27- EM population can identify four more
subsets. The same type of sequential analysis can be applied to all populations in a
hierarchical way, thus leading to the hypothetic identification of 64 subsets. Data were
compensated and analyzed with FlowJo version 9 (Treestar, Ashland, OR, USA). PI:
Propidium Iodide; Pac Blue: Pacific Blue; Qd: Quantum Dot; Alx: Alexa.
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Figure 2. Use of SPICE for the analysis of differentiation and activation of peripheral CD4+ T
cells
Another manner of representing data related to the expression of differentiation and
activation markers is shown in this Figure. The expression of CCR7, CD45RA, CD27, and
HLA-DR has been investigated in living CD3+,CD4+,CD8- T cells from healthy donors
(whose mean CD4+ T cell count in peripheral blood was 45%, with 1,109 cells/μL) and
patients with HIV infection who were out of treatment (mean CD4+ T cell count 21%, 480
cells/μL). Positive and negative expression of antigen [for CD27 relative expression was
further distinguished beween dim (dim) and bright (br)] were combined by Boolean gating
to generate all possible subsets. Each colour in the pie corresponds to a specific combination
of antigens indicated in the bottom part of the figure. CD45RA and CCR7 were used to
define Naïve (CD45RA+CCR7+), CM (CD45RA-CCR7+), EM (CD45RA-CCR7-) and TE
(CD45RA+CCR7). Note the striking difference in the composition of CD4+ T cell
population. The black arrows indicate the way of reading the colours (clockwise in the upper
part, left to right in the lower part).
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Table 1

Summary of the applications, pro and cons of the data analysis approaches discussed in this article

Analysis approach Common Applications Pro Cons

Sequential Gating (7,8) Standard analysis of flow data:
identifies subset of cells at operator
discretion

• Simple and intuitive

• Used when a specific
population has to be
identified

• Allows the
visualization of only
two parameters at a
time

• Gates are dependent
on the subjectivity
of the operator

SPICE(11,13) Simplified visualization of complex
and big data sets. Suitable for the
analysis of the:

• antigen-specific
immune response

• antigen expression
across multiple cellular
subsets

• Rapid and simplified
visualization of the trends
in the data across multiple
experimental samples and
time points

• Quantitative: allows
comparison and statistical
analysis

• Dependent on the
sequential gating
strategy

• Supervised
approach

Probability
Binning (20, 21)

Applied to raw flow cytometric
data: identifies differences in the
distribution of events in a
multidimensional space between a
control and (a) test sample(s)

• Unsupervised

• Multidimensional

• Quantitative (provide
robust statistics)

• Sensitive to
variations in
instrument settings
and sensitivity

Frequency Difference
Gating (22)

Allows multidimensional gating of
the bins that contain the biggest
differences, as identified by the PB
algorithm

• Unsupervised

• Multidimensional

• Sensitive to
variations in
instrument settings
and sensitivity

Cluster Analysis
(CA) (25-27,29-34,40)

Analysis of subpopulations
generated by the combination of
positive and negative expression of
antigens

• The flow cytometric output
set can be visualized as a
whole

• Identifies trends in the data

• Semi-quantitative
(population dynamics is
depicted by a colour-coded
heat map)

• Explorative (but
semi-quantitative)
approach

• Results need to be
biologically tested

Principal Component
Analysis
(PCA) (33,35-37)

Analysis of subpopulations
generated by the combination of
positive and negative expression of
antigens

• 2D representation of multi-
dimensional data sets

• Identifies trends in the data
(subset dynamics)

• Explorative
approach

• Results need to be
biologically tested

Single cell CA/
PCA (38)

Analysis of raw flow cytometric
data to identify:

• clusters of cells with
similar fluorescence
patterns

• trends in the raw data (if
multiple samples are
compared)

• Unsupervised approach

• Without previous
partitioning of the data,
cells are grouped or
distributed on the basis of
their fluorescence pattern

• Explorative
approach

• Results need to be
biologically tested

• Not all cluster
algorithms are
suitable
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