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In this paper we present a data analysis approach applicable to the potential saddle-point fly-by mission ex-

tension of LISA Pathfinder (LPF). At the peak of its sensitivity, LPF will sample the gravitational field in our

Solar System with a precision of several fm/s
2
/
√

Hz at frequencies around 1mHz. Such an accurate accelerom-

eter will allow us to test alternative theories of gravity that predict deviations from Newtonian dynamics in the

non-relativistic limit. As an example, we consider the case of the Tensor-Vector-Scalar theory of gravity and

calculate, within the non-relativistic limit of this theory, the signals that anomalous tidal stresses generate in

LPF. We study the parameter space of these signals and divide it into two subgroups, one related to the mission

parameters and the other to the theory parameters that are determined by the gravity model. We investigate

how the mission parameters affect the signal detectability concluding that these parameters can be determined

with the sufficient precision from the navigation of the spacecraft and fixed during our analysis. Further, we

apply Bayesian parameter estimation and determine the accuracy to which the gravity theory parameters may

be inferred. We evaluate the portion of parameter space that may be eliminated in case of no signal detection

and estimate the detectability of signals as a function of parameter space location. We also perform a first inves-

tigation of non-Gaussian “noise-glitches” that may occur in the data. The analysis we develop is universal and

may be applied to anomalous tidal stress induced signals predicted by any theory of gravity.

I. INTRODUCTION

LISA Pathfinder (LPF) [1] is a technology demonstration

mission for future space-based gravitational-wave observato-

ries, such as the Laser Interferometer Space Antenna (LISA).

LPF is designed to test many of the challenging technologies

needed for space-based gravitational-wave detectors and is

planned to be launched in July 2015. On the basis of the LISA

concept, “The Gravitational Universe” theme (with eLISA

as foreseen implementation) was proposed to the European

Space Agency (ESA) [2] and was selected as a science theme

for the third Large-class mission [3] to be launched in 2034

within the ESA Cosmic Vision science programme. eLISA is

a reduced version of the original LISA design that will nev-

ertheless be able to observe numerous extremely interesting

sources of gravitational waves.

LPF is a compact version of one arm of eLISA, designed

to verify the ability to place test masses in free-fall at the re-

quired sensitivity level. It consists of two equal test masses

that are accommodated within one spacecraft. The instru-

ment measures the relative position of two free-falling test

masses with picometre precision using laser interferometry,

thus being sensitive to the differential gradients of the gravi-

tational potential. LPF will initially be placed in a Lissajous

orbit around L1, the Lagrangian point of dynamically unstable

equilibrium between the Sun and the Earth, where the gravi-

tational forces and the centrifugal force cancel out in the non-

inertial rotating reference frame. The transition from Earth to
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L1 will take three months and will be followed by six months

of experiments performed to verify the on-board technologies

and performance of the satellite [4]. It was noted [5, 6] that the

combination of design solutions for the mission, such as the

sampling frequency and the overall measurement sensitivity,

would allow LPF to probe anomalous gravity stress tensors,

i.e., ones that deviate from the Newtonian prediction, in the

low gravity regime. Anomalous stress tensors are predicted

by various alternative theories of gravity and high precision

measurements of these deviations would allow us to test such

theories. To this end, ESA scientists and members of the sci-

ence and industrial community have been studying a possible

LPF mission extension. Here we consider the data analysis

methods for such a scenario.

In the solar system, the low gravity regime can be investi-

gated at the saddle points (SPs) of two-body systems, where

the gradients of the gravitational potential of two gravitating

bodies are equal in magnitude and opposite in orientation. For

the Sun – Earth system, the SP is located about 1231000 km

away from L1 towards Earth. A SP is not an equilibrium point,

so it will only be possible to perform a “fly-by” with LPF.

When passing by the SP, LPF will be sampling the gravity

stress tensor in a low gravity-gradient region. The measured

variation of the distance between the two test masses can be

compared to the theoretical predictions from Newtonian and

alternative theories of gravity. From these comparisons one

can infer (i) if any deviations from Newtonian dynamics oc-

cur, and (ii) constrain alternative theories of gravity.

The data analysis approach developed in this paper allows

for a rigorous analysis of the test made during the SP fly-by. It

aims at exploring the possible deviations from the Newtonian

dynamics by analysing the gravity stress tensor measured by
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LPF.

We consider the class of alternative theories of gravity that

have MOdified Newtonian Dynamics (MOND) in their non-

relativistic limit. MOND emerged as a possible way to explain

the observations of rotational curves of spiral galaxies [7–12].

The observations show that the rotational curves of the galax-

ies stay constant and do not depend on the distance from the

galactic centre, as expected in Newtonian gravity. MOND

(originally proposed by Milgrom [13]) is a possible heuris-

tic solution to this problem, in contrast to the introduction

of hidden mass (i.e., dark matter). At the core of the theory

is a characteristic acceleration a0 ≈ 10−10m/s2 at which a

transition occurs, from the regime accurately described by the

Newtonian field equation, to one in which the gravitational

dynamics is better described by a non-linear Poisson equa-

tion. To embed MOND into a consistent theory of gravity,

we chose Tensor-Vector-Scalar (TeVeS) as underpinning rel-

ativistic theory, bearing in mind that other choices could be

possible. The key details are presented in Sec. IV B together

with the rationale behind our choice.

Generally speaking, alternative theories of gravity that in-

corporate MOND as an additional scalar field can all be

parametrised in the same way. In addition to the function that

describes the transition from the MONDian to the Newtonian

regime, the contribution of the additional scalar gravity po-

tential introduced by these theories to the overall physical po-

tential will depend on two parameters. The first parameter is

also inherited from initial MOND heuristics and stands for the

characteristic acceleration a0 mentioned earlier. The other pa-

rameter determines the coupling of the additional scalar field

to the overall physical potential. In this respect, the analysis

that is going to be performed here for the TeVeS theory can

be easily extended to the entire class of similar theories.

In order to study the detection of a signal of a particular

shape in additive noise, as in the LPF SP fly-by scenario, one

must first determine the physical quantities that influence the

form of the signal itself. In our case, we parametrise the sig-

nal in terms of two groups of physical quantities. The first

set of parameters is determined by the way the stress tensor

is sensed by the instrument and will depend on the fly-by tra-

jectory and the orientation of the LPF sensitive axis joining

the two free falling test masses. The second set of parame-

ters is prescribed by the theory of gravity that determines the

anomalous stress tensor under consideration and varies from

theory to theory. The parameters that come from the exper-

iment setup, or mission parameters, can be estimated during

the flight independently of the main scientific measurement.

The position of the spacecraft in space as a function of time

will be determined using standard spacecraft tracking tech-

niques, and its orientation will be measured using on-board

star trackers. One of our goals is to determine whether and

how much the accuracy of these measurements will influence

our ability to detect a deviation from Newtonian gravity. With

this objective in mind, we quantify how mission parameters

variations will influence the measured signal and how much

this differs from the true signal, modelled using fixed values

obtained from other observations.

Primarily, we want to measure (or constrain) the second

group of parameters with LPF and, in case of no signal detec-

tion, to draw conclusions about the validity of a specific theory

of gravity under consideration. We chose to use a Bayesian

approach to estimate the parameter values. Further, we apply

Bayes’ theorem to address the problem of model selection,

in which we must choose between two models, one that pre-

dicts the presence of a signal in the data and the other that

assumes the data to be noise only. For the analysis of the the-

ory parameters, the simulated data is constructed by summing

Gaussian noise, with a known amplitude spectral density, and

an anomalous tidal stress signal. We construct simulated sig-

nals by solving the MOND non-linear Poisson equation (see

Eq. (19)) numerically (with the help of the code provided by

our colleagues from Imperial College London [14]) in a neigh-

bourhood of the Sun – Earth SP and by simulating the passage

of LPF along a given satellite trajectory and with a fixed tidal

stress sampling rate. We show the parameter estimation re-

sults for several representative points in the parameter space.

We also show the outcome of the noise-only scenario and de-

termine the area of the parameter space that will be ruled out

in case of no signal detection. Furthermore, we present model

selection results for several points in the parameter space. Fi-

nally, we apply the data analysis framework to realistic data

from an LPF test campaign and discuss both parameter esti-

mation and model selection results. This data set is interesting

as it contains a noise artifact that can be misinterpreted by the

data analysis setup as a signal.

An important remark regarding the example of applying our

data analysis framework to the MOND limit of TeVeS must

be made. Tests for alternative theories of gravity, including

TeVeS, are performed in the strong field regime by measur-

ing the orbital decay of the relativistic pulsar – white dwarf

binary PSR J1738+0333 [15]. The constraints imposed to

the theory in its strong field limit, however, differ from the

ones that can be imposed in the weak field limit [16]. The

constraints that would follow from the method described in

this work would therefore be complementary to, say, the PSR

J1738+0333 ones and largely applicable to theories exhibiting

the same scalar field coupling mechanism as TeVeS.

The paper is structured as follows. In Sec. II we discuss

LPF and explain how it performs measurements. In Sec. III

we identify the mission parameters and discuss how the tra-

jectory of the spacecraft and the projection of the signal on

the LPF sensitive axis will influence the signal. In Sec. IV B,

in order to fix an example against which our data analysis tools

may be tested, we briefly describe the non-relativistic limit of

TeVeS theory of gravity, and we report on the signal model

construction and the space of theory parameters for this sce-

nario. Sec. IV describes the two approaches we develop for

the analysis framework of the mission and theory parameters.

We present our results in Sec. V and gather our conclusions in

Sec. VI, where we also discuss possibilities of future work for

this experiment.
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II. LISA PATHFINDER

The task of measuring the residual differential acceleration

of two free-falling test masses is one of the main objectives of

the LPF mission and, therefore, the conversion from the ob-

served differential displacements to differential accelerations

has been analysed in depth [17, 18].

A. LPF Measurement

LPF measures differential displacements between two free

falling test masses and is thus sensitive to their differential

acceleration [17]. Consider the relative motion of two masses

that follow the geodesics of the gravitational field and let the

vector ξ denote the separation between the two test masses.

The components of this vector may be expressed as ξi = x i
1−

x i
2, where xi

{1,2} are the coordinates of the two test masses.

Working in Cartesian coordinates, the equations of motion for

the test masses are

d2x i
1

dt2
= −∂φ(x1, t)

∂xi
(1)

and

d2x i
2

dt2
= −∂φ(x2, t)

∂xi
. (2)

The relative acceleration is thus given by

d2ξi

dt2
=

d2xi
1

dt2
− d2xi

2

dt2
=

= −ξj
∂2φ

∂xi∂xj
+ o(ξiξi) = −E i

jξ
j + o(ξiξi) ,

(3)

where summation over repeated indices is implied, the gravi-

tational potential is expanded in terms of the separation vector

up to the first order, and Eij = ∂2φ/∂xi∂xj is the gravita-

tional tidal field in Cartesian coordinates [19].

LPF has one sensitive axis that is oriented along the line

joining the two free falling test masses. By projecting Eq. (3)

along this axis, one obtains

d2ξi
dt2

ξ̂i = −ξ̂iξj
∂2φ(~x, t)

∂xi∂xj
, (4)

where ξ̂i = ξi/‖ξ‖ is the i-th component of the unit vec-

tor in the ξ direction. The diagonal components of Eij con-

tribute to the relative acceleration of the test masses, whereas

the remaining components contribute to their tilts. The di-

agonal components of the stress tensors are larger than the

non-diagonal ones, therefore we will consider only the rela-

tive acceleration contribution.

B. Estimation of the differential test mass acceleration

LPF is designed to keep the distance between the two free-

falling masses constant at very low frequencies of 1−30mHz,

by accounting for external forces below the measurement

bandwidth. Both test masses are accommodated within one

spacecraft and free-fall is achieved by controlling the posi-

tion of the spacecraft relative to one test mass. The position

of the second test mass is then controlled relative to the first

outside the LPF sensitive frequency band. The differential

gravitational force can thus be recovered from the measure-

ment of the differential displacement. An anomalous stress

tensor predicted by an alternative theory of gravity may there-

fore be sensed by LPF as the differential force acting on the

test masses. This is performed by taking into account the mod-

els [17, 18] of the LPF subsystems in the equations of motion

for the test masses along the sensitive axis, described by

a = [D−1I−1 +C]o , (5)

where o = (o1, o∆)
T is read interferometrically along the sen-

sitive axis of LPF by the two interferometers on board, o1
being the position of the first test mass relative to the space-

craft, and o∆ being the position of the second test mass rel-

ative to the first. a = (a1, a∆)
T, with a1 = d2x1/dt2 and

a∆ = d2ξ/dt2 being the estimated residual acceleration of

the spacecraft and the estimated residual differential accelera-

tion of the two test masses, respectively. D represents the dy-

namics of the spacecraft, I the interferometer sensing matrix,

and C the controller transfer functions. More specifically, the

dynamics of the spacecraft is

D =











1

(s2 + ω2
1)

0

− (ω2 − ω1)
2

(s2 + ω2
1)(s

2 + ω2
2)

1

(s2 + ω2
2)











, (6)

where s is a Laplace domain complex variable and ω2
{1,2} =

k{1,2}/m. The mass of the test-mass is m and k{1,2} are the

spring constants that model the gravitational and electrostatic

couplings between the test masses and the spacecraft. Given

the coupling factor δ modelling the degree to which the dif-

ferential interferometer picks up motion of the spacecraft, the

interferometer sensing matrix can be written as

I =

[

1 0
δ 1

]

. (7)

Finally, the controller matrix that converts the measured signal

into the commanded forces may be written as

C =

[

Hdf 0
0 Hsus

]

, (8)

where Hdf and Hsus are the gains of the drag-free and sus-

pension control loops along the sensitive axis of LPF, respec-

tively. The drag-free control loop actuates on the spacecraft

via micro-Newton thrusters, while the suspension loop actu-

ates on the second test mass by electrostatic actuation.

C. Noise sources in the LPF measurement

LPF measurements are contaminated by the system noise.

The design of LPF is such that the sensitivity of the instrument
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FIG. 1. LPF sensitivity. Amplitude spectral densities of the require-

ments and the current best noise estimates.

is expected to be limited by the interferometer shot noise at

high frequencies and by force noise on the test masses at low

frequencies. Various tests of the flight hardware, however,

show that the real sensitivity of LPF is expected to exceed the

design requirements [1], as shown in Fig. 1. The noise current

best estimate for LPF is limited by the electrostatic actuation

noise on the second test mass at low frequencies.

III. IDENTIFICATION OF MISSION PARAMETERS

In order to parametrise the signals measured by LPF, we

must begin by defining a method to determine the spacecraft

trajectory uniquely. Let us fix a right-handed Cartesian coor-

dinate system with its origin in the Sun – Earth SP, its x-axis

aligned with the line connecting the Earth and the Sun, and its

z-axis perpendicular to the ecliptic (see Fig. 2). The trajectory

of LPF in the neighbourhood of the SP can be approximated

as a straight line. The direction of the trajectory will be de-

termined by two angles: η, the angle between the z-axis and

the direction of the spacecraft velocity, and ϕ, the angle be-

tween the x-axis and the projection of the velocity vector on

the ecliptic. The unit vector along the trajectory of the space-

craft in the direction of motion is, therefore

(êx, êy, êz) = (sin η cosϕ, sin η sinϕ, cos η) . (9)

The point of the closest approach of the trajectory to the SP,

(ξx, ξy, ξz), determines the impact parameter, i.e., the distance

of the fly-by, which is the length of the perpendicular dropped

from the SP on the trajectory. The position of the spacecraft

may thus be written as

(x, y, z) = (ξx, ξy, ξz) + (êx, êy, êz)r , (10)

where r is the distance from the point of closest approach.

Given the distance to the saddle point, the position of the

closest approach becomes redundant. Therefore, to avoid the

uncertainty the two angles η⊥ and ϕ⊥ that define the position

of the perpendicular to the trajectory are introduced

(ξx, ξy, ξz) =

‖ξ‖(sin η⊥ cosϕ⊥, sin η⊥ sinϕ⊥, cos η⊥) ,
(11)

where ‖ξ‖ is the length of the vector (ξx, ξy, ξz). Similarly

to the (η, ϕ) notation previously introduced, η⊥ denotes the

angle between the perpendicular and the ecliptic, while ϕ⊥

denotes the angle between the x-axis and the projection of

the perpendicular on the ecliptic. Notice that the additional

condition

sin η sin η⊥(cosϕ cosϕ⊥ + sinϕ sinϕ⊥)+

cos η cos η⊥ = 0
(12)

holds for the four angles η, ϕ, η⊥, and ϕ⊥ as a consequence

of the orthogonality between the satellite trajectory and the

line of closest approach. This allows us to further reduce the

parameters that determine the perpendicular to the trajectory

of the satellite in the neighbourhood of the SP down to η⊥ and

sign(sinϕ⊥). The latter determines whether ϕ⊥ ∈ (0, π) or

ϕ⊥ ∈ (π, 2π).
The signal measured by LPF can be simulated by sampling

the stress tensor along the trajectory with velocity v and the

instrument sampling frequency of 10 Hz. The velocity of the

spacecraft and the sampling frequency determine the resolu-

tion at which the gravity stress tensor is being sampled.

As a final step, we must define the projection of the stress

tensor on the sensitive axis of LPF. The projection is deter-

mined by the two angles α and β that the sensitive axis forms

with the x-axis and y-axis of the coordinate system, respec-

tively. However, since LPF is held oriented so that its solar

panel faces the Sun, and since we are considering a neigh-

bourhood of the Sun – Earth SP, and because the sensitive

axis of LPF is parallel to the solar panel, α can be fixed to

α = 90◦. The projection of the stress tensor on the sensi-

tive axis is thus determined only by the angle β, making LPF

sensitive to the linear combination of the two diagonal com-

ponents of the stress tensor:

d2ξi
dt2

ξ̂i = Eyy sin2(β) + Ezz cos2(β) . (13)

All in all, the signal can be fully described in terms of the

following set of mission parameters:

λm
0 = {‖ξ‖, η, ϕ, η⊥, sign(sinϕ⊥), ‖v‖, β}, (14)

which are depicted in Fig. 2.

IV. DATA ANALYSIS

We now introduce the approach to the analysis of the data

that will be acquired with LPF in the vicinity of the Sun –

Earth SP. We describe the model of the data and the derivation

of a matched filter which will be designed to study the mission

parameters. Thereafter, we develop a Bayesian approach to

the analysis of the theory parameters.
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FIG. 2. Schematic of the trajectory parameters. The coordinate system has its origin in the SP (S) and the x-axis is parallel to the line joining

the Sun and the Earth and pointing in the direction of the Sun. The z-axis is perpendicular to the ecliptic and the spacecraft velocity v is

aligned with the trajectory. The direction of the trajectory is defined by the two angles η (the angle between the z-axis and v) and ϕ (the

angle between x-axis and projection of v on the (x, y) plane, shown as the segment OD). The position of the spacecraft along the trajectory is

determined by the variable r, the distance to the point A where the perpendicular dropped on the trajectory intersects with it. The length of the

perpendicular is given by the parameter ‖ξ‖. The position of the perpendicular is given by two angles, η⊥ (the angle between the z-axis and

the perpendicular) and ϕ⊥ (the angle between the x-axis and the projection of the perpendicular on the (x, y) plane, segment BS).

A. Data model

The detector noise is modelled as having a frequency de-

pendent spectrum (see Fig. 1), hence it is more natural to carry

out the analysis in the frequency domain. We write the mea-

sured data as

x̃(f,λ0) = h̃(f,λm
0 ,λ

t
0) + ñ(f) , (15)

where h̃(f,λm
0 ,λ

t
0) and ñ(f) are the Fourier transforms of the

signal and the detector noise, respectively. ~λ0 = (λm
0 ,λ

t
0),

where λm
0 and λt

0 denote the mission and the theory param-

eters that govern the signal: the former are listed in Eq. (14),

whereas the latter will be discussed in the course of the pa-

per. We model the noise as Gaussian, with zero mean and

two-sided noise power spectral density

S(f) ≈ (|ñ(f)|2)∆t/N , (16)

where ∆t is the time domain sampling interval and N =
T/∆t is the number of samples over the measurement time in-

terval [0, T ]. The noise models we use are defined by the the-

oretical Amplitude Spectral Density (ASD) shown in Fig. 1.

In order to test our data analysis framework on artificial

data, we must choose a model to produce signal templates. As

anticipated in the Introduction, in this paper we consider the

stress tensor predictions obtained within the non-relativistic

limit of Bekenstein’s TeVeS theory of gravity. This theory

embeds the heuristic description of the dynamics of galaxies

provided by MOND into a consistent relativistic theory (see

Appendix A).

B. Building signal templates

1. Non-relativistic limit of TeVeS

As we are going to perform the experiment in the Solar Sys-

tem, we must consider the quasi-static, weak potential, and

slow motion limit of TeVeS [20]. We may thus take the metric

to be time independent. Additionally, as we work in a neigh-

bourhood of the Sun – Earth SP, far enough from both bodies,

we may set the metric to be flat. In the non-relativistic limit,

the full physical potential that determines the test particle ac-

celeration within TeVeS, ~a = −∇Φ, is given by the sum of

the Newtonian vector potential ΦN and the scalar potential φ,

i.e.,

Φ = ΦN + φ+O(Φ2
N) . (17)

The Newtonian potential is given by the familiar Poisson

equation

∇
2ΦN = 4πGρ̃ , (18)
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where ρ̃ is the baryonic mass density, whereas the scalar po-

tential φ is determined by the non-linear Poisson equation

∇ ·
[

µ
(

kl2(∇φ)2
)

∇φ
]

= kGρ̃ , (19)

where k is a dimensionless constant and l is a constant length.

The µ-function appearing in the last equation is a free func-

tion that governs the transition from the Newtonian regime to

the MONDian one [see Eq. (A3)]. We can reparametrise its

dimensionless argument y ≡ kl2(∇φ)2 in terms of an accel-

eration parameter

a0 ≡ (3k)1/2

4πl
, (20)

thus obtaining:

y = 3

(

k

4π

)2(
∇φ

a0

)2

, (21)

where the ratio between the MONDian acceleration and the

acceleration parameter is now manifest. The asymptotical

limits of the µ-function must therefore obey the following re-

quirements

{

µ(y) → 1, for y → ∞
µ(y) ≈

√

y/3, for y ≪ 1
, (22)

where the first condition leads to the Newtonian regime. The

second condition ensures that in the low acceleration regime,

i.e. |∇Φ| ≪ a0, the MOND modification originally proposed

by Milgrom [13] generates a different dynamics, recovering,

for example, the one exhibited by rotational curves of galax-

ies.

2. Signal Model and Parameter Space

As shown by Eqs. (19)-(21), within the example selected

for this paper, the signal models will be determined by two

parameters k and a0, and a free function, µ. For the mo-

ment, we fix the µ-function to the form that was proposed

in [20]. In terms of the notation introduced in Eq. (15), there-

fore, λt
0 = {k, a0}. The non-linear elliptical differential equa-

tion which determines the scalar potential φ and hence the

tidal stress tensor, Eq. (19), can be solved numerically [14]

(the code that implements the numerical solution was kindly

provided by Imperial College London). While in [20] the µ-

function definition is

y =
3

4

µ2(µ− 2)2

1− µ
, (23)

the interpolating function µ in our numerical calculations is

fixed via the relation

µ̂
√

1− µ̂4
=

k

4π

|∇φ|
a0

, (24)

where we used the notation µ̂ to explicitly distinguish this

function from the one appearing in Eq. (23). As shown in

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

µ

|∇φ|/a0

µ̂
µ

FIG. 3. Comparison between the interpolating function used for the

numerical calculations and the one originally proposed in [20].

Fig. 3, the two functions are in a good agreement. The ad-

vantage of µ̂ is that it may be written out analytically as

µ̂ =

√

−1 +
√
1 + 4x2

2x
, (25)

where x = y/3. In solving the non-linear Poisson equation

numerically, the condition µ =
√
x for x < 10−5 is used [see

Eq. (22)].

To solve Eq. (19) numerically, other than fixing the µ-

function, we must prescribe boundary conditions. We use the

rescaled Newtonian potential for this purpose. This is read-

ily obtained from Eqs. (18)-(19) by taking into account that

µ → 1 as |∇φ|/ao → ∞ and by applying Gauss’s theorem.

This yields

∇φ =
k

4π
∇ΦN , (26)

so that the gradient of the physical potential Φ reduces to the

usual Newtonian form with a renormalised gravitational con-

stant given by

GN =

(

1 +
k

4π

)

G . (27)

In order to produce signal templates for LPF, as a first step

we compute the spatial derivatives of ∇φ at each grid point.

This provides the nine stress tensor components, namely,

∂2φ/∂xi∂xj , where xi,j = x, y, z, at each point of the lattice.

Once this is done, we must prescribe values for the set of mis-

sion parameters listed in Eq. (14) and sample the stress tensor

along the LPF trajectory [Eq. (10)]. The sampling points are

determined by the the spacings ‖(∆x,∆y,∆z)‖ = ‖v‖∆t,
with time step ∆t = 1/fsamp, fsamp = 10Hz being the LPF

sampling frequency. The stress tensor components are calcu-

lated at each sampling point by performing a trilinear inter-

polation on a 3-dimensional irregular grid. The interpolation
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FIG. 4. Comparison between a template produced with a numer-

ical calculation and the rescaled Newtonian background analyti-

cally estimated using Eq. (B6). In this example, k = 0.03 and

a0 = 10−10 m/s2. The ∂Φ2/∂z2 and ∂Φ2

N/∂z2 components of

the MONDian and Newtonian stress tensors are plotted. This means

that the sensitive axis is parallel to the z-axis of the coordinate system

and, therefore, that β = 0.

procedure starts with a linear interpolation in the x-axis di-

rection. This is followed by a linear interpolation along the

y-axis employing the x-interpolated values. Finally, both the

x- and y-interpolated values are used to perform the linear in-

terpolation in the z direction.

Our goals are (1) to see how the signal templates change

when varying the two theory parameters k and a0, and (2)

to study their detectability in the noise. The value of the di-

mensionless coupling constant k should be of the order 10−2

to be consistent with the cosmological expansion; k = 0.03
is chosen in [20]. The characteristic acceleration is usually

set to a0 ≈ 10−10 m/s2, in accordance with observations

of rotational curves of galaxies [21]. We vary both parame-

ters within reasonable ranges around their “original” values,

so that k ∈ [0; 0.12] and a0 ∈ [0; 4 · 10−10] m/s2. We cover

this two dimensional space of theory parameters with a 9× 9
uniform grid (see Fig. 14) and solve Eq. (19) numerically in

the neighbourhood of the Sun – Earth SP for all choices of

(k, a0).
1 We then fix a set of trajectory parameters and pro-

duce LPF signal templates by projecting the computed stress

tensor as in Eq. (13), at all points in the (k, a0) parameter

space. Additionally, we set ∂φ2/∂xi∂xj = 0 along k = 0

and a0 = 0 m/s2, as proposed in [20]. In order to obtain sig-

nal templates for generic values of k and a0, we use a bicubic

interpolation along both directions. We interpolate the sig-

nal templates from the knows solutions for the stress tensor

on the two-dimensional parameter space. The interpolation is

performed for each sample in the template time series. This is

possible since, for a given set of trajectory parameters, a sam-

ple in the template time series represents the same position in

time and in space for a particular choice of a0 and k.

1 Calculations were performed using [22].

As a final remark, we note that in some instances the choice

of the theory parameters requires to extend the templates out-

side the lattice where the MONDian stress tensor is calcu-

lated. As this extension must be performed in a Newtonian

limit regime, we exploit the scaling relation between the New-

tonian stress tensor (analytically computed, see Appendix B)

and the MONDdian one: these are related by a factor k/4π
[see Eqs. (26)-(27)], so that projecting the rescaled Newto-

nian stress tensor along the LPF sensitive axis allows us to

extend the MONDian template. An example of this is shown

in Fig. 4.

C. Analysis of the mission parameters

In this section we study how the template of the predicted

signal changes when varying the mission parameters. This

knowledge will validate our choice in studying the theory and

the mission parameters independently. This greatly simplifies

the study of theories that predict signals that can be measured

with LPF. To investigate the mission parameter space we fix

the theory parameters to k = 0.03 and a0 = 10−10 m/s2, fol-

lowing [20]. In this Section, for the sake of simplicity, we also

remove references to the theory parameters from the notation.

We begin by introducing the concept of a linear filter. In

terms of our problem, it is a signal template with a certain set

of parameters. Its construction is based on the “true” signal

that has a fixed set of (mission) parameters λm
0 . In order to

quantitatively assess the influence of parameter variations, we

estimate the response of the filter to “data” generated using

mission parameters λm
v that have an offset ∆λm = λm

v − λm
0

within the range of spacecraft navigation errors reported in

Table I. This table provides the accuracy with which each pa-

rameter can be determined from navigation system measure-

ments. We report both the errors on the mission parameters as-

signed before the flight (Uncertainty before the flight) and the

precision attainable during the flight by spacecraft navigation

system measurements (Uncertainty after the flight) [23, 24].

Notice that the low precision on the angles ϕ and η before

the flight follows from the uncertainty on the trajectory which

depends on the departure conditions from the Lissajous orbit

around L1 [23] and they will be known better once the trajec-

tory is chosen.

The correlation between the data, x̃, and a signal template,

q̃, can be calculated as the output of a matched filter via

C(τ,∆λm) =

∫ ∞

−∞

x̃(f,λm
v )q̃

∗(f,λm
0 )e

−2πifτdf. (28)

The signal at the output of the matched filter is the averaged

correlation function, for which 〈x̃(f,λm
v )〉 = 〈h̃(f,λm

v )〉 since

〈ñ(f)〉 = 0. We do not take into account the time delay τ of

the signal arrival. We assume that the expected time of the

signal arrival, which is the time when the spacecraft has its

closest approach to the SP is known. The error on the time

of the signal arrival is embedded in the parameter that defines

the distance from the SP to the point where the measurement

is made. The mean of the correlation function between the
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TABLE I. This table lists the seven mission parameters also shown graphically in Fig. 2 and provides estimates for their uncertainties, the

ranges in which their values are varied to produce Fig. 5, and the values assigned to them during our parameter estimation analyses. These

parameters can be determined from measurements of the spacecraft position which are based on the spacecraft navigation system without

involving the LPF optical readout [23, 24]. The uncertainties on the navigation parameter values before the flight, i.e. before the trajectory

for the transition from L1 to SP is chosen, and those determined during the flight are provided in columns three and four, respectively. The

errors on the angle α that defines the orientation of the solar panel are below 1◦: as explained in Sec. III, we set α = 90◦ and the error may

be neglected within the scope of this paper. Additionally, the time of closest approach to the SP is not included in the parameter list as it is of

the order of several seconds and can be neglected with respect to the signal length. The values reported in the last column are those used for

the analysis of the theory parameters. These numbers are based on [25] and [23]. While, recent investigations show that it may be possible to

realise a trajectory directly through the SP, we have conservatively set ‖ξ‖ = 20 km.

Parameter Description Uncertainty before flight Uncertainty after flight Range Value

‖ξ‖ Fly-by distance 5 km 5 km [0; 300] km 20 km
ϕ Trajectory polar angle 30◦ ≪ 1◦ [0; 360]◦ 30◦

η Trajectory azimuthal angle 30◦ ≪ 1◦ [0; 180]◦ 70◦

η⊥ Polar angle of the position of closest approach uniform ‖ξ‖ -dependent [0; 180]◦ 90◦

sign(sinϕ⊥) Hemisphere of the position of closest approach {−1, 1} – {−1, 1} +1
‖v‖ Spacecraft velocity 0.1 km/s 1 cm/s [1; 2] km/s 1.5 km/s
β Orientation of the LPF sensitive axis 30′ 30′ [0; 360]◦ 0◦

data on the output of the instrument and the linear filter q̃ [26]

thus reads

Ĉ(∆λm) =

∫ ∞

−∞

h̃(f,λm
v )q̃

∗(f,λm
0 )df. (29)

By setting the linear filter to the “true” template weighted

by the noise power spectral density, i.e.,

q̃∗(f,λm
0 ) =

h̃∗(f,λm
0 )

S(f)
, (30)

the filter becomes optimal [27]. An optimal matched filter is

one that maximises the signal-to-noise ratio (SNR)

ρ2 = Ĉ(∆λm = 0) =

∫ ∞

−∞

h̃(f,λm
0 )h̃

∗(f,λm
0 )

S(f)
df . (31)

In the case of optimal filtering, one searches for the filter

that best fits the data. This provides a way to estimate the

“true” signal template. In our study, fixing the “true” signal

template a priori and building a filter upon it allows us to de-

termine the dependency of the magnitude of the matched filter

response to a signal with its parameters offset by ∆λm. This

is the measure generally used to quantify the resolution with

which we can distinguish one template from another. With

this in mind, we rewrite the filter in discrete form

c(∆λm) = c(λm
0 ,λ

m
v ) =

N
∑

j=1

h̃(fj ,λ
m
v )h̃

∗(fj ,λ
m
0 )

S(fj)
∆fj ,

(32)

where frequency indices cover the instrument frequency range

and ∆fj = fj+1−fj , and we consider the ambiguity function

built upon the linear filter as follows:

ĉ(λm
0 ,λ

m
v ) =

c(λm
0 ,λ

m
v )

√

c(λm
0 ,λ

m
0 )c(λ

m
v ,λ

m
v )

. (33)

The ambiguity function is normalised to yield unity when the

template matches the input signal and less than unity other-

wise.

1. SNR as a function of mission parameters

Estimating the SNR as a function of the mission parame-

ters provides insight into the optimal values these should take

and allows us to identify any peculiar behaviour of the tem-

plates over the parameter space. In turn, if no peculiarities

emerge, we assume that this allows us to investigate the be-

haviour of the signal in the neighbourhood of a single, repre-

sentative point of our choice in the parameter space and to ex-

trapolate results over the whole range of parameter values. At

this location of our choice, we investigate the behaviour of the

ambiguity function, as this allows us to assess how much re-

duction in SNR would be caused by deviations from the nom-

inal mission parameter values.

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60

n

SNR

Current best estimate
Requirements

FIG. 5. Fraction of trajectories n with SNR value specified on the

horizontal axis. The SNR was calculated using 1000 trajectories with

randomly varied parameters for both the current best noise estimate

and the requirements noise. The parameter values were uniformly

sampled over the ranges given in the fifth column of Table I. The

curves are the Gaussian fits to the discrete distributions that were

obtained.
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We now compute the expected SNR for the two noise mod-

els – current best noise estimate and requirements noise –

discussed in Sec. II C. The SNR values are calculated using

Eq. (31) for 1000 different trajectories each with random pa-

rameter values uniformly sampled within the ranges given in

the fifth column of Table I. As shown in Fig. 5, the Gaussian

fits to the histograms of the SNR values peak at ρ ≃ 23 and

ρ ≃ 5 for the current best noise estimate and the requirements

estimate, respectively.

When varying the mission parameters sequentially within

the predefined ranges, the remaining parameters are fixed to

the values given in the last column of Table I.

The first parameter we vary is the sensitive axis orientation

angle β. As seen in Fig. 6, the SNR is not very sensitive to

the choice of β and that the optimal value for β for both noise

realisations is β = 0◦ or β = 180◦. We will thus fix β = 0◦

for the analysis and for the experiment planning.

The SNR exhibits a smooth behaviour also when the fly-

by distance and the spacecraft velocity are varied, as shown in

Figs. 7 and 8, respectively. We notice that, as is to be expected,

the closer LPF flies to the SP, the higher the SNR is, because

tidal stress deviations are stronger, whereas the specific value

of the spacecraft velocity is not very crucial in the interval

reported in Table I.

Similarly, the SNR is smooth in the ϕ-η subspace, as shown

in Fig. 9. These are the two angles that define the orientation

of the spacecraft trajectory. While the SNR is flat in ϕ, it

is maximum for η = {90◦, 270◦}. In these specific cases

we see that more SNR is accumulated if LPF flies within the

Ecliptic plane and that the direction of flight within this plane

has minimal influence.

As the range of values covered by η⊥ depends on the com-

bination of other parameter values via Eq. (12), η⊥ cannot

span the whole interval [0, 180]◦ for a specific choice of η and

ϕ. Therefore, we do not present SNR estimates as a function

41

42

S
N
R

Current best estimate

9.8

10

10.2

0 90 180

β [◦]

Requirements

FIG. 6. SNR as a function of the orientation angle of the sensitive

axis β for the two noise realizations. The remaining mission param-

eters are fixed according to the set of values given in the last column

of Table I.
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FIG. 7. SNR as a function of the distance from the SP ‖ξ‖ for the

two noise realizations. The remaining parameters are fixed according

to the set of values given in the last column of Table I.
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FIG. 8. SNR as a function of the spacecraft velocity v for the two

noise realizations. The remaining parameters are fixed according to

the set of values given in the last column of Table I. We vary the

values of velocity within the larger range than given in the Table I,

i.e. from 0 to 4 km/s, to observe the maximum of SNR.

of η⊥. We note, however, that in the cases we considered the

dependence of the SNR on η⊥ is weak.

2. SNR loss due to mismatched mission parameters

Having established the dependence of the SNR on the mis-

sion parameter space, we may now study the loss of SNR as a

function of parameter mismatch within the known navigation

uncertainties on the mission parameters. As discussed previ-

ously, we fix β = 0◦. At the same time, even though η has

its highest SNR estimate for η = 90◦, we will choose it to

be η = 70◦ in order to avoid performing our analyses in the

best case scenario. Contrary to the alignment of the LPF sen-

sitive axis, the value of η depends on the manoeuvres that are

necessary for LPF to leave the Lissajous orbit around the first

Lagrangian point. Further, the option of multiple fly-bys [23]
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FIG. 9. SNR as a function of the angles ϕ and η that determine

the direction of the trajectory. The SNR estimates are plotted for the

current best noise estimate. The behaviour for the requirements noise

is similar, but with magnitudes in the range [8; 12]. The remaining

parameters are fixed to the set of values given in the last column of

Table I.
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FIG. 10. Ambiguity function for the fly-by distance ‖ξ‖ for the two

noise realizations. The true value of the parameter is ‖ξ‖0 = 20 km.

The remaining parameters are fixed according to the set of values

given in the last column of Table I.

implies different estimates for the angle values. We therefore

keep this parameter away from its optimal value during our

analyses and avoid choosing a trajectory within the Ecliptic

plane.

Hereafter, we proceed by taking one dimensional slices

through the parameter space, fixing six parameters out of

seven to the values listed in the last column of Table I. The

parameters are varied only around their true values, i.e. the

values listed in Table I, that we treat as the parameters of the

signal buried in the data. All parameters are varied within

intervals that include the spacecraft navigation errors listed

in Table I. Similarly to what we did for SNRs, we estimate

the ambiguity function [Eq. (33)] between templates with var-

ied parameter values and the template with all parameters set

to the values listed in Table I. When the ambiguity function

0.992
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1

1.0 1.2 1.4 1.6 1.8 2.0

ĉ
(v

0
,
v
)

v [km/s]

Current best estimate
Requirements

FIG. 11. Ambiguity function for the spacecraft velocity v for the two

noise realizations. The true value of the parameter is v0 = 1.5 km/s.
The remaining parameters are fixed according to the set of values

given in the last column of Table I.

25 30 35
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65
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η
[◦
]
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0.9996

0.9998

1

FIG. 12. Two-dimensional ambiguity function for the angles ϕ and η
that determine the direction of the spacecraft trajectory. The results

are obtained with the current best noise estimate model. The true

values of the parameters are set to ϕ0 = 30◦ and η0 = 70◦ and the

remaining parameters are fixed according to the set of values given

in the last column of Table I. Both angles are varied with steps of 1◦.

The red contour indicates the location of ĉ = 0.99998.

varies very little, we can assume the parameters are essen-

tially exactly known and can be fixed during the analysis of

the theory parameters.

Our results for the fly-by distance ‖ξ‖ are shown in Fig. 10.

The true values of the mission parameters follow Table I,

so that ‖ξ‖0 = 20 km. Templates were evaluated between

‖ξ‖ = 10 km and ‖ξ‖ = 30 km every 1 km and the ambiguity

function ĉ(‖ξ‖0, ‖ξ‖) was calculated correspondingly, using

both LPF noise curves. We find that if the fly-by distance is

mismatched by less then 5 km, i.e., the navigation error be-

fore the flight reported in Table I, the ambiguity function is

greater than 0.999. We conclude that we can fix this param-

eter to 20 km for future analyses and that it does not need to

be estimated from the LPF measurement, but can instead be
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FIG. 13. Ambiguity function for the angle η⊥ which defines the

position of the perpendicular to the trajectory for the two noise real-

izations. The true value of the parameter is η⊥ = 90◦ The remaining

parameters are fixed according to the set of values given in the last

column of Table I.

determined via the spacecraft navigation system.

The same conclusion holds for the spacecraft velocity v.

We set v0 = 1.5 km/s to be the true value of the parameter

and calculate the ambiguity function ĉ(v0, v) varying v be-

tween 1.0 km/s and 2 km/s and sampling it every 0.1 km/s.
The results are shown in Fig. 11 for both LPF noise realiza-

tions. As is evident, templates are more sensitive to veloc-

ity uncertainties and variations. However, ĉ(v0, v) > 0.998
for velocity variations within 0.1 km/s, which is the value re-

ported in Table I for the uncertainty before the flight. Further,

v may be determined during the flight with an uncertainty of

1 cm/s, so we assume this parameter to be fixed at 1.5 km/s
during future analyses.

Next, we vary the angles ϕ and η that determine the ori-

entation of the spacecraft trajectory. Our results for the am-

biguity function are presented in Fig. 12. The true parameter

values are ϕ0 = 30◦ and η0 = 70◦. We consider an inter-

val of 10◦ around both values and sample each interval every

1◦. The contours shown in the figure are for the current best

noise estimate. The elongation relative to the ecliptic changes

the template more then the angle the defines the inclination to

the line connecting the Earth and the Sun. Despite the big un-

certainty in these parameters before the experiment (see Table

I), the errors on the determination of these parameters during

flight are very small (≪ 1◦), so that they, too, may be assumed

to be fixed to their true values for future analyses. The result

for the requirements noise is very similar to the result for the

current best noise estimate, therefore we will not display them

here.

Finally we consider the position of the perpendicular to

the trajectory determined by sign(sinϕ⊥) and η⊥. For

sign(sinϕ⊥) there will be no uncertainty after the flight and

for the η⊥ the results are presented in Fig. 13. They show

that the signal templates are not sensitive to variations of this

angle.

To summarise, we picked a specific location in the mission

and theory parameter space and investigated the behaviour of

the ambiguity function. Within the predicted uncertainties

on the mission parameters reported in Table I, the ambigu-

ity function drops minimally compared to the case of exactly

matching templates. By assuming that this is the case for all

other possible parameters space locations, we make the ac-

curate approximation that the mission parameters can be as-

sumed to be “known” without any loss of generality. They are

no longer search parameters, which leaves only the theory pa-

rameters as unknowns and as the sole target of the search. The

analysis of the theory parameters will therefore not require the

mission parameters to be measured, nor will it need them to

be considered during parameter estimation and model selec-

tion. In other words, we can factor the mission parameters out

of the theory parameter analyses.

Additionally, we were able to determine the optimal values

of β – the LPF sensitive axis orientation – and η – the angle

between the spacecraft trajectory and the perpendicular to the

Ecliptic plane. In the latter case, we showed that the optical

trajectory lies in the plane of the Ecliptic.

D. Analysis of the theory parameters

We now discuss the data analysis framework to study the

signal predicted by various alternative theories of gravity.

We apply this framework to the case of the TeVeS theory.

More specifically, having fixed an interpolating function µ,

we study the (k, a0) parameter space, where k is a dimension-

less coupling parameter and a0 is a characteristic acceleration

scale (see Sec. IV B 2). We introduce a parameter estimation

method based on a Bayesian approach. With this method, in-

formation regarding the parameters of the theory can be ex-

tracted from the data. Further, we exploit Bayes’ theorem to

perform model selection, choosing between the hypothesis of

having a signal in the noise and the null hypothesis according

to which the data consists of noise only.

We discuss how parameter estimation results can be as-

sessed in the case of absence of a signal and how this allows

us to rule out portions of the parameter space. Finally, we

show how model selection can be applied to realistic data that

contains noise artifacts. The results of this study will show

whether a glitch in the data can be misinterpreted as a signal

and where this will be localised in the parameter space.

1. Bayesian parameter estimation

Following Bayes’ theorem, the posterior distribution

p(k, a0|{x̃}, I) of k and a0 given the data {x̃} and the rele-

vant background information I reads

p(k, a0|{x̃}, I) =
p({x̃}|k, a0, I)p(k, a0|I)

p({x̃}|I) , (34)

where p(k, a0|I) is the prior distribution on the parameters,

p({x̃}|k, a0, I) is the likelihood, and p({x̃}|I) is the Bayesian

evidence, which is the marginal probability density of the data
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and normalises the posterior. The data model is the sum of

a deterministic signal and Gaussian noise and is computed in

the frequency domain, as described in Sec. IV A. We therefore

write the likelihood of the Fourier transformed data {x̃} as

p({x̃}|k, a0, I) =
N
∏

j=1

1

σ2
j 2π

exp






−

∣

∣

∣x̃j − h̃j(k, a0)
∣

∣

∣

2

2σ2
j






.

(35)

In this expression, the variance of the noise σ2
j is calculated

from the Power Spectral Density (PSD) normalised by the

width of the frequency bin σ2
j = S(fj)/∆f [see Eq. (16)].

The noise model is based on the theoretical estimates of the

noise for LPF (see Fig. 1). In writing the expression for the

likelihood, we assumed that each frequency bin is statistically

independent, so that the likelihood can be written as the prod-

uct of bivariate Gaussian probability density functions.

As a result of the parameter estimation, we shall obtain a

joint posterior distribution for parameters k and a0. How-

ever, we are also interested in estimating each parameter sepa-

rately after performing the experiment. To obtain the posterior

distribution of each parameter separately, we marginalise the

joint distribution for the two parameters over the other param-

eter, i.e.

p(k|{x̃}, I) =
∫ ∞

−∞

p(k, a0|{x̃}, I)da0 (36a)

p(a0|{x̃}, I) =
∫ ∞

−∞

p(k, a0|{x̃}, I)dk . (36b)

These marginal distributions represent our belief in a specific

value of one of the two parameters and yield the uncertainty

on the parameter estimate following the experiment.

2. Prior space

As a first step to set priors in the (k, a0) parameter space,

we restrict it using the following considerations. We assume

that, within some precision, the gradient of the gravitational

potential is Newtonian in the non-relativistic limit at a dis-

tance from the SP equal to the distance from the SP to the

Earth. The gradient of the non-Newtonian potential at this

distance depends on the parameters k and a0 and allows us,

therefore, to impose restrictions on the combination of these

parameters. Eq. (19), which governs the non-Newtonian po-

tential φ, depends on the µ-function, which goes to unity in

the Newtonian limit, when its argument becomes sufficiently

large. Taking the definition2 of the interpolating function µ
given in Eq. (23) and expanding it in the |∇Φ|/a0 ≫ 1 limit,

2 We remark that the interpolating function used in the numerical calcula-

tions defined in Eq. (24) and the one expanded here correspond in the limit

we consider, as shown in Fig. 3.
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FIG. 14. The (k, a0) parameter space. The shaded area represents

the part of the parameter space ruled out by Eq. (40). Crosses indicate

points where Eq. (19) was solved numerically. Signal templates are

built upon these solutions and are used, in turn, to determine signal

templates at a generic point (k, a0) via bicubic interpolation.

when µ → 1, we obtain

y =
3

4(1− µ)
+O(1− µ) . (37)

Eqs. (17) and (26) can then be used to express the argument of

the µ-function as

y ≡ kl2|∇φ|2 =
k3l2

16π2
|∇Φ|2, (38)

where higher order corrections in (k/4π) are neglected.

Combing the last two results and expressing l in terms of a0
as in Eq. (20) yield

µ ≈ 1− 64π4

k4
a20

|∇Φ|2 +O
(

y−2
)

. (39)

If we fix an admissible error ε2 on deviations of µ from unity,

we readily obtain the constraint

a0
|∇Φ| <

k2

8π2
ε . (40)

Imposing this restriction allows one to exclude certain combi-

nations of k and a0.

In our analysis, we set ε = 10−5, and the resulting, re-

stricted parameter space is shown in Fig. 14. This is a con-

servative value compared to the latest boundaries imposed on

the precision of the additional acceleration allowed in the So-

lar System [28]. We do not take into account such stringent

requirements, as we want to develop and illustrate a data anal-

ysis scheme that does not automatically depend on other as-

tronomical restrictions of the parameter space.

We consider a uniform prior parameter distribution (known

as flat or constant prior) for the theory parameters. We thus

set the prior for a0 and k to be flat in the admissible portion of

the parameter space P , the area of which is given by

A =

∫ kmin

0

a′0(k)dk + (kmax − kmin)(amax
0 − amin

0 ), (41)
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where kmin is the value for which a′0(k
min) = amax

0 = 4 ·
10−10m/s2 and a′0(k) is a solution of Eq. (40). Moreover the

values of the modified stress tensor are set at the lower bound-

ary of the parameter space amin
0 = 0 to ∂2φ/∂xi∂xj = 0. It

reflects the General Relativity (GR) limit of TeVeS that can

be obtained when l → ∞ [20]. Eq. (20) shows that this corre-

sponds to a0 → 0. We therefore have

p(k, a0|I) =
{

1/A (k, a0) ∈ P
0, otherwise.

(42)

Flat priors depend on no underlying knowledge on the pa-

rameters, except the assumptions made on their span. As dis-

cussed in Sec. IV B 2, the ranges for the theory parameters

is chosen here on the basis of astrophysical observations [21]

and in order to keep the theory consistent [20].

As we consider a constant prior, with the exception of the

prior boundary constraints, the shape of the posterior param-

eter distributions will be dictated only by the likelihood func-

tion. We note that our Bayesian analysis scheme allows for

more physically realistic priors which opens a way for the fu-

ture analyses of different theoretical models.

E. Model selection

The framework for model selection that we develop here is

based on the Bayesian approach to model selection and can

be applied to a variety of hypotheses. For example, we can

test a model that assumes the data is the sum of a signal and

Gaussian noise, a model that assumes that the data is Gaus-

sian noise only, a model that assumes the data is non-Gaussian

noise, a model that assumes Gaussian noise with glitches, and

so forth.

Any number of models Mi can be defined and Bayes’ the-

orem [see Eq. (34)] can be directly applied as follows:

p(Mi|{x̃}, I) =
p({x̃}|Mi, I)p(Mi|I)

p({x̃}|I) . (43)

This expression tells us how to determine the posterior proba-

bility p(Mi|{x̃}, I), which is the probability of the i-th model

Mi being correct, given the data {x̃} and the background in-

formation I . The denominator is the Bayesian evidence, a

normalisation term that reads

p({x̃}|I) =
∑

i

p({x̃}|Mi, I)p(Mi|I) , (44)

where p({x̃}|Mi, I) is the evidence for the model Mi and

p(Mi|I) is the model prior.

To properly normalise the model posterior distribution,

however, one must know all possible models in order to com-

pute Eq. (44) and hence Eq. (43). This may be avoided by con-

sidering the ratio between model posteriors, usually referred

to as posterior odds ratio. For two models M1 and M2, this

reads

p(M1|{x̃}, I)
p(M2|{x̃}, I)

=
p({x̃}|M1, I)

p({x̃}|M2, I)

p(M1|I)
p(M2|I)

. (45)

The ratio between the evidences for the two models appear-

ing on the right hand side of the equation is called the Bayes

factor. The second fraction on the same side of the equation,

p(M1|I)/p(M2|I), is the prior model odds. The posterior

odds ratio represents our confidence in one model against the

other, based on the data and the background information I .

Here p({x̃}|M, I) is the likelihood marginalised over its en-

tire parameter space for each model.

As our goal is to quantify our confidence in signal detection,

we introduce two ways to model the measured data. The first

model, labelled S , describes the data as the sum of a signal

and of Gaussian noise, i.e.,

x̃j = h̃j + ñj . (46)

The second model, with label N , describes the data as Gaus-

sian noise only, that is,

x̃j = ñj . (47)

The ratio between the S and N model posteriors is thus

p(S|{x̃}, I)
p(N|{x̃}, I) =

p({x̃}|S, I)
p({x̃}|N , I)

p(S|I)
p(N|I) . (48)

The Bayesian evidence for a model is calculated by inte-

grating the joint probability density for the data and param-

eters over the parameter space of the model. In our MOND

example, the evidence for the S model reads

p({x̃}|S, I) =
∫∫

P

p({x̃}, k, a0|S, I)dk da0

=

∫∫

P

p({x̃}|k, a0,S, I)p(k, a0|S, I) dk da0 .

(49)

This is a weighted integral of the likelihood, p({x̃}|λt
0,S, I)

[see Eq. (49)], over the space of unknown parameters, where

the weights are set by the prior distributions of the theory pa-

rameters, k and a0 in this case. The Bayesian evidence thus

depends on the volume of the parameter space and on the pri-

ors. If the dimensionality of the parameter space is large, or if

the likelihood and/or the prior are strongly localised, calculat-

ing this integral on a uniform grid in the parameter space can

become computationally costly. A more practical solution to

the problem is to randomly sample the parameter space. To

compute the integral in Eq. (49), we use the Nested Sampling

algorithm, which was specifically designed to calculate evi-

dence values [29].

For the N model, there are no theory parameters to

marginalise over, i.e. the theory parameter space is dimen-

sionless (λt
0 = {∅}). The evidence is thus simply the noise

likelihood

p({x̃}|N , I) =

N
∏

j=1

1

σ2
j 2π

exp

[

−|x̃j |2
2σ2

j

]

. (50)

The difference between the likelihoods for models S and

N , Eqs. (49) and (50), respectively, is that in the latter the

Gaussian noise is expressed as ñj = x̃j , while in the former
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ñj = x̃j−h̃j . The likelihood for model N can thus be viewed

as the likelihood for model S with the signal amplitude set to

zero. For the Bayes factor in Eq. (48), the likelihood normal-

isation terms in cancel out, which simplifies the calculations,

leaving only the exponentials of the likelihoods and the nor-

malisation due to the model priors. The ratio of the model pri-

ors represents our confidence in one model against the other,

based on the background information I . In the absence of

preference for either model, this ratio is set to unity, while if

background information is available, it can be included in the

prior odds ratio accordingly. We will not prioritise a model

over the other, so that the posterior odds ratio is simply equal

to the Bayes factor.

The posterior odds ratio discussed in this section can be

used to decide whether there was a signal buried in the data

gathered during the SP fly-by and to provide a quantitative

measure of our confidence in a signal detection.

V. RESULTS

We test our data analysis method on artificially simulated

data to assess the performance of the framework and inspect

the various possible outcomes of the experiment. In order to

justify the experiment feasibility, it is important to establish

what conclusions can be made on the basis of data acquired

during the LPF flight. More specifically, we check the imple-

mentation of the parameter estimation and model selection,

and determine how well the parameters values may be inferred

and what choices about the model that best describes the data

may be made.

The artificial data is generated following the model defined

in Eq. (15) and consists of the signal with additive Gaussian

noise characterised by the known ASD of the instrument noise

(see Fig. 1). The real and imaginary parts of the noise ñ(f) are

treated as statistically independent and drawn from a Gaussian

distribution with the given ASD σ(f) providing

p(ñ(f)) = p (ℜ [ñ(f)]) p (ℑ [ñ(f)])

=
1

2πσ2(f)
exp

(

−ℜ [ñ(f)]
2
+ ℑ [ñ(f)]

2

2σ2(f)

)

.
(51)

For the signal model h̃(λm
0 ,λ

t
0) we chose a particular theo-

retical prediction for the deviations of the gravity stress tensor

from the Newtonian case, as discussed in Sec. IV B. We test

our data analysis setup on TeVeS, but we wish to emphasise

that this analysis framework is general and can be used for any

signal predictions.

As shown in Sec. IV C, the mission parameters can be fixed

and do not cause the signal to vary significantly once they are

defined and measured. Throughout the analysis of the theory

parameters, we fix a specific set of mission parameters values

in accordance with Table I. We may thus write

h̃(fj ,λ
m
0 ,λ

t
0) = h̃(fj ,λ

m
0 , k, a0) = h̃(fj , k, a0) . (52)

The theory parameter space (k, a0) was discussed in

Sec. IV B 2 and SNRs are calculated following Eq. (31). Fig-

ure 15 shows the SNRs for the chosen LPF trajectory as a
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FIG. 15. SNR estimates for the current best noise estimate (right

panel) and the requirements noise (left panel). The SNRs are cal-

culated at the points in parameter space where the TeVeS numerical

calculations were performed. The red triangles correspond to the val-

ues of k and a0 for which the signal templates were injected into the

data (see Table II).

TABLE II. Values of k and a0 for which the signal template was

injected in the data to probe parameter estimation.

Number k a0 [10−10
m/s

2
]

1 0.030 1.00
2 0.080 3.50
3 0.010 1.10
4 0.017 3.10
5 0.100 0.20
6 0.100 0.68
7 0 0

function of (k, a0). For large values of both k and a0 the

SNR reaches values of ∼ 100 for the current best estimate

and ∼ 20 for the requirements noise. This implies that the

posterior distributions for the parameter estimates will be rea-

sonably narrow in those high SNR regions. Conversely, we

expect signals residing in low SNR areas to have correspond-

ingly broader posterior probabilities.

Given the SNR estimates shown in Fig. 15, we choose a

number of representative points in the parameter space with

high, intermediate, and low SNR values, and estimate their

posterior probabilities. These points are listed in Table II. We

start with point 1, for which k and a0 take their “standard”

values [14]. This point belongs to the high SNR region. To

test the area with the loudest SNRs, we probe point 2. A third

interesting region, where the performance of our interpolation

must be checked, is the area near the boundary that was im-

posed on the prior parameter space [Eq. (40)]. We chose two

points here: point 3 and point 4 for low and high SNRs, re-

spectively. Further, we consider two points with low SNRs:

point 5 and point 6. They are chosen relatively close to each

other in order to assess the area where the transition from the

detectable to non-detectable signal might occur. Finally, we

consider point 7, where the Newtonian limit of the theory lies
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and we expect to find no signal in the data. For each chosen

point on the parameter space we perform 200 simulations with

different noise realisations.

A. Parameter estimation

The experiment can give us insight into how well the pa-

rameters of the theory can be recovered and constrained from

the data. This can be achieved by calculating the posterior

probability distribution for the parameters. We have an ini-

tial prior assumption for the parameter values, which in our

case is a simple uniform distribution over the predefined pa-

rameter space discussed in Sec. IV B 2. We compute ev-

idence values using a random sampling algorithm (Nested

Sampling [30, 31]) as a mean to overcome potential issues

due to the sampling of the theory parameter space, or to its

high dimensionality. While the theory parameter space is two-

dimensional in our example, we must be ready to consider the-

ories with a higher number of parameters. The algorithm and

its specific implementation we used, MultiNest [32], are

designed to efficiently sample a parameter space and to out-

put the samples from the joint posterior parameter distribution

and the Bayesian evidence.

To quantitatively summarise the information on the poste-

rior distributions of the parameters, it is natural to use con-

fidence intervals. These indicate the parameter range within

which the area enclosed under the posterior has a certain prob-

ability. This provides an estimate on how confident we are

that the value of a parameter falls in that range. As is custom-

ary, use the confidence interval values 68%, 95%, and 99%,

which correspond to 1σ, 2σ, and 3σ deviations of a parameter

from its mean value in the special case of a one dimensional

Gaussian distribution. Accordingly, we define the confidence

contours

P ((k, a0) ⊂ S, I) =

∫∫

S

p(k, a0|{x}, I) dk da0

= (68%, 95%, 99%),

(53)

where the space S corresponds to the minimal volume un-

derneath the posterior probability that integrates to predefined

probability. The resulting contours also represent lines of con-

stant probability density. Figure 16 shows the contour plots of

the joint posterior distributions for the parameters k and a0
for simulated signals located at selected parameter space po-

sitions.

The resulting estimates of the posterior probabilities are

shown in Figs. 16 and 17 for the current best estimate noise

and for the requirements noise, respectively. The results are

presented for a single noise realisation. Estimates for the stan-

dard deviation of the posterior distributions of k and a0 aver-

aged over 200 noise realisations for the current best noise esti-

mate and requirements noise are given in Table III. For signals

with high SNRs (see Fig. 15) the posterior likelihoods are nar-

row and exhibit low correlation between the two parameters.

This means that in the case of signal detection it would be

possible to estimate them with relatively small uncertainties.

For lower SNRs, however, the error on k is much larger then

TABLE III. Average values of the standard deviations ∆k and ∆a0

of the one dimensional posteriors of the parameters. The values are

given for the 6 points in the (k, a0) parameter space where the true

signal injections were made. The averages are determined from 200
different noise realisations (using the current best estimate noise) and

posterior estimates truncated by our priors are artificially reduced.

Current best estimate Requirements noise

k a0 ∆k ∆a0 ∆k ∆a0

[10−10
m/s

2
] [10−10

m/s
2
] [10−10

m/s
2
]

0.030 1.00 0.00203 0.096 0.0121 0.687

0.080 3.50 0.00306 0.117 0.0125 0.352

0.010 1.10 0.00087 0.225 0.0295 0.515

0.017 3.10 0.00066 0.422 0.0066 0.907

0.100 0.20 0.03053 0.084 0.0345 0.173

0.100 0.68 0.01838 0.137 0.0295 0.268

one on a0. In some cases the error on k is limited only by the

range of the parameter prior. This scenario will be considered

in more detail in Sec. V B, which is dedicated to the case of

noise-only simulated data.

Using Eqs. (36a)-(36b) we determine the marginal distri-

butions for the parameters k and a0 and their expected val-

ues. These marginalised posterior distributions allow us to

identify three types of results within our 6 signal simulations.

As shown in Figs. 18 and 19, for the first type of result the

joint posterior distribution is narrow and well localised, es-

pecially for the current best estimate noise. In this scenario

the marginal distributions of both k and a0 can be estimated

relatively well. Results for the second case can be found in

Figs. 20 and 21. This time the posterior is near the boundary

of the prior established in Sec. IV B 2. The uncertainty on a0
is much broader than the one on k. Finally, Figs. 22 and 23

show the third kind of result: the marginalised distribution for

k is very broad and is determined by the range that was im-

posed on it as a prior. In this low SNR regime, it will be hard

to make estimates for k.

B. The no signal injection case

No deviations from Newtonian gravity potential have been

observed so far in the Solar System. Hence, this is a partic-

ularly important case for our analysis and corresponds to a

dataset containing no signal. We consider this case as a likely

outcome of the experiment and wish to assess the impact that

a measurement of data with no signal would have on the the-

ory parameter space, i.e. which observation-based restrictions

can be placed on the (k, a0) space.

In Figs. 22 and 23, we already saw the shape of the poste-

rior distribution in the case of low SNRs. We would expect to

have somewhat similar results for the case of a noise-only data

model, i.e. when we set h̃(fj ,λ
m
0 ,λ

t
0) = 0 in Eq. (15). On the

basis of the theory proposed in [20], we place the Newtonian

limit of the theory at a0 = 0, thus setting the gravity stress

tensor to be equal to the Newtonian stress tensor for all tem-

plates on the k-axis.
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FIG. 16. Joint posterior probability distribution for the parameters k and a0 using the current best estimate noise model. Contours represent

lines of constant probability density defining regions that enclose 68%, 95%, and 99% of the probability. The panels represent 6 signal

injections at the first 6 points in the parameter space listed in Table III.
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FIG. 17. Same as Fig. 16 but for the requirements noise model.

We perform 200 simulations, each with a different noise

realisation, for both the current best estimate and require-

ments noise models. We determine 68%, 95%, and 99% con-

fidence interval for both of them. To visualise the restriction

on the parameter space that follows, we chose a representa-

tive noise realisation. The results in Figs. 24 and 25 show

uncertainty on the determination of the parameter k, mean-

ing that a null measurement would not help us constrain k at

all, whereas a0 would be tightly bounded. The average error

on the marginalised posterior distribution of a0 for the current
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best noise estimate is ∆a0 = 0.055 · 10−10 m/s2, while for

the requirements noise it is ∆a0 = 0.154 · 10−10 m/s2

C. Model Selection

We now follow Eq. (48) and compute the Bayes factor3 be-

tween our two candidate models S and N using the signals

calculated for the sets of parameters listed in Table II. This

gives a measure of the signal detectability in noise, depending

on the combination of the theory parameters λt
0 = {k, a0},
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FIG. 18. Posterior probability distributions and marginalised poste-

rior distributions for the current best noise estimate for the parame-

ters of the injected signal at k = 0.08 and a0 = 3.5 · 10−10m/s2.

The red lines indicate the true values at which the simulated signal

was injected.
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FIG. 19. Posterior probability and marginalised posterior distribu-

tions for requirements noise for the parameters of the injected signal

at k = 0.08 and a0 = 3.5 · 10−10m/s2. The red lines indicate the

true values at which the simulated signal was injected.

3 We remind the reader that we set the prior model odds to unity.
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FIG. 20. Posterior probability distributions and marginalised poste-

rior distributions for the current best noise estimate for the parame-

ters of the injected signal k = 0.017 and a0 = 3.1 · 10−10m/s2.

The red lines indicate the true values at which the simulated signal

was injected.
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FIG. 21. Same as Fig. 20 but for the requirements noise.

allowing us to quantify the confidence in one model relative

to the other on the basis of the outcome of the experiment.

As discussed in Sec. IV E, the S hypothesis assumes that the

data is the sum of noise and a signal that depends on k and

a0, while the N hypothesis assumes it to be noise-only and

to have no parameter dependencies. As indicated in Eq. (49),

the S hypothesis requires us to integrate the joint probability

p({x̃}, k, a0) over the parameter space of the signal (k, a0),
whereas the evidence for the noise-only model is simply given

by the likelihood in Eq. (50).

In reality, we will have a single measurement yielding one

value for the Bayes factor which itself is a random variable

subject to variations between noise realisations. By perform-

ing an analysis of the artificial data, however, we can study the

distribution of the Bayes factor and therefore understand the

interpretation of a single value measurement. For the model

selection we analysed the same data as for the parameter esti-



18

0

1

2

3

4

0 0.04 0.08 0.12

a
0
[m

/
s2
]

k

×10−10

P = 0.68
P = 0.95
P = 0.99

FIG. 22. Posterior probability distributions and marginalised poste-

rior distributions for the current best noise estimate for parameters of

the signal modelled for k = 0.1 and a0 = 0.68 · 10−10m/s2. The

red lines indicate the true values at which the simulated signal was

injected.
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FIG. 23. Same as Fig. 22 but for the requirements noise.

mation. The Bayes factors distributions dependence upon the

theory parameters is found in Fig. 26 for the current best es-

timate noise model and in Fig. 27 for the requirements noise.

We show the logarithms of the Bayes factor estimates at the 7
representative points in the parameter space collected in Table

II. In 5 cases out of 7 the Bayes factor logarithms all have pos-

itive values: this means that the S hypothesis will be strongly

favoured over the N hypothesis. On the other hand, nega-

tive logarithms of the Bayes factor imply that the noise-only

model N is favoured. This occurs in 2 cases out of 7. One of

these is the noise-only (k = 0, a0 = 0 m/s2) point, where the

data only contains noise: this behaviour is therefore expected.

The second point is at (k = 0.1, a0 = 0.2 · 10−10 m/s2). In

this case, noise and signal are mixed, but a rejection of the S
hypothesis is likely.

The analysis just discussed shows a rigorous way of deter-

mining the detectability of a signal. While we solely consid-

ered a noise-only model and a signal model of MONDian in-

spiration, we note that our analysis can be extended to include

other models, as, for example, models with non-Gaussian

noise or ones incorporating glitches that could resemble the

signal. In addition we can probe whether the data will be best

described by one theory or another when it exhibits a devia-

tion from the Newtonian background.

D. Detector noise artifacts

So far we analysed the simulated LPF data with noise taken

to be Gaussian and ASD defined by the theoretical amplitude

spectral density of LPF. In reality, however, non-Gaussian

glitches might appear in the noise as shown in the measure-

ment of the differential displacements from the test campaigns

for LPF 4 [33–35]. We now examine the response of our data

analysis framework to glitches by performing parameter esti-

mation and model selection on the OSTT data. We keep work-

ing in the TeVeS (k, a0) parameter space and use the signal

templates produced within this theory.

We shift the test campaign data so that a glitch occurs at

the expected signal arrival time, as shown in Fig. 28. We then

estimate the posterior probability distribution for k and a0 for

this dataset. Results are presented in Fig. 29. The posterior

probability peaks at (k = 0.12, a0 = 1.34 · 10−10 m/s2).
The standard deviations for the two parameters are given by

∆k = 0.001 and ∆a0 = 0.07 · 10−10 m/s2, respectively. The

recovered parameter values are in the parameter space region

that is inconsistent with the noise-only model. Additionally,

the estimated value of the parameter k is on the boundary of

the parameter range defined by the parameter priors.

The logarithm of the Bayes factor is

log p(S|{x̃}, I)/p(N|{x̃}, I) = 199, so that the S hy-

pothesis is prioritised over the N one. This can happen

if the characteristic frequency of the glitch is similar to

the characteristic frequency of the signal and highlights

that, in order to achieve confident signal detection, we

must introduce more realistic noise models. In particular,

these should describe non-Gaussianities in the noise, such

as glitches. With such noise models it would be possible

to extend the model selection described in Sec. IV E and

distinguish between noise artifacts and authentic signals.

The question of the non-stationarities and glitches in the

data is particularly important in the setup of this experiment

because our measurement relies on one or two repetitions

at the most (one or two SP fly-by’s). Multiple SP fly-by’s

can significantly increase our confidence in signal detection

against glitches in the data. However, distinguishing between

4 The LPF spacecraft is already being prepared for launch and is undergo-

ing several instrumental tests. To assess the impact of noise artifacts, we

took the data available from the LPF On-Station Thermal Tests (OSTT)

performed by Astrium Ltd., Astrium Satellite GmbH (Astrium Deutsch-

land (ASD)) extensively testing the end-to-end performance of the Optical

Metrology System (OMS). However, we would like to point out that the

noise artifacts might have been artificially caused by the test environment.
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FIG. 25. Same as Fig. 24 but for the requirements noise.

noise glitches and signal, and characterising glitches are very

important topics that will need further investigation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we developed a data analysis approach to test

alternative theories of gravity with LPF. As shown in Eq. (4),

the gravitational stress tensor affects the relative acceleration

between the two test masses onboard the spacecraft. The
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tidal field can be sampled by LPF, allowing us to measure its

(dis)agreement with the Newtonian tidal field. The time series

that an LPF measurement will provide depends on the trajec-

tory of the spacecraft and on the orientation of its sensitive

axis via the seven mission parameters listed in Eq. (14). The

data analysis framework we built will allow for quantitative

statements on measuring the tidal field and posing constraints

on alternative theories of gravity.

Testing our data analysis approach required picking a the-

ory of gravity that predicts deviations from the Newtonian
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estimation in case of the realistic data of Fig. 28.

tidal stresses within the Solar System, where LPF will fly.

As discussed in Sec. IV B, we considered the example of the

TeVeS theory. This choice is convenient as we are able to cal-

culate signal templates from it. In the regime of our interest,

the signal measured by LPF depends on two theory parameters

only, namely, a dimensionless coupling constant k and a char-

acteristic acceleration a0. Having picked an alternative theory

of gravity, we were able to quantify how the signal is influ-

enced by variations of each of the mission parameters. We

concluded that, within the errors on the measurement of the

position of the spacecraft, the variations of the signal will be

negligible. This is a crucial result as it allows us to fix the val-

ues of the mission parameters when building signal templates

in order to carry out a Bayesian analysis of the theory param-

eter estimation and a model selection. However, the impact

of possible correlations between the mission and the theory

parameters on the conclusions drawn so far in our study was

not assessed. Nevertheless, we expect this correlation to be

insignificant and leave this investigation for the future work.

The results of our Bayesian analysis are presented in Sec. V

in the form of posterior distributions for the two theory param-

eters that determine the signal. These are obtained by consid-

ering 200 different noise realisations. Some combinations of

the parameters (point 1 and point 2 in Table II) yield a sharp

and narrow joint posterior distribution, indicating that it will

be possible to estimate the theory parameters with high preci-

sion in case of high SNRs. For weak signals with low SNRs

(point 5 and point 6 in Table II) the parameter k can only be

poorly estimated from the posterior probability. The results

for the current best estimate of the noise systematically exhibit

better parameter estimation and better distinction between the

noise and the signal hypotheses (see Figs. 26 and 27) than the

requirements noise. As the former model was built upon the

estimates of the noise from the flight hardware test campaigns

(see Sec. II C), it is a good approximation of the noise during

flight.

We also considered the special case in which the data con-

sists of noise only, i.e. a modified gravity signal is absent. This

is a very important case as it is a priori the most likely possi-

ble outcome of the experiment. In this scenario, the parameter

space outside the confidence area of the posterior distribution

can be ruled out. In the case of no signal injection, we ob-

tained an average error on the determination of a0 which is

∆a0 = 0.055 · 10−10 m/s2 for the current best estimate noise

model and ∆a0 = 0.154 · 10−10 m/s2 for the requirements

noise. This rules out most values of a0 except those that are

close to 0m/s2. At the same time, there is a complete uncer-

tainty on k, which means that we will not be unable to draw

any conclusions on this parameter in case of no signal detec-

tion.

In order to distinguish between signal detection and no sig-

nal detection, we used the Bayesian approach to model selec-

tion. We limited the choice to two models: one is the sum

of noise and signal (signal hypotheses), while the other con-

sists of noise only (noise hypothesis). We computed the ratio

of the probabilities for these two hypotheses given the data

and based on this number drew a conclusion on which model

is preferable. We estimated the expectation for a signal in

the artificial data by calculating Bayes factors for 200 differ-

ent noise realisation for several points in the parameter space

listed in Table II. On the basis of these estimates, we were

able to allocate areas in the parameter space where the signal

hypothesis could be strongly prioritised over the noise hypoth-

esis and areas where even in presence of a signal a confident

statement on its detection cannot be made. Notice that for a

single fly-by the experiment will provide us only with a single

measured dataset and a single deduced Bayes factor. The esti-

mates of the Bayes factors for the artificial data gives a way to

compare the single Bayes factor estimated from the real data

to the expected values and judge the outcome of the experi-

ment on the basis of this comparison.

Finally, we studied the data from one of the test campaigns

for LPF. The importance of this study lies in the fact that

in reality the noise may have glitches and non-Gaussianities

(see Fig. 28). When applied to this data, our Bayesian model

selection can prefer the signal hypothesis over the noise hy-

pothesis because neither of them describes the data with the

glitch correctly. In order to adequately address the problem of

glitches, a separate model to be fed to the Bayesian hypothesis
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selection approach must be developed.

In our analysis we investigated the influence of the param-

eters k and a0 on the template, but we kept the interpolating

function fixed. As the interpolating function is heuristically

designed on the basis of astrophysical observations, it is not

a smoothly varying parameter but a point model. In a future

work, we would like to apply the data analysis framework we

built to study a generalised, phenomenological model of the

interpolating function that uses a finite set of parameters. This

would allow us to assess different theories that have MOND as

their non-relativistic limit. Ultimately, the more general goal

is to consider other theories that yield a phenomenology de-

tectable with LPF and to be able to perform a model selection

among different models of gravity.

The significant issue left out of the scope of this paper is

the influence of the mission design and the mission time-line

on the experiment. We leave it to future work to study the

influence of the accuracy of the acceleration recovery from

the measurement of the displacement on the parameter esti-

mation. Finally, the question of how much data before and

after the SP fly-by needs to be gathered to perform an accu-

rate estimation of the acceleration and to assess the possible

non-Gaussianities in the noise is also left for future work.
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Appendix A: TeVeS

TeVeS was the first consistent relativistic theory of gravity

reducing to MOND in the non-relativistic limit. It is built upon

a nondynamical gravitational scalar field σ and three dynami-

cal gravitational fields, namely, the Einstein metric tensor gαβ ,

a timelike 4-vector field U
β , and a scalar field φ. Accordingly,

it was dubbed Tensor-Vector-Scalar theory. The physical met-

ric may be obtained from the dynamical fields via the relation

g̃αβ = e−2φgαβ − 2UαUβ sinh(2φ), where and Uα = gαβU
β .

Within this theory, the total action takes the form

S = Sg + Sv + Ss + Sm , (A1)

where Sg is the Einstein-Hilbert action for the metric tensor,

Sv is the action governing the timelike vector field, Ss is the

action for the dynamical and the non-dynamical scalar fields,

and Sm is the action for the matter fields. The equation for the

dynamical gravitational scalar field may be derived from

Ss = −1

2

∫

[σ2hαβφ,αφ,β +
1

2
Gl−2σ4F (kGσ2)]

√−gd4x ,

(A2)

where g = det(gαβ), h
αβ ≡ gαβ − U

α
U
β , G is the gravita-

tional constant, k is a dimensionless constant, l is a constant

length, and F is a free dimensionless function. Varying Ss

with respect to the two scalar fields and using the equation for

σ yields [20]

[µ(kl2hµνφ,µφ,ν)h
αβφ,α];β =

kG[gαβ + (1 + e−4φ)Uα
U
β ]T̃αβ ,

(A3)

where T̃αβ is the physical energy-momentum tensor, i.e. built

upon the physical metric g̃αβ , and the function µ(y) obeys

−µF (µ)− 1

2
µ2 dF (µ)

dµ
= y. (A4)

Appendix B: Newtonian Stress Tensor

The expression of the Newtonian potential ΦN for the Sun

– Earth two-body system is

ΦN = −G

[

Me

r0 − de

der0
+Ms

rse − r0 − ds

ds(rse − r0)

]

, (B1)

where G is Newton’s gravitational constant, Ms (Me) is the

mass of the Sun (Earth), rse is the Sun – Earth separation,

r0 =
rse

√

Me/Ms
√

Me/Ms + 1
=

rse
√

Ms/Me + 1
(B2)

is the distance from the Earth to the SP, and ds (de) is the

distance from the point where the potential is calculated to the

Sun (Earth) respectively, i.e.,

de =
√

(x1 + r0)2 + x2
2 + x2

3, (B3)

ds =
√

((rse − r0)− x1)2 + x2
2 + x2

3 . (B4)

The gradient of the Newtonian potential is therefore

∂ΦN

∂xi
=

GMe[xi − r0ci]

d3e

+
GMs[xi − (rse − r0)ci]

d3s
,

(B5)
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where êxi
(i = 1..3) is the orthonormal unit vectors set of the

reference system and ci = êx1
· êxi

. The Newtonian stress

tensor reads

∂2ΦN

∂x2
i

=GMe

{

1

d3e
− 3[xi + r0ci]

2

d5e

}

+GMs

{

1

d3s
− 3[xi − (rse − r0)ci]

2

d5s

}

∂2ΦN

∂xi∂xj

∣

∣

∣

i 6=j
=− 3GMe

d5e
[xi + r0ci][xj + r0cj ]

−3GMs

d5s
[xi − (rse − r0)ci][xj − (rse − r0)cj ] .

(B6)
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