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PREFACE

The most commonly used statistical estimators are known to be in-
efficient for problems involving estimation of several parameters simul-
taneously. In a series of earlier papers (see Efron and Morris, 1971,
1972a and ¢, 1973a and b, forthcoming c¢) we suggested and examined more
efficient rules than the usual ones and identified cases where it is
theoretically possible to make substantial improvements over the usual
methods. The purpose of this report is to analyze three sets of data
for concrete illustrations of the methods, rewards, and difficulties of
using improved estimates on real data. It is hoped that this report and
others being written will make applied researchers more able and willing
to use improved methods for multiparameter estimation, as these methods
are believed to be capable of substantially improving estimation in many
applied statistical problems.

This work has been sponsored in part by the Office of Economic
Opportunity through grants 90088 D-72-02 and 90088 D-73~01 to The Rand
Corporation. OEO also supports the Health Insurance Study (HIS) in which
both authors are involved. The methods of this report will:be used to
improve the analysis and design of the HIS in several ways: (a) for
estimating interactions in fitted linear models; {(b) for estimating city-
specific responses from data for all cities; {c) for stabilizing surveyed
physician responses in cities as inputs to site selection; and {(d} for
stabilizing family-specific cost estimates when cost-effective experi-
mental design choices are being made. Methods similar to those of Sec.

TIT have alsc been used by Rand in New York City (G. M. Carter and
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J. E. Rolph, New York City Fire Alarm Prediction Models: I: Box Re-
ported Serious Fires, The Rand Corporation, R-1214-NYC, May 1973).

Dr. Efron is a consultant to The Rand Corporation and is a Pro-
fessor in the Department of Statistics, Stanford University. Dr. Morris

is on the staff of The Rand Corporation.
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SUMMARY

In 1961, James and Stein produced an estimator for the mean of a
multivariate normal distribution with uniformly lower mean squared error
than the sample mean. This estimator and several of its generalizations
are prasented briefly in an empirical Bayes context and are then applied
to three examples with real data. These estimators perform much better
than the classical estimators in each example.

The first application predicts final 1970 batting averages for 14
major league players from their early season performances. The predic-
tions resulting from Stein's estimator are better than the maximum like-
iihood estimator for every batter. Then toxoplasmosis prevalence rates
for 36 EL Salvador cities are estimated. Additional analysis indicates
that the generalization of Stein’s estimator used for this situation
is several times better than the usual estimator. Finally, in 51 situ-
ations a computer simulation is used to estimate the exact size of
Pearson's chi-square test for comparing binomial means. Comparisons
of the various estimates with the true values reveal Stein's estimator
and its multivariate generalizations to be approximately twice as ef-

ficient as the maximum likelihood estimator.
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I. INTRODUCTION

Charles Stein showed that for the problem of estimating several

parameters from independent normal observations it was possible to make

a uniform improvement upon the maximum likelihood estimator {(MLE)} in

terms of total squared error risk {Stein, 1955).

(1961) presented a particularly simple estimator for which the improve-

ment was quite substantial near the origin, as long as there are more

than two parameters.

nontrivial improvement over the least squares {(Gauss-Markov) estimators

This achievement leads immediately to a uniform,

for the parameters in the usual formulation of the linear model. One

might expect a rush of applications of this powerful new statistical

weapon,

but such has not been the case. Resistance has formed along

several lines:

Mistrust of the statistical interpretation of the mathematical

formulation leading to Stein's result, in particular the sum
of squared errors loss function;

Difficulties in adopting the James-Stein estimator to the
many special cases that invariably arise in practice;

Long familiarity with the generally good performance of the
MLE in applied problems;

A feeling that any gains possible from a "complicated' pro-
cedure like Stein's could not be worth the extra trouble.

(J. W. Tukey, at the 1972 American Statistical Association
meetings in Montreal stated that savings would not be more

than 10 percent in practical situations.)

Later James and Stein



We have written a series of papers {Efron and Morris, 1971, 1972a
and ¢, 1973a and b, forthcoming} that cover points 1 and 2. Our pur-
pose here is to illustrate the methods suggested in these papers on
three applied problems and in that way deal with points 3 and 4. Only
one of the three problems, the toxoplasmosis data, is '"real' in the
sense of being generated outside the statistical world. The other two
problems are contrived to illustrate in a realistic way the genuine
difficulties and rewards of procedures of the Stein type. {They have
the added advantage of having the true parameter values available for
the comparison of different methods.) The examples chosen are the first
and only ones considered for this report, and the favorable results
typify our previous experience.

To review the James~Stein estimator {(1961) in the simplest setting,
suppose that for given 6i

ind N

X8, "~ NGB, 1) i=1, ..., k23 a.1y

1

(meaning the {Xi} are independent and normally distributed with mean

By X, = Gi and variance Varg (Xi) = 1). The example (1.1} typically
i i
occurs as a reduction to this canonical form from more complicated

situations, as when Xi is a sample mean with known variance that is
taken to be unity through an appropriate scale transformation. The
unknown vector of means 6 = (61, eees Gk) is to be estimated with loss

being the sum of squared component errors

L, § = ] @, -0 1.2)
i

i

I 1
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where 6 = (el, cees @k) is the estimate of The maximum likelihood

Q;
0

estimator, which is alsc the sample mean, § (X) = E’E (Xl, wees Xk)

~

has constant risk k,

2
{ -
\Xi ei) 1.3)

1l
P

R, §

! o
L —
Hl
=
fas)
It o~ 8

1

where Ee indicates expectation over the distribution (1.1). James and

Stein (1961) introduced the estimator dl(X) = (61(X), cees, 6&(&}) for

O
')
>
-
TN

k-2 .
Ui+{l“T}{Xi“ui) i=1, ..., k (1.4)

where = (ui, o sy uk)' is any initial guess at Qland S = E(Xj - u,)

This estimator has risk

k
P T N V2 ;
REG, &) =By ) (6,(%) - 6 {1.5)
~ i=1
2
<k - (k=2) > <k, (1.6)
- ) -

which is less than k for all Q} and 4if Si = Uy for all i the risk is 2,
comparing very favorably to k for the MLE. Risks like (1.5) are tabled
in Efron and Morris (forthcoming).

The estimator (1.4) arises quite naturally in an empirical Bayes

context. If the {Gi} themselves are a sample from a prior distribution,
ind

) 2 .
Gi ~ N(ui, ) i=1, ..., k, (1.7)



then the Bayes estimate of Gi is the a posteriori mean of Gi given

the data

kS ) 1.
s, (x) = Eeizxi =u + Q- l+Tz;(xi - uy). (1.8)

. . 2, . .
In the empirical Bayes situation, T is unknown, but it can be esti-
mated because marginally the {Xi} are independently normal with means

{ui} and

o 2 2, 2
g = Z(Xi - ui) ~{1+T o {(1.9)

where Xi is the chi-square distribution with k degrees of freedom. The

unbiased estimate

E(k-2)/5 = 1/(L + 15 (1.10)

is available, and substituticn of (k-2)/S for the unknown 1/{1 + Tz)
in the Bayes estimate 6; of {1.8) results in the James-Stein rule (1.4).
The risk of Si averaged over both X and 6 is, from Efron and Morris

(1972a or 1973b),

1 2 k-2 1
ETES(Si(§) - ei) =1 -5 T (1.11)
~ 14T

where ET is expectation over the distribution (1.7). The risk (1.11)
is to be compared to the corresponding risks of 1 for the MLE and

1 - l/{l+T2) for the Bayes estimator. Thus, if k is moderate or large,
61 is nearly as good as the Bayes estimator but avoids the possible

. . 2, . e
gross errors of the Bayes estimator if 1 is misspecified.



It is clearly preferable to use min{(l, (k-2)/S) as an estimate
of l/(l+T2) instead of (1.10). This results in the simple improvement
6§+(§} =y + (l-(k~2)/S)+(Xi—ui) where a+ = max{0, a). That
R(Qg §}+) < R(Q; Q}) for all Q’is proved in Baranchik {1964), Stein
(1966), Efron and Morris (1973a). R(Q} §}+) is tabled in Efron and
Morris {forthcoming).

In the applications that follow, we will adapt and generalize
Stein's estimator to other situations. For the baseball problem, the
familiar modification that requires estimation of the a priori mean U
will be given, and a variance stabilizing transformation for binomial
data is used. Most other generalizations are new. A limited trans-
lation estimate (Efron and Morris, 1971 and 19723) is used for the
baseball problem. TIn the estimation of toxoplasmosis prevalence rates,
Stein's rule is generalized to the case of unaqual variances. For the
computer simulation, Stein’s estimator is used to smooth data by apply-
ing the canonical form estimator to the residuals of a regression. A
multivariate generalization of Stein's estimator (Efron and Morris,
1972¢) and a "two groups' estimator are among the new methods used in
this application. The report ends with a discussion of the effective-
ness and potential of multiparameter estimation for applied statistics.
A lengthy bibliography of related work is appended.

The methods of this report can be justified from several statist-
ical viewpoints~-~for example, the frequentist and decision theoretic
viewpoint, and the empirical Bayes or the Bayesian viewpoint. We
favor the empirical Bayes viewpoint because it has provided the most
helpful hints for extending methods to the new situations. The bibli-

ography provides theoretical and numerical justification from other



standpoints (Stein, 1955 and 1962; Efron and Morris, forthcoming).
Here, the rules are evaluated by their performance on real data and

are found to behave well independently of the assumptions for their

derivation.
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II. USING STEIN'S ESTIMATOR TO PREDICT BATTING AVERAGES

Table 1 presents the batting averages of 14 major league players
through their first 45 official at bats of the 1970 season. The prob-
lem is to predict each player's batting average over the remainder of
the season using only the data of column {1) of Table 1. This sample
was chosen because we wanted between 30 and 50 at bats to assure a
satisfactory approximation of the binomial by the normal distribution
and to leave the great bulk of at bats to be estimated. We also wanted
to include an unusually good hitter {Clemente) to test the method with
at least one extreme parameter, a situation expected to be less favor-

able to Stein's estimator. Batting averages are published weekly in

Table i

1970 BATTING AVERAGES FOR 14 MAJOR LEAGUE PLAYERS

Y; = Batting p4 = Batting At Bats

Average for  Average for for

First 45 Remainder Remainder

at Bats of Season of Season
i @ (2) 3)
1 Clemente (Pitts, NL) . 400 .346 367
2 F. Robinson {(Balt, AL) .378 .298 426
3 F. Howard (Wash, AL) .356 .276 521
4 Johnstone (Cal, AL) .333 .221 276
5 Berry {(Chi, AL) .311 .273 418
6 Spencer {(Cal, AL) 311 .270 467
7 XKessinger {(Chi, NL) .289 .263 586
8§ Santo {(Chi, NL) . 244 .269 510
9 Unser (Wash, AL) .222 .264 277
10 Williams (Chi, AL} .222 .256 270
11 Scott (Bos, AL) .222 .304 434
12 Petrocelli (Bos, AL) .222 .264 538
13 Companeris (Oak, AL) . 200 . 285 558

14 Munson (NY, AL) .178 .319 405




the New York Times. In the April 24, 1970 publication, Clemente's
times at bat were given as 45. Stein's estimator requires equal vari-
ances, or in this situation, equal at bats, so the remaining 13 players
are all players with available batting averages at 45 at bats who also
batted at least 300 times over the entire season. (The unequal vari-
ances case is discussed in Sec. IIT.)}

Let Yi be the batting average of player i, i = 1, ..., 14 (k = 14)
after n = 45 at bats. Assuming base hits occur according to a binomial
distribution with independence between players, nYi ind Bin{(n, pi)
i=1, 2, ..., 14 where Py is the true season batting average, and
EYi =Py Because the variance of Yi depends on the mean, Anscombe's
(1948) modification of the arc-sin transformation for stabilizing the

variance of a binomial distribution is used. Thus, if

X, = f {¥.} i=1, ..., 14 (2.1
1 n 1
with
_ 1 o \ |
fn(y) = {(n+ 0.5)2 arc Sln((m)(Zy—l)), (2.2)

then Xi has nearly unit variance independent of P;- (An exact computer
computation showed that Var(Xi) is within .0012 of unity for n = 45

for all P between 0.1 and 0.9.) Let Gi be the mean of Xi’ given
approximately by ei = fn(pi). From the central limit theorem for the

binomial distribution and the continuity of fn we have approximately

ind . .
xi]ei ~ N, 1) 1i=1,2, ...,k (2.3}

the situation described in the preceding section.



For most of this discussion we will regard the values of Py of
column 2, Table 1 as the quantities to be estimated, although these
quantities are really only other estimates of the mean of Yi' There—
fore we actually have a prediction problem, but this consideration will
be ignored at first. Thus Gi = fn{pi) is determined from Table 1. The

values of Xi’ ei are given in Table 2.

Table 2

TRANSFORMED DATA

i X, 6,
i i
1 ~1.34 -2.11
2 -1.64 -2, 80
3 ~1.94 -3.12
4 -2.25 ~3.98
5 -2.57 ~-3.18
6 ~2.57 -3.22
7 -2.89 -3.33
8 -3.55 -3.24
9 ~3.90 -3.31
16 ~3.90 -3.44
11 -3,90 -2.71
12 -3.90 -3.31
13 -4,26 -2.99
14 -4.63 -2.50

We use Stein's estimator (1.4) except we assume My = cee = =1
(say) and estimate the common unknown value by X = ZXi/k, shrinking all
Xi toward X, an idea suggested by Lindley (in Stein, 1962, pp. 285-287).

The resulting estimate of the ith component Gi of 0 is therefore

~ = k-3 =
CSiOi) =X+ {1 - “V") (Xi ~ X) (2.5)
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with V = Z(Xi ~ i}z and with k-3 = (k-1)-2 as the appropriate constant
since one parameter was estimated. Tn the empirical Bayes case, the
appropriateness of (2.5) also follows from estimating the Baves rule
(1.8} by using the unbiased estimated X for u and {(k-3)/V for l/(l+T)2
on the marginal distribution of X, analogous to Sec. I {(also see Efron
and Morris, 1972a, Sec. 7). We may use the Bayesian model for these
data because {1.7) seems at least roughly appropriate, although (2.5)
can be justified by the non-Bayesian from the suspicion that Z(Gi - é)z

is small, since the risk of (2.5}, analogous to (1.6), is bounded by

(k-3)”
k-3 + g(ei -

R(0, E,l}‘ <k -~ 6 = Eei/k» (2.6)

23

For our data, the estimate of l/(l+T2) is {(k-3)/V = ,766, or

~2 o ] . .. .
T = .306, T = 0.553, representing considerable o priori information.

The value of X is =3.09 so the estimate {2.5) for these data is

Fh) = 0, = 766 T+ .23 X, = 234 X. - 2.37. 2.7
1 e~ T 1 1

The results are striking. The sample mean X has total squared

prediction erronE(Xi - ei)z of 15.86, but Ei(g) (8%(%), cees Si(X))

111

has total squared prediction error of only 3.18. Moreover, Ei is closer
than Xi to 91 for every batter. This is no fluke: with these data E&
would be closer to ei than Xi for all 1 = 1, ..., k about 54 percent of
the time, assuming the distribution (2.6) holds and U = -3.075, T2 = ,0395,
these last two values being the "true values" estimated as the maximum

likelihood estimate of y, TZ from the data in Table 1 for the season
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remainder. The estimates (2.7) are retransformed in Table 3 to give

estimates 51 = f;l(éi) of p,.

Table 3

BATTING AVERAGES AND THEIR ESTIMATES

Batting Retrans—~ Retrans-
Average Maximum form of form of
for Season Likelihood Stein's 5038
Remainder Estimate Estimator
i p. Y, - 50-8
i i i i
1 . 346 . 400 .303 .353
2 .298 .378 .299 .331
3 .276 .356 . 294 .310
4 .221 .333 .289 .289
5 273 .311 . 284 . 284
6 270 .311 .284 . 284
7 .263 .289 .278 .278
8 .269 . 244 . 268 .268
9 . 264 .222 .263 .263
10 .256 .222 .263 .263
il . 304 .222 .263 .263
12 . 264 .222 .263 . 263
13 .285 . 200 .257 . 240
14 .319 .178 .251 .217

Stein's estimators achieve uniformly lower aggregate risk than
the MLE but allow the possibility of considerably increased risk to
individual components of the vector §. As a function of 9, the risk
for estimating 61 by 81, for example, can be as large as k/4 times as

great as the risk of the MLE X This phenomenon is discussed at

1°
length in Efron and Morris (1971 and 1972a), where "limited transla-
tion estimators” 6s(§) 0 < s <1 are introduced to reduce this effect.
(The MLE corresponds to s = 0, Stein's estimator to s = 1.} For our

. . . ~S . .
situation, the estimate Gi(g) of ei is defined to be as close as pos-

sible tolgi(X) subject to the condition that it not differ from Xi by
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k-1 k-3 . .
more than V'WZ"“RF“ Dk_lis) standard deviations of Xi’ Dk—l(s) being

a constant taken from Efron and Morris (1972a, Table 1). If s = 0.8,

then DlB(S) = 0.761, so'gg'S(X) may differ from Xi by no more than
1

0.761 (13 X 0.766/14)% = .64. By limiting translation,’é °” achieves
the risk averaged over {(2.6) of rs + (1-s8) = .8r + .2, where

k-3 r . . <1 ] P .
r=1- < 5 1is the risk of 61 averaged over {2.6). This is some-

1+t
what larger than the tisk v of 6?, .395 as compared with .244, if we

2 . R , .
use T = ,0395 as before. In return, the maximum risk for estimating

Gi by 52‘8 is 1.44; the maximum risk is 3.50 for 6; and 1.00 for Gg,

the MLE.

The retransformed values 52”8 of the limited translation estimates
f;lfggag(§)) are given in the last column of Table 3, the estimates for
the top three and bottom two batters being affected. Before retrans-—
formation, the aggregate prediction error was Zé}?°8{§) - Gi)z = 4,90,
which is better than 15.86 for the MLE but not as good as 3.18 for E?.
Like Stein's rule, in this example the limited translation estimates
are better than the MLE for every batter. In other situations, limiting
translation can actually reduce aggregate risk as well as the risk to
unusually large or small Si values, as an example of Sec. IV will
indicate.

Clemente {i=1) was known to be an exceptionally good hitter from
his performance in other years. Limiting translation resulted in a
much better estimate for him, as we anticipated, since‘51(§) differs
from Xl by an excessive 1.44 standard deviations of Xl. The maximum

component error occurred for Munson {(i=14) with all three estimators.

The Bayesian effect is so strong that this maximum error decreases from
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~0.
[ = 0441 = 2.1 o |85

s increases from 0 to 1. Therefore, limiting translation in this case

8 ~1
&) - 05,0 =1.5¢t0 [67,&) - 8,]=.95as

increased the worst error.

In Efron and Morris (1973a, Sec. 5) we suggest that min{l, E:%LEQ)
is a better estimate of l/(l+T2) than min{1, Eégﬁ, based on compelling
numerical evidence from comparing the two risk functions. This modi~
fies (2.5) to X + (1 - (k - 1.66)/V)(Xi - X), changing (2.7) to
.859 X + .141 Xi’ and reducing the total squared prediction error 12
percent from 3.18 to 2.79 for the 14 batters.

The quantities that we previously denoted ei are actually season-
remainder estimates @; {say) of the long run average Gi, The variances
of Gi, estimated using the last column of Table 1, sum to 1.57. There-

~

fore any predictor Gi of ei based on column 1 of Table 1 must satisfy

- o 0 2 _
- =F - 3
E )(8 8, E (0, - 8,7 + 1.57, (2.8

so that expected prediction error and risk differ only by a constant.

2 2

The MLE therefore gives E Z(X. - 6.,)" =15.57 so the value of Z(X. - 0.)
i i i i
= 15.86 shows that our data, after 45 at bats, exhibit almost exactly

the expected amount of variation from the true values.
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ITf. A GENERALIZATION OF STEIN'S ESTTMATOR TO UNEQUAL VARTANCES
FGR _ESTIMATING THE PREVALENCE OF TOXOPLASMOSTS

One of the authors participated in a study of toxoplasmosis in
EL Salvador (Remington et al., 1970). Sera obtained from a total sample
of 5171 individuals of varying ages from 36 El Salvador cities were
analyzed by a Sabin-Feldman dye test. From the data given in Remington
et al. (1970, Table 1), toxoplasmosis prevalence rates Xi for city i,
i=1, ..., 36 were calculated. The prevalence rate Xi has the form
(observed minus expected)/expected, where "observed” is the number of
positives for city i and "expected" is the number of positives for the
same city based on an indirect standardization of prevalence rates to
the age distribution of city 1. The wvariances Di = Var{Xi} are known
from binomial considerations and differ because of unequal sample sizes.
These data Xi together with the standard deviations D%'are given in
columns 2 and 3 of Table 4. The prevalence rates satisfy a linear con-
straint Zdixi = 0 with known coefficients di > 0. The means 6; = EXi’
which also satisfy Xdiei = 0, are to be estimated from the {Xi}. Since
the {Xi} were constructed as sums of independent random variables, they
are approximately normal; and except for the one linear constraint on
the k = 36 values of Xi’ they are independent. For simplicity, we will
ignore the slight improvement in the independence approximation that
would result from applying our methods to an appropriate 35-dimensional
subspace, We therefore assume that the {Xi} have the distribution of

the following paragraph.
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Table 4

ESTIMATES AND EMPIRICAL BAYES ESTIMATES
OF TOXOPLASMOSIS PREVALENCE RATES

i x. /D, 6.(X) A, k. B
1 1 1 ~ 1 1 1
1 . 293 . 304 ,035 0120 1334.1 .882
2 214 . 039 .192 L0108 21.9 .102
3 .185 047 .159 . 0109 24 .4 143
4 .152 115 .075 L0115 80.2 . 509
5 .139 . 081 .092 0112 43,0 . 336
6 .128 . 061 100 L0110 30.4 221
7 113 ,061 . 088 L0110 30.4 221
8 . 098 . 087 062 ,0113 48,0 . 370
9 . 093 . 049 .07¢9 ,0109 25.1 154
10 .079 .041 .070 . 0109 22.5 112
11 . 063 071 . 045 0111 36.0 .279
12 ,052 048 044 . 0109 24 .8 148
13 .035 . 056 .028 .0110 28.0 .192
14 027 . 040 . 024 .0108 22.2 107
15 . 024 . 049 .020 .0109 25,1 154
16 024 , 03¢ .022 .0108 21.9 .102
17 014 .043 .012 . 0109 23.1 .122
18 . 004 , 085 .003 L0112 46,2 ,359
19 -, 016 .128 -, 007 .0116 101.5 . 564
20 -,028 , 091 -, 017 ,0113 51.6 .392
21 -, 034 .073 -, 024 ,0111 37.3 .291
22 ~. 040 . 049 -, 034 ., 0109 25.1 .154
23 -.055 . 058 -.,044 .0110 28.9 . 204
24 -.083 .070 -, 060 ,0111 35.4 273
25 -, 098 . 068 -.072 L0111 34.2 . 262
26 -, 100 . 049 -,085 ., 0109 25.1 154
27 =,112 . 059 -.089 .0110 29.4 . 210
28 -.138 .063 -,106 .0110 31.4 .233
29 ~.156 .077 -.107  .0112 40.0 314
30 -,169 .073 -=.120 L0111 37.3 ,291
31 -.241  ,106 -.128  .0114 68.0  .468
32 -.294 .179 -.083 .0118  242.4  .719
33 -.296  .064 -.225 .0111 31.9  .238
34 -.324  .152 -.114& .0117  154.8  .647
35 -.397 .158 -.133 .0117  171.5 .665

36  ~,665 .216 .140 .0119 426.8 . 789

i
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In order to obtain an appropriate empirical Bayes estimation rule

for this data we assume that

ind .
xilei ~ N, D) i=1, ...,k (3.1)
and
ind .
Gi ~ N{0, A) i=1, ..., k, (3.2)

A being an unknown constant. These assumptions are the same as {(1.1),
(1.7), which lead to the James-Stein estimator, except that we have
allowed each Xi to have a different sampling variance Di’ Notice that
the choice of a priori mean zero for the 61 is particularly appropriate

here because the constant Sdiei = 0 forces the parameters to be centered

near the origin,

We require k > 3 in the following derivations. Define
Bi = Dif(A + Di), (3.3}
Then (3.1) and {3.2) are equivalent to
0,Ix, ind va - BOX, DL ~B)) i=1, ...,k (3.4)
and, marginally,
x, BN, a+Dp) i=1, ..,k (3.5)

From (3.4) it follows that for the loss function

2 r
L(@i, ai) = (Gi - ai) (3.6)
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{or for any other increasing function of l@i - ail) the Bayes estimator

is the a posteriori mean

8, (X)) = Eeilxi

= {1 - Bi)Xi' (3.7)
The Bayes risk is obtained from the variance in (3.4)
Ri(A, Gi) = EAEGL(Gi, Si(Xi)) = {1 - Bi)Di {(3.8)

and is to be compared with the risk of the maximum likelihood esti-

mator 6?(X.) = X,
it i

0, 0
7 = W N =
R.{A, §7)y = E Eel (9,,, §T(X.)) D,. 3.9

In the empirical Bayes context A must be estimated. Denote

Y _“2*... — [«
Xy oo Kk), Sj = st j=1, ..., k, and § = {Sl’ ees 80 We

ind 2

~ i = {
sj (A+Dj>x1 i=1, ..., k. (3.10)
The maximum likelihood estimator K of A from the distribution (3.10}

is the solution to the equation

~ k
- v
(8, - POI, W)/ ]

I, (A) (3.11)
1 3=1 J

with

I,(a) = 1/Var(s,) = 1/[20 + DJ.)Z] (3.12)
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being the Fisher information for A in Sj' We could use K from (3.11)
to define the empirical Bayes estimator of ei as {1 - Di/(& + Di))‘Xim
However, this rule does not reduce to Stein's when all Dj are equal,
and we will instead use a minor variant of this estimator derived in
Efron and Morris (1973a, Sec. 8), which does reduce to Stein's. The
difference between the rules is minor in this case, but it might be
more important were k smaller. The proposed rule is described as
follows.

The preferred estimate of Gi is

6; %) = (1~ B(8))X; (3.13}
where
B = ¢ (A, 4 ) { y
Bl = eyPy /Gy +0p) (3.14)
with
c; = max((k; - 2)/Ck, +2), 0) (3.15)
and
A ko 9 A )
k.= ) (A, +D.)7 /A, +D,5". (3.16)
1 j’—‘l 1 i L ]

The estimate Ai of A, which we allow to depend on i, the index of the

component being estimated, is the solution to

A= ) a I )/} I.@A) (3.17)
2 I I
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with

a, =8, =D, if j i
J J 3 it
(3.18)
a; = (Si - 3Di)/3 if j = 4.
The functions {Ij} are Fisher informations, defined as
2 P .
Ij(A) = 1/[2(A + Dj) ] if j # 14
(3.19)
L) = 3124 + DD af g = 1

The solution to {3.17) is a maximum likelihood estimate of A based
on the distributions {3.10), except that when j = i we count Si three
times in the estimation of A by assuming Si ~ (A + Di}Xg, a modifica-
tion justified in Efron and Morris (1973a, Secs. 2, 8). The {aj} of
(3.18) are then the independent unbiased coordinate estimates of A, and
the right-hand side of (3.17) gives an estimated minimum variance linear
unbiased estimate of A from the {aj}. The only difference between (3.17)
and (3.11) is that Si is counted three times in (3.17) and once in (3.11).
Formula (3.17} is solved iteratively and, in our experience, converges
rapidly.

The value of Qi in (3.16) is an estimate of the equivalent number
of components needed to give the actual Fisher information XIj(A) for
A if all components had the same variance Di as the ith. Then gi in
{(3.15) is the approximate best multiple of Di/(gi + Di) for estimating
Bi in the sense of Efron and Morris {(1973a, Sec. 8). We permit solu-
tions Ki of (3.17) to be negative, but were Ki so negative that

Bi(§) > 1, we would use Bi(S} = 1 instead. Therefore we require
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Ki =>-{1 - gi)Di’ although this consideration does not arise with these
data. In the case Di =D for all i, it follows that §i<s) = {(k - Z)DfESj
so (3.13) reduces to the James~Stein estimator.

Qur estimates Gi(§} of the Si are given in the fourth column of
Table 4 and are compared with the unbiased estimate Xi in Fig. 1.
Figure 1 illustrates the "pull in" effect of Gi(z), which is most pro-
nounced for cities 1, 32, 34, 35, and 36. Under the empirical Bayes
model, the major explanation for the large IXi] for these cities is
through their large Di rather than through large ]ei[. This figure also
shows that the rankings of the cities on the basis of 6i(§) differs
from that based on the Xi’ a feature that does not arise in the case

when the Xy have equal variances.

Original estimate Xi

32 )
36 35 34 33 31 30 754 32 1
' I ! ' 1 X
Empirical Bayes
Estimate 8 ()5)}
R | -51(X)

I

i f
-.7 016 -5 -4 -.3 -.2 -.1 0 . .2 .3

Fig. 1-— Estimates of Toxoplasmosis prevalence rates

The values gi’ ﬁi’ and §1(§) defined in (3.17), (3.16), and (3.14)
are given in the last three columns of Table 4. The value A of (3.11)
is A = 0.0122 with standard deviation O(K) estimated as 0.0041 (if
A = 0.0122) by the Cramér-Rao lower bound on O(K)B The preferred esti-

mates Ai are all close to but slightly smaller than K, and their
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estimated standard deviations vary from 0.00358 for the cities with
the smallest Di to 0.00404 for the city with the largest D,.
The likelihood function of the data plotted as a function of A
(on a log scale) is given in Fig. 2 and Fig. 3 as LIKELTHOOD. The
curves are normalized toc have unit area as a function of o = log A.
The maximum value of this function of o is at g = log(g) = log(.0122)
= =4,40 = My, The curves are almost perfectly normal with mean
& = -4 .40 and standard deviation 9, = .371 (obtained from numerical in-
tegration). The likely values of A therefore correspond to o differ-

3

ing from by no more than three standard deviations, |[a - U < 30
g U, by o a

or, equivalently, .0040 < A < ,0372.

|
1.0 |-
P(EB CLOSER) / \
0.8
0.6
04l BAYES RISK
LIKELIHOOD
0.2} s
0 i

.0040 .0058 .0084 ,0122 .0177 .0256 .0372
A (log scale)
Fig. 2 - Likelihood function of A and aggregate operating

characteristics of estimates as a function of A,
conditional on the observed toxoplasmosis data
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In the region of likely values of A, Fig. 2 also graphs two risks:
BAYES RISK and EB RiSK (for empirical Bayes risk), each conditional on

the data X. EB RISK is the conditional risk of the empirical Bayes
-1 Zk D)

rule defined (with DO =7 lie i) as
1 k 2
E, oo L (8,00 - 87X, (3.20)
0 i=1
and BAYES RISK is
k
1 R A 2
Bt L G %7 8y X (3-21)
0 i=1 i
(N.B.: In (3.20) the Si(§) are fixed numbers--those given in Table 4.

The expectation is over the a posteriori distribution (3.4) of the Bi.)
Since A is not known, BAYES RISK yields only a lower envelope for em-—
pirical Bayes estimators, agreeing with EB RISK at A = .0122. Table 5
gives values to supplement Fig. 2. Not graphed because it is too large
to fit in Fig. 2 is MLE RISK, the conditional risk of the maximum like-

lihood estimator, defined as

k

2
E, — X, - 6.)7]x. (3.22)
A kDO izl i i ~

MLE RISK exceeds EB RISK by factors varying from 7 to 2 in the region
of likely values of A, as shown in Table 5. EB RISK tends to increase
and MLE RISK to decrease as A increases, these values crossing at

A = .0650, about 4%—standard deviations above the mean of the distribu-—

tion of A. Our point can be stated this way: The data suggest that
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almost certainly A is in the interval .004 < A < .037, and for all
such values of A the numbers Si(§) are much better cstimators of the
0, than are the Xi" {There is also a non-Bayesian version of this

2
statement based on a confidence interval for Z@i/k.)

Table 5

CONDITIONAL RISKS

A . 0040 .0122 .0372 .0650 o
EB RISK .35 .39 .76 1.08 2.50
MLE RISK 2.51 1.87 1.27 1.08 1.00
P{EB CLOSER) 1.00 1.00 .82 .50 .04

The remaining curve in Fig. 2 graphs the probability that the
empirical Bayes estimator is closer to O than the MLE X, conditional

on the da ta 2(: lt iS defi[led as
A / 3 A4 2 e . e o

This curve, denoted P(EB CLOSER), decreases as A increases, but is
always very close to unity in the region of likely values of A. It
reaches one~half at about 4%—standard deviations from the mean of the
likelihood function and then decreases as A -~ © to its asymptotic
value .04 {(see Table 5).
The "conditional relative savings loss" RSLi for component i is
defined as
B (8, - 07 - 5, - 02X
i~ i i i ~

RSLi = 5 % > . (3.24)
E LG - 007 - (6;(x) - 07X
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This compares the risk of éi with that of the MLE in terms of the risk
of the Bayes rule 6;, conditional on the data X. Using the distribution

(3.4) this is easily shown to reduce to

. 2
B.(8) 2
RSL, =< - 1> =<5—"—57) . (3.25)
i

This quantity is plotted in Fig. 3 for the case Di = (,071)2, a central

value of Di' Obviously éi(§) is better than Xi for those values of A
for which RSLi < 1, a region that includes most of the likely A values.
From (3.25), larger values of Di would give lower RSLi curves while

smaller Di give higher curves. For any Di’ if A < 2A + Di’ then

RSL, <1 and &8, (X) is better than X,.
1 1 ~ i

A

P(6,>8,)

1.0+ 2

0.8 |-

P(rEB> (MLE)
0.6 I

LIKELIHOOD
0.4 |
0.2 F
1
.0040 .0058 ,0084 .0122 .0177 .0256 .0372

A (log scale)

Fig., 3 - Likelihood function of A and individual and ordering
characteristics of estimates as a function of A,
conditional on the observed toxoplasmosis data.
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Figure 1 illustrated that the MLE and the empirical Bayes esti-
mators order the {Gi} differently. Define the correlation of an esti-

mator § of O by

N Eéiei
r® 9 = 553 (3.26)
(16520®

as a measure of how well 6 orders 0. We denote P(rEB > rMLE) as the
probability that the empirical Bayes estimate Q’orders Q’better than

X, i.e., as
"~

P8, &) » X, 9)IX). (3.27)

-~

MLEy 5 for

The graph of (3.27) given in Fig. 3 shows that P(rEB > r
A < .0372. The value at A = » drops to .046.

Although X, > XZ’ the empirical Bayes estimator for city 2 is

1
larger, SZ(X) > 61(§)= This is because Dl >> Dz, indicating that Xl

is large under the empirical Bayes model because of randomness while

X2 is large because 92 is large. The remaining curve in Fig. 3 is
P, (6, > 0, 1% (3.28)

and shows that 62 > 61 is quite probable for likely values of A. This
probability declines as A + =, being .50 at A = .24 (eight standard
deviations above the mean) and .40 at A = o,

A simpler solution to the unequal variances problem is to apply
Stein's rule (1.4) to Xi//ﬁz to estimate ei/JS;. Retransforming leads

to

- - 2,
6, = U-B)X;, B = (k—z)/ZXj/Dj. (3.29)
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This method is unsatisfactory because the implied a priori variance

of Gi is proportional to Di’ although the prior distribution should be
independent of the number of observations. Furthermore, (3.29) uses
an equal shrinkage factor 1-B for components with much and little sam-
ple information, violating the principle that the sample mean Xi can
be trusted more as sample sizes increase. Finally, (3.29) is con-
strained to order the {Gi} as the {Xi}s The formulation {3.2) avoids

these deficiencies.
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IV. IMPROVING A COMPUTER STMULATION BY USTING UNIVARIATE
AND MULTIVARTIATE EMPIRICAL BAYES ESTIMATORS

A Monte Carlo experiment is given below in which several forms of
Stein's method all substantially improve the experimental precision.
The example is realistic in that the normality and variance assumptions
made are only approximations to the true situation.

We chose to investigate Pearson's chi~square statistic for its
independent interest and selected the particular parameters (m < 24)
from our prior belief that empirical Bayes methods would be effective
for these situations. Although our beliefs were substantiated, the
outcomes in this instance did not always favor our pet methods.

In addition to demonstrating the effectiveness of empirical Bayes
methods, this section illustrates several new rules: a modified rule
that determines how much two groups are to be combined, Stein's rule
after first fitting a Ilinear model to the data, and a multivariate
empirical Bayes rule. Some readers will also be interested in the
results given for Pearson's chi-square test, summarized in Fig. 7.

The simulation was conducted to estimate the exact size of Pearson's

chi-square test. Let Y, and Y2 be independent binomial random variables,

1
Yl ~ binm, p'), Y, ~ bin(m, p") so EY, = mp’, EY, = mp'. Pearson
advocated the statistic and critical region
Zm(Yl - YZ}Z
T > 3.84 (4.1

(Yl + Yz)(Zm =Y - YZ)
to test the composite null hypothesis HO: p' = p" against all alter-

-

natives for the nominal size o = 0.05. The value 3.84 is the 95th
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percentile of the chi-square distribution with one degree of freedom,
which asymptotically approximates that of T when m is large.

The true size of the test under HO is defined as

a(p, m) = P(T > 3.84[p, m), (4.2)

which depends on both m and the unknown value p Z p' = p". The simu-

lation was conducted for all combinations of the r = 3 values of p,

Py = 0.5, Py = 0.3, P3 0.1 and the k = 17 values of m with mj =7+ i,

It

ji=1, ..., k. The rk 51 values of a,, = a(pi, mj) were to be esti-

1]
mated. For each i, j we simulated (4.1} n = 500 times on a computer
and recorded Zij as the proportion of times HO was rejected. The data
appear in Table 9 at the section's end. Since nZij ~ bin(n, aij) inde-
pendently, Zij is the unbiased and maximum likelihood estimator usually
chosen to estimate uija

We will ignore an extensive bibliography of other methods for im-—
proving computer simulations. Empirical Bayes methods can be applied
simultaneously with other methods, and if better estimates of aij than
Zij were available then the empirical Bayes methods could instead be
applied to them. But for simplicity we take Zij itself as the quantity
to be improved.

1
Under H0 the standard deviation of Z,, is {a..(d - o..)/n}®, which
1] 1] 1]

A
is approximately ¢ = {{.05)(.95)/500}2 = ,009747. The variables

m

1 (Zij - .05)/0 have expectations eij = EXij = (uij - .05)/c and,

approximately, the distribution

ind . _ . -
ijleij 1 N{@ij,l) i=1,2,3=1r, J=1,2, ..., 17 = k,

described in earlier sections.
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The data le, i=1, ..., k plotted in Fig. 4 pertain to the case
P =Py~ 0.5 only. The average value Ei = ,051 of the 17 points supports
the choice of the "natural origin" &i = ,05, and the slope of the plotted

regression line differs insignificantly from zeroc. Stein's rule (1.4)

applied to the transformed data (4.3) and then retransformed according

to dlj = .05 + Gelj yields
oclj = (1 - B)zlj + .05 8B, B = .325, 4.4
- - vl7 B 2,2
where B = (k-2)/S and S = ijl(le .05)7 /0" = 46.15.

All 51 true values aij were obtained exactly through a separate
computer program and appear in Fig. 7 and Table 9. The loss function,
taken to be the normalized sum of squared errors Z(&lj - alj)zigz’ can
therefore be evaluated. The MLE has loss 18.9, Stein's estimate {4.4)
has loss 10.2, and the constant estimator, which always estimates alj
as .05, has loss 23.4. Hence, Stein's rule dominates both extremes
between which it compromises.

Figure 5 displays the maximum likelihood estimates, Stein estimates,
and true values. The true values show a surprising periodicity, which
would frustrate attempts at improving the MLE by smoothing.

The MLE is closer to the true value than the empirical Bayes rule
in four cases: m = 12, 24, 10, 8, and further in 12 cases {there was
one tie). The second column of Table 6 gives the difference of errors
{]le - alj' - ]&lj - ulj[}/ﬁ in standard error units and listed in
ascending order. Clearly the empirical Bayes rule is more accurate

in more cases, and the improvements tend to be quite substantial.
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Fig.4— Maximum likelihood estimates for p=0.,5
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X  Maximum likelthood estimator Z]j

A
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Fig. 5-— MLE, Stein estimates, and true values for p=0.5
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Table 6

MLE ERRORS COMPARED WITH EMPIRICAL BAYES ERRORS

lz,, - a,.l/c Fmpirical
13 4 Bayes
minus Errors

~

m ‘&lj - dle/O motgg T Oy

12 -.133 19 ~.0166
24 -.133 12 ~-.0113
10 -.133 11 -. 0095
8 -.003 16 ~.0082
17 .000 17 -.0077
22 .067 23 ~-.0069
23 .133 24 ~. 0068

9 . 267 9 -. 0055
11 .333 8 ~, 0052
16 .333 15 -.0050
21 .333 13 -.0027
15 467 20 -.0019
20 467 14 —-. 0004
14 467 22 . 0023
13 .598 18 . 0036
19 .667 10 . 0051
18 .934 21 .0108

In cases like this, with k fairly large and B not too close to
unity, rough confidence ellipsoids and intervals for the u1j may be
constructed by appeal to the Bayesian interpretation of Stein's esti-

2
mator. Assuming the prior distribution o,. ~ N{(.05, T ), the posterior

13
2
distribution is alj,zlj A'N((l—B)le + .058B, ¢ (01-B)) independently,
2 2 2
where B = 0°/(c” + T°) depends on the unknown parameter Tz. Were B
known, probability ellipsoids for {alj} could be obtained from
217 {0, - (1-B)z - OSB)2 ~ Oz(l—B)X2 Using the estimate (4.4)
F=1%"14 : 1j : k’ :
B = .325 of B in place of B, and the fact that the upper .8 significance
2 . N ‘,2 2 ~ B
level for X17 equals 21.6, suggests Z(alj dlj) fjo© < 21.6 (1-B) = 14.6

with probability about 0.8. As stated before, the actual value of the

loss Z(u R & .)2/62 is 10.2, well within the claimed bound.
1j 1j
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For known B, Bayesian probability intervals for an individual ulj
would be (1—B)le + .05B * z0V1i-B with z chosen from a table of the
normal distribution to give the desired probability. While using B
in place of B in the preceding equation gives a satisfactory result
in this case, it is generally dangerous to use §, and instead we prefer
first to develop a confidence interval for B. An 80 percent confidence
interval for B, based on BS ~1Xi7, is 10.1/S < B < 24.8/S or .22 < B
< .54. {This is obtained by excluding the upper and lower ten per-
centiles of the X§7 distribution.) The true B is unknown, but
02/(02 + Z(ulj - .OS)Z/k) = .42 is being estimated by 8 and lies in
the interval just given. Then .68 < V1-B < .88, and it is safer to
use the upper bound .88 than /{:§.= .82 to establish the widths of the
intervals above. A conservative probability interval for ulj’ which
should contain the true value in at least 68 percent of all cases, is
therefore &lj * .0086 (z = 1, 0 = .00947). From the fourth column of
Table 6, it actually happened that {cxlj - &lj] < .0086 in 13/17 = .76
of these cases.

The preceding method is suspect if the upper end of the confidence
interval for B is not somewhat less than unity, since by definition we
know that B < 1. We will not attempt to find confidence intervals for
the ensuing cases p = 0.3 and p = 0.1 because B = 1 both times.

The average value of Zij, being Z, = .0509, differs from the aver-

1

age a, = .0545 of q by .0036, or v17 {.0036)/c = 1.52 standard devia-

1 13

tions of Zi, Thus Zl differs significantly from its mean in a way that

gilves unwarranted support to the choice of origin .05. 1In spite of

this unlikely hazard, the rule (4.4) performs well.
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On theoretical grounds we know that the approximation ap, m) = .05
improves as m increases, which suggests dividing the data for p = 0.5

into two groups, say 8 <m < 16 and 17 < m £ 24. In the Bayesian frame-

work of Efron and Morris (1973b), this disaggregation reflects the con-

, * _ 9 2 2
cern that Al’ the expectation of Al = Zj=l(alj - .05)7/90" may be much
* v17 2 2
i = { —
larger than A2, the expectation of A2 Zj=lO‘&1j .05)7 /807, or

equivalently that the pull-in factor Bl = 1/{1 + Al) for group 1 really
should be smaller than B2 =1/ + Az} for group 2.

The combined estimator (4.4), having ﬁl = ﬁz, is given in the first
row of Table 7 with loss components for each group. The simplest way
to utilize separate estimates of Bl and BZ is to apply two separate

Stein rules, as shown in the second row of the table. As in the base~-

ball section we can also use the bolder estimate Bi = (ki - .66)/81,

- v9 2,2 - B B
8, = §j=l(zlj - .05)%/0%, S, 28~ 8, k; =9, k, = 8. The constant
ki ~ .66 is preferred to the usual ki -~ 2 because it givéélsmaller

risks unless the true values of Bl and Bz are near zero, without cost-
ing much otherwise (Efron and Morris, 1973a). The third row of Table 7
shows the effectiveness of this choice.

In Efron and Morris (1973b) we designed rules to compromise between
separate Stein estimates for two groups and a single Stein estimate for
the combined group for situations where the assumption Al = A2 is un-
certain. The suggested rules put distributions on Bl/BZ and estimate
the ratio Bl/B2 from the ratio 82/8l to choose a compromise between the
separate and combined Stein rules. The values ﬁi and gz in the last
row of Table 7 were determined from equations (3.28) of Efron and Morris

(1973b) using the mass function for §i3) given in Table 4 of the same
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Table 7

VALUES OF ﬁ AND LOSSES FOR p = 0.5 DATA SEPARATED INTO
TWO GROUPS, VARIOUS ESTIMATION RULES

Expected
8=m<16 Group 17=m<24 Group Value of
A 1 3 2 Total Total Loss
1 Loss 2 Loss Loss (from (1.11))
Stein's rule,
combined data .325 4.2 .325 6.0 10.2 10.5
Separate Stein
rules .232 4.5 .376 5.4 9.9 10.9
Separate Stein
rules, bigger
constant 276 4.3 .460 4.6 8.9
Two groups rule .306 4.3 .362 5.5 9.8

paper. The estimation rule has the form (4.4) with the appropriate

gl and gza The two groups estimator will generally compromise quite
favorably between the separate and combined Stein estimators, although
the improvement here is only slight, partly because the latter two
estimators perform equally well on this set of data. The larger shrink-
ing constants ki — .66 could have been used with the two groups rule,
and this would have improved the two groups precision to approximately
that of the third row of Table 7. Were we certain Al b3 A2, a corre-
sponding prior distribution could be used to further improve precision,

(5)

as described for §i of Table 4 in Efron and Morris (1973b).

* 9 2,. 2
The actual values are A1 = Zj=l(alj - .05)7/90" = 2.036 for group
* 17 2,02 _ x *
1 and A, = §j=10<alj - -05)7/80" = .635, so B; = 1/(1 + A)) = .329,

B; = 1/(1 + A;) = ,612, and B;/BI = 1.86, These values were used in

(1.11) to obtain the last column of Table 7.
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The data for p = Py = 0.1 present a different challenge because
a plot of the MLE values ZSj’ Fig. 6, shows that .05 is clearly an
unsatisfactory origin. Instead, the figure suggests that the true
values may nearly follow the linear relationship u3j = BO + Bl(mj - 16).
A standard regression of Z3j on mj gives éo = Eé = .0295, él = .00218.
The estimated line is plotted in Fig. 6.

It is easy to combine linear model fitting with Stein estimation
procedures. We use Stein's rule to improve estimation of the residuals

Zo., = Z3j - BO - Bl(mj - 16), and then estimate each a3j as the sum of

its regression estimate and its estimated residual:

~ _ ~ A - p _ A N
a3j = 80 + Bl(mj 16) + (1 B)ZBj’
{4.5)
S, . 2,02
B = min{l, (k-2-djo /ZZ3j).

(In (4.5) d = 2 is the degrees of freedom lost by fitting the linear
regression.) This estimator can be written as a convex combination

of the estimated prior mean and the maximum likelihood estimator,
A
OCBJ

k - 4)02/Z§§j =1,93 > 1, so B =1 and (4.5) reduces to &Bj = _,0295

= B * (regression estimator) + (1 - ﬁ) ° MLE. For these data,

+ GOOZl8(nﬁ ~ 16). The true values a3j’ given in Figs. 6 and 7 and
Table 9, follow the estimated line closely, and the loss Z(&3j - agj)zlaz
is only 3.1 for the rule (4.5). This would have been a better illus-
tration had B < 1 occurred, as it would in about half of all future
simulations with these parameters {a3j}° Then (4.5), which is mainly
designed to improve the MLE, would not reduce to the linear regression

estimate and give the false impression that the special features of
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Fig.6— MLE and true values for p=0.1
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(4.5) are inoperative. The regression rule actually has slightly
better risk than (4.5) for these {u3j}’ but here (4.5) has reduced to
the regression rule after first protecting against a possible non-
linearity in the parameters.

Forcing § < 1 is important here, for otherwise B = 1.93 produces
a loss of 9.7. The MLE has loss 9.0. ©None of these values is as
favorable as it appears, for the value 62 = (,01)2 for the binomial
variance is based on the incorrect assumption that the average rejec-
tion probability is .05. For the case p = 0.1, the mean rejection
probability is about .03 implying that 02 is actually about (3/5)(501)2°
The expected MLE loss is therefore about (3/5)17 = 10, not k = 17.
The variances vary by a factor of about 5, contrary to the assumptions
for Stein's rule. We could have used the arc sin rule of Sec. II to
correct this. That Stein’s rule still works well without this variance
stabilizing transformation is further evidence of its ruggedness.

Had we dignored the linear trend and used Lindley's modification
of Stein's estimator ((2.5) with Xj = le/G, 02 = (,0295)(.9705)/500 =
(.00757)2), the loss would have been 1.244 times the MLE loss. The
reason is that for this set of data the {ZBj} are unusually highly
concentrated about their mean, an improbable event causing too much
pull-in. We have calculated for this set {a3j} that Lindley's rule
will have squared error as much as 1.244 times that of the MLE in less
than 5 percent of all samples, and will have squared error as much as
the MLE in less than 17 percent of all samples. This is an unfortunate
set of data! The data clearly contradict the use of Lindley's rule
however, a t-test for Bl = 0 rejecting at the .00001 level, and in this

case the linear fit saves the situation.
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With k as large as 17 it costs very little to fit one or two
extra parameters by maximum likelihood as in (4.5}, which can
improve Stein-type estimators. See Efron and Morris (1973a, Sec. 7.
Higher order polynomials could be used here in place of the linear
regression. For p = .1 the quadratic regression coefficient differs
significantly from zero at the .20 level, but not at the .10 level.
Were the quadratic fit retained and Stein's rule again applied to the
residuals as in {(4.5), but with d = 3, then E = 1 and the loss would
be 3.7, slightly more than in the linear case. The cubic coefficient
is not close to being significant.

The case p = Py = 0.3 requires no new ideas. A plot of these
data, taken from Table 9, supports .05 as an appropriate origin.
Stein's rule in the form {(4.4) gives B =1 so &Zj = ,05 is the esti-
mate, This estimate has loss 4.8 (11.5 for the MLE). The Lindley
modification does about as well. The true wvalues aZj appear in Table 9.

The three problems p = 0.5, p = 0.3, and p = 0.1 have been kept
separate so far but can be combined. Most simply, one rule of the
form (4.4) or (4.5) could be used simultaneously on all 51 estimation
problems. Taking .05 as the origin leads to B = .31 for all components,
but this strong pull is disastrous in the p = 0.1 case, producing a
loss of 24.6 there and 42.2 overall. For the MLE, the loss for p = 0.1
is 9.0 and the overall loss is 39.4., 1If, instead, linear regressions
are fitted separately for p = 0.5, 0.3, 0.1, and a rule similar to
(4.5) is used on the residuals, then ﬁ = ,69 and the losses for the
three groups are quite similar to those derived by using separate rules.
There is little to gain and much to lose from combining so many prob-

lems in the simple form (4.4) (see Efron and Morris, 1973b, and Stein,
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1966}, so separating the three groups would be preferable. An appro-
priate generalization of the two groups rule to three groups would
probably be better still, but the theory has not yet been developed.
Suspected correlation between alj’ u2j and qu would provide a
good reason for combining the estimation problems. No method presented
yet accounts for the possibility, for example, that large alj suggests
large aZj' We have suggested a multivariate empirical Bayes rule in
Efron and Morris (1972¢), with risk smaller than the MLE, to cover
this situation. A brief description of the method and estimates follows.
In the simplified notation of (4.3), suppose (elj’ sz, GBj)' ~
N3((O, 0, ', é} is an independent sample from a trivariate normal
distribution, j = 1, ..., k = 17. Then the Bayes estimate of the
3 X 17 matrix 91= (Bij} from the 3 X 17 matrix X = (Xij) is

B9lX = [L - L+ &)X, (4.6)

requiring knowledge of é) of course. Stein rules applied separately
to p = 0.5, 0.3, and 0.1 correspond to assuming that A is diagonal in
(4.6) and then estimating the diagonal elements. The Stein rule (1.4)
applied to all 51 problems is (4.6) with A known to be diagonal with
equal diagonal elements, and the common diagonal element estimated
from the pooled data. TIf A is completely unknown, the uniformly best
unbiased estimate of (E}+ é}nl based on the marginal distribution of
X is (kmrml)(§’§:)_l for k = 17, r = 3. Substitution into {(4.4) gives

the multivariate empirical Bayes estimator, which is shown in Efron

and Morris {(1972c) to dominate the MLE.
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To estimate the {aij}’ we rescaled Zij and @ij to give (4.3), used
the linear regressions already described for each p = 0.5, 0.3, 0.1,
and applied the multivariate estimator to the regression residuals as
described in Efron and Morris (1972c, Sec. 7), losing d = 2 degrees of
freedom in the process {instead of k-r-1 = 13, we must use k-r-d-1 = 11
as the constant). Before retransforming the scale, the estimate of
(£,+ é)_l was forced to be less than Z’by making certain that no eigen-

value of the estimator of (I + A)ml exceed unity (see Efron and Morris,

1972¢, Sec. 6). This is more important in the multivariate than in the

Lo

univariate case. Denote GZj = ,0509 - °00048(mj - 16), sz = .0502
- .00030(m, - 16) and egj = 0295 + .00218(m; - 16) as the estimates
~ %
from regressing Z,, linearly onm, ~ 16 and let Z,, = Z,, ~ 0., be the
1] ] 1] 1] 1]

residuals. The multivariate estimates are

/\=-k ~MA~_‘/:~F‘A~ .
eij sij + {zij Bilzlj iZZZj BiBZBj} (4.7
with estimates
Bll = ,269, B22 = ,961, B33 = ,991, B12 = BZl = ,169,
813 = B31 = .082, B23 = 332 = -.019.

Thus, sz and ZSj’ as well as le, are used linearly to estimate elj’

and similarly for the other cases.

The losses of the multivariate rule (4.7) for the three components
p = 0.5, 0.3, 0.1 are 11.8, 7.6, 3.4, respectively, totaling 22.7.
Thig is slightly worse in each case than the separate Stein estimators.

~ ~ il "~ i
It happens that the true partial correlations Phy = Z@hjaij/(Zagjzaij)z
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(where &;j = qij - aij and a:j = BOi - Bli(mj - 16), the best linear
fit) are small, Py = .222, P13 = -.081, Pyqy = .410, so the multi-
variate rule is not at its best here. See Efron and Morris (1972¢,
Sec. 5).

The losses Z(&ij - Clij)z/(j2 of this section are tabulated in Table
8. The numbers in parentheses are efficiencies of the given rules
relative to the MLE, eff = (MLE loss/given rule loss) * 500. For

reasons given earlier, only rules 3, 4, and 7 of Table 8 would be used,

and these rules are roughly twice as efficient as the MLE.

Table 8

LOSSES AND EFFICIENCIES FOR RULES OF THIS SECTION?

p=0.5 p=20.3 p=20.1 Total

1. MLE 18.9 11.5 9.0 39.4
(500) (500) (500) (500)
2. Separate Stein rules {(4.4) 10.2 4,8 14.1 29.1
origin minus .05 {926} {1198) {319) (677)
3. Separate Stein rules {(4.5) 16.3 5.6 3.1 19.0
after a linear regression {917) {1027) {(1452) {1037)
4., Separate Stein rules after 10.2 4,8 3.1 18.1
a linear regression for (926) (11%8) (1452) (1088)
p = 0.1 only
5. Two groups rule (Table 7) 9.8 - — -
{969)
6. Combined Stein rule after i0.8 5.2 3.5 19.6
linear regressions {875) {1106) (1286) (1010)
7. Multivariate rule (4£.7) 11.8 7.6 3.4 22.7
after linear regressions {801) {757) (1324) (864)
aEfficiency = MLE loss X 500, given in parentheses, the

given rule loss
"equivalent MLE sample size."
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The true rejection probabilities o(p, m) are plotted in Fig. 7.

Surprisingly, p = 0.3 is closest of the three to the null value o = 0.5,

as Fig. 7 shows.

The data Z,, and true values 0,. are given in Table 9. The Z,,,

1] 1] 1]

being the ratio of successes to n = 500 trials, are reported exactly,
but the aij are rounded to four significant figures.

We also reported on the application of empirical Bayes rules to
this computer simulation in Efron and Morris (1972c, Sec. 9), only
there my = 10, m, = 15, my = 20, and p; = .525 = .0251 for i =1,

17 were studied. That experience was similarly favorable. The

a0

situation in this report is more interesting because a{p, m) is a
smooth function of p for each m, but it can be quite discontinuous in

m for fixed p, as Fig. 7 illustrates.

Table 9

MAXIMUM LIKELIHOOD ESTIMATES AND TRUE VALUES

p: 0.5 G.3 0.1 0.5 0.3 0.1
MLE True Values
j mj le sz Z3j alj uzj a3j
1 8 .082 . 060 . 006 .07681 . 05266 . 00466
2 9 042 . 060 .016 .05011 .05525 . 00715
3 10 .046 .054 .012 04219 03711 . 00904
4 11 . 040 . 044 .022 .05279 04271 .01187
5 12 .054 . 048 .028 . 06403 .04918 .01491
6 13 . 084 . 040 .020 .07556 .05648 .01809
7 14 .036 . 048 .018 . 04102 .05185 .02134
8 15 .036 .052 .030 . 04559 .05477 .02459
9 16 . 040 . 062 .030 .05151 .05739 .02780
10 17 .050 . 046 .036 .05766 . 04592 .03057
11 18 .078 .036 .030 .06527 . 04988 . 03343
12 19 . 030 .054 . 048 . 05306 .05340 .03614
13 20 .036 .052 .036 .04253 .05326 .03867
14 21 .060 . 054 .046 . 04588 .05589 .04102
15 22 .052 .046 . 046 . 04896 . 04807 . 04319
16 23 . 046 .038 .046 .05417 .04971 .04518
17 24 . 054 . 060 .032 .05950 .05157 . 04701
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V. DISCUSSION

In the baseball, toxoplasmosis, and computer simulation examples
of this study, Stein's estimator and its generalizations increased
efficiencies relative to the maximum likelihood estimator by about 400
percent, 200 percent, and 100 percent. These examples were chosen, of
course, because we expected empirical Bayes methods to work well for
them and because their efficiencies could be determined. But we are
aware of other successful applications to real data and have suppressed
no negative results. Although blind application of these methods would
gain little in most instances, the statistician who uses them sensibly
and selectively can expect major improvements.

Even when they do not significantly increase efficiency, there is
little penalty for using the rules of this report because they cannot
give larger total mean squared error than the maximum likelihood esti-
mator and because the limited translation modification (see Sec. IT)}
protects individual components. As several authors have indicated,
these rules are also robust to the assumption of the normal distribu-—
tion, because their operating characteristics depend primarily on the
means and variances of the sampling distributions and of the unknown
parameters. Nor is the sum of squared error criterion especially
important. This robustness is borne out by the experience in this
report, for the sampling distributions were actually binomial rather
than normal. Here, the rules not only worked well in the aggregate,
but for most components the empirical Bayes estimators ranged from
slightly to substantially better than the maximum likelihood estimator,

with no substantial errors in the other direction.
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Professor Tukey's comment, that empirical Bayes benefits are un-
appreciable (Sec. 1), was actually directed at a method of D. V.
Lindley. Lindley's rules, though more formally Bayesian, are similar
to ours in that they are designed to pick up the same intercomponent
information in possibly related estimation problems. We have not done
justice here to the many other contributors to multiparameter estima-
tion, but refer the reader to the bibliography. We have concentrated
only on Stein's rule and its generalizations to illustrate the power
of the empirical Bayes theory, because the main gains are derived by
recognizing the applicability of the theory, with lesser benefit
attributable to which particular method is used. Nevertheless, we
hope other authors will compare their methods with ours on these or
other data.

The rules of this report are neither Bayes nor admissible, so they
can be uniformly beaten (but not by much; see Efron and Morris, 1973a).
There are several published, admissible, minimax rules that would also
do well on the baseball data, although probably not much better than
the rule used there, for none yet given dominates the versions of
Stein's rule with the positive part modification. The authors in the
bibliography approach these multiparameter estimation problems from
many perspectives, but all produce rules that compete with Stein's in
that they seek and use intercomponent information. For applications,
we happily recommend the combination of simplicity, generalizability,
efficiency, and robustness found in the estimators presented here.

The most favorable situation for these estimators occurs when the
statistician wants to estimate the parameters of a linear model that

are known to lie in a high dimensional parameter space Hl’ but he
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suspects that they may lie close to a specified lower dimensional
parameter space HO C:Hle Then estimates unbiased for every parameter

vector in H, may have large variance, while estimates restricted to

1

HO have smaller variance but possibly large bias. The statistician

need not choose between these extremes but can instead view them as
endpoints on a continuum and use the data to determine the r:ompromiseic
between bias and variance through an appropriate empirical Bayes rule,
perhaps Stein's or one of the generalizations of this report.

We believe many applications embody these features and that most
data analysts will have good experiences with the sensible use of the
rules we recommend. In view of their potential, we regard empirical

Bayes methods to be among the most underutilized tools in applied data

analysis.

The amount of compromise is usually a smooth function of the

likelihood ratio statistic for testing HO versus Hl.






—49-

BIBLIOGRAPHY

Alam, Khursheed, "A Family of Admissible Minimax Estimators of the
Mean of a Multivariate Normal Distribution," Annals of Statist.,
Vol. 1, No. 3, May 1973, pp. 517-525.

————— » Minimax Estimators of the Mean of a Multivariate Normal Dis-
tribution, Clemson University, Department of Mathematical Sciences,
Technical Report No. 142, August 1973.

————— and J. R. Thompson, Estimation of the Mean of a Multivariate
Normal Distribution, Indiana University, Technical Report, 1964.

Anscombe, F., "The Transformation of Poisson, Binomial and Negative-
Binomial Data," Biometrika, Vol. 35, 1948, pp. 246~254,

Atchison, T. A., and H. F. Martz, Jr. (eds.), Proceedings of the
Symposium on Empirical Bayes Estimation and Computing in Statistics,
Texas Tech University, Department of Mathematics, Mathematics Series
No. 6, August 8-9, 1969.

Baranchik, A. J., Multiple Reyression and Estimation of the Mean of a
Multivariate Normal Distribution, Stanford University, Department
of Statistics, Technical Report No. 51, 1964,

===, Subminimaxr Estimation of the Mean of a Normal Random Variable,
Columbia University, Department of Mathematical Statistics, February
1966.

————— » "A Family of Minimax Estimators of the Mean of a Multivariate
Normal Distribution,' Ann. Math. Statist., Vol. 41, No. 2, April
1970, pp. 642-645.

————— , "Inadmissibility of Maximum Likelihood Estimators in Some
Multiple Regression Problems with Three or More Independent Vari-
ables," Annals of Statist., Vol. 1, No. 2, 1973, pp. 312-321.

Bhattacharya, P. K., "Estimating the Mean of a Multivariate Normal
Population with General Quadratic Loss Function," Amn. Math. Statist.,
Vol. 37, 1966, pp. 1819-1824.

Bock, M. E., G. G. Judge, and T. A. Yancey, "Estimation in Regression
After Preliminary Tests of Significance," University of Illinois,
November 1971 (unpublished).

Box, G.E.P., and G. C. Tiac, "Multiparameter Problems from a Bayesian
Point of View," Ann. Math. Statist., Vol. 36, 1965, pp. 1468-1482,

————— , "'Bayesian Estimation of Means for the Random Effects Model,"
J. Amer. Statist. Assoc., Vol. 63, 1968, pp. 174-181.



-50~

Box, G.E.P., and G. C. Tiao, Bayestian Inference in Statistical Analysis,
Addison-Wesley Publishing Company, Reading, Mass., 1973.

Brown, L. D., "On the Admissibility of Invariant Estimators of One or
More Location Parameters,' Awn. Math. Statist., Vol. 37, October 1966,
pp. 1087-1136.

————— , "Inadmissibility of the Usual Estimators of Scale Parameters in
Problems with Unknown Location and Scale Parameters," Ann. Math.
Statist., Vol. 39, 1968, pp. 29-48.

————— , "Admissible Estimators, Recurrent Diffusions, and Insoluble
Boundary Value Problems," Anmn. Math. Statist., Vol. 42, 1971, pp.
855-903.

————— » Estimation with Incompletely Specified Loss Functions (the Case
of Several Tocation Parameters), Cornell University, 1973.

Carter, G. M., and J. E. Rolph, Empirical Bayes Methods Applied to
Spatial 4dnalysis Problems, The Rand Corporation, P-5076, August 1973.

===~ New York City Fire Alarm Prediction Models I: Box-Reported Ser-
‘ous Fires, The Rand Corporation, R-1214-NYC, 1973.

Christiansen, H. Dalgas, "A Better Estimator for the Mean of a Multi-
variate Normal Distribution,'” Technical University of Demnmark, 1973
{unpublished).

Clemmer, B. A., and R. G. Krutchkoff, "The Use of Empirical Bayes Esti-
mators in a Linear Regression Model," Biometrika, Vol. 55, 1968,
Pp. 525-534.

Cogburn, R., "On the Estimation of a Multivariate Location Parameter
with Squared Error Loss," in J. Newman and L. LeCam {(eds.), Bernoulli
(1723), Bayes (1763), and Laplace (1813) Amniversary Volume, Springer-
Verlag, Berlin, 1965, pp. 24-29.

————— » ""Stringent Solutions to Statistical Decision Problems," Ann.
Math. Statist., Vol. 38, 1967, pp. 447-463.

Cohen, A., and W. E. Strawderman, "Admissibility of Estimators of the
Mean Vector of a Multivariate Normal Distribution with Quadratic
Loss," Ann. Math. Statist., Vol. 42, 1971, pp. 270-296.

Copas, J. B., "Compound Decisions and Empirical Bayes (with Discussion),
J. Royal Statist. Soc., B, Vol. 31, No. 3, 1969, pp. 387-425.

————— , "Empirical Bayes Methods and the Repeated Use of a Standard,"
Biometrika, Vol. 59, No. 2, 1972, pp. 349-360.

Dempster, A. P., "Model Searching and Estimation in the Logic of In-
ference," in V. P. Godambe and D. A. Sprott (eds.), Foundations of
Statistical Inference, Holt, Rinehart and Winston, Toronto, Canada,
1971.



~51 -

Draper, N. R., "'Ridge Analysis’ of Response Surfaces," Technometrics,
Vol. 5, 1963, pp. 469-479,

Efron, B., and C. Morris, "Limiting the Risk of Bayes and Empirical
Bayes Estimators—-Part T: The Bayes Case,” J. Amer. Stat. Assoc.,
Vol. 66, No. 336, December 1971, pp. 807-815.

————— , "Limiting the Risk of Bayes and Empirical Bayes Estimators--
Part II: The Empirical Bayes Case,'" J. Amer. Stat. Asscc., Vol. 67,
No. 337, March 1972a, pp. 130-139.

————— , Simultaneous Estimation of Parameters, The Rand Corporation,
P-4835, May 1972b.

————— , "Empirical Bayes on Vector Observations-—-An Extension of Stein's
Method," Biometrika, Vol. 59, No. 2, August 1972¢c, pp. 335-347.

————— , ""Stein's Estimation Rule and Tts Competitors—-—An Empirical Bayes
Approach," J. Amer. Stat. Assoc., Vol. 68, No. 341, March 1973a,
pp. 117-130.

~~~~~ , '"Combining Possibly Related Estimation Problems," JRSS, B,
November 1973b (with discussdion).

————— , Families of Minimax Estimators of the Mean of a Multivariate
Normal Distribution, submitted to Amn. Math. Statist., 1974.

————— , "Estimating Several Parameters Simultaneously,"” to be published
in Statistica Neerlandica {also available The Rand Corporatiom,
R-1395-0EC, forthcoming).

Farrar, D. E., and R. R. Glauber, '"Multicollinearity in Regression
Analysis: The Problem Revisited," Review of Fconomics and Statistics,
Vol. 49, 1967, pp. 96-108.

Fienberg, S. E., and P. W. Holland, "Methods for Eliminating Zero Counts
in Contingency Tables," in G. P. Patil (ed.), Random Counts in Models
and Structures, Pennsylvania State University Press, University Park,
1970, pp. 233-260.

————— , ""On the Choice of Flattening Constants for Estimating Multinomial
Probabilities," J. Multivariate Analysis, Vol. 2, 1972, pp. 127-134,

————— , "Simultaneous Estimation of Multinomial Cell Probabilities,"
J. Amer. Statist. Assoc., Vol. 68, No. 343, September 1973, pp. 683-691.

Geisser, S., "Bayes Estimation in Multivariate Analysis," Ann. Math
Statist., Vol. 36, 1965, pp. 150-159.

George, S. L., "Evaluation of Empirical Bayes Estimators for Small
Numbers of Past Samples," Biometrika, Vol. 58, 1971, p. 244.



-52—

Goodman, A. S., P.A.W. Lewis, and H. E. Robbins, Simultaneous Esti-
mation of Large Numbers of Fxtreme Quantiles in Simulation, Naval
Postgraduate School, Monterey, California, Technical Report,
December 1971.

Griffin, 8. S., and R. G. Krutchkoff, "Optimal Linear Estimators: An
Empirical Bayes Version with Application to the Binomial Distribu-
tion," Biometrika, Vol. 58, No. 1, 1971, pp. 195-201.

Haff, Leonard R., "Bayesian Regression with First Order Autoregressive
Priors,'" Department of Mathematics, University of California, San
Diego, 1973 (unpublished).

Hartigan, J., "Linear Bayes Methods," J. Royal Statist. Soc., B, Vol.
31, December 1969, pp. 446-454,

Hoerl, A. E., "Application of Ridge Analysis to Regression Problems,"
Chemical Engineering Progress, Vol. 58, 1970, pp. 55-67.

————— , and R. W. Kennard, "Ridge Regression. Applications to Non-
orthogonal Problems," Technometrics, Vol. 12, 1970a, pp. 69-82.

~~~~~ , "Ridge Regression. Biased Estimation for Nonorthogonal Prob-
lems," Technometrics, Vol. 12, 1970b, pp. 55~68.

Holland, B. S., On the Estimation of Regression Coefficients with a
Coordinatewise Mean Square Error Criterion of Goodness, Tnstitute
of Statistics Mimeograph Series No. 693, North Carolina State Uni-
versity, Raleigh, July 1970,

Holland, Paul W., Weighted Ridge Regression: Combining Ridge and
Robust Regression Methods, National Bureau of Economic Research, Inc.,
Working Paper No. 11, September 1973.

Huntsberger, D. V., "A Generalization of a Preliminary Testing Procedure
for Pooling Data,'" Annals of Mathematical Statistics, Vol. 26, 1955,
pp. 734-743,

Jackson, P. H., M. R. Novick, and D. T. Thayer, "Estimating Regression
in m~Groups," Brit. J. Math. Statist. Psychol., Vol. 24, 1971, pp.
129-153.

James, W., and C. Stein, "Estimation with Quadratic Loss," Proc. Fourth
Berkeley Symp. Math. Statist. Prob., Vol. 1, University of California
Press, 1961, pp. 361-379,

Johns, M. V., Jr., "Two-Action Compound Decision Problems," Proc. Fifth
Berkeley Symp. Math. Statist. Prob., University of California Press,
1967, pp. 463-478.

Kantor, M., "Estimating the Mean of a Multivariate Normal Distribution
with Applications to Time Series and Empirical Bayes Estimation,"
Ph.D. dissertation, Columbia University, 1967.



Kitagawa, Tosio, "Estimation After Preliminary Tests of Significance,"
University of Califormnia Publications in Statistics, Vol. 3, No. 4,
1963, pp. 147-186.

Lemon, G. H., and R. G. Krutchkoff, "An Empirical Bayes Smoothing Tech-
nique,"™ Biometrika, Vol. 56, No. 2, 1969, pp. 361-365.

Leonard, T., "Bayesian Methods for Binomial Data," Biometrika, Vol. 59,
No. 3, 1972, pp. 581-589,

————— "A Bayesian Method for Histograms,'" Biometrika, Vol. 60, No. 2,

s

1973, pp. 297-308.

Lewis, Charles, Ming-Mei Wang, and Melvin R. Novick, Marginal Distri-
butions for the Estimation of Proportions in m Groups, American
College Testing Program, Towa City, Towa, ACT Technical Bulletin
No. 13, May 1973.

Lin, Pi-Erh, and Hui-Liang Tsai, "Generalized Bayes Minimax Estimators
of the Multivariate Normal Mean with Unknown Covariance Matrix,"
Annals of Statist., Vol. 1, No. 1, 1973, pp. 142-145.

Lindley, D. V., "The Estimation of Many Parameters," in V. P. Godambe
and D. A. Sprott {(eds.), Foundations of Statistical Inference, Holt,
Rinehart and Winston, Toronto, 1971, pp. 435~455.

————— , 4 Bayesian Solution for Two-Way Analysis of Variance, American
College Testing Program, Towa City, Towa, ACT Technical Bulletin
No. 8, September 1972a.

————— , Multiple Regression in a Two-Way Layout, American College Test-
ing Program, Towa City, Towa, ACT Technical Bulletin No. 9, September

1972b.

————— , Bayesian Statistics, A Review, Regional Conference Series in

Applied Mathematics, 2, SIAM, Philadelphia, 1972c.

~~~~~ , and A.F.M. Smith, "Bayes Estimates for the Linear Model (with
Discussion)," J. Royal Statist. Soc., B, Vol. 34, 1972, pp. 1-42.

Macky, D., Empirical Bayes Estimation in an Exponential Family, Mich-
igan State University, Department of Statistics and Probability,
RM-176, 1966.

Maritz, J. S., "Smooth Empirical Bayes Estimation for One-Parameter
Discrete Distributions," Biomeirika, Vol. 53, 1966, pp. 417-429.

————— , "Smooth Empirical Bayes Estimation for Continuous Distribution,"

Biometrika, Vol. 54, 1967a, pp. 435-450.

————— , "Empirical Bayes Estimation for the Poisson Distribution,”
Biometrika, Vol. 54, 1967b, pp. 367-374.



5

Maritz, J. S., "On the Smooth Empirical Bayes Approach to Testing of
Hypotheses and the Compound Decision Problem," Biometrika, Vol. 55,
1968, pp. 83-100.

————— , Empirical Bayes Methods, Methuen & Co., Ltd., London, 1970.

Marquardt, D. W., "Generalized Tnverses, Ridge Regression, Biased
Linear Estimation and Nonlinear Estimation," Techinometrics, Vol. 12,
1970, pp. 591-612,

Martz, H., and R. Krutchkoff, "Empirical Bayes Estimators in a Multiple
Linear Regression Model," Biometrika, Vol. 36, 1969, pp. 367~374.

McDonald, G. C., and D. T. Galarneau, An Evaluaiion of Two Ridge-Type
Estimators of Linear Regression Coefficients, General Motors Research
Laboratories, Mathematics Department, GMR-1322, December 1972.

Miyvasawa, K., "An Empirical Bayes Estimator of the Mean of a Normal
Population," Bull. Inst. Internat. Statist., Vol. 38, 1961, pp. 181-
188.

Newhouse, J. P., and S. D. Oman, An Evaluation of Ridge Estimators, The
Rand Corporation, R~716-PR, 1971.

Neyman, J., "Two Breakthroughs in the Theory of Statistical Decision
Making," Rev. Int. Statist. Inst., Vol. 30, 1962, pp. 11-27.

Novick, M., R., "Multiparameter Bayesian Tndifference Procedures," J.
Royal Statist. Soc., B, Vol. 31, 1969, pp. 29-64.

————— , and D, T. Thayer, A Comparison of Bayesian Estimates of True
Seore, BEducational Testing Service, Princeton, New Jersey, RB-69-74,
September 1969.

Novick, M. R., P. H. Jackson, D. T. Thayer, and N. S. Cole, "Applica-
tions of Bayesian Methods to the Prediction of Educational Performance,"
Brit, J. Math. Statist. Psychol., Vol. 25, 1972, pp. 33-50.

Novick, M. R., C. Lewis, and P. H. Jackson, "The Estimation of Propor~
tions in m Groups," Psychometrika, Vol. 28, No. 1, March 1973, pp.
19-46.

Portnoy, S., Formal Bayes Estimation with Application to a Random
Effects Analysis of Variance Model, Stanford University, Department
of Statistics, Technical Report No. 142, 1968,

Press, 5. James., Statistical Estimation by the Empirical Bayes Method:
Some Extensions and Logistical Applications, The Rand Corporation,
RM-4442~PR, 1965,

Radhakrishnan, R., "Estimation of the Mean of Y Using Observations on
(Y, X) and Extra Observations on XL," Carnegie-Mellon University,
Department of Statistics, 1972 (unpublished).



~55~

Remington, J. S., et al., "Studies on Toxoplasmosis in El Salvador
Prevalence and Tncidence of Toxoplasmosis as Measured by the Sabin-
Feldman Dye Test," Transactions of the Royal Society of Tropical
Medicine and Hygiene, Vol. 64, No. 2, 1970, pp. 252-267.

Robbins, H., "Asymptotically Subminimax Solutions of Compound Statis-—
tical Decision Problems," in Proc. Second Berkeley Symp. Math. Statist.
Prob., University of California Press, 1950, pp. 131-148.

————— , "An Empirical Bayes Approach to Statistics," in Proc. Third

Berkeley Symp. Math. Statist. Prob., Vol. 1, University of California
Press, 1955, pp. 157-164.

Robbins, H., "The Empirical Bayes Approach to Statistical Decision
Problems,’ Ann. Math. Statist., Vol. 35, 1964, pp. 1-20.

Rolph, J. E., "Bayesian Estimation of Mixing Distributions," Awn. Math.
Statist., Vol. 39, No. 4, 1968, pp. 1289-1302.

Rutherford, J. R., and R. G. Krutchkoff, "The Empirical Bayes Approach:
Estimating the Prior Distribution," Biometrika, Vol. 54, 1967, pp.
326-328.

————— , "Some Empirical Bayes Techniques in Point Estimation," Biometrika,
Vol. 56, No. 1, 1969a, pp. 133~137.

=y e Asymptotic Optimality of Empirical Bayes Estimators," Bilometrika,
Vol. 56, No. 1, 1969b, pp. 220-223.

Samuel, E., "The Compound Statistical Decision Problem," Sankhya, A,
Vol. 29, 1967, pp. 123-140.

Sclove, S. L., "Improved Estimators for Coefficients in Linear Regres-
sion," J. dmer, Statist. Assoc., Vol. 63, No. 322, 1968, pp. 596-606.

————— , ""Improved Estimation of Parameters in Multivariate Regression,"
Sankhya, A, Vol. 33, Part 1, 1971, pp. 61-66.

————— , C. Morris, and R. Radhakrishnan, "Non-Optimality of Preliminary-
Test Estimators for the Mean of a Multivariate Normal Distribution,”
Ann. Math., Statist., Vol. 43, No. 5, October 1972, pp. 1481-1490,

Sprott, D. A., "The Estimation of Prior Distributions in Problems of
Decision," Sankhya, A, Vol. 29, 1967, pp. 227-238.

Stein, C., "Inadmissibility of the Usual Estimator for the Mean of a
Multivariate Normal Distribution,'" Proc., Third Berkeley Symp. Math.
Statist. Prob., Vol. 1, University of California Press, 1955, pp.
197-206.

————— , ™ultiple Regression," in T. Olkin (ed.), Contributions to Prob-

ability and Statistics: Essays in Honor of Harold Hotelling, Stanford
University Press, Stanford, California, 1960, pp. 424-443.



-56~

Stein, C., "Estimation of Many Parameters," Inst. Math. Statist., Wald
Lectures, 1961.

————— , "Confidence %ts for the Mean of a Multivariste Normal Distribu-

tion," J. Royal Statist. Soc., B, Vol. 24, 1962, pp. 265-296.

—————— , "Inadmissibility of the Usual Estimator for the Variance of a
Normal Distribution with Unknown Mean,” Ann. Inst. Statist. Math.,
Vol. 16, 1965, pp. 155-156.

————— , "An Approach to the Recovery of Inter-Block Information in

Balanced Incomplete Block Designs," in F. N. David (ed.), Festschrift
for J. Neyman, John Wiley & Sons, Inc., New York, 1966, pp. 351-366.

————— , Estimation of the Mean of a Multivariate Novmal Distribution,
Stanford University, Department of Statistics, Technical Report No.
48, June 1973 (submitted to Awmnals of Statistics).

————~, B. Efron, and C. Morris, Improving the Usual Estimator of a
Normal Covariance Matrix, Stanford University, Department of Sta-
tistics, Technical Report No. 37, March 1972.

Stone, M., "Cross-validatory Choice and Assessment of Statistical Pre-
dictions,"™ J. Royal Statist. Soc., 1973 {(forthcoming).

Strawderman, W. E., "On the Existence of Proper Bayes Minimax Estima-
tors of the Mean of a Multivariate Normal Distribution,” Proc. Sixzth
Berkeley Symp. Math. Statist. Prob., University of California Press,
1970.

————— , '"Proper Bayes Minimax Estimators of the Multivariate Normal
Mean," Ann. Math. Statist., Vol. 42, No. 1, 1971, pp. 385-388.

————— , "Proper Bayes Minimax Estimators of the Multivariate Normal
Mean Vector for the Case of Common Unknown Variances," Ann. Math.
Statist., Vol. 1, No. 6, 1973, pp. 1189-1194,

————— , and Arthur Cohen, "Admissibility of Estimators of the Mean Vec-—
tor of a Multivariate Normal Distribution with Quadratic Loss,' 4nn.
Math., Statist., Vol. 42, No. 1, 1971, pp. 270-296.

Susarla, V., Rates of Comvergence in Sequence-Compound Squared-Distance
Loss Estimation and Two-Action Problems, Michigan State University,
SLP~24, September 1970.

Sutherland, M., "Estimation in large Sparse Multinomials,'" Ph.D. dis-
sertation, Harvard University, 1973.

~——==, P. W, Holland, and S. E, Fienberg, Combining Bayes and Frequency
Approaches to Estimating a Multinomial Parameter, University of Min-
nesota, School of Statistics, Technical Report No. 198, 1973.



57 =

Thatcher, A. R., "Relationships Between Bayesian and Confidence Limits
for Predictions," J. Royal Statist. Soc., B, Vol. 26, 1964, pp. 176-
210,

Thompson, J. R., "On the Inadmissibility of X as the Estimate of the
Mean of a p-Dimensional Normal Distribution for p > 3," Indiana
University, 1968 {(unpublished).

Tiao, G. C., and G.E.P. Box, '"Bayesian Analysis of a Three Component
Hierarchical Design Model," Biometrika, Vol. 54, 1967, pp. 109-125,

————— , and W. Y. Tan, '"Bayesian Analysis of Random-Effect Models in the
Analysis of Variance. I. Posterior Distribution of Variance-
Components," Biometrika, Vol. 52, 1965, pp. 37-53.

————— , "Bayesian Analysis of Random-Effect Models in the Analysis of
Variance. II. Effect of Autocorrelated Errors,' Biometrika, Vol. 53,

1966, pp. 477-495.

————— , and A. Zellner, "Bayes's Theorem and the Use of Prior Knowledge
in Regression Analysis," Biometrika, Vol. 51, 1964a, pp. 219-230.

----- On the Bayesian Estimation of Multivariate Regression,” J. Royal

>

Statist. Soc., B, Vol. 26, 1964, pp. 277-285.

Toro-Vizcarrondo, C., and T. D. Wallace, "A Test of the Mean Square
Criterion for Restrictions in Linear Regression,' J. Amer. Statist.
Assoc., Vol. 63, 1968, pp. 558-572,

Trybula, 5., "Some Problems of Simultaneous Minimax Estimation,"” Ann.
Math. Statist., Vol. 29, 1958, pp. 245-253.

Wang, Ming-mei, and Charles Lewis, "Estimation of Proportions in Two-—
Way Tables," The American College Testing Program, The Research and
Development Division, ACT Technical Bulletin No. 16, October 1973.

Wermuth, N. E., "An Empirical Comparison of Regression Methods," Ph.D.
dissertation, Harvard University, September 1972.

Wind, S. L., "Stein-James Estimators of a Multivariate Location Param—
eter," Amn. Math. Statist., Vol. 43, 1972, pp. 340-343.

————— , "An Empirical Bayes Approach to the Multiple Linear Regression
Problem," Annals of Statist., Vol. 1, No. 1, 1973, pp. 93-103.

Yancey, T. A., G. G. Judge, and M. E. Bock, "A Mean Square Error Test
When Stochastic Restrictions are Used in Regression,' University of
T1linois, July 1971 (unpublished).

Zellner, A., and W. Vandaele, "Bayes-Stein Estimators for K-Means, Re-
gression and Simultaneous Equation Models," presented at the third
NBER-NSF Symposium on Bayesian Inference in Econometrics, Harvard
University, 15 October 1971.



-58=

Zidek, J. V., "Sufficient Conditions for the Admissibility Under Squared
Error Loss of Formal Bayes Estimators,” Ann. Math. Statist., Vol. 41,
No. 2, 1970, pp. 446-456.



