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Abstract— The topic of ‘Industry 4.0’ has become increasingly 

popular in manufacturing and academia since it was first 

published. Under this trending topic, researchers and companies 

have pointed out many related capabilities required by current 

manufacturing systems, such as automation, interoperability, 

consciousness, and intelligence. To achieve these capabilities, 

data is considered the vitally important connecting media that 

integrates different manufacturing objects and activities. 

Additionally, sustainability is one of the most important research 

areas of Industry 4.0. Although modern digital manufacturing 

systems are becoming increasingly automated, the issue of 

sustainability still attracts attention, and is related to many 

processing factors that are present in a wide variety of systems. 

As a result, defining the energy consumption behaviour of digital 

manufacturing systems and discovering more efficient usage 

methods has been established as a crucial research target. In this 

paper, data analysis methods are proposed to facilitate better 

understanding and prediction of the energy consumption of 

digital production processes under an Internet of Things (IoT) 

framework. A Selective Laser Sintering (SLS) system is applied 

as a case study, in which a variety of real-time raw data is 

collected within machine logs from this ongoing Additive 

Manufacturing (AM) system. The machine data logs are 

combined with the product layout data and analysed using three 

data analysis techniques: linear regression, the decision tree 

method and the Back-propagation Neural Network method. The 

future work is introduced in order to complete this research. 

I. INTRODUCTION 

It is generally understood that the forward thanking term 
‘Industry 4.0’ was coined to highlight the presence of a new 
industrial revolution. Researchers and companies are currently 
tending towards the development of digital, flexible and stable 
manufacturing environments, encompassing many different 
manufacturing fields including factories, businesses and 
consumer products [1]. Benefiting from IoT technology, 
industry-relevant items including materials, sensors, 
machines, products, supply chains and customers are 
connected in the Industry 4.0 era. The IoT system relies on a 
combination of embedded hardware such as identification 
components, sensors and actuators, and intelligent software, 
which the physical system then simplifies to changeable data 
sequences [2]. In this integrated digital environment, data is 
considered to be the vitally important connecting media 
integrating manufacturing objects and activities. This data is 
generated and collected using a variety of digital technologies 
including monitoring, controlling identifying and many other 
digital technologies. According to current reports, the total 
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volume of collected industrial data has been up to 1000 
Exabyte yearly and this total is projected to increase over the 
next few years [3]. This massive data collection includes 
various modalities with high-velocity generation. Using 
modern communication technologies, data can be easily 
transmitted between different manufacturing objects and can 
be stored in either a traditional or cloud [4]. It is generally 
agreed that there is great value hidden in this data, which 
discovering the that information has become one of the most 
necessary targets in the age of Industry 4.0.  

Although the Industry 4.0 manufacturing process is 
integrated, automated, predictive and intelligent, sustainability 
is another important facet of a successful system [5]. At 
present, industrial production activities use about 35% of the 
entire global electricity supply and produce approximately 
20% of total carbon emissions. In the last 20 years, the top five 
manufacturing countries have experienced an increase of more 
than 50% in their greenhouse gas emissions. Manufacturing 
sustainability has never escaped the industry’s attention and is 
an indispensable research topic in the age of Industry 4.0. 
Energy consumption is considered one of the most crucial 
fields in manufacturing sustainability. It is known that the 
energy efficiency of production processes is normally below 
30%. For some specific processes, the losses of energy are 
unexpectedly high. For example, the energy loss of the rough 
milling process is about 60%, and the finishing process is 
about 95% [6]. In most industrial settings, energy consumption 
is an of essential standard by which to measure the benefits of 
the business. Additionally, highly efficient energy usage can 
not only reduce production costs, and expand profit margins, 
but also solve associated environmental and social problems. 
As reported in An Energy policy for Europe, European 
industry will reduce both gas emissions and energy usage 20% 
before the year 2020 [7]. As a result, many manufacturing 
researchers have been paying close attention to the topic of 
energy consumption and its environmental and financial 
impacts. Many energy saving technologies for manufacturing 
including production energy consumption forecasting [8], 
manufacturing system energy consumption simulation [9] and 
smart manufacturing grids, are currently being developed and 
applied [10]. It is generally agreed that the energy usage of a 
manufacturing system is difficult to obtain using a simple 
mathematical model because of diversity and complexity of 
such systems [11]. 

This research targets the IoT data analysis solution which 
will be presented as a mode of addressing the energy 
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consumption problem in the modern digital manufacturing 
system. Based on IoT techniques, a multi-layered framework 
is designed to analyse the system. Various energy saving 
intelligent applications capable of matching the Industry 4.0 
requirements will be presented within this framework [12]. In 
this paper, an IoT-based framework is generated and displayed 
in detail within Section II. Section III delivers a case study of 
the ongoing AM system. The current digital environment will 
be introduced in detail. In addition, an early energy 
consumption prediction model will be built to show the data 
analysis results from three different techniques. Finally, the 
future experiment plan of this research will be discussed in the 
Future Work and Closing Remark. 

II. AN INTERNET OF THINGS FRAMEWORK OF ENERGY 

CONSUMPTION FOR DIGITAL MANUFACTURING SYSTEM 

In the age of Industry 4.0, one of the most essential 
capabilities and design principles is interoperability. IoT 
technology has become one of the best solutions for the 
achievement of integrated function, generating horizontal 
integration, end-to-end digital integration and vertical 
integration in manufacturing systems [13]. In the desired 
interoperable manufacturing environment, a target digital 
manufacturing system is includes working environment, 
product designs, operators, and materials statements that are 
integrated throughout production process to generate an 
integral complex processing model. In this model, significant 
amounts of data are collected, leading to discovery of new 
information and applicable knowledge. Since life cycle 
management and energy sustainability management are two 
core business services desired in Industry 4.0 system and this 
integration not only focuses on the improvement of 
manufacturing production but also engages in industrial 
enterprise management [5, 14]. The Service Oriented 
Architecture (SOA) approach is the driving design principle 
for the energy consumption analysis modelling of digital 
manufacturing systems [4]. An IoT framework is then 
designed based on this principle as illustrated in Fig. 1.  

In this framework, there are four layers: the Processing 
Execution layer, the Data Integration and Pre-process layer, 
the Information and Knowledge Generation layer and the 
Application Performance layer. Each layer consists of several 
components, and the four layers are closely interlinked.    

A. Processing Execution Layer 

The Processing Execution layer is also known as the 
production status. This layer is responsible for processing 
environmental conditions within the target digital system and 
includes data from the working environment, materials, 
operators, products and other system components. In this 
layer, the system and its associated objects carry the most 
relevant data invisibly. Using a variety of sensors and 
components, these invisible data sets are extracted [15]. 
However, the digital data sets created in this layer are 
represented as massive and meaningless strings of number, 
which means they tend to be unreadable. The increased 
efficiency of the digital system is the main aim of this research, 
as the majority of energy is consumed by it. Most current 
digital systems have embedded sensors to obtain and collect 
various processing data during operation. Parts of this data set 
can then be related to the system energy consumption. 

However, some factors in this layer may be invisible because 
the integrated sensors do not collect all information associated 
with energy consumption. The addition of extra sensors is 
necessary to obtain supplementary data [16]. In this layer, 
entire manufacturing activities are considered as the inputs of 
this IoT-based model. By utilizing sensing and identifying 
techniques, these activities are transformed into available raw 
data string for further analysis. The Processing execution layer 
is considered to be the integrative data collection and plays a 
crucial role in the overall framework. 

Figure 1.  IoT Framework of Energy Consumption Analysis 

 

B. Data Integration and Pre-process Layer 

The Data Integration and Pre-process layer is divided into 
three parts: local data integration, the data selection model and 
the cloud database. In the local data integration section, the 
data generated by the Process Execution layer is collected and 
stored in the local database. Once inside the local database, the 
collected system resource data is sorted and stored by 
production process. It is known that only a part of the collected 
data is related to energy consumption, which means that 
collection of other data would be a waste of resources within 
the scope of this research. Therefore, it becomes necessary to 
select the associated attribute data that integrates with 
previously selected data as the second portion of this layer, as 
illustrated in Fig. 2. When a new attribute is thought to be 
integral the data analysis model, the example data set should 
be tested by first matching the example data with the total 
energy consumption. If the result of this comparison shows a 
relationship, this attribute data will be marked as related data. 
Otherwise, the example data set will be compared with other 
existing related attribute data. When the new example data set 
shows an association with existing related data. this additional 
data type is added to the database. The third part of this layer 
is the cloud section, in which the related energy consumption 
data is uploaded to the cloud for further analysis [17]. In the 



  

cloud, data set from different machines, systems, and 
production processes are integrated. The Direct Attached 
Storage (DAS), Network Attached Storage (NAS), and 
distributed storage systems are considered the main storage 
solution models [18]. 

Figure 2.  Data Selection Model 

 

C.   Information & Knowledge Generation Layer 

Due to the different data resources, this layer generates two 
types of information and knowledge: one type is from local 
data that is generated from the target system and local working 
environment, and another type is from cloud data that is 
collected from the cloud. Local data resources allow the 
relationship between system energy consumption and related 
attributes to be found. The energy usage behaviour is 
dependent upon the given situation. The trend line of energy 
consumption is also depicted, delivering the energy usage 
prediction of the target manufacturing system. This 
information is integrated with the generation of local 
processing knowledge to assist in predicting the energy usage 
of the system and decision- making process. The application 
of this prediction will be discussed later in the Application 
Performance layer. Theoretically, the inclusion of data from 
the cloud creates a body of information that is both more 
diversified and more accurate. In addition, the information can 
then be shared contributing to the research of all teams using 
the cloud. In this layer, various data analysis techniques are 
used. For local information and knowledge generation, data 
mining is the core technology. It is used to discover 
information and knowledge for future processes storage. Prior 
knowledge utilizes specific machine learning algorithms to 
identify the valuable potential of selected raw local data. Cloud 
information and knowledge generation fall into the big data 
environment, utilizing a variety of data analysis methods 
including bloom filter, hashing, index, the trial and parallel 
computing method [19]. 

D. Application Performance Layer 

In the Application Performance layer, the data discovered 
in the the Information & Knowledge Generation layer is 
displayed as a series of implementation options based on a 
grouping of differently oriented objects. The options can be 
divided into three sections: process orientated applications, 

operator orientated applications, and enterprise orientated 
applications. In the process orientated application section, the 
production system receives feedback from the control signals. 
The system then changes the settings of the relevant 
parameters to reduce energy consumption. These parameter 
changes are made by the IoT framework relying on the 
information analysed in the preceding layer. Operators can 
obtain the system energy consumption behaviour profile using 
the recorded production energy data to predict future energy 
use. The information is presented both virtually and 
graphically, guiding operators to utilize the system 
economically. In addition, they can also receive production 
design suggestions for improving the system design. 
Enterprise managers are frequently more interested in the 
system life cycle analyses and energy sustainability analyses 
that are also be delivered by this layer.  

The IoT framework focuses on energy consumption in the 
modern digital manufacturing process, creating a new method 
of energy consumption analysis in the age of Industry 4.0. This 
framework involves numerous related factors that integrate 
benefits from data mining and big data analysis technology 
within the local data and cloud-based database. Valuable 
knowledge about digital manufacturing system energy 
consumption is generated and presented intelligently. Certain 
decisions are made by the framework and control system 
automatically. This IoT framework is able to match the 
required capabilities of Industry 4.0 [12]. 

III. CASE STUDY 

A. Literature Review and Background 

During the past two decades, AM machines have been 
increasingly employed in industry and academia. Due to their 
digitalization, automation, flexibility and customization, these 
machines are also becoming popular in modern industrial 
production. when compared with the traditional manufacturing 
process, the AM process is a high energy consumption system 
with a high production yield, especially selective laser 
sintering (SLS) and selective laser melting (SLM) [20]. The 
energy consumption of AM processing is influenced by many 
factors, and according to the Life Cycle Analysis (LCA) of the 
SLS process, energy consumption is the most important factor 
affecting the environmental impact of this process [21]. In 
addition, AM processing is a complex system because of 
complicated material parameters, highly automated levels, and 
the employment of variety of processing techniques. Even 
when testing on the same machine and with the same material, 
different processing techniques show different energy 
consumption performances, and making energy consumption 
of AM processing challenging to analyse and optimize [22- 
24]. Although the energy consumption of AM systems is 
complicated because of diverse correlations, reducing energy 
consumption of the AM process is considered one of the 
crucial research targets for manufacturing sustainability in the 
age of Industry 4.0. Table 1 illustrates several energy 
consumption impact factors of the AM system as described by 
a selection of current literature. In the existing research, 
models are built for predicting energy consumption in AM 
processes. However, the impact is varied because there are 
many correlations, and it is difficult to identify all related 
attributes of AM process energy consumption from current 
research. To analyse the result accurately, the model must 



  

integrate as much data as possible. Therefore, the framework 
shown in Section II is considered as the main method of this 
case study. 

TABLE I.  ENERGY CONSUMPTION RELATED IMPACTS IN LITERATURE 

Literature 
Energy Consumption Related Impacts 

Processing Impacts Design Impacts 
Material 

Impacts 

Sreenivasan 
and Bourell 

[24] 

Scan speed, laser 

power rate, build 

platform size 

Nil Material 

density 

Paul and 

Anand [20] 

Layer thickness, 

laser beam radius, 

scan speed, laser 

power 

Part orientation Absorption 

powder 

Watson and 

Taminger 

[25] 

Feedstock & 

recycling 

transported distance, 

build platform size 

Volume of 

deposited 

material 

Nil 

Telenko 

and 

Speeperad 

[26] 

Nil Z-height Material 

density 

Baumers      

et al. [22] 

Processing 

procedures, build 

time 

Part geometry, 

Z-height, 

capacity 

utilization 

Nil 

In this research, an SLS manufacturing system (EOS P700) 
was chosen as the target system. This digital manufacturing 
system consists of five main sub-systems: the main machine, 
the chiller for cooling lasers, the extractor fan, the powder 
hopper and mixer, and the shifter station. These five main 
energy consumers comprise the energy consumption of the 
whole production process. Because the entire system is 
supplied the electric power the energy consumption follows 
the equation (1) [21, 27]. 

E𝑠 =  ∑ 𝐸𝑖
𝑛𝑐
𝑖=1 =  ∑ ∫ 𝑝𝑖(𝑡) ∗ 𝑑𝑡

𝑡𝑖𝐹

𝑡𝑖𝐵

𝑛𝑐
𝑖=1            (1) 

where the E𝑠 is the total energy usage of the entire system, 𝐸𝑖 
is the energy consumption of each sub-system. In this SLS 
manufacturing system, five subsystems are identified above 

(𝑛𝑐 = 5). In addition, 𝑝
𝑖
 is the power of each subsystem, 𝑡𝑖𝐵 

and 𝑡𝑖𝐹  are the beginning time and finishing time of each 
process. In a completed production process, the energy 
consumption fluctuates because of various production 
situations and diverse working environments. The power of a 
particular subsystem, which also differs between subsystems, 
is difficult to determine precisely in real-time situations.  

The energy consumption of the main machine is diverse 
depending on various impact factors. Therefore, the main 
machine is focused on the target process of the entire system 
in this paper, Fig. 3 displays a schematic layout of EOS P700 
illustrating that the main machine is built as a series of power 
components including the laser system, heating system, feed 
and recycle system, build platform system and other 
miscellaneous. There are multiple energy consumers in each 
power usage grouping, which are also noted in Fig. 3 [29]. The 
energy consumption of the main machine can be also obtained 
from the equation (1) with several energy consumers. As 
previously discussed, this research applies the IoT framework 

to analysis of the energy consumption of a digital 
manufacturing system, as detailed in Section II and focuses on 
SLS manufacturing system (EOS P700).  

Figure 3.  Power Drains of Main Machine Adopted From [29] 

 

B. Data Collection and Preparation 

In this production process, specific parameters are pre-set 
and monitored. Table II displays the process parameters set for 
the EOS P700 production system. The temperature and power 
data of main power consumers is also recorded within machine 
report logs. This monitoring data is generated by the system 
automatically with each production process, and a portion of 
this log is shown in Table III. There are 28 different data 
attributes monitored for each production layer and recorded in 
the machine report log. 

TABLE II.  PRECESS PARAMETERS SET [30] 

Process parameters Values 

Material PA2200 

Layer thickness  0.15 (mm) 

Hatch distance (Scan space) 0.3 (mm) 

Hatch speed (Scan speed) 3000 (mm/s) 

Hatch angle 45 / 135 (°) 

Recoater speed 125 (mm/s) 

Laser power limitation  70 (%) 

TABLE III.  PART OF MACHINE REPORT LOG [30] 

Layer 

Number 

Monitoring data 

Chamber 

temperature 

[°C] 

Pyrometer 

temperature 

[°C] 

Chamber 

power 

back[%] 

… Platform 

power 

(%) 

560 83.85 34.61 28.37  

 
… 

  

14.14 

561 84.00 34.17 28.79 13.88 

562 84.15 34.17 28.86 14.00 

563 84.30 34.17 29.42 14.06 

564 84.45 34.72 28.40 14.36 

Using data from the tables above, some basic machine 
situation can be monitored and recorded by embedded sensors. 
Based on the IoT framework, only part of this data can be 
related to system energy consumption when considered as 
input for data analysis. Some attributes, such as the back-
chamber power and platform power, can be identified as 



  

relevant energy consumption attributes. For other attributes in 
the data sheets, it is more difficult to clarify the relationship to 
system energy consumption. Therefore, selecting the 
correlated data attributes is necessary step in data preparation 
before applying further data analysis techniques. The selection 
method is shown in Fig. 2, Section II.  

As discussed in Section II, this research relies on diverse 
and plentiful correlated data. The data collected from the 
system are far from the requirements of the IoT framework. 
Based on the principle of the IoT framework and the concrete 
situation presented in the case study, many other types of data 
must be collected, including product design data, working 
environment data, and operator activity data. Ideally, this 
research integrates all this data within the framework to 
optimize the model. However, in this paper, only part of the 
operator activity data is collected in order to build the 
optimized data analysis model. 

C. Data Analysis 

In this paper, the data is collected from a system that 
includes 40 production processes with 47,417 production 
layers. Additionally, every data set is generated for each 
production layer. The Linear Regression (LR), Decision Tree 
(DT) and Back-propagation Neural Network (BPNN) data 
analysis methods are to predict the total power depending on 
other data attributes [30]. The LR is a basic statistics analysis 
which detects the relationship between the target attribute and 
the independent attributes. The method is simply categorized 
into two types of regression depending on the number of 
independent attributes. When the model includes only one 
independent attribute, the modelling process is called simple 
linear regression. When there are multiple independent 
attributes in the model, the process is called multiple linear 
regression. Since this research involves more than ten 
independent attributes in building the overall relationship to 
total power consumption, the multiple linear regression 
method is used in this case study. The DT, which is structured 
like a flowchart, is one of the fundamental learning prediction 
method. The topmost node is called root, and every internal 
node, branch and leaf node of a decision tree represent an 
attribute, a result, and a class label. Depending on the attribute 
values, the unknown tuple is classified within individual leaf 
nodes that store the class information. When the target 
attribute is a numerical data type, this data analysis is also 
called as regression tree. The BPNN is a popular learning 
algorithm of multi-layered neural networks that includes one 
or many hidden layers to revise the weights.  The learning 
process has two steps. First, the output values are received by 
the neural networks which are initially weighted using input 
values. An error signal is then obtained by comparing the 
actual and desired outputs. The learning algorithm of back-
propagation uses this error to adjust weights of all layers from 
the output to the input [30]. In this case study, the 9-5-1 BPNN 
is used with 0.1 learn rate, which means that one hidden layer 
within five neural nodes is included in this neural network.  

Alongside the layer data sets, the machine report logs 
illustrated in Table III are considered raw data. Before 
applying these data analysis techniques, data must to be 
prepared using the following calculations. First, the total 
power is calculated as in equation (1). Additional, the related 
data attributes are selected by using the energy consumption 

related attributes selection model shown in Fig. 2. After data 
preparation, the new data set includes 10 attributes: the 
chamber temperature, the frame temperature with four parts 
(front, back, left, and right), platform temperature, scanner 
temperature, pyrometer temperature, the O2 level, and the total 
power. The total power is considered as the output, and the rest 
of the attributes are set as the input for the model. In this case 
study, the Weka 3.8 software was used for applying these data 
analysis methods with the user interface displayed.  

This paper uses the cross-validation method with ten folds 
to test the results. Using Weka 3.8, Table IV shows the 
correlation coefficient between the real total power data and 
predicted total power data. Furthermore, the mean squared 
error, the relative absolute error and root relative squared error 
the relative are three other validation results in this case study 
[30]. As discussed, the operator activity data is added in the 
model, which is the number of products building on the layer. 
This attribute can be modified by system operators before the 
production process. For each system cycle, the operators can 
design the product location on the build platform, creating 
different data for this attribute. This allows different operators 
to have different product schedules in each cycle depending on 
their experience. Adding this attribute can assist operators in 
organizing products location with lower energy consumption. 
In Table IV, the results of the model including operator activity 
data are also presented. From this table, the correlation 
coefficient of all data analysis models that includes the new 
attribute is higher than original models, demonstrating that the 
model becomes more accurate when adding this new attribute. 
Also, the results of DT and BPNN are much better than the LP, 
which means data mining techniques are required rather than 
statistics analysis.  

TABLE IV.  RESULTS COMPARATION 

Model 
validation 

Original Model Optimized Model 

LR DT BPNN LR DT BPNN 

Correlation 
coefficient 

0.49 0.91 0.86 0.50 0.93 0.91 

Mean 
absolute 
error 

89.65 43.68 59.61 89.80 38.61 50.42 

Relative 
absolute 
error 

96.1% 46.8% 63.9% 96.3% 41.4% 54.1% 

Root 
relative 
squared 
error 

86.9% 40.7% 50.8% 86.4% 35.6% 42.0% 

IV. FUTURE WORK AND CLOSING REMARKS 

It is seen that the model built in this paper is far from the 

IoT model that is proposed in Section II. Based on this IoT 

framework, there are several steps needed to complete this 

research. The first necessity is the intuitive equipment used to 

monitor total energy and which can collect the precise output 

data necessary for the model. A communicable digital power 

meter must be used to monitor the EOS P700 total energy 

consumption. Additionally, a large volume of valuable data 

has not been collected for analysis in combination with 



  

available data from outside sources. The necessary sensors 

and RFID system information are currently available in this 

research including material and order data, product design 

data, predefined process data, and real-time monitoring data. 

The cloud service is also established to allow the combination 

of local information with public information and information 

from other SLS machines. Finally, this research needs to 

consider the results presentation while following the guidance 

of IoT framework. A selection of pre-defined algorithms will 

process the information to produce and optimize each 

production; the power reducing element will be the primary 

position in the algorithms. 

Given the huge volume of production in the era of Industry 

4.0, energy consumption is an unavoidable issue. It is an 

indispensable component of power source reduction, 

environment protection, and process life cycle analysis. The 

Industry 4.0 solution is designed for finding answers to this 

type of problem. This paper generates a service orientated IoT 

framework focusing on energy consumption in digital 

manufacturing systems to reduce the power usage during 

production. As proposed by industry 4.0, this IoT framework 

collects, integrates, and analyzes data from the entire 

production environment, and the discovered information, 

knowledge, and analyzed results are shown intelligently to 

different processing participants dependent upon their roles in 

the system. An SLS system is applied as a case study to prove 

the performance of the IoT framework. Moreover, much of 

the related works in this research area will need to be finished 

as most results have not yet been released. Many future works 

will then be enacted following the plan described here. This 

research is going to achieve the requirement of Industry 4.0 

when the plan is completed. In order to obtain a better 

understanding of energy consumption, materials suppliers, 

machine manufacturers and academic researchers must work 

together to provide a feasible solution.  
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