
246 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 3, AUGUST 2007

Data Architectures for RFID Transactions
Suresh Chalasani, Senior Member, IEEE, and Rajendra V. Boppana, Senior Member, IEEE

Abstract—We focus on the data models for storing the data
generated by radio frequency identification (RFID) transactions
and architectures for processing such data. We consider the
supply chain comprised of the manufacturer, distributor, retailer,
and the consumer. We discuss details of the data generated by
RFID transactions and data models to store such data. Different
organizations in the supply chain may use this data for different
applications such as automatic product ordering, shelf replenish-
ment, and product recall. We present models to anticipate the data
requirements generated by RFID transactions and indicate how
existing enterprise applications can be adapted to handle RFID
data. The results presented in this paper will help a practitioner
to 1) design and develop databases and applications for handling
RFID data and 2) significantly reduce the storage requirements of
RFID data. Using the data architectures, we discuss two supply
chain applications—product recall and shelf replenishment—in
detail. We present analytical models for the cost and time required
for shelf replenishment in a retail store.

Index Terms—Data models, database architectures, electronic
product code (EPC), enterprise resource planning (ERP) systems,
information storage, supply chain information systems.

I. INTRODUCTION

R
ADIO frequency identification (RFID) uses wireless
technology to identify objects—for example, products

in a supply chain, wild animals that need to be tracked, and
so on—from a distance, without requiring line of sight [2]. In
the context of supply chain, it may be considered as a wireless
variant of optical scanning of product barcodes with some
important differences. Instead of optical barcodes, RFID tags
containing 96- to 128-bit electronic product codes (EPCs) are
attached to products. The tags, which can be battery-powered
active tags or battery-less passive tags, can be read automat-
ically by RFID tag readers, which can send the scanned tag
information to a host computer system for processing and
storage. In contrast to the optical barcode technology, scanning
of product inventory can be automated with RFID technology.

The potential advantages of RFID technology in the supply
chain are numerous [2], [5], [11]. RFID technology has the
ability to provide up-to-the-minute information on sales of
items and thus can give an accurate picture of the inventory
levels. This accuracy may lead to reduction in inventory levels,
thus causing a reduction in inventory costs. RFID technology at

Manuscript received July 26, 2006; revised November 25, 2006 and June 6,
2007. The work of R. Boppana was supported in part by the U.S. National
Science Foundation under Grants EIA-0117255 and CRI-0551501. Paper no.
TII-06-07-0072.R2.

S. Chalasani is with the School of Business and Technology, University of
Wisconsin-Parkside, Kenosha, WI 53141 USA (e-mail: chalasan@uwp.edu).

R. V. Boppana is with the Department of Computer Science, University of
Texas, San Antonio, TX 78249 USA (e-mail: Boppana@cs.utsa.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2007.904147

the pallet level has the potential to automate the distribution of
goods in the supply chain between manufacturing plants, ware-
houses, and retail stores of different organizations. Reading
RFID tags on a continuous basis allows companies to identify
all items, thus cutting down losses from lost/misplaced inven-
tory. Several organizations including Wal-Mart and Proctor
& Gamble (P&G) are currently testing and deploying RFID
technology in their supply chains. In addition, the Department
of Defense has mandated its suppliers to use RFID tags at the
pallet level.

In a retail store, RFID tag information is generated based
on events such as a product leaving a shelf or a product being
checked-out by a customer at a (perhaps automatic) checkout
counter. Such events or activities generate messages for the host
system (a.k.a. central transaction server). The host system, when
it processes these messages, in turn may generate messages for
other partners in the supply chain. The host system may send
some of the RFID transaction data to the enterprise system of
the retailer.

In this paper, we focus on the data models for storing the data
generated by RFID transactions and architectures for processing
such data. We consider the supply chain comprised of the man-
ufacturer, retailer, distributor, and the consumer. We discuss the
events that trigger RFID transactions and the corresponding data
generated. We present data models to store such data. Different
players in the supply chain may use this data for different appli-
cations such as automatic product ordering, shelf replenishment,
and product recall.

We present a model to anticipate the data requirements gener-
ated by RFID transactions. In the past decade, many companies
have invested billions of dollars in enterprise resource planning
(ERP) systems. We indicate how existing ERP systems can be
extended to handle RFID data and applications. We present two
applications of the RFID data models: product recall and faster
shelf replenishment.

II. LITERATURE SURVEY

Applications of RFID technology for many industries
including retailing and healthcare and industries and imple-
mentation issues in business supply chains have been discussed
[2], [5], [6], [9]. Numerous studies at MIT’s Auto-ID Center
have demonstrated RFID applications that result in substantial
gains in efficiency and effectiveness of logistics processes, but
the studies have also identified situations where the technology
needs to advance to provide greater benefits.

Physical Markup Language (PML) has been designed for de-
scribing the product information referred to by an RFID tag [1].
The tag data contain simply a code, and these data are trans-
lated by an object naming server (ONS) to product information,
which is described using PML. Chalasani and Sounderpandian
categorize different types of transactions that may arise in a re-
tail store from RFID tag readings [3]. Mandviwalla and Asif

1551-3203/$25.00 © 2007 IEEE

CHALASANI AND BOPPANA: DATA ARCHITECTURES FOR RFID TRANSACTIONS 247

Fig. 1. Transition of an item from the manufacturer to the consumer in the supply chain and the relevant RFID transactions.

present a tutorial on RFID and identify important research prob-

lems related to the integration of RFID into the supply chain [6].

Traub envisions an enterprise architecture in which the RFID

middleware layer plays a key role. The middleware layer known

as application level events (ALE) interface receives tag informa-

tion from RFID tag readers and forwards this information, after

consolidation and pruning, to different applications [9]. Cha-

lasani et al. propose building intelligence into the tag readers

so that they can achieve automatic identification of misplaced

items and automatic generation of shelf replenishment alerts [4].

Ohkubo et al. discuss privacy issues related to RFID tags and

present an overview of the current solutions on RFID privacy

issues [7]. Privacy concerns related to RFID tags have also been

discussed in other articles. Garfinkel et al. describe the problems

related to RFID privacy issues and give an overview of solutions

[14]. Juels provides a thorough literature survey of security and

privacy issues related to RFID technology [13]. Rieback et al.

discuss how RFID tags, especially read-write tags, can propa-

gate viruses through enterprise systems [8]. Eckfeldt discusses

the benefits and risks of RFID technologies from a consumer

perspective [5].

There are a few papers that discuss RFID data models and

architectures. Wang and Liu present data models for RFID data

and discuss a general rule-based approach to data aggregation/

optimization [16]. The issues such as unreliable tag reads and

managing high volume of RFID data are discussed by Sarma

[17]. Traub et al. [18] give an architectural framework for RFID

data including the specification of interfaces for the end user’s
components, but they do not discuss the system architecture,

which is the focus of this paper. A detailed comparison of our

results with those in the literature is presented in Section IX.

III. RFID TRANSACTIONS

For the purposes of this paper, we assume the supply chain

is comprised of the manufacturer, distributor, retailer, and the

consumer. In this paper, we only assume passive tags [2], the

most commonly used tags for retail items. However, we do as-

sume that the tags are read-write tags. As an item with an RFID

tag moves from one location to another location in the supply

chain, it may be read at several different locations in the supply

chain. We define an RFID transaction to be an event that corre-

sponds to the reading of an RFID tag by an RFID reader. Each

RFID transaction generates data including the RFID tag (EPC),

the reader id, and other relevant information.

The transition of an item with an RFID tag from the manu-

facturer to the consumer is depicted in Fig. 1. We assume that

the RFID tags are applied at the item, case, and pallet level. As

an item is manufactured, an RFID tag is placed on the item,

which generates the item creation RFID transaction at the man-

ufacturing facility. Placing an item into a case, placing the case

into a pallet, as well as loading a pallet into a delivery truck

generate different RFID transactions at the manufacturing fa-

cility. At the distributor’s warehouse, placing the pallet into a

warehouse shelf and loading the pallet onto a delivery truck (to

be delivered to the retail store) generate RFID transactions. In

a retail store, events such as shelf replenishment, movement of

an item from one shelf to another, and sale of an item generate

RFID transactions. At the consumer’s home, a futuristic model

suggests that the consumer’s refrigerator will be equipped with

an RFID tag reader; this results in RFID transactions being gen-

erated when an item is placed in the refrigerator and when an

item is taken out of the refrigerator, with these events possibly

triggering a refrigerator replenishment RFID transaction.

Processing of the activities generated by the RFID tags in

the supply chain information systems is shown as a series of

steps in Fig. 2. After the reader reads a tag, the tag together

with the ID of the RFID reader are sent to the host computer

system (Step 1 of Fig. 2). The host computer system then re-

quests an object naming server (ONS server) to translate the tag

(Step 2). The ONS server is very similar to the domain name

server (DNS server) in the Internet that translates web URLs

into IP addresses. The ONS server accepts a tag as the input and

finds out the manufacturer’s information and the product infor-

mation for that tag. This information is transmitted back to the

host computer system (Step 3). Based on the information ob-

tained in steps 1 through 3, the host computer system decides the

type of transaction that needs to be performed (Step 4). Some

RFID transactions may generate alerts for the staff at the manu-

facturing facility, retail location, and the distributor’s warehouse

(Step 5). Alerts are required, for example, when the last item of

a particular type leaves the shelf and the shelf needs to be re-

plenished. The central server decides whether the inventory has

fallen below the reorder point, in which case, it may reorder the

item using integrated ERP systems between the manufacturer

and the retailer. For each transaction, the transaction details are

248 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 3, AUGUST 2007

Fig. 2. Processing of RFID tag-reads by the host computer system in the supply chain.

written into a transaction database (Step 6). It is possible to up-

date the ERP system and the Enterprise Operational Data Store

(EODS) with RFID transactional data on a regular basis.

IV. DATA NEEDED TO REPRESENT RFID TRANSACTIONS

To arrive at an enterprise data model for RFID transactions,

we need to consider what should be stored in response to each

RFID tag read. For each transaction, date-time-stamp at which

the transaction (event) takes place and the id of the reader

that read the tag (Reader_Id) are stored automatically. Hence,

these data items are not explicitly indicated in the following

discussion. For the item-creation transaction, the item’s RFID

tag is stored. Each item is created under a unique batch number.

These batch numbers can be programmed into the host com-

puter system that processes these transactions.

For the item-load-into-a-case transaction, the item’s RFID

tag (Product_EPC) and the case’s RFID tag (Case_EPC) are

stored. Similarly, for the case-load-into-a-pallet transaction, the

case’s RFID tag (Case_EPC) as well as the pallet’s RFID tag

(Pallet_EPC) are stored in the database. For the pallet-load-

into-a-truck transaction, in addition to the pallet’s RFID tag, the

distribution channel id needs to be captured. The distribution

channel id is associated with the delivery truck into which the

pallet is loaded. For the purpose of this paper, we assume that

the RFID tag reader’s id (Reader_Id) provides the unique distri-

bution id for each truck. We assume that the tag readers are fixed

for each truck and the IP address of the tag reader (Reader_Id)

serves as the distribution channel id.

Loading items into cases and cases into pallets is typically

accomplished in the assembly line as products (items) are man-

ufactured [4]. There is only one case in the assembly line into

which a given item can be placed and only one pallet into which

any given case is placed. By the position of the tag readers in the

assembly line and by processing only one case (or one pallet) at

any given time, it can be ensured that the association between

item tags and case tags (and between case tags and pallet tags)

is error-free.

For the pallet-placement-in-the-distributors-warehouse trans-

action, Pallet_EPC is captured. It is impractical to have just one

RFID tag reader for the entire warehouse, given the large ge-

ographical area of a warehouse. We assume that each location

(such as an aisle) is uniquely monitored by an RFID tag reader.1

Thus, the Reader_Id of the RFID tag reader uniquely provides

the location where the pallet is placed.

At the retail store, unloading of a pallet and removing

cases from pallets generate several RFID transactions [3]. For

the pallet-unload transaction, Pallet_EPC is captured. For un-

packing-a-pallet transaction, the pallet’s RFID tag (Pallet_EPC)

and the RFID tags of the cases (Case_EPC) in the pallet need

to be stored. For the unpacking-a-case RFID transaction, case’s
RFID tag (Case_EPC) and the EPCs of items (Product_EPC) in

each case need to be stored. In the retail store, item placement

into the retail store shelf and item movement from one shelf to

another generates transactions that require Product_EPC to be

stored.

Point of sale (POS) transaction requires the following data

items to be stored into the database: RFID tag of the item

(Product_EPC) and POS transaction id. Here the POS transac-

tion id is the id that uniquely identifies the sales transaction in

the retailer’s ERP system. ERP systems such as SAP readily

provide this information [6]. For discount retailer stores such

1In some instances, however, this assumption is not valid. In a retail store, an
item may be read by tag readers in adjacent isles in addition to the tag reader
designated for its aisle. A resolution mechanism should be used to address this
problem. For example, tag readers can keep track of signal strength, and in the
event that an item is read by multiple readers, the reader with the strongest av-
erage signal will be the designated reader; or the central computer with item
inventory database could designate the official tag reader. Another approach,
applicable when multiple units of the same kind are stocked, is one in which the
tag reader that scans most of the items of the same kind becomes the designated
reader for those items. Therefore, we assume that each item can be kept track
of by a unique tag reader.

CHALASANI AND BOPPANA: DATA ARCHITECTURES FOR RFID TRANSACTIONS 249

Fig. 3. Data model to hold RFID transactional data in manufacturer’s enterprise operational data store (EODS).

as SAM’s Club, customer id is available as the member id.

However, for stores such as Wal-Mart and Target, customer id

is available only through the POS transaction record based on

the credit card purchases. For the item-placement-in-the-re-

frigerator transaction in the consumer home, Product_EPC

needs to be captured. We assume that the Consumer_Id may be

uniquely identified by the Reader_Id. Capturing this may raise

privacy concerns. Such privacy issues may be addressed by

scrambling customer information and RFID tag values, which

can be unscrambled only with customer’s authorization [13],

[14]. We discuss how the privacy issues fit into the proposed

data models in Section V.

V. DATA MODELS FOR RFID TRANSACTIONAL DATA

The transactions described above are handled by several ta-

bles in the enterprise operational data store (EODS). These ta-

bles are depicted in Fig. 3 for the manufacturer. The Reader

table contains the Reader_ID for each RFID reader. This reader

ID is the primary key in this table; the reader ID can be the IP

address or a similar number assigned to each reader. In addition,

it contains the location of the reader. Reader_Location often is a

composite attribute containing the aisle and shelf and other data

that precisely identifies the location of the reader.

The product table has several attributes pertaining to the

product, such as the product description. Product_EPC is the

electronic product code (EPC) that uniquely identifies each

product and is embedded in the RFID tag. The pallet table

contains information on pallets including the EPC, description

of the pallet, and the unique batch number (Batch_Id) under

which the pallet was created. Similarly, the Case table contains

information on cases. A separate table maintains the relation-

ship between the pallet and the cases contained in that pallet.

This table, referred to as the Pallet_Case table, simply contains

Pallet_EPC and Case_EPC. Case_Item table maintains the data

on the items contained in each case. Recalled Pallets table

stores information on recalled pallets along with the reasons

for the recall.

Transaction type table is a lookup table that assigns trans-

action codes to each type of transaction (such as Point of Sale

or Shelf Replenishment or Item Placement). Each of the ta-

bles—Reader, Product, Case, Pallet, Transaction Type—have a

one-to-many relationship with the Transactions table, with the

many side of the relationship ending on the Transactions table.

The transactions table holds each RFID transaction at the en-

terprise level by recording the applicable data such as product

EPC, case EPC, pallet EPC, the reader ID, and the transaction

type.

Fig. 4 shows a similar data model for the retail store. The re-

tailer’s model has other attributes such as POS_Transaction_ID,

which is the ID that corresponds to the point-of-sale data record

for this item in the enterprise database. Maintaining POS_Trans-

action_ID in the transactions table is essential to identify the

customer to which the product with a specific RFID tag was

sold. Similar data models can be designed for the distributor.

The retailer and the distributor do not have information such as

Batch_Id.

The above data models allow tag modifications. For example,

an RFID tag can be rewritten by a reader in a process where the

old tag is replaced with a new tag. Rewriting an RFID tag allows

a tag to be reused. The table EPC_MODIFICATIONS contains

the old tag value and the new tag value. It also holds information

on the reader that modified the tag and date-time-stamp of tag

modification. This information is very useful, for example, in

validating the authenticity of a tag.

The data models discussed in this section, especially the

retailer’s EODS model, may include information on the cus-

tomer’s purchases by including the POS_Transaction_Id as

part of the RFID transaction table. This allows integration of

the RFID data with the ERP applications such as customer

sales. This raises consumer concerns on privacy of data related

to consumer purchases. Several technical solutions have been

proposed in the literature to mitigate such concerns [7], [13],

[14]. Some of the solutions include the following: 1) using

the EPC kill command, which kills the tag at the point of sale

250 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 3, AUGUST 2007

Fig. 4. Data model to hold RFID transactions in retailer’s Enterprise Operational Data Store (EODS).

so that the item in customer’s possession cannot be tracked

further; 2) encrypting tag information using cryptographic keys

and managing the keys needed for encryption and decryption;

3) giving each tag a set of pseudonyms and letting the tag cycle

through these pseudonyms each time the tag is read; and 4)

employing blocker tags that “spam” unauthorized readers so

that they receive false information on the tag’s identity. These

solutions can be incorporated into the proposed data models

by adding new tables and/or attributes to the data model as

discussed below.

• EPC kill command solution: Add attributes to the

RFID Transactions table to capture the following data:

EPC_Killed, which is a Boolean variable that indicates

whether the EPC tag has been killed or not. In this solu-

tion, EPC_Killed attribute will be set to true when there is

a non-null value for the POS_Transaction_Id.

• Encryption solution: Add a new table that maintains the

encryption and decryption keys for different types of tags.

This table may be designed so that different product types

have different keys.

• Tag Pseudonym solution: Add a new table

EPC_Pseudonym that has at least the following at-

tributes: EPC (this can be a pallet, case, or item EPC)

and the EPC_Pseudonym (which identifies a single

pseudonym for the corresponding EPC). The EPC and

the EPC_Pseudonym attributes together form the primary

key of the table; multiple pseudonyms can be added for a

single EPC by adding multiple rows to this table.

• Blocker tags solution: This solution is not based on keeping

additional information on the tag and hence does not neces-

sitate changes to the data models.

VI. RFID TRANSACTIONAL DATA VOLUME AND OPTIMIZATION

Let be the total number of items, the total number of cases,

and the total number of pallets. Also, let , , and denote

the reading frequency of items, cases, and pallets. If denotes

the number of bytes needed to store an RFID transaction and

the period during which tags are read, then the total storage

needed, , is estimated using

(1)

The storage needed for RFID transactions can be quite large,

even if we only consider the transactions in a retail store. For

example, if there are 100 000 items on the shelves at a retail store

location, and the items are read every 15 min, there are 400 000

transactions every hour. In addition, if each transaction requires

256 bytes of storage, the total storage requirement is 100 MB.

If the store operates on average for 15 h a day and the retailer

has 1000 such stores, the total storage required in the retailer’s
EODS is 1.5 terabytes a day, not considering the transactions at

the manufacturing facility and the distributor’s warehouse and

the transactions involving cases and pallets.

A. Graph Model for RFID Transactions

To understand the essential transactions that need to be kept

in the database, we propose a graph model to represent RFID

transactions of items. In this model, each node corresponds to

an RFID reader. There is a directed arc between node X (corre-

sponding to reader X) and node Y (reader Y) with label

if the tag is read by reader X at time and the same tag is read

by reader Y at time , where is the duration between

scans. If X and Y are different, then this activity represents the

movement of an item from one shelf (monitored by reader X)

to another shelf (monitored by reader Y) in a retail store. Other-

wise, it represents consecutive readings by the same tag reader,

which can be depicted by a self-arc in this graph model. Both

possibilities are indicated in Fig. 5.

In terms of storage requirements, each arc in this graph model

corresponds to two rows (entries) in the RFID_Transactions

table for the same tag. One row corresponds to

and , while the other row corresponds

to and .

A simple approach to reduce the amount of data storage

needed is to keep track of the first and last timestamps of

CHALASANI AND BOPPANA: DATA ARCHITECTURES FOR RFID TRANSACTIONS 251

Fig. 5. Graphical representation of reading an item by different tag readers and
by the same tag reader.

continuous readings of an item by a tag reader. In terms of our

graph notation, this can be restated as follows.

If there are multiple self-arcs on node X (corresponding to

reader X) with the following labels

, replace these self-arcs with one self-arc labeled

.

For easier reference, we denote this as Strategy 0. The total

storage requirement is given by

(2)

where , , are the number of tag readers through which an

item, case, or pallet passes through, , , and are the number

of items, cases, and pallets, is the number of bytes needed

for each transaction, is expected to be significantly smaller

than . As an example, if an item on the average is read by a

sequence of 200 tag readers between the time it is manufactured

and sold, the total amount of storage for 100 000 items equals

, which is approximately 10 GB,

for the complete life-cycle of the items in the supply chain. This

is in contrast to the requirement of 1.5 terabytes a day if no

optimization technique is applied to RFID transactions.

However, when an item is moved from one location to an-

other—for example, when the item is misplaced by a customer

in a retail store—it is not obvious how multiple tag reader scans

of the item over a period of time can be represented efficiently.

To present storage reduction techniques for this scenario, we

define a home location for each item, case, and pallet. For any

given RFID tag (corresponding to an item, case, or pallet), its

home location is defined as the location(s) where the item is ex-

pected to reside in before it leaves the premises. For example,

in a retail store, items are placed in specific shelves and are ex-

pected to stay in those shelves until they are picked up by cus-

tomers and eventually underwent point-of-sale transactions. For

the manufacturing facility and the distributor’s warehouse, typ-

ically there may be a specific home location for each type of

pallets. A home location thus can be defined as the set of RFID

tag readers corresponding to the shelves in which the item may

reside before it leaves the premises (manufacturing facility, re-

tail store, or distributor’s warehouse).

To discuss the optimization technique related to transactions

for misplaced items, we use a retail store scenario in the fol-

lowing discussion. We assume that there is a unique home RFID

tag reader for each item. (If multiple tag readers are used to

cover the home location of an item, then this requirement is

satisfied by assigning a common prefix value in their IDs.) A

misplaced item leaves its home location, perhaps by customers’
actions, and is brought back to its home location by retail store

Fig. 6. Graphical representation of reading a misplaced item by different tag
readers at different times.

personnel. While the item is away from its home location, it

is read by other tag readers causing RFID transactions for the

item. When the item is brought back to its home location, it cor-

responds to a multinode cycle in our graph model as illustrated

in Fig. 6. Node X denotes the tag reader at the item’s home loca-

tion, and the other nodes denote the other tag readers that tracked

the item during its traversal away from the home location.

An item may be misplaced more than once. The cor-

responding graph model for this item has more than one

multinode cycle. In that case, we believe it is of interest to only

keep the transactions related to the most recent traversal. Trans-

actions related to completed cycles may be removed unless

sabotage is suspected. In that case, these transactions should

be moved to another database suitable for security analysis.

Otherwise, the transactions of the completed cycles are not of

interest.

We consider two storage strategies to keep track of an item’s
traversal—misplaced and has not returned to its home location.

1) Strategy 1: Store the first and last time stamps of con-

tinuous scans of the item by its home location and the current

location.

This strategy is useful for low-cost items, for which it is only

necessary to know their current locations so that store personnel

can put them back at their respective home locations. The reason

for keeping track of the last time stamp at home location is to

determine the duration for which the item is misplaced and using

it in analyzing the sales potential of the item. This strategy can

be implemented using one table of storage by maintaining the

storage records for only the home location reader and the current

location reader and deleting the records for any other location in

the table. The record for the home location is always maintained

in this table, while the records for other locations are removed,

except for the record corresponding to the most recent read.

2) Strategy 2: Store the first and last time stamps of contin-

uous scans of the item by its home location and every location

it visited.

This strategy is useful for high-cost items, for which it may be

necessary to conduct security analysis to see if any foul play is

involved. It is also useful in manufacturing and distribution pro-

cesses, since analysis of pallet movements can facilitate evalu-

ation and improvement of operational efficiencies.

To understand the storage implications of the two strategies,

consider a retail store scenario where items reads are of primary

interest. Let be the probability that an item is misplaced and

be the average number of locations visited by a mis-

placed item before it is restored to its correct location. With

Strategy 1, the transaction storage given in (2) is increased by a

factor of , since at any given time, only the misplaced

items require additional storage. With Strategy 2, the storage

requirements are increased by a factor of , if only the

latest traversal of a misplaced item is to be kept. If it is desired

that all data on misplacements be preserved for post-incident

252 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 3, AUGUST 2007

Fig. 7. Enterprise architecture to store and process RFID-related transactions.

security/efficiency analysis, then the storage requirement is in-

creased by the number of times the item is misplaced.

To reduce the storage needed for Strategy 2, we propose a

storage optimization based on our graph model. We can repre-

sent the duration of an item’s stay at each location by a 3-tuple:

, where and denote the first and

last time stamps of continuous scans of the item by the tag

reader. We will use an extended record to store the 3-tuples cor-

responding to each location visited by the item during its mis-

placement. This extended record is kept in a separate table, and

its unique id is stored in the main record for the item. This re-

duces the number of transaction records kept in the main table

and the number of times a table needs to be accessed to analyze

the traversal of an item.

VII. SYSTEM ARCHITECTURES FOR RFID TRANSACTIONS

Fig. 7 shows an information system architecture that incor-

porates processing modules for RFID transactions. This archi-

tecture model suggests an enterprise-level architecture that in-

tegrates the ERP modules and the RFID transaction processing

modules. By this enterprise-level architecture, we do not mean

a geographically centralized architecture. Different components

of this architecture shown in Fig. 7 may reside at different loca-

tions: for example, the ERP processing module may be located

in New York, while the RFID processing module may be located

in Chicago. However, the individual pieces of data required for

processing are not decentralized in this architecture. That means

the complete data belonging to the RFID transactions table are

available in one location for each player in the supply chain.

That is, the RFID transactional data for the retailer are stored in

the EODS of the retailer, while RFID data of the manufacturer

are stored in the EODS of the manufacturer. Our proposal for

an enterprise-level architecture has the following advantages.

1) Consistent, Integrated View of Data: At any given time, all

the RFID data are available to any application at the enterprise

level.

2) Fast Access to Data: When the data are distributed

throughout the supply chain, to obtain relevant pieces of

information for applications such as product recall requires

a significant amount of time. On the other hand, an enter-

prise-level data architecture provides information on items,

warehouses, and the customers who purchased a recalled item

very quickly.

3) Ease of Extension From the Existing Architectures: Al-

ready companies have spent billions of dollars in implementing

ERP architectures. To implement decentralized middleware de-

vices that hold RFID and related data, the cost of the infrastruc-

ture may increase substantially. On the other hand, the architec-

ture shown in Fig. 7 works with and extends the existing ERP

architectures with nominal increases in cost.

4) Fast Updates of the EODS With RFID Data: Using the

data optimization strategies discussed in Section VI, the storage

requirements for RFID transactions can be significantly reduced

to just a few gigabytes for each tag. The EODS can be easily

updated with RFID data on a regular basis. The advantage of

making the RFID data available in the EODS is that the most

recent data are readily available for applications such as product

recall and retail store shelf replenishment.

The architecture model shown in Fig. 7 is applicable to any

entity in the supply chain. For example, the RFID data store

indicated in Fig. 7 implements the data model in Fig. 3 if this

architecture is used for the manufacturer.

Fig. 8 shows how these architectures can be integrated be-

tween the manufacturer, retailer, and distributor. In the model

indicated in Fig. 8, each entity in the supply chain holds its own

data on RFID transactions. FW refers to Firewall, WS to Web

Server, and WAS to Web Application Server. For simplicity, the

ERP and RFID application components are combined together

and hosted under one Web Application Server. The manufac-

turer, distributor, and retailer allow each other access by pro-

viding secure login with a password for each partner. Fig. 8 de-

picts how manufacturer, distributor, and retailer can cooperate

together and exchange data among themselves to accomplish a

given task. For example, if a product produced by the manu-

facturer needs to be recalled, the enterprise systems at different

locations interact together to accomplish this task.

The product recall application is discussed in more detail in

Section VII-A. The nodes labeled with 2, 3, 8, and 9 correspond

to the steps of the product recall application and are explained

in more detail in Section VII-A.

CHALASANI AND BOPPANA: DATA ARCHITECTURES FOR RFID TRANSACTIONS 253

Fig. 8. Interrelation and access between the enterprise systems of the manufacturer, the retailer, and the distributor.

A. Prototype Implementation

We implemented a prototype based on the data models and

the data architectures presented in this paper. We worked with

Teska and Associates, a consulting company based in Racine,

WI to implement the prototype [15]. In this prototype, we have

used fictitious data so that no single company’s data are re-

vealed. Also the security layer is disabled so that the readers

can experiment with the prototype. The prototype has the fol-

lowing four major functions.

• Show Product, Case, Pallet Details by EPC: The user can

type an EPC and find the details on the product (or case or

pallet) for that EPC. The detailed report for that EPC in-

cludes all the RFID transactions for the EPC including the

date-time stamp and the corresponding reader information.

• Search for Products By Product Name: The user can select

a product name and find all product EPCs that correspond

to that product. The user can then obtain a drill-down report

on a single EPC.

• Search for Transactions By Reader: The user can select a

reader by its location and find out all RFID transactions

generated by that reader.

• Search for Transactions by Transaction Type: The user

can select a transaction type (such as item creation, pallet

shipped) and find out all RFID transactions that correspond

to that transaction type.

This prototype was implemented using Java Server Pages and

the enterprise Java technology for the programming and presen-

tation logic. MySQL database was used to implement the data

models indicated in Figs. 3 and 4.

For the prototype implementation, we labeled the data needed

by the application based on how frequently the data changes.

The labels of static data and dynamic data are given according

to the following principles.

• Label the data that change frequently as “dynamic” data.

Examples of such data include RFID transactional data

since new transactions are generated on a continuous basis.

• Label the data that change infrequently as “static” data.

Examples of these data include the readers in a retail store

and transaction types.

We designed the prototype such that the static data are read

and stored by the application in memory cache at the beginning

of the application. The dynamic data in the prototype are read

by the application on a demand-basis as and when a customer

needs it. Since dynamic data are related to RFID transactions,

we cannot pre-cache dynamic data. To speed up the process of

reading dynamic data from the data stores, our prototype im-

plements effective strategies for database connection pooling.

The following are a couple of lessons that were learned from

the construction of the prototype and its marketing to regional

companies.

1) Lesson 1: While the generic data models described in

the previous sections are applicable to most corporations, they

need some changes for implementation at any given corporation.

This is because different corporations employ different software

technologies and ERP technologies and integration of the RFID

transactional data stores with the ERP systems differs from one

corporation to another corporation. For example, many organi-

zations have implemented the SAP software as their ERP soft-

ware, while some other organizations use systems such as Baan,

PeopleSoft, and other Oracle products. The data models and the

system architecture models we propose can be applied to any

ERP implementation, in general, with some customization as

needed. The communication between the RFID data stores and

the current ERP implementation can be easily facilitated using a

clearly defined eXtensible Markup Language (XML) interface.

XML documents based on the RFID data models discussed in

this paper can be easily implemented at the database architecture

level by the commercially available relational database products

such as Oracle or IBM DB2.

2) Lesson 2: There is no uniform method that corporations

currently use to gather and store RFID data. For example, some

companies have even used spreadsheets (based on software such

as Microsoft Excel) to maintain RFID tag data. No comprehen-

sive data models are being used by supplier companies to store

RFID transactional data. The data models we presented in this

paper are a big enhancement to the ad-hoc methods that different

corporations are using to gather and store RFID transactional

data. Implementation of the RFID data models discussed in this

254 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 3, AUGUST 2007

Fig. 9. Process steps for accomplishing product recall by the manufacturer.

paper is relatively easy, and it can be accomplished with minimal

changes to the organization’s ERP implementations. Most orga-

nizations, even when they completely endorse the use of RFID at

pallet, case, or item level, are unsure of future applications—be-

yond the current tracking applications—of the RFID data they

collect. In such cases, we suggest implementing the data archi-

tectures developed in this paper and gathering the RFID transac-

tional data into an enterprise-level data warehouse for possible

future data mining and business intelligence applications.

VIII. INDUSTRIAL APPLICATIONS OF RFID DATA

The RFID data architectures presented in this paper enable

businesses to have a more complete view of the supply chain at

any given time. Questions such as

• Where exactly is a given pallet, case, or item located?

• How fast are items being sold at retail stores?

• How long are pallets, cases, or items held at a distribution

site or a retail store?

can be answered within seconds using the RFID data archi-

tectures described in this paper. Obtaining such information

without using the data models and architectures presented in

this paper is very cumbersome, if not impossible. We next

present two applications of the data architectures presented in

this paper.

A. Application: Product Recall Initiated by Manufacturer

Product recall may be generated by different events: mal-

function of an assembly line, bad raw materials, and improper

storage of pallets of items. Malfunction of an assembly line re-

quires product recall of all items manufactured by the assembly

line in a given time period. Improper storage of items requires

recall of items in specific pallets, while the use of improper raw

materials requires recall of all items that used those raw mate-

rials. Product recall may be triggered by the manufacturing fa-

cility if, for example, it is discovered that the assembly line did

not function according to specification for a given time period.

Governmental bodies such as the United States Food and Drug

Administration (FDA) may also force a product recall.

We discuss the processes involved when the product recall

is initiated by the manufacturer. For the purposes of this discus-

sion, we assume that there is a PRODUCT RECALL application

module on the manufacturer, distributor, and the retailer infor-

mation systems. This PRODUCT RECALL application module

is one of the components indicated in the “Application Compo-

nents for RFID Data” in Fig. 7. We also assume that the man-

ufacturer, distributor and retailer PRODUCT RECALL mod-

ules have access rights to each other. Fig. 9 shows a step-by-

step procedure for accomplishing product recall initiated by the

manufacturer. Manufacturer’s process simply logs into the re-

tailer’s and distributor’s PRODUCT RECALL processes and

sends them the Pallet_EPCs of the pallets to be recalled (Steps 2,

3, 8, 9). The communication between the manufacturer’s enter-

prise system and the retailer’s enterprise system takes place in

Steps 2 and 3, and this is indicated in Fig. 8 by dashed lines. Sim-

ilarly, the communication between the manufacturer’s enter-

prise system and the distributor’s enterprise system takes place

in Steps 8 and 9. The retailer’s process generates reports of the

CHALASANI AND BOPPANA: DATA ARCHITECTURES FOR RFID TRANSACTIONS 255

items to be recalled and whether any such items are sold to cus-

tomers using a sequence of steps (Steps 4 through 7). Similar

processing takes place in the distributor’s PRODUCT RECALL

application in Steps 10 and 11. Steps 6 and 7 use customer in-

formation needed for notifying customers who purchased the re-

called products. Such identification may invariably lead to pri-

vacy concerns. To alleviate such privacy concerns, the retailer

should consider a policy of maintaining this information only

for those customers who agree to such tracking.

B. Application: Shelf Replenishment

Frequently, a retailer may have several locations in a city, but

one of the locations may run out of an item that a customer

needs. In such circumstances, the customer may simply choose

to go to a competing retailer to obtain the same. A few other

times, the customer may ask the retail store clerk to check other

stores for the item. The store clerk checks the inventory and

informs the customer which location has that item. However,

the clerk typically does not guarantee that the item is not mis-

placed and that it is actually available at the designated place in

that store without speaking to the personnel at that other store.

Therefore, upon request, the clerk calls that location and speaks

to someone at that location to hold the item for the customer.

The customer then travels to that retail location and obtains

the item. In many cases, the customer may prefer to have the

item transferred to the store he/she is shopping at and pick it up

the next day. This process requires manual intervention and is

error-prone. With RFID implementations, this can be automated

and the items may be transferred from location to another to im-

prove the speed and accuracy with which the customer’s request

is satisfied.

We first analyze the time it takes to replenish an item, when

the retail location runs out of that item. We also look at the

cost of replenishment. For each case, we present a probabilistic

model to estimate the benefits of RFID implementation; such an

analysis can be used by both the vendors of RFID products and

their potential customers.

1) Analytical Model to Estimate Shelf Replenishment Time:

Let denote the number of store locations among which items

may be transferred. We denote the cost of transferring an item

from one retail store location to another by . The stores are

denoted as . Let the number of units of a partic-

ular item at store be at some particular time (for example,

at the beginning of the week after weekly deliveries from the

warehouse/distributor). The number of customers purchasing

or attempting to purchase the item may be modeled using the

Poisson process [10]. (The Poisson process is known to accu-

rately model several natural phenomena such as the number of

incoming phone calls to a trunk switch and the number of job

arrivals to a file server.) Without loss of generality, let us as-

sume that store is sold-out of the item in question at time

. Then the rate at which the item is purchased by customers is

.

Using this information, the number of units sold at other lo-

cations may be modeled as follows. The probability that some

units sold at store is the same as the probability that

there are number of customers purchasing the item. The prob-

ability that the last unit of the item is sold, however, includes the

Fig. 10. Average time to replenish a sold-out item from one of the other lo-
cations or from the warehouse/distributor. The time to transfer an item from
another location is 1 day, and the probability that a product is sold out is 0.1.

probability that or more customers purchased or wanted to

purchase the item. Therefore, the number of units of the same

item sold at another store, say, , in time interval is a

modified Poisson distribution with the following the probability

mass function:

The first equation gives the Poisson probability of selling

units, which is the same as the probability that customers

purchased the item. The second equation is the probability that

there are or more customers who attempted to purchase the

item (but only the first are successful). The third equation

indicates that the probability of selling more than items at

the retail store location is zero.

Let be the probability that a certain item is not sold-out at

location . We can estimate as

For simplicity, let us assume .

Therefore, is the probability that this item is also sold-out

at any other chosen retail store. Let be the time to transfer an

item from one location to another. Let be the time required to

move an item from a distributor/warehouse to a retail location.

Probability that the item is sold-out at each of the other loca-

tions is . Hence, the probability that the item is found

at one or more of the other locations is

Fig. 10 presents a graph for for various values of and

with day and .

2) Analytical Model to Estimate Shelf Replenishment Cost:

To estimate the cost of replenishing a sold-out item by obtaining

from another store or from the distributor, we need additional

notation. Let be the cost of transferring the sold-out item from

256 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 3, AUGUST 2007

the warehouse/distributor to the store, the cost of transfer-

ring the same from another location, and the cost of empty

shelf-space (in terms of lost sales). If a sold-out item is always

replenished by obtaining more units from the warehouse/dis-

tributor, then the cost of replenishment is . However,

to reduce the cost of an empty shelf, the item may be transferred

from another location that has extra units

Let this probability be denoted as . Let denote the prob-

ability that one or more stores have at least two units of the item

sold-out at . It can be calculated as .

If is large, then is nearly 1

where is the time to transfer an item from one location to

another, the time required to move an item from a distributor/

warehouse to a retail location, and , , and are as defined

above.

The first term is the cost of transferring the item from the

distributor since a sold-out item needs to be replenished at one

store or another. The second term estimates the weighted cost of

an empty shelf is if the item has to be sent by the distributor and

none of the other stores have spare units of the item; the third

term estimates the weighted cost of transferring the item from

another location and the cost of an empty shelf in the mean time.

It is cheaper to transfer from another location, if and

is high.

3) Implementation Using the Proposed Data Model: We now

describe how shelf replenishment can be implemented using the

data architectures described in this paper. Similar to the product

recall application, we assume that there is a SHELF REPLEN-

ISHMENT application module on the manufacturer, distributor,

and the retailer information systems. This SHELF REPLEN-

ISHMENT application module is one of the components indi-

cated in the “Application Components for RFID Data” in Fig. 7.

We also assume that the manufacturer, distributor, and retailer

SHELF REPLENISHMENT modules have access rights to each

other. By searching the Product table and the RFID_Transac-

tions table in Fig. 4, the retailer’s SHELF REPLENISHMENT

application can identify the retail locations at which an item

is available. RFID_Transactions table is crucial for this iden-

tification, since it allows the items to be tracked even when

they are misplaced. Note that with either storage optimization

strategy discussed in Section VI-A, every item’s current loca-

tion is always tracked; this allows the retailer’s application to

accurately identify the number of items available at any given

location. If the item is available at one or more retail locations,

the retailer’s application can check which of the locations are

closer to the location where the item is completely sold out.

If the retailer’s SHELF REPLENISHMENT application does

not find any suitable retail store from which the item can be re-

plenished, it checks with the manufacturer’s SHELF REPLEN-

ISHMENT application to identify the pallets that contain the

products required by the retail store. Manufacturer’s SHELF

REPLENISHMENT process identifies the pallets for the prod-

ucts by searching/joining the Pallet, Case, Product, Pallet_Case,

and the Case_Item tables of the data model in Fig. 4. Retailer’s
SHELF REPLENISHMENT process then interacts with the dis-

tributor’s SHELF REPLENISHMENT application module to

identify a distributor’s warehouse where the pallets indicated by

the manufacturer are located. The retailer’s SHELF REPLEN-

ISHMENT process then requests replenishment from a nearby

warehouse.

IX. RELATED WORK

Perhaps the previously published work closest to ours is the

paper by Wang and Liu [16]. Their data models are similar

to ours. However, our work differs from their paper in several

aspects. For example, we address supply chain issues such as

product recall and shelf replenishment and show how dynamic

modifications to tags (in the case of read-write tags) can be

handled. Another difference is Wang and Liu’s data optimiza-

tion techniques are rule-based; rules are placed to filter data

based on readings of tags by the readers or to change the ending

time-stamp of RFID observations. For example, in Wang and

Liu’s approach, duplicate readings from multiple readers within

a given time period can be eliminated by placing a rule to ignore

the reading by one reader. Our optimization techniques focus on

applications such as tracking misplaced items. The concept of

home location for an item is required for re-shelving misplaced

items. Similarly, finding the history of all tag reads is important

for a lost item. With a filter that discards all observations within a

time period except the observation of one tag reader, as proposed

by Wang and Liu, it is impossible to obtain a history of the item’s
traversal through the retail store. Our graph-based optimization

techniques optimize RFID observation data while maintaining a

history of the tag reads by multiple successive readers. The data

optimization techniques that we present in this paper are based

on graph models where the successive tag reads are indicated

by the traversal of the graph. We indicated different strategies

to optimize data volumes and discussed the differences between

these strategies. We also presented models to analyze the bene-

fits of faster product replenishment at retail stores.

The problem of managing RFID data has also been pointed

out by Sarma [17]. Sarma’s article highlights issues such as un-

reliable reads and high-volume of RFID data and briefly dis-

cusses solutions such as ignoring intermittent appearances of

tag reads. In contrast, we address the issue of data volume ex-

tensively and present graph models to describe our optimization

strategies. Such a theoretical model is helpful in understanding

the problem at a more abstract level.

Traub et al. present EPCglobal architectural standards for

RFID data [18]. As indicated by them, the standard gives the

interfaces that the end user’s components need to implement

but does not define the system architecture (see [18, p. 22]). We

presented system architectures in Section VII that enable supply

chain applications such as product recall and automatic shelf re-

plenishment. Our work complements the work presented in [18]

and assumes that the ERP implementations are already in place

for the organizations involved in the supply chain. Since organi-

zations have already collectively spent hundreds of millions of

CHALASANI AND BOPPANA: DATA ARCHITECTURES FOR RFID TRANSACTIONS 257

dollars in ERP implementations in recent years, it is of impor-

tance to suggest RFID system architectures that work with ex-

isting ERP implementations. Section VII discussed such RFID

system architectures and a prototype implementation based on

the ideas in this paper.

X. CONCLUSIONS

In this paper, we considered a supply chain comprised of the

manufacturer, distributor, and the retailer. We first discussed

different events that produce RFID transactions in the supply

chain. Then we presented data models to store the data gen-

erated by these transactions. We indicated how processing of

these transactions can be accomplished at the enterprise level.

We discussed storage requirements for RFID transactional data,

and developed strategies to reduce these storage requirements

significantly. We discussed how RFID data models presented in

this paper can be useful for applications such as product recall

by the manufacturer and for faster shelf replenishment. Analyt-

ical models for costs and benefits corroborated by results from

practical implementations will help convince organizations to

adopt RFID-based technologies faster. Also business cases that

discuss the return on investment (ROI) with RFID technologies

may shed more light on the benefit of RFID in the supply chain.

In academia, several labs are conducting experiments with RFID

tags and data generated by those tags. Some of these studies in-

clude the performance of the RFID tag reader networks and the

reliability of the overall RFID data architectures in the supply

chain. Best practices in designing RFID tag reader networks

and integrating the RFID tag readers with the enterprise archi-

tectures is another strong area for future research. Coping with

faults in the RFID networks in the supply chain is yet another

area for future research.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

whose suggestions helped improve the quality of this paper.

REFERENCES

[1] D. Brock, “The Physical Markup Language: A Universal Language
for Physical Objects,” White Paper, MIT Auto-Id Center, 2001, MIT-
AUTOID-WH-003.

[2] G. Borriello, “RFID: Tagging the world,” Commun. ACM (Guest Edi-
torial to RFID Special Issue), vol. 48, no. 9, pp. 34–37, Sep. 2005.

[3] S. Chalasani and J. Sounderpandian, “RFID for retail store information
systems,” in Proc. 10th Americas Conf. Information Systems (AMCIS

2004), New York, Aug. 5–8, 2004.

[4] S. Chalasani, R. V. Boppana, and J. Sounderpandian, “RFID tag reader
designs for retail store applications,” in Proc. 11th Americas Conf. In-

formation Systems (AMCIS 2005), Omaha, NE, Aug. 11–14, 2005.
[5] B. Eckfeldt, “What does RFID do for the consumer?,” Commun. ACM,

vol. 48, no. 9, pp. 77–79, Sep. 2005.
[6] M. Mandviwalla and Z. Asif, “Integrating supply chain with RFID: A

technical and business analysis,” Commun. Assoc. Inf. Syst., vol. 15,
no. 24, Mar. 2005.

[7] M. Ohkubo, K. Suzuki, and S. Kinoshita, “RFID privacy issues and
technical challenges,” Commun. ACM, vol. 48, no. 9, pp. 66–71, Sep.
2005.

[8] M. Rieback, B. Crispo, and A. S. Tanenbaum, “Is your cat infected with
a computer virus?,” in Proc. 4th Annu. Int. Conf. Pervasive Computing

and Communications (PerCom), Pisa, Italy, Mar. 2006.
[9] K. Traub, “Radio frequency identification at enterprise scale,” in Proc.

2004 Computer Measurement Group (CMG-2004) Conf., Dec. 2004.
[10] K. Trivedi, Probability and Statistics with Reliability, Queuing and

Computer Science Applications, 2nd ed. New York: Wiley, 2002.
[11] B. Nath, F. Reynolds, and R. Want, “RFID technology and applica-

tions,” Pervasive Comput., pp. 22–69, Jan.-Mar. 2006.
[12] S. Chalasani and R. V. Boppana, “Software architectures for e-com-

merce computing systems with external hosting,” Int. J. Comput. Appl.,
vol. 27, no. 3, pp. 190–198, 2005.

[13] A. Juels, “RFID security and privacy: A research survey,” IEEE J. Sel.

Areas Commun., vol. 24, no. 2, pp. 381–394, Feb. 2006.
[14] S. Garfinkel, A. Juels, and R. Pappu, “RFID privacy: An overview of

problems and proposed solutions,” IEEE Security Privacy, pp. 34–43,
May/Jun. 2005.

[15] Demonstration of a Data Architecture for RFID Implementation,
Teska Associates, 2006. [Online]. Available: http://rfid.teska.net/stan-
dard.jsp.

[16] F. Wang and P. Liu, “Temporal management of RFID data,” in Proc.

31st VLDB Conf., Trondheim, Norway, 2005, pp. 1128–1139.
[17] S. Sarma, “Integrating RFID,” ACM Queue, pp. 50–57, Oct. 2004.
[18] K. Traub et al., The EPCglobal Architecture Framework, EPC-

Global Document, 2005. [Online]. Available: http://www.epcglob-
alinc.org/standards/Final-epcglobal-arch-20050701.pdf.

Suresh Chalasani (M’91–SM’05) received the Ph.D. degree in computer engi-
neering from the University of Southern California, Los Angeles.

He is an Associate Professor of business at the University of Wisconsin-Park-
side, Kenosha, WI, where he specializes in supply chain management systems,
e-commerce, healthcare management, and bioinformatics.

Dr. Chalasani was a recipient of multiple research and instructional grants
from the National Science Foundation and the University of Wisconsin System.

Rajendra V. Boppana (M’91–SM’99) received the B. Tech. degree in elec-
tronics and communications engineering from Mysore University, Mysore,
India, in 1983, the M. Tech. degree in computer technology from the Indian
Institute of Technology, Delhi, India, in 1985, and the Ph.D. degree in computer
engineering from University of Southern California, Los Angeles, in 1991.

Since 1991, he has been a faculty member in the Department of Computer
Science at the University of Texas, San Antonio. His research interests are
in parallel and distributed computing, performance evaluation, computer net-
works, and mobile computing and communications. He published extensively
and served on the program committees of several conferences in these areas.
His current and previous research has been supported by several grants from
NSF, DOD, AIA, and other federal funding agencies.

