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[1] A methodology is described for assimilating observations in a steady state two‐
dimensional horizontal (2‐DH) model of nearshore hydrodynamics (waves and currents),
using an ensemble‐based statistical estimator. In this application, we treat bathymetry as a
model parameter, which is subject to a specified prior uncertainty. The statistical estimator
uses state augmentation to produce posterior (inverse, updated) estimates of bathymetry,
wave height, and currents, as well as their posterior uncertainties. A case study is presented,
using data from a 2‐D array of in situ sensors on a natural beach (Duck, NC). The prior
bathymetry is obtained by interpolation from recent bathymetric surveys; however, the
resulting prior circulation is not in agreement with measurements. After assimilating data
(significant wave height and alongshore current), the accuracy of modeled fields is
improved, and this is quantified by comparing with observations (both assimilated and
unassimilated). Hence, for the present data, 2‐DH bathymetric uncertainty is an important
source of error in themodel and can be quantified and corrected using data assimilation. Here
the bathymetric uncertainty is ascribed to inadequate temporal sampling; bathymetric
surveys were conducted on a daily basis, but bathymetric change occurred on hourly
timescales during storms, such that hydrodynamic model skill was significantly degraded.
Further tests are performed to analyze the model sensitivities used in the assimilation and to
determine the influence of different observation types and sampling schemes.
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1. Introduction

[2] Many nearshore circulation models utilize the depth‐
and wave‐averaged equations of motion, coupled with a
“wave driver” for transfer of momentum from incident
gravity waves to surf zone currents. When validating these
models (i.e., assessing their ability to match observations),
one must consider two sources of error: mis‐specification of
physical processes in the model, and errors in model inputs,
namely the underlying bathymetry and boundary conditions.
Here we will refer to these as “process error” and “input
error”, respectively.
[3] The majority of previous studies [e.g., Longuet‐

Higgins, 1970; Thornton and Guza, 1986; Reniers and
Battjes, 1997] have focused on minimizing process error,
leading to improved parameterizations and empirical cali-
brations now standard in nearshore models. Meanwhile, the
potential role of input error is often acknowledged but tends
to be difficult to quantify, let alone to correct. An important
example, which is the focus of this paper, is the presence of
bathymetric uncertainty when modeling surf zone currents.

[4] Bathymetric input error may appear in various forms.
In the extreme case, where the bathymetry has not been
measured, one is forced to assume some reasonable beach
shape for the model. Even when measurements are avail-
able, they are subject to instrument error. Spatial under-
sampling may not resolve high wave number bathymetric
features [Plant et al., 2002], and the resulting spatial
smoothing may affect model outputs [Plant et al., 2009].
Temporal undersampling may also occur, as beach changes
occur on daily or even hourly time scales. In field situations,
these various sources of bathymetric input error may be as
important as process error as constraints on model accuracy.
[5] In this study, we address the issue of bathymetric input

error from two perspectives. First, we seek to quantify the
sensitivity of the model to errors in bathymetry. Second, at
the same time, we evaluate a method for indirectly cor-
recting bathymetric errors, by incorporating in situ mea-
surements of waves and currents. These two perspectives
encompass data assimilation and bathymetric inversion.
[6] In previous data assimilation efforts, Feddersen et al.

[2004] used a variational approach [Bennett, 2002], deriv-
ing adjoint equations for a surf zone model involving line-
arized alongshore‐uniform dynamics, to assimilate pressure
and bi‐directional current (PUV) measurements on a nat-
ural beach. Kurapov et al. [2007] extended this approach
to the nonlinear two‐dimensional horizontal (2‐DH) time‐
dependent equations, and used the process of nonlinear shear
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instability in alongshore currents [Slinn et al., 1998] as a test
bed for variational data assimilation. Both these studies
focused on model sensitivity in the form of forcing errors,
which we would characterize as process error. Feddersen
et al. [2004] also considered sensitivity to the bottom friction
coefficient, i.e., input error.
[7] Regarding the topic of surf zone bathymetric inver-

sion, the majority of previous studies have focused on the
technical challenge of observing surface wave properties,
which are often related to water depth using simple physical
models. For instance, previous studies have estimated
bathymetry using the linear wave dispersion relationship
[Stockdon and Holman, 2000], the nonlinear wave disper-
sion relationship [Catalan and Haller, 2007], or wave
refraction [Splinter and Holman, 2009]. Wave breaking
dissipation proxies have also been used in combination with
empirical models [Aarninkhof et al., 2005] to infer bathy-
metric changes.
[8] Recently, VanDongeren et al. [2008] have applied

data assimilation techniques to the problem of bathymetric
inversion, providing a fresh perspective on this long‐
standing problem. Their method employs a sequential least
squares estimator, which assimilates multiple remote sens-
ing (video and radar) wave observations. While not as
sophisticated as the variational schemes of Feddersen et al.
[2004] or Kurapov et al. [2007], their technique stems from
a comparable approach. Adjoint equations are derived, in
this case, from simple localized models for the observed
physical processes. Spatial covariance is neglected (although
this may be unimportant for the spatially‐dense observations
being considered), and temporal covariance is approximated
empirically. Despite these simplifications, their results show
the most robust and reliable bathymetric inverse to date.
This reliability stems from the important step of acknowl-
edging data errors as well as model errors, and covariances
thereof, in order to form a statistically optimal estimate.

[9] The present work is conceptually similar to that of
VanDongeren et al. [2008], but with some key differences.
First, our method quantifies model sensitivity using statis-
tical, rather than analytical, means. This facilitates the
assimilation of arbitrary geophysical variables, without
having to compute their derivatives with respect to depth (i.e.,
adjoint equations). Second, we incorporate spatial covari-
ance, and hence can compute nonlocal corrections based on
local in situ measurements. Finally, we put special emphasis
on bathymetric sensitivity and its role in the inversion
problem.
[10] The paper is organized as follows: section 2 introduces

the in situ data set. Section 3 presents the data assimilation
methodology: the parameter estimation scheme, the hydro-
dynamic model, and the technique used to represent bathy-
metric uncertainty. Section 4 gives examples of the
application of that methodology to field data. Sections 5 and 6
summarize and discuss the results, and give conclusions.

2. Observations

[11] In this study, we will use a subset of the data col-
lected during the SandyDuck ’97 (SD97) experiment (Duck,
NC); Figure 1 shows the experimental layout. Between 22
September and 31 October, the U.S. Army Corps of
Engineers Field Research Facility (FRF) conducted 38
daily bathymetric surveys in the region shown (except for
19 October), using the CRAB survey vehicle [Birkemeier,
1984] to collect multiple across‐shore transects of
bathymetry spaced 25–50 m apart. These surveys were
interpolated onto a regular grid with 5 m and 10 m
spacing in the across‐shore and alongshore directions,
respectively, using a quadratic loess filter [Plant et al.,
2002] with interpolation filter length scales of 200 m in
the alongshore direction, and 5 m in the across‐shore
direction. Additional bathymetry was incorporated from
larger‐scale surveys conducted on 16 September and
23 October, such that the total model domain was 0 ≤ x ≤
900 m and 0 ≤ y ≤ 1000 m; the detailed daily surveys were
stitched on top of the larger‐scale bathymetry using weighted
interpolation, i.e.,

h ¼ wh0 þ 1� wð Þh1; ð1Þ

where h0 is the larger‐scale bathymetry, h1 is the detailed
minigrid bathymetry, and w is a weighting function which
ramps from 0 to 1 over 50m at each edge (using a tanh shape).
Herein, Figures 1, 4, 5, 7, 9–11, 13, and 14 will present
bathymetric data in terms of distance from the National
Geodetic Vertical Datum (NGVD) to the seafloor, or zb; that
is, h = −zb + zt, where zt is the still water level (which changes
with time due to tide and large‐scale surge).
[12] An offshore array of 15 bottom‐mounted pressure

gages (labeled “8 m array” in Figure 1 [Long, 1996]) pro-
vided frequency‐directional wave spectra at 3 h intervals,
which are used to specify the offshore boundary for the
wave model (section 3.3). When the model time is not
centered on a 3‐h collection time, a time‐interpolation is
applied using the scheme described in the SWAN wave
model user manual (www.wldelft.nl).
[13] In situ measurements from sonar altimeters, pressure

gages, and bidirectional current meters (SPUV) were provided

Figure 1. (top) Plan view map of observational array. (bot-
tom) Side view, with depth transect from 22 September
survey, showing typical bathymetric profile and sensor posi-
tions in water column. Still water level ranged from –0.5 to
1.5 m NGVD during the experiment.
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at the locations shown in Figure 1 [Elgar et al., 2001]. These
were processed to obtain the significant wave height Hmo

(17 min intervals), time‐averaged currents (17 min intervals),
and estimated depths (3 h intervals). The depth measure-
ments were further processed by comparing to the daily
bathymetric surveys; offsets which persisted for five or more
days were removed from the sonar altimeter data, in cases
where the offset was significant (using Welch’s t test for
significance of bias, with n ≥ 5 and p < 0.05) and the corre-
lation was significant and positive (p < 0.05, r >

ffiffiffiffiffiffiffi
0:1

p
). These

corrections were typically small (less than 20 cm) and in
deep water (depths greater than 3 m). Agreement with the
CRAB surveyed depths was otherwise excellent (root‐mean
square difference was 7.3 cm).

3. Methodology

[14] In this section, we outline a methodology for assim-
ilating data and generating bathymetric inversions based on
point observations of wave height and alongshore current.
As a general overview, the method involves the following
steps:
[15] 1. Generate an ensemble hf (f for “forecast,” follow-

ing the standard notation) consisting of N realizations of
bathymetry (in our application, N = 150). The distribution of
the ensemble should be representative of prior knowledge
and uncertainty (section 3.2).
[16] 2. Apply the hydrodynamic numerical model

(section 3.3) to each of theN bathymetric ensemble members,
assuming other inputs are perfect (e.g., wave spectrum at
offshore boundary), and store the output.
[17] 3. Compute the sample mean and covariance from the

ensemble of modeled fields.
[18] 4. Generate an updated (posterior) state ya (a for

“analysis,” equation (3)), which includes bathymetry, wave
height, currents, and calculate the posterior uncertainty Cyy

a

(equation (5)).
[19] We note this methodology is not particularly new or

novel: Mourre et al. [2004] have previously applied
ensemble‐based methods (steps 1–3) to examine bathy-
metric sensitivity in a regional ocean model. The equations
for optimally updating the model (step 4) are following a
vast and ongoing literature on data assimilation using
ensemble‐based methods, for example the Ensemble Kalman
Filter (EnKF) (see Evensen [2006] on which the present
method is largely based, as well as references therein). The
following section reviews the existing methodology, as it
applies to the unique problem studied here: nearshore
bathymetric sensitivity and inversion.

3.1. Theory for Bathymetric Inversion

[20] To begin, we define some notation which will be
useful in what follows. Suppose, for simplicity, we are
dealing with a single observable v. In later sections we will
in fact observe and assimilate two variables, alongshore
current and wave height, but the extension is straightfor-
ward: simply augment v with Hmo. We are also given a
model, v = G(h), which makes predictions of v on a discrete
spatial grid, given the water depth h. Here we have assumed
the model (including all boundary conditions and inputs
other than h) is “perfect,” so the error of the model pre-
diction is due only to errors in h. To that point, we define the

model input bathymetry h = ht + p, where ht is the true
bathymetry. When the error p is included in the model input,
the resulting prediction is v = G(ht + p) = vt + q.
[21] Our goal is to obtain an optimal estimate of the true

field on the model grid, vt = G(ht), given a set of K ob-
servations which are themselves subject to some error ", d =
Lvt + ". Here L is a measurement operator, in our case
simply a matrix which linearly interpolates from the gridded
field to the measurement locations. We define the optimal
posterior estimate ya as the one which minimizes the fol-
lowing cost function:

J y½ � ¼ y � y f
� �T

Wyy y � y f
� �þ d � Lvð ÞTWdd d � Lvð Þ;

ð2Þ

where y = [vT, hT]T is a state variable in which v is aug-
mented with h (note v and h should each be treated as M × 1
vectors, where M is the total number of model grid points),
y f corresponds to a prior estimate for v and h, and Wyy and
Wdd are positive‐definite weighting matrices.
[22] Note that J contains a “model” part and a “data”

part: the model part says the posterior state should not stray
too far from the prior (hence, it retains physics from the
model solution), and the data part says the posterior should
match closely with observations. If Wyy � Wdd (“perfect
prior”) the posterior solution is just the prior y f, and ifWdd�
Wyy (“perfect data”) the posterior solution is an exact inter-
polation of the data d. Clearly, the perfect‐prior assumption
ignores the information contained in the observations; the
perfect data assumption, on the other hand, can lead to
interpolation of observation noise. Hence, a central chal-
lenge of data assimilation is to find the correct balance
between these two extremes by correctly choosing the
weights W. In some cases, it is useful to “hedge” the esti-
mate toward the prior, for instance if there is a possibility of
instrument malfunction. In other cases, the observations are
known to be very accurate and a perfect‐data assumption is
valid.
[23] It can be shown [Evensen, 2006; Bennett, 2002] that

the solution ya which minimizes J is given by

ya ¼ y f þ CyyL
T
a LCvvL

T þ Cdd

� ��1
d � Lvf
� �

; ð3Þ

where La = [L, 0K×M] is an augmented measurement oper-
ator for extracting v from y , and Cyy and Cdd are the
inverse of the weights Wyy and Wdd. Specifically, Cyy has
the following structure:

Cyy ¼ Cvv Cvh

Chv Chh

� �
ð4Þ

By choosing Cyy as the covariance, equation (3) gives the
maximum likelihood estimator for Gaussian statistics.
[24] At this point equation (3) can be viewed as a general

solution, and the problem is reduced to specifying Cyy

based on properties of the model (Cdd is typically specified
as a diagonal matrix whose elements are the observation
error variances). The simplest approach is to define Cyy a
priori without reference to the model itself. A more attrac-
tive approach, which recognizes the intrinsic properties of
the model, is the method of representer expansions [Bennett,
2002]. That method requires the specification of Chh, but
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uses the model (via adjoint equations, which must be
derived) to obtain the corresponding Cvh and Cvv. Feddersen
et al. [2004] and Kurapov et al. [2007] used representer
expansions, except their goal was to correct forcing and/or
bottom friction, not bathymetry. VanDongeren et al. [2008]
used a hybrid approach, where Cvh, Cvv, and Chh were
assumed a priori to be diagonal matrices (hence the cor-
rection is localized), but are related to one another by a
physical model. In our application, we use an ensemble‐
based methodology, described next.
[25] The crux of ensemble‐based methods (e.g., the

Ensemble Kalman Filter [Evensen, 2006]) is that Cyy is
approximated by the sample covariance of a representative
ensemble y i

f, i = 1, 2, …, N. This ensemble is generated by
applying the forward model G to an ensemble of inputs hi

f,
drawn from a statistical distribution specified by some rea-
sonable Chh (see section 3.2). In the update step, one applies
equation (3) to each member of the ensemble (each time
treating y f = y i

f) to obtain the posterior members y i
a. The

sample mean of y i
a is interpreted as the posterior state

estimate, and the sample covariance provides a posterior
estimate of uncertainty (under a Bayesian interpretation),
given by

Ca
yy ¼ Cyy � CyyL

T
a LCvvL

T þ Cdd

� ��1
LaCyy : ð5Þ

3.2. Prior Bathymetric Ensemble

[26] Section 3.1 showed that the problem estimating v and
h, based on observations d, hinges on the specification of the
bathymetric covariance matrix Chh. In our application, we
do not explicitly define Chh, but instead we construct an
ensemble of bathymetric realizations hi, in such a way as to
represent the spread of potential bathymetric error to the best
of our knowledge. Chh is then approximated by the sample
covariance of that ensemble.
[27] We assume the dominant bathymetric error, in this

context, is due to integrated sediment transport between
bathymetric surveys (instrument error is also present, but we
have attempted to minimize its impact using loess interpo-
lation, see section 2). Hence, the reasonable spread of
bathymetric realizations should be constrained by mea-
surements (survey data from the recent past/future). We
must also limit the ensemble to realistic bathymetries: per-
turbations around the prior mean h must not include phys-
ically unrealistic shapes or features. To that end, we seek
realizations on the state‐space where bathymetric change
naturally occurred throughout the experiment. We approxi-
mate this space by applying an empirical orthogonal func-
tions (EOF) decomposition to the complete set of
interpolated bathymetric surveys over the entire experiment.
For a particular bathymetric ensemble, the prior mean
loadings are set to the time‐mean observed loadings from a
72 h period surrounding the target time. The prior standard
deviation of loadings is set equal to the range of loadings
observed over the same time period.
[28] Figure 2 shows the leading modes of the EOF

decomposition, and their corresponding percent of variance.
The first mode represents full‐domain surveyed change
(only two full‐domain surveys were conducted); subsequent
modes show increasing detail mostly focused on the

dynamics of the inner bar at x ≈ 150 m in the minigrid
domain (defined as 550 m ≤ y ≤ 1000 m). For instance, the
across‐shore position and width of the inner bar is mainly
determined by EOF modes 2 and 3.

3.3. Forward Model

[29] Once the bathymetric ensemble is specified, we must
generate the corresponding ensemble of observables vi

f,
which involves applying a forward model to each ensemble
member hi

f. Here we use the freely‐available code shoreCirc
(version 2.0, [Svendsen et al., 2000]) to solve the depth‐
integrated and wave‐averaged equations of motion for
arbitrary bathymetry. These comprise the momentum
equation,

@Q�

@t
þ @

@x�

Q�Q�

hþ �ð Þ
� �

¼ �g hþ �ð Þ @�

@x�

� 1

�
� s� � �b� þ �M� þ �Q3D�

� �

� 1

�

@S��
@x�

: ð6Þ

and the conservation of mass equation,

@�

@t
þ @Q�

@x�
¼ 0; ð7Þ

where a and b are dummy indices for horizontal coordinates
(summation is implied over repeated indices). In these
equations, Q is the depth‐integrated volume flux, h is the
still water depth, and h is the wave‐averaged water surface
elevation. We define the depth‐averaged across‐shore and
alongshore current as u = (Qx − Qwx)/(h + h) and v = (Qy −
Qwy)/(h + h), respectively, where Qw is the contribution to
volume flux from waves (approximated using linear wave
theory). ts and tb are surface and bottom shear stresses, tM

is a nondissipative momentum mixing, tQ3D represents
“quasi‐3‐D” mixing [Svendsen and Putrevu, 1994], and S is
the radiation stress tensor [Longuet‐Higgins and Stewart,
1964]. Details of the parameterizations of the various
terms can be found in the shoreCirc manual (http://chinacat.
coastal.udel.edu/programs/nearcom). Default values for
physical constants were used throughout, except for the
bottom friction coefficient fw which was specified as 0.0053
(cf. [Feddersen and Guza, 2003]). We employ no‐flux
shoreline boundary conditions (the shoreline is defined as
h = 0.05 m), and radiation offshore boundary conditions.
The lateral boundaries are treated as periodic, where a 300 m
artificial buffer zone is added to enforce periodicity in the
model inputs. The equations are solved on a mesh with (Dx,
Dy) = (5, 10) m, and time step Dt = 0.18 s.
[30] To define the time‐independent model operator G,

equations (6) and (7) are integrated from rest to steady state.
Shear instability of the alongshore current [Bowen and
Holman, 1989] did not occur for the conditions tested
here, except if the quasi‐3‐D terms were turned off, similar
to the results of Zhao et al. [2003]. Hence, the steady state
flow corresponds to a single snapshot of the final model
state.
[31] To compute the radiation stress gradients due to wave

motion, as well as other wave‐related quantities which
appear in equation (6) via parameterizations, we use another
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freely available code, SWAN [Booij et al., 1999]. SWAN
solves the spectral wave action‐balance equation [Mei,
1983], and thus predicts the full‐field wave spectral trans-
formation. The model is initialized with measured wave
frequency‐directional spectra at the offshore boundary (see
section 2). We include the effect of the wave roller, a mass
of aerated water which travels on the face of breaking
waves, using the formulation of Reniers and Battjes [1997]
[also Reniers et al., 2004; Ruessink et al., 2001]. We neglect
interaction between the waves and the wave‐averaged
velocities.
[32] The accuracy of the above model, although assumed

perfect for the purposes of developing the data assimilation
methodology, is in fact limited by many underlying assump-
tions about physical processes. In practice, it is very difficult
to quantify the process model accuracy, except in very
controlled laboratory conditions, because of the simulta-
neous presence of model input errors (the focus of the

present work). An example of such a controlled validation is
provided by Haas et al. [2003], who applied shoreCirc to
simulate a laboratory rip current flow. In that study, shor-
eCirc was shown to reproduce the broad features of the 2‐
DH flow, while smaller‐scale flow details were shown to be
influenced by errors in the bathymetric input. They also
found the accuracy of shoreCirc to be comparable to that of
a wave‐resolving Boussinesq model.
[33] The present model is also known to be as accurate as

other available 2‐DH numerical codes under comparable
field conditions.Wilson [2009] performed a validation of the
present model for 455 h of the SD97 field experiment, and
found RMS errors of order 5–15 cm for Hmo and 10–20 cm/s
for v (larger errors occurring closer to shore). Similar values
have been reported by Ruessink et al. [2001] (for a 1‐DH
model), and Morris [2001] and Hsu et al. [2006] (for 2‐DH
models), among others. Hence, the present model setup is

Figure 2. (a–c) Leading modes in bathymetric EOF decomposition (normalized to unit variance).
(d) Percentage of total variance for leading 10 modes of bathymetric EOF decomposition.
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considered representative of the state of the art for depth‐
integrated wave‐averaged nearshore prediction.

3.4. Observational Error Estimates

[34] We assume observation error standard deviations of
6.7 cm/s in alongshore current, and 7.0 cm in significant
wave height. These values encompass errors of measure-
ment (instrument noise), as well as so‐called representation
errors (the two are added in quadrature). The former are due
to practical issues of data collection and quality, while the
latter are due to the fact that what the model predicts is not
strictly comparable to what is measured.
[35] Measurement error standard deviation for v has been

estimated using laboratory and field calibration [Feddersen
and Guza, 2003] as (s0

2 + (a∣v∣)2)1/2, where s0 = 5 cm/s,
and a = 0.05. For the present case, ∣v∣ ∼ 0.75 m/s, and we
therefore assume a measurement error standard deviation of
6.25 cm/s for v.
[36] To obtain an estimate of measurement error for Hmo

during SD97, we have compared measurement differences
for sensors placed less than 4.5 m apart in the alongshore
direction and less than 0.55 m apart in the across‐shore
direction (four sensor pairs passed this criteria, located from
x = 210 m to x = 261 m). The standard deviation of mea-
surement differences, based on over 2500 h of data, ranged
from 3.6 cm to 6.3 cm. Values were increased for sensors
closer to shore, and for increasing offshore wave height.
Hence we assume a (conservative) measurement error
standard deviation of 6.5 cm for Hmo.
[37] Several potential sources of representation error exist

in the present model. One example is the fact that the
measurements were collected at a particular water depth,
whereas the model predicts depth‐averaged flow. Further,
the measurements may have been sampled during slowly‐
varying conditions (such that time averaging of observa-
tional data does not suffice to remove the variability), or
may even be unsteady [Bowen and Holman, 1989], whereas
the model predicts the steady state waves and flow which
would occur under static conditions. The treatment of rep-
resentation error is not trivial, and is the subject of ongoing
research [e.g., Oke and Sakov, 2007, and references therein].
Here we simply assume a constant, spatially‐uniform con-
tribution to the observational error, of 2.5 cm/s for v and
2.5 cm for Hmo. We have tested different values of total
observational error, and find no qualitative change in the
posterior solution.

3.5. Underlying Assumptions and Optimality

[38] Several assumptions underlie the derivation of
equation (3), which should be kept in mind when applying
the method. Importantly, we have assumed that the model is
“perfect,” in the sense that if the true inputs ht were known,
the output vt = G(ht) would be exact. This assumption per-
tains to physical processes in the model, as well as boundary
conditions: for the present application, the latter is important
because the offshore boundary condition (an input wave
spectrum) is itself derived from measurements. While this
effect may be reduced at locations far from the boundary (i.e.,
the inner surf zone), it is likely not negligible.
[39] Another factor in the interpretation of equation (3) as

an “optimal” solution is the assumption of Gaussian statis-
tics. In our case, the model operator G is nonlinear, hence

the statistics are not likely to be Gaussian. Therefore, we
will avoid the use of the term “optimal” in describing the
posterior estimates. Instead, we interpret the results as a least
squares estimate, based on approximate model statistics.
[40] Finally, the quality of the posterior estimate is con-

ditioned by the quality of the prior statistics. Specifically,
one must define an appropriate prior mean/covariance for
the bathymetry, and a reasonable error model for the ob-
servations. The present results are based on rational and
well‐defined estimates of those statistics, as described
above, but these estimates are still subjective, to some
degree. In practice, we have found the quality of the pos-
terior to be degraded if the prior statistics are not carefully
defined, and this may be unavoidable in the absence of
extensive observational data. An attractive extension of the
present method would be to include time‐evolution in the
ensemble statistics, as in the sequential method of
VanDongeren et al. [2008]. Using that approach, the prior
statistics are only specified once, and are continually up-
dated whenever measurements become available (using
equations (3) and (5); this is the Ensemble Kalman Filter,
[Evensen, 2006]). Such an extension is highly recommended
for future application of the present method.
[41] The above caveats underscore the need for cross‐

validation when applying the present method. Therefore, in
the following, we first show the applicability and skill of the
method before using it to assess the sensitivity of modeled
circulation to bathymetric uncertainty.

4. Results

[42] In this section, we demonstrate the ability of the
statistical inverse method to estimate bathymetry, in a situa-
tion where it was not possible to conduct a bathymetric sur-
vey. Our primary example case is for 1530 EST on
20 October, for which the dynamics are 2‐DH. This time was
selected due to its interesting morphodynamic setting, the
presence of strongly 2‐DH flow features, and a low rate of
instrument malfunctions in shallow water. Before moving to
this more‐complex 2‐DH case, however, we will present a 1‐
DH case study from the same day, at 1130 EST. The 1‐DH
case will serve to introduce important conceptual topics
related to the assimilation methodology.

4.1. Physical Setting

[43] The conditions surrounding 20 October were strongly
influenced by the passage of a Nor’easter storm, which
peaked during the hours 1600–1900 EST on 19 October.
The measured significant wave height (at 8 m depth) during
the storm was 3.4 m. Somewhat less‐energetic conditions
continued throughout the day on 20 October. Figure 3
summarizes the observed conditions.
[44] No bathymetric survey was conducted on 19 October

due to dangerous conditions. Complete minigrid surveys
were conducted, however, on 18 October, 0600–1340 EST,
and 21 October, 0550–1530 EST. Also, a limited survey
was conducted on 20 October, 0630–1040 EST. Figure 4
summarizes these bathymetric observations. The sequence
of surveyed bathymetries illustrates the speed with which
bathymetric change occurred in the days surrounding the
storm. The surveyed transects suggest changes in across‐
shore bar profile, alongshore variability, or both (the exact
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morphodynamics may not be resolved by the surveys). This
rapid bathymetric change, combined with the paucity of
survey data on 19 and 20 October, makes specification of
model bathymetry quite difficult for the target model times,
which can be between survey times. Temporal interpolation
from surveys would be a questionable approach, as the
surveys, as well as the sonar altimeters, suggest a non-
monotonic change through time. Hence the present method
has practical relevance, because it makes use of additional
time‐resolved measurements (wave height, velocity) to
improve the bathymetric estimate.

[45] The observed flow during the 19 October storm was
alongshore uniform (1‐DH) and reached speeds of up to
1.6 m/s. Over the course of the day of 20 October, conditions
changed such that the observed flow was weaker, and
exhibited alongshore‐nonuniformity (2‐DH). Indeed, as we
will see in later sections, assimilation of data on 20 October,
1530 EST, leads to a 2‐DHposterior model state. However, at
earlier times on 20 October, particularly at high tides, the
observed (and posterior estimated) flow was closer to 1‐DH.
Next, we study such a case, 1130 EST, as a simple dynamical
setting in which to introduce the present method.

4.2. Conceptual Interpretation: A 1‐DH Case Study

[46] In this section, we run the forward model assuming ∂/
∂y = 0 in the governing equations, using as the bathymetry a
single transect y = 828 m from the 2‐DH bathymetric
ensemble (observational data are taken from the same
transect). The assumption of 1‐DH dynamics is only
approximately valid, here. For instance, v measured on the
transect x = 160 m varied from –45 cm/s (y = 704 m) to
−70 cm/s (y = 816 m) (no other sensors were functioning at
the time on x = 160 m). On the transect x = 210 m (five
sensors), v varied from −68 cm/s (y = 906 m) to −50 cm/s (y =
816 m), with mean −59 cm/s and standard deviation 7.1 cm/s.
However, neither the measurements nor a 2‐DH assimilation
indicated any strongly 2‐DH features such as rip currents.
Moreover, our purpose in this section is to elucidate the
mechanics of the assimilation in the context of simple 1‐DH
model dynamics. Cross‐validation using more‐accurate 2‐
DH dynamics will be taken up in later sections.
[47] Figure 5 shows the prior and posterior predictions of

bathymetry, velocity, and wave height, compared to mea-
surements. The prior bathymetry does not include a sharp
nearshore bar, as was measured by the sonar altimeters, and
confirmed by a nearby CRAB survey transect. Hence the
prior alongshore current jet is too broad, causing v to be
overpredicted at the innermost sensor. Similarly, the offshore
face of the inner bar is too shallow in the prior, causing
increased wave breaking and hence underprediction of Hmo

at nearby locations (e.g., compare wave transformation from

Figure 3. Conditions observed for the period from 18 to
21 October during the SD97 experiment: offshore significant
wave height Hmo, peak frequency fp, mean wave angle �0
[Kuik et al., 1988] (positive is from the north), and maxi-
mum alongshore current in SPUV array vmax (positive is
toward the north). Shaded regions represent times when
bathymetric surveys were being performed (see Figure 4).
Dashed lines correspond to 20 October, 1130 EST and
1530 EST (sections 4.2 and 4.3).

Figure 4. Black is the bathymetric transects collected by CRAB on (a) 18, (b) 20, and (c) 21 October.
Colors are the interpolated surveyed bathymetry zb (hotter colors represent shallower water).
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x = 210 m to x = 185 m). After assimilating data, the above
errors are reduced and the overall fit is improved, including
the fit to h (which was not assimilated).
[48] In order to understand how equation (3) used the

observed model data misfit (d − Lvf) to update the full model
state y , it is useful to examine the coefficient matrix r = Cyy

La
T. In the language of data assimilation, r is usually referred

to as the matrix of representers. Each column rk quantifies
the sensitivity of the model to a particular observation (the
k’th observation). Hence by analyzing these columns, suit-
ably normalized, we can better understand how the overall
model corrections are assembled [Kurapov et al., 2009].
Here we will normalize as follows,

r̂ ¼ r
�m þ �d

�2
m þ �2

d

� �
: ð8Þ

This normalization is obtained by taking model and data
errors to be equal to their standard deviations (denoted sm
and sd, respectively), and assuming an isolated observation.
We will interpret maps of r̂ as the “potential correction”
which can be obtained by assimilating a particular mea-
surement. For instance, we will write r̂hv as the potential
correction to bathymetry h from assimilating velocity v. In
this way, we may compare the magnitude and spatial pattern
of the correction derived from each element in the mea-
surement array. Note this analysis is performed without
reference to the actual measurements; r is a property of the
model (and prior statistics) only. We have also compared
equation (8) to the contributions of actual measurements to
the overall model update in equation (3), and generally find
good agreement.

[49] Figure 6 shows scaled representers for each instru-
ment on the observational transect (including instruments
which were not functioning at 1130 EST). Both observation
types show the largest potential corrections coming from
sensors in the inner surf zone (x < 250 m). Potential cor-
rections from outer surf zone sensors are small, because of
small prior uncertainty (cf. Figure 5) and/or lack of bathy-
metric sensitivity at those locations. Hereafter, we will
concentrate on the inner surf zone.
[50] Focusing first on r̂hH, underprediction of Hmo typi-

cally resulted in a local increase (deepening) of h; that is, r̂hH
is locally‐positive. This agrees with the expectation based
on saturated depth‐limited breaking, Hmo = gh, with g > 0
(i.e., ∂Hmo/∂h > 0). To be more precise, consider the fol-
lowing local approximation of CHh near the point x0:

CHh ¼ E 	Hmo	h½ �

� E
	Hmo

	h

� �
jx0	h	h

	 


¼ 	Hmo

	h

� �
jx0Chh; ð9Þ

where E is expected value, and dHmo/dh denotes the relative
increment of Hmo or a given increment of h, evaluated based
on the prior statistics at a given point. As suggested above, the
prior statistics for the present case indeed gave dHmo/dh > 0
for locations where waves were breaking; in fact, dHmo/dh was
significantly correlated with the prior wave dissipation (r =
0.58, p = 10−10). Positive dHmo/dh occurred in the inner surf
zone where dissipation was large, while small (or even
negative) dHmo/dh occurred outside the surf zone and in
reshoaling regions. At locations near the maxima of wave
dissipation, dHmo/dh had a value of approximately 0.5.
[51] Turning next to r̂hv, we note that an underprediction

of −v in the prior (i.e., prior predicted current not as large as
observed current toward the south, or negative y, direction)
always produces a local decrease (shoaling) of h; that is,
−r̂hv is locally negative. Conceptually, this behavior is due
to the fact that local maxima in ∣v∣ tend to be associated
with local minima in depth (e.g., a sandbar). Indeed, the
prior statistics for the present case gave d(–v)/dh < 0 for all
x > 105 m.
[52] The above interpretation highlights the role of the

model dynamics for determining the local values of dHmo/
dh and dv/dh, and hence the magnitudes of the representers
themselves. Non‐local corrections to bathymetry, on the
other hand, are derived from a combination of model
dynamics and the assumed prior covariance Chh. In order to
judge the balance between these two contributions, we may
compare r̂ to the approximation based on (9) (dashed lines in
Figure 6), which is representative of the contribution of Chh

to the nonlocal correction. Clearly, Chh plays an important
role in determining the basic structure of r̂, and hence the
corrections themselves, while model dynamics mainly act to
amplify and/or shift that structure. This highlights the
importance of choosing appropriate prior statistics, if non-
local corrections are to be trusted.
[53] Finally, we note there are qualitative differences

between the shape and magnitude of r̂hv and r̂hH, suggesting
v and Hmo play different roles in the overall correction. To
further illustrate this fact, Figure 7 shows the posterior

Figure 5. Prior (blue), posterior (red), and measured
(black) data for 1‐DH case study, 20 October 1130 EST.
Dashed lines represent ±1 standard deviation. Black circles
correspond to data from fixed instruments (SPUV); black
line is CRAB transect collected at y = 843 m, on 20 October,
1036–1040 EST. Still water level was 1.16 m NGVD.
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model state when each observation type (either v or Hmo) is
assimilated individually. The results are best understood by
considering differences in the posterior Hmo. When assimi-
lating v only, the spatial gradient of Hmo is altered in the
inner surf zone, resulting in a correction to the wave‐
induced forcing (not plotted); however, the resulting Hmo is
not in good agreement with observations (in particular, the
posterior breakpoint is too far offshore). Conversely, when
assimilating Hmo only, the magnitude of Hmo is improved
but the resulting change in wave‐induced forcing does not
lead to an improved v (particularly at the innermost sensor).
Assimilating v and Hmo together allows the forcing to be
corrected without severely affecting the accuracy of Hmo,
resulting in an improved overall agreement for all variables
(also see section 4.4). The representers (Figure 8) confirm
the above interpretation: for the most‐shoreward sensors,
r̂HH and r̂Hv indicate controls on magnitude and gradient,
respectively. That is, the most‐shoreward observation points

correspond to antinodes of r̂HH, and nodes of r̂Hv. These
sensors dominate the overall correction, producing the
above behavior. Further‐offshore sensors do not show such
a clear contrast between r̂HH and r̂Hv, likely due to differ-
ences in the qualitative dynamics (e.g., the influence of
momentum mixing).

4.3. Assimilation During 2‐DH Flow

[54] Having established the conceptual framework for
assimilation under simple 1‐DH dynamics, we now move to
a 2‐DH case: 20 October, 1530 EST.
[55] Figure 9 shows the prior prediction of v and Hmo.

Recall this corresponds essentially to a forward model run,
with bathymetry derived from a smoothed interpolation in
EOF space (section 3.2). The predictions in the outer surf
zone are fairly consistent with observations (overprediction
of offshore wave height is likely due to error in the offshore
boundary conditions). For sensors in the inner surf zone, x <
250 m, however, the flow becomes alongshore‐nonuniform,
and the velocity predictions are highly inaccurate in mag-
nitude and even wrong in direction (see sensors at y ≈ 830 m
and y ≈ 700 m). Given the known bathymetric sampling
issues (see section 4.1), we will now explore the possibility
that the model error is due to mis‐specification of h.
[56] Figure 10 compares the posterior velocity field to

observations, after assimilating Hmo (46 observations) and v
(29 observations). Model data agreement in alongshore
current is improved, particularly in the inner surf zone,
which is to be expected because that data was assimilated.
Importantly, the modeled across‐shore currents u are also
improved, which can be interpreted as a cross‐validation for
the update step (u was not assimilated).
[57] The posterior bathymetry is also an improvement

over the prior. Figure 11 shows an across‐shore transect
comparing the prior and posterior h to that measured by the
sonar altimeters (again, these measurements were not
assimilated). The comparison shows that the update step
correctly adjusted the prior in the direction of the actual
(measured) bathymetry. As in the 1‐DH case study, major
corrections occurred in the inner surf zone, whereas outer
surf zone (x > 250 m) corrections were relatively small.
[58] Next, as in the 1‐DH case study, we examine the

scaled representers r̂ for 2‐DH flow. Figure 12 (top) shows

Figure 6. Solid lines are scaled representers. Dashed lines
are corresponding approximation based on extrapolation
with Chh (see text). Crosses indicate location of measure-
ment for each representer. The r̂hv has been negated for
comparison with Figure 5.

Figure 7. Prior (blue), measured (black), and posterior data
when assimilating Hmo only (green), v only (magenta), or
both (red).

Figure 8. Scaled representers for correction of Hmo.
Crosses indicate location of measurement for each repre-
senter. The r̂Hv has been negated for comparison with
Figure 5.
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maps from r̂hH, the potential correction to h from assimi-
lating measurements of Hmo, at four different locations
ranging from the inner to outer surf zone. Clearly, Hmo is
effective for constraining local bathymetry in the inner surf
zone, where wave height is strongly controlled by water
depth because of depth‐limited wave breaking. For mea-
surements in the outer surf zone, r̂hH is much smaller in
magnitude, indicating a smaller potential for correction in
that region.
[59] Figure 12 (bottom) shows maps from r̂hv, the poten-

tial corrections to h from observing v. A distinguishing
feature of r̂hv in this case is that sensors offshore of the inner
bar contribute information about bathymetry onshore of the
inner bar. This did not occur under 1‐DH dynamics, and
hence is attributed to advection by 2‐DH currents. This also
means a greater number of sensors for v could provide
significant (potential) corrections to h: 19 columns of r̂hv
had maximum magnitude exceeding 10 cm, as opposed to
only six for r̂hH. The actual model corrections when
assimilating data reflect the same trend: five observations of
v contributed corrections of more than 10 cm to h, compared
to two for Hmo. Thus, the v array included a greater number
of “useful” sensors. The corresponding correction to
h should be considered more stable, in the sense that it is
more robust against isolated observation errors dominating
the overall correction. A more rigorous way to examine the

stability of the measurement array is to compute the singular
value decomposition of the matrices Lrhv and LrhH (so‐called
“array‐mode analysis,” [Bennett, 2002; Kurapov et al.,
2009]). Five of the singular values for Lrhv exceeded the
observational noise level, indicating stable array modes;
two singular values for LrhH passed the same criteria. Thus,
again, v was the more stable observation type for the present
case.

4.4. Skill Statistics

[60] Next, we evaluate the skill of the posterior model
state, compared to that of the prior. Our aim is to quantify
the improvement in the model state when assimilating ob-
servations of Hmo and v, together as well as individually.
Here we will limit our discussion to the inner surf zone
region x < 250 m, for two reasons: first, as noted earlier,
corrections were broadly confined to this region, whereas
the outer surf zone was constrained by low prior uncertainty;
second, the point x = 250 m corresponds to a minimum in
modeled wave dissipation, separating two distinct wave
breaking regions and flow regimes. For completeness, skill
statistics for x > 250 m are listed in Table B1. Indeed, the
model updates in that region were small, for the reasons
stated above, and often did not result in an improved fit to
cross‐validation variables.

Figure 9. Prior mean velocity, bathymetry, and wave height on transect y = 828 m, for 20 October, 1530
EST. (a) Red arrows are observed velocity; blue arrows are modeled velocity, plotted at even grid points;
scale arrow in top left is 50 cm/s. (b) Colors are model zb (still water level was 0.17 m NGVD). (c) Solid
and dashed lines are prior mean and standard deviation of Hmo, and red circles are measured Hmo.
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[61] The skill of the prior and posterior model states will
be assessed in a probabilistic validation framework [Casati
et al., 2008], taking into account the predicted model state
y as well as the predicted uncertainty Cyy. Specifically, we
adopt the Continuous Ranked Probability Score (CRPS;
Appendix A) to assess skill, which measures the overall
difference between prediction and observation probability
density functions. In the limit of deterministic predictions
and observations, CRPS is equal to the root‐mean square
(rms) error. We also compute a skill score,

S ¼ 1� CRPSð Þa= CRPSð Þf ; ð10Þ

which indicates whether the posterior state (subscript a) has
improved skill relative to the prior (subscript f). Finally, for
completeness, we also report the RMS error, as a simple and
easy to understand measure of accuracy which does not take
into account the predicted uncertainty. These statistics are
given in Table 1, and the results are discussed next.

5. Discussion

5.1. Assimilation Skill

[62] Table 1 reports statistics which assess the improve-
ment in model skill when assimilating different combina-
tions of data. In general, if the present methodology is
skillful, we should find a decrease in RMS error and CRPS
(i.e., positive skill score S) as a result of assimilating data.

When this is not the case, we will generally assume the
inversion is converging (with respect to increasing number
of observations) on an incorrect posterior state y . In this
section, we ask: what data were required to obtain a skillful
inverse, in the above sense?
[63] First, we consider the case where both v and Hmo are

assimilated, under 2‐DH dynamics (20 October, 1530 EST).
The resulting posterior state is improved in all variables,
including the cross‐validation variables u and h. This
indicates the assimilation of data has introduced a realistic
correction to the overall model state. The error that remains in
the posterior estimate represents a combination of still‐
unresolved uncertainty in the input h, observational/
representation errors, and (importantly) errors due to model
physics.

Figure 10. As in Figure 9 but for posterior (updated) fields.

Figure 11. Across‐shore transect (y = 828 m) of prior
(blue), posterior (red), and measured (black) zb (still water
level was 0.17 m NGVD). Dashed lines represent ±1 stan-
dard deviation.
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[64] When only v is assimilated (2‐DH case), the situation
is quite different. Both u and v are brought into good
agreement with the observations, and CRPS indicates pos-
itive skill. The prediction for h is also improved, although
not to the extent as when Hmo and v were assimilated
together. However, the posterior Hmo is actually less accu-
rate than the prior, and has larger CRPS, indicating the
assimilation is not converging toward the true Hmo. Overall,
cross validation suggests the assimilation is overfitting the
velocity data, at the expense of Hmo (we define overfitting,
here, as achieving improved skill in one variable, at the
expense of any other variable).
[65] When only Hmo is assimilated (2‐DH case), we find a

similar result to when only v was assimilated. The posterior
state is an improved fit to the assimilated variable, but not to
the unassimilated variables (in this case, the skill for u, v and
h is essentially unchanged). Again, the result may be con-
verging on an incorrect posterior model state.
[66] Statistics from the 1‐DH case (20 October, 1130

EST) indicate similar results, with overfitting occurring
unless Hmo and v are assimilated together. One distinction
between the 1‐DH and 2‐DH cases lies in their ability to
correct the across‐shore current u. In the 2‐DH case, u was
improved when v was assimilated, but made worse when
Hmo was assimilated; the opposite was true for the 1‐DH
case. This is perhaps not surprising: under 1‐DH dynamics,
u is entirely due to the below‐trough return flow of wave
volume flux, which is in turn directly related to Hmo. In
contrast, in the 2‐DH case, the cross‐shore current is likely
driven as a result of nonlocal alongshore‐nonuniform
dynamics. Another distinction between the 1‐DH and 2‐DH
results is that, in the 1‐DH case, h could be better corrected
by assimilation of Hmo than by assimilation of v. We note,
however, that the 1‐DH case had only three active sensors
for v in the inner surf zone, compared to six active sensors
for Hmo.
[67] A result common to both 1‐DH and 2‐DH cases is

that the true ocean state y can only be recovered by

assimilating both variables v and Hmo. This may be partly
attributed to the fact v and Hmo provide different (compli-
mentary) information with regard to the dynamics, as
demonstrated using the 1‐DH model in section 4.2. How-
ever, other factors may serve to exacerbate the overfitting
behavior. For instance, we have already noted that the
specified prior Chh influences the shape of representers, and
hence the correction itself; errors in this specification could
lead to unexpected results. Errors may also exist in the
forward model, causing the true v and Hmo to be incom-
patible under the “perfect model” assumption; Plant et al.
[2009] find an analogous result, where artificial smoothing
of bathymetry leads to decreased error in Hmo but increased
error in v. One way to exclude the influence of the above
effects is to extract synthetic observations from a forward
model run with idealized bathymetry. From that experiment,
we find a similar result as above: assimilating v appears to
correct the gradient of Hmo, and hence the wave‐induced
forcing, while the magnitude of Hmo is not improved (and
vice versa). However, the synthetic tests do not show
strongly‐negative skill in the unassimilated variable as was
the case with real observations. Hence, we cannot not rule
out the possibility of model error being present.
[68] To summarize, the ensemble‐based method was

successful in assimilating observations and correcting
bathymetry, when using all of the available data for v and
Hmo. The resulting prediction is an improvement over the
prior (rms error and CRPS are both decreased). When one
observation type (either v or Hmo) was withheld, bathymetry
could still be improved relative to the prior, but only at the
expense of a poor posterior prediction of the unassimilated
variable (either Hmo or v). This is explained by considering
the complimentary information carried by each variable,
although other factors are considered. In any case, there is
an inherent benefit of assimilating (semi)independent data
types.

Figure 12. Maps from scaled representer submatrix (top) r̂hH and (bottom) r̂hv, for select measurement
locations (white dots). Thick black contour is 0 cm, and subsequent contours are plotted at 5 cm intervals.
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5.2. Bathymetric Input Sensitivity

[69] In sections 4.2 and 4.3, representers were used to
clarify how prior error/sensitivity is utilized for the assimi-
lation of data: by combining all of the representers (with
appropriate normalization), one obtains the posterior model
state. The magnitude of the potential correction fields r̂
indicate strong model sensitivity between the observed
variables v and Hmo and the target variable h.
[70] A closely‐related problem is the extent to which v

and Hmo are sensitive to errors in h. A direct quantification
of this sensitivity is given by the prior standard deviation of
modeled v and Hmo, which, for October 1530 EST, had
maximum values of 31 cm/s and 19 cm, respectively. At the
observation locations, prior standard deviations ranged from
0–29 cm/s (for v), and 0–10 cm (for Hmo), with larger va-
lues occurring closer to shore. The 1‐DH case (20 October,
1130 EST) gave similar values, except for v at the obser-
vation locations which ranged from 0–13 cm/s. Given that
model validation studies have reported errors on these same
orders of magnitude [e.g., Ruessink et al., 2001], this sug-
gests bathymetric input error may be equally as important as
process error, for cases like the ones we consider here.
[71] It should be noted, however, that the above results are

influenced by the specified prior statistics for h. In partic-
ular, the uncertainty in h is constructed, here, to reflect
unresolved changes in bathymetry between surveys. Other
sources of uncertainty, such as instrument error or spatial
over‐smoothing [Plant et al., 2009], could be treated by a
similar analysis, with Chh redefined appropriately.

5.3. Effect of Sampling Scheme

[72] In the preceding sections, we have performed the
model inverse using all available measurements. However,
the present data set, from the SD97 experiment, had an
unusually large observational array which sampled both
alongshore and across‐shore variability. Previous experi-
ments such as SuperDuck [Oltman‐Shay and Howd, 1989]
and DUCK94 [Elgar et al., 1997; Feddersen and Guza,
1998; Gallagher et al., 1998] have focused on only along-

shore or across‐shore variability, respectively. It is natural to
ask whether the present method can be applied under a more
limited experimental layout.
[73] Figures 13 and 14 show the posterior wave and

current fields for October 20, 1530 EST (cf. Figure 10),
obtained by assimilating v and Hmo from a single alongshore
or across‐shore transect. The sampling schemes are similar
to SuperDuck and DUCK94, respectively. We find that, in
the present case, either sampling scheme is sufficient to
improve the prediction of the model state (a positive skill
score S is found for all variables). However, the posterior
bathymetry is more accurate when using the alongshore
array (skill S = 0.77, RMS error " = 15 cm, taking mea-
surements from x < 250 m), compared to the across‐shore
array (S = 0.45, " = 26 cm). On the other hand, the along-
shore array was less able to constrain wave height (S =
0.051, " = 10 cm), compared to the across‐shore array (S =
0.27, " = 8.0 cm).

5.4. Assimilation of Other Observational Data Types

[74] So far, we have presented results for assimilation of v
and Hmo, two commonly‐measured observational data
types. However, standard surf zone instruments are also
capable of recovering additional information about the wa-
vefield, including wave directional information. As an
example, here we test the assimilation of the radiation stress
tensor component Sxy.
[75] An observational estimate of Sxy can be computed

from a cross‐spectral analysis of time series of u and v
[Higgins et al., 1981]. Here we computed the cross spectrum
from 17 min records, using a Bartlett taper. Depth depen-
dence is accounted for using linear wave theory.
[76] Guza and Thornton [1978] have noted that Sxy is

generally a statistically unstable observation which can be
very difficult to measure, particularly due to instrument
alignment issues. Hence, the choice of observational error
for this derived quantity was not obvious, and we chose an
error of 20 N/m (in the present test case, Sxy varied from −87
to 230 N/m). Values of 15 N/m and 30 N/m were also tested,
and did not change the qualitative conclusions that follow.

Table 1. Model Accuracy Statistics Before and After Assimilation for Sensors in x < 250 ma

Variable(s)
Assimilated

Variable
Updated Units

1‐DH (1130 EST) 2‐DH (1530 EST)

" CRPS S " CRPS S

None (prior) u m/s 0.13 0.13 – 0.33 0.68 –
v m/s 0.22 0.24 – 0.29 0.56 –

Hmo m 0.11 0.11 – 0.11 0.18 –
h m 0.45 0.75 – 0.41 0.88 –

Hmo, v u m/s 0.13 0.16 –0.17 0.19 0.36 0.48
v m/s 0.15 0.18 0.27 0.054 0.055 0.90

Hmo m 0.080 0.092 0.16 0.084 0.15 0.18
h m 0.20 0.28 0.63 0.18 0.30 0.66

Hmo u m/s 0.11 0.12 0.11 0.30 0.62 0.093
v m/s 0.26 0.35 –0.47 0.28 0.55 0.013

Hmo m 0.041 0.033 0.70 0.064 0.10 0.46
h m 0.36 0.61 0.18 0.37 0.83 0.061

v u m/s 0.17 0.21 −0.54 0.20 0.36 0.48
v m/s 0.12 0.11 0.52 0.054 0.053 0.90

Hmo m 0.19 0.30 –1.7 0.13 0.25 –0.34
h m 0.42 0.74 0.016 0.20 0.32 0.64

aHere " is RMS difference between model and observations, CRPS is the continuous ranked probability score (see text and Appendix A), and S is a skill
score (equation (10)). The calculation of CRPS for u and h assume observational error standard deviations of 6.7 cm/s (same as for v) and 10 cm,
respectively.
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[77] When Sxy is assimilated (alone) for the 20 October
1530 EST case presented in section 4, the effect on the
posterior bathymetry is qualitatively similar to that found
when assimilating v. Specifically, the areas onshore and
offshore of the inner bar at x ≈ 160 m were made deeper, a
correction which could not be attained by assimilating Hmo

alone. Hence, Sxy could be used in conjunction with Hmo to
generate an improved posterior bathymetry (S = 0.65, " =
18 cm, for x < 250 m). On the other hand, assimilation of
Sxy was not found to be a substitute for the information
provided by v. The skill of the posterior v was not much
improved by assimilation of Sxy (S = 0.31, " = 22 cm/s),
compared to when v itself was assimilated. Results were
similar for the 1‐DH case. In summary, then, Sxy appears
to provide information about bathymetry, but further work
would be required to incorporate this data type into an
accurate assimilation.

6. Conclusions

[78] In this study, we have applied standard methods from
data assimilation to examine the sensitivity of surf zone
models to bathymetric uncertainty. Our purpose was two-
fold: to directly analyze the impact of bathymetric uncer-
tainty on a surf zone model using field data and to
demonstrate the potential of ensemble‐based data assimila-
tion for 2‐DH nearshore prediction.

[79] The results presented here show that, even in an
extensively‐sampled experimental setting (SD97, possibly
the most detailed short‐term bathymetric data set available
to date), bathymetric uncertainty can play a leading role in
determining the error of hindcast model circulation. This
was demonstrated in several ways, as described below.
[80] Figures 5 and 9 illustrate that the best prior estimate

of bathymetry can lead to poor model results in the inner
surf zone for a particular field case. On its face, this could
indicate a problem with model physics, or a problem with
model inputs. However, by assimilating data under the
assumption of perfect model physics and uncertain
bathymetry, we were able to derive a consistent model state.
Thus, we conclude that the standard approach of estimating
bathymetry from recent bathymetric surveys and running the
forward model did not apply here, as the bathymetry was
changing rapidly (timescales of hours to days) and was
therefore very uncertain.
[81] The underlying details of the assimilation step were

investigated using an analysis of the matrix of representers
[Kurapov et al., 2009], i.e., the interrelationship (covari-
ance) between the modeled Hmo, v, and h. We found that
surf zone Hmo tended to provide slightly larger magnitudes
of correction to h, but corrections were relatively localized
in space. Under 2‐DH flow, observations of v could provide
nonlocal corrections to h, which meant a larger portion of
the observational array for v was useful for the assimilation.

Figure 13. As in Figure 10 but for posterior (updated) fields using alongshore transect sampling scheme.
Assimilated observations of v are marked by white crosses, and observations of Hmo are marked by white
circles.
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The pattern and magnitude of the corrections are determined
by a combination of Chh (which must be specified) and the
model dynamics. In this case, Chh represents the estimated
variability in h due to unresolved bathymetric change
through time.
[82] Table 1 reports the model‐data misfit before and after

assimilating data. For 2‐DH (1‐DH) flow, root‐mean square
errors in v and Hmo in the inner surf zone were reduced by
81% (27%) and 24% (27%), respectively. Errors in h and u,
variables which were not assimilated, were also reduced, by
56% (56%) and 42% (0%), respectively. Thus a significant
portion of model output errors were linked to input
(bathymetric) errors in a self‐consistent way. However, we
also found the assimilation to be sensitive to the type of
observations used: only by assimilating multiple observation
types (v and Hmo together) were we able to avoid overfitting
the data. This was explained by considering the different
types of information carried by each variable: observations
of v were useful for constraining gradients of Hmo, but not
magnitudes, and vice versa for Hmo.
[83] The above results all point to a strong model sensi-

tivity to the input h; this sensitivity was quantified directly
using the prior ensemble variance. The estimated uncer-
tainty in v and Hmo due to uncertainty in h was found to be
up to 29 cm/s and 10 cm, respectively, at the measurement
locations. These values are comparable to what is reported
in typical field validation studies (e.g., [Ruessink et al.,
2001]). We stress, however, the modeled uncertainty is
conditioned by the (specified) uncertainty in h.

[84] Finally, we have tested the above results when using
a subset of the available measurements. It was shown that an
accurate posterior bathymetry and velocity field can be
obtained when using only a single alongshore array of
sensors, noting the present situation had strongly 2‐DH flow
and therefore this configuration provides nonredundant
information. An across‐shore array gave a less skillful
posterior estimate of bathymetry and velocity, but was
necessary for an accurate estimate of wave height.
[85] Based on the above results, we conclude 2‐DH

velocity and wave height observations do provide infor-
mation about surf zone bathymetry, which can be exploited
using statistical methods. Conversely, uncertainty in
bathymetry (which is often large due to sampling con-
straints) can have a strong impact on model skill, a fact
which should be considered when validating models.

Figure 14. As in Figure 13 but for across‐shore sampling scheme.

Figure A1. The (left) pdf and (right) cdf representations of
the prediction (blue) and observation (red).
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Appendix A: Continuous Ranked Probability Score

[86] In section 4.4, we test the skill of the prior and pos-
terior estimates of the ocean state y , by cross‐validation
with observations. This involves testing the accuracy of the
ocean state prediction, as well as the predicted uncertainty.
Both must be assessed together in order to fully characterize
the skill of the assimilation methodology. The validation is
carried out using the Continuous Ranked Probability Score
(CRPS), defined below.
[87] For a given probabilistic forecast of a scalar random

variable x (e.g., the prior or posterior model state y and its
uncertainty Cyy), define the cumulative distribution func-
tion (cdf) fX(x). Also define the cdf of the same random
variable x as determined from an observation of the same
variable, fY(x). Then the CRPS is defined by Hersbach
[2000]; Gneiting et al. [2008]; Casati et al. [2008]

CRPS ¼
Z ∞

�∞
fX xð Þ � fY xð Þð Þ2dx: ðA1Þ

Note this is a generalization of the standard definition, al-
lowing for observational uncertainty (e.g., instrument error).
[88] Figure A1 shows a graphical interpretation of the

CRPS, as the squared area of the regions pointed to by the
arrows. When the probability density functions (pdf’s) of
the prediction and the observation coincide, the CRPS goes
to zero; large values of CRPS indicate an unskilled prediction.
Note that CRPS takes into account both calibration (the
agreement of the predicted and observed expected value)
and sharpness (the agreement of the predicted and observed
uncertainty). The prediction depicted in Figure A1 is fairly
well calibrated, but is not particularly sharp.
[89] The extension to multiple observations (vector‐

valued random variables x) follows Gneiting et al. [2008],
who point out the following identity (from Baringhous and
Franz [2004], Lemma 2.2):

CRPS ¼ E k X � Y k½ � � 1

2
E k X � X ′ k½ �

� 1

2
E k Y � Y ′ k½ � � 0; ðA2Þ

where X and X′ are independent realizations following the cdf
fX (similar for Y and Y′), k · k is the Euclidean norm, and E
denotes expected value (computed herein using Monte‐Carlo
methods). With the norm thus defined, CRPS is naturally
extended for any number of observations. This definition also
means CRPS reduces to the RMS error when the variables are
deterministic.

Appendix B: Skill Statistics for x > 250 m

[90] For completeness, Table B1 lists model skill for the
offshore sensors x > 250 m (discussed briefly in section 4.4).
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