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Abstract. LDAS-Monde is a global offline land data as-

similation system (LDAS) that jointly assimilates satellite-

derived observations of surface soil moisture (SSM) and

leaf area index (LAI) into the ISBA (Interaction between

Soil Biosphere and Atmosphere) land surface model (LSM).

This study demonstrates that LDAS-Monde is able to de-

tect, monitor and forecast the impact of extreme weather

on land surface states. Firstly, LDAS-Monde is run glob-

ally at 0.25◦ spatial resolution over 2010–2018. It is forced

by the state-of-the-art ERA5 reanalysis (LDAS_ERA5) from

the European Centre for Medium Range Weather Forecasts

(ECMWF). The behaviour of the assimilation system is eval-

uated by comparing the analysis with the assimilated ob-

servations. Then the land surface variables (LSVs) are val-

idated with independent satellite datasets of evapotranspi-

ration, gross primary production, sun-induced fluorescence

and snow cover. Furthermore, in situ measurements of SSM,

evapotranspiration and river discharge are employed for the

validation. Secondly, the global analysis is used to (i) de-

tect regions exposed to extreme weather such as droughts

and heatwave events and (ii) address specific monitoring

and forecasting requirements of LSVs for those regions.

This is performed by computing anomalies of the land sur-

face states. They display strong negative values for LAI and

SSM in 2018 for two regions: north-western Europe and the

Murray–Darling basin in south-eastern Australia. For those

regions, LDAS-Monde is forced with the ECMWF Inte-

grated Forecasting System (IFS) high-resolution operational

analysis (LDAS_HRES, 0.10◦ spatial resolution) over 2017–

2018. Monitoring capacities are studied by comparing open-

loop and analysis experiments, again against the assimilated

observations. Forecasting abilities are assessed by initializ-

ing 4 and 8 d LDAS_HRES forecasts of the LSVs with the

LDAS_HRES assimilation run compared to the open-loop

experiment. The positive impact of initialization from an

analysis in forecast mode is particularly visible for LAI that

evolves at a slower pace than SSM and is more sensitive to

initial conditions than to atmospheric forcing, even at an 8 d

lead time. This highlights the impact of initial conditions on

LSV forecasts and the value of jointly analysing soil mois-

ture and vegetation states.

1 Introduction

Extreme events are likely to increase in frequency and/or

magnitude as a result of anthropogenic climate change

(IPCC, 2012; Ionita et al., 2017). Amongst all the natu-

ral disasters, droughts are arguably the most detrimental

(Bruce, 1994; Obasi, 1994; Cook et al., 2007; Mishra and

Singh, 2010; WMO, 2017), as about one-fifth of damages

caused by natural hazards can be attributed to droughts (Wil-
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hite, 2000). They cost society billions of dollars every year

(WMO, 2017). It is therefore important for communities to

develop tools that can monitor and predict drought condi-

tions (Svoboda et al., 2002; Luo and Wood, 2007; Blyverket

et al., 2019) as well as their impact on land surface variables

(LSVs) and society (Di Napoli et al., 2019). A major scien-

tific challenge in relation to the adaptation to climate change

is to observe and simulate how land biophysical variables re-

spond to those extreme events (IPCC, 2012).

Droughts are generally caused by a lack of precipitation.

However, different drought types are classified according to

the part of the hydrological cycle that suffers from a wa-

ter deficit (IPCC, 2014; Barella-Ortiz and Quintana-Seguí,

2019). They include meteorological droughts (lack of pre-

cipitation), agricultural droughts (deficit of water in the soil),

hydrological droughts (deficit of streamflow or water level

in rivers) and environmental droughts (a combination of the

previous drought types). Because of the effect of precipita-

tion deficit on the whole hydrological system, all drought

types are related (Wilhite, 2000). Complex interactions be-

tween continental surface and atmospheric processes have to

be combined with human action in order to fully understand

the wide-ranging impacts of droughts on land surface condi-

tions (Van Loon, 2015). As a consequence, land surface mod-

els (LSMs) driven by high-quality gridded atmospheric vari-

ables and coupled to river-routing systems are key tools to

address these challenges (Dirmeyer et al., 2006; Schellekens

et al., 2017). Initially developed to provide boundary con-

ditions to atmospheric models, LSMs can now be used to

monitor and forecast land surface conditions (Balsamo et

al., 2015, 2018; Schellekens et al., 2017). Additionally, the

representation of LSVs by LSMs can be improved by cou-

pling LSMs with other models of the Earth system like atmo-

sphere, oceans and river routing (e.g. de Rosnay et al., 2013,

2014; Kumar et al., 2018; Balsamo et al., 2018; Rodríguez-

Fernández et al., 2019; Muñoz-Sabater et al., 2019).

Earth observations (EOs) provide long-term records,

which can complement LSMs. Satellite products are partic-

ularly relevant for the monitoring of LSVs. Satellite EOs re-

lated to the terrestrial hydrological, vegetation and energy

cycles are now available globally, at kilometric scales and

below (e.g. Lettenmaier et al., 2015; Balsamo et al., 2018).

Combining EOs and LSMs through land data assimilation

systems (LDASs) can lead to enhanced initial land surface

conditions (e.g. Reichle et al., 2007; Lahoz and De Lan-

noy, 2014; Kumar et al., 2018; Albergel et al., 2017, 2018a,

2019; Balsamo et al., 2018). Subsequently, this can bene-

fit weather forecasts, including temperature and precipita-

tion. It can also indirectly benefit agricultural and vegeta-

tion productivity prediction, streamflow prediction, warning

systems for floods and droughts and the representation of

the carbon cycle (Bamzai and Shukla, 1999; Schlosser and

Dirmeyer, 2001; Bierkens and van Beek, 2009; Koster et al.,

2010; Bauer et al., 2015; Massari et al., 2018; Albergel et

al., 2018a, 2019; Rodríguez-Fernández et al., 2019; Muñoz-

Sabater et al., 2019). Amongst the current land-only LDAS

activities, several are led by NASA (National Aeronautics

and Space Administration) projects. Examples of such activi-

ties are the Global Land Data Assimilation System (GLDAS,

Rodell et al., 2004), the North American Land Data Assim-

ilation System (NLDAS, Xia et al., 2012a, b) and the Na-

tional Climate Assessment-Land Data Assimilation System

(NCA-LDAS, Kumar et al., 2016, 2018, 2019). The Famine

Early Warning Systems Network (FEWS NET) Land Data

Assimilation System (FLDAS, McNally et al., 2017) is run

over western, eastern and southern Africa. Additional ex-

amples include the Carbon Cycle Data Assimilation System

(CCDAS, Kaminski et al., 2002), the Coupled Land Vegeta-

tion LDAS (CLVLDAS, Sawada and Koike, 2014; Sawada

et al., 2015), the Data Assimilation System for Land Sur-

face Models using CLM4.5 (Fox et al., 2018) and the SMAP

(Soil Moisture Active Passive) level 4 system (Reichle et al.,

2019). Finally, LDAS-Monde (Albergel et al., 2017, 2018,

2019) was developed by the research department of Météo-

France. Details of these studies are provided by Kumar et

al. (2018) and Albergel et al. (2019), but few applications are

global and include the assimilation of multiple EOs.

LDAS-Monde consists in an offline (i.e. non-coupled with

the atmosphere) joint assimilation of surface soil moisture

(SSM) and leaf area index (LAI) EOs into the ISBA (Inter-

action between Soil Biosphere and Atmosphere) LSM (Noil-

han and Planton, 1989; Noilhan and Mahfouf, 1996). Several

previous studies using LDAS-Monde have been published at

regional and continental scales (Albergel et al., 2017, 2018,

2019; Leroux et al., 2018; Tall et al., 2019; Blyverket et al.,

2019; Bonan et al., 2020). In this study, LDAS-Monde is run

at the global scale and is forced by the latest atmospheric

reanalysis (ERA5) from the European Centre for Medium

Range Weather Forecasts (ECMWF), over 2010–2018. The

resulting 0.25◦ spatial resolution reanalysis of the LSVs is

hereafter referred to as LDAS_ERA5. In this paper, it is

shown that LDAS-Monde can be used to detect, monitor and

forecast the impact of extreme events on LSVs. The follow-

ing items are presented and discussed.

– An evaluation of LDAS-Monde at a global scale is car-

ried out. This assessment involves the assimilated ob-

servations to demonstrate that the system is working

as intended. Importantly, LDAS-Monde is then vali-

dated using diverse, independent and complementary

satellite-derived datasets of evapotranspiration (EVAP)

from the GLEAM project (Miralles et al., 2011; Martens

et al., 2017), gross primary production (GPP) from

the FLUXCOM project (Tramontana et al., 2016, Jung

et al., 2017), solar-induced fluorescence (SIF) from

the GOME-2 (Global Ozone Monitoring Experiment-2)

scanning spectrometer (Munro et al., 2006, Joiner et al.,

2016) and snow-cover data from the Interactive Multi-

sensor Snow and Ice Mapping System (IMS, https://

www.natice.noaa.gov/ims/, last access: June 2019). Ad-
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ditional validations are performed with in situ mea-

surements of evapotranspiration from the FLUXNET

2015 synthesis dataset (http://fluxnet.fluxdata.org/, last

access: June 2019), soil moisture from the Interna-

tional Soil Moisture Network (ISMN, Dorigo et al.,

2011, 2015, https://ismn.geo.tuwien.ac.at/en/, last ac-

cess: June 2019) and river discharge from several net-

works across the world.

– The LDAS-Monde global analysis over 2010–2018 is

used to detect droughts and heatwave events in 2018.

This identification is performed by computing anoma-

lies of LSVs over the 9-year period and identifying

where the strongest negative anomalies are located in

2018. For the identified regions, the abilities of LDAS-

Monde to forecast such events in near-real time is inves-

tigated by forcing it with high-resolution forecasts from

the ECMWF.

The paper is organized into five sections: Sect. 2 details the

various components constituting LDAS-Monde (the ISBA

LSM, the data assimilation scheme, the EOs assimilated as

well as the different atmospheric forcing datasets used), fol-

lowed by the experimental and evaluation setups. Section 3

describes and discusses the impact of the analysis on the

representation of the LSVs. Section 4 details the identifica-

tion of two case studies over regions particularly affected by

extreme heatwave events during 2018. Furthermore, the de-

tailed monitoring and land surface forecasts of these events

are presented at higher spatial resolution. Finally, Sect. 5 pro-

vides conclusions and prospects for future work.

2 Material and methods

The following subsections briefly describe the main compo-

nents of LDAS-Monde: the ISBA LSM, its data assimilation

scheme and two other key elements of the setup: atmospheric

forcing and assimilated satellite-derived observations. The

experimental setup and the evaluation datasets used in this

study are also presented.

2.1 LDAS-Monde

LDAS-Monde (Albergel et al., 2017) is embedded within

the SURFEX (SURFace EXternalisée, Masson et al., 2013,

version 8.1) modelling platform developed by the research

department of Météo-France (CNRM, Centre National de

Recherches Météorologiques). It allows the joint integration

of satellite-derived SSM and LAI into the CO2-responsive

(Calvet, et al., 1998, 2004; Gibelin et al., 2006), multilayer

diffusion scheme (Boone et al., 2000; Decharme et al., 2011)

version of the ISBA LSM (Noilhan and Planton, 1989; Noil-

han and Mahfouf, 1996). LDAS-Monde can also be coupled

with the CTRIP (CNRM Total Runoff Integrating Pathways,

Decharme et al., 2019) hydrological model using a simplified

extended Kalman filter (SEKF, Mahfouf et al., 2009).

2.1.1 ISBA land surface model

The ISBA LSM aims to model the evolution of LSVs. In the

chosen configuration for this study, ISBA is able to repre-

sent the transfer of water and heat through the soil based on

a multilayer diffusion scheme as well as plant growth and

leaf-scale physiological processes. ISBA models key vegeta-

tion variables like LAI, above-ground biomass and the di-

urnal cycle of water, carbon and energy fluxes. In ISBA,

the soil–vegetation composite is computed using a single-

source energy budget. In the CO2-responsive version of

ISBA, ISBA-A-gs, the model can simulate the CO2 net as-

similation and GPP by considering the functional relation-

ship between the photosynthesis rate (A) and the stomatal

aperture (gs) based on the biochemical A-gs model proposed

by Jacob et al. (1996). Photosynthesis controls the evolution

of vegetation variables. It makes vegetation growth possi-

ble as a result of an uptake of CO2. Contrastingly, a deficit

of photosynthesis triggers higher mortality rates. Ecosystem

respiration (RECO) represents the CO2 being released by

the soil–plant system and GPP by the carbon uptake via

photosynthesis. Finally, the net ecosystem exchange (NEE)

consists of the difference between GPP and RECO. Each

ISBA grid cell is composed of up to 12 generic land sur-

face types, namely bare soil, rocks, permanent snow and

ice surfaces, as well as 9 plant functional types (needleleaf

trees, evergreen broadleaf trees, deciduous broadleaf trees,

C3 crops, C4 crops, C4 irrigated crops, herbaceous, tropical

herbaceous and wetlands). The ECOCLIMAP-II land cover

database (Faroux et al., 2013) provides these parameters for

each patch and each grid cell of the ISBA model.

The ISBA multilayer diffusion scheme’s default dis-

cretization is 14 layers over 12 m depth. This study follows

Decharme et al. (2011), which is illustrated in Fig. 1 of their

paper. The thickness (depth) of each layer is (from top to bot-

tom) 1 cm (0–1 cm), 3 cm (1–4 cm), 6 cm (4–10 cm), 10 cm

(10–20 cm), 20 cm (20–40 cm), 20 cm (40–60 cm), 20 cm

(60–80 cm), 20 cm (80–100 cm), 50 cm (100–150 cm), 50 cm

(150–200 cm), 100 cm (200–300 cm), 200 cm (300–500 cm),

300 cm (500–800 cm) and 400 cm (800 to 1200 cm). Snow is

represented using the ISBA 12-layer explicit snow scheme

(Boone and Etchevers, 2001; Decharme et al., 2016).

2.1.2 CTRIP river-routing system

The ISBA-CTRIP river-routing system is able to simu-

late continental-scale hydrological variables based on a set

of three prognostic equations. They correspond to (i) the

groundwater, (ii) the surface stream water and (iii) the sea-

sonal floodplains. It converts the runoff simulated by ISBA

into river discharge. The ISBA-CTRIP river-routing network

has a spatial resolution of 0.5◦ globally and is coupled daily

with ISBA through the OASIS3-LCT coupler (Voldoire et

al., 2017). ISBA provides CTRIP with updated fields of

runoff, drainage, groundwater and floodplain recharges. In
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Figure 1. (a) Surface soil moisture (SSM) from the Copernicus Global Land Service (CGLS) for pixels with less than 15 % of urban areas

and with an elevation of less than 1500 m a.s.l. (b) GEOV1 leaf area index (LAI) from CGLS, for pixels covered by more than 90 % of

vegetation, averaged over 2010 to 2018. SSM is obtained after rescaling the ASCAT Soil Wetness Index (SWI) to the model climatology;

grey areas in (a) represent filtered-out data (see Sect. 2.3).

turn, CTRIP provides ISBA with water table depth, flood-

plain fraction as well as flood potential infiltration. Subse-

quently, ISBA can simulate capillary rise, evaporation and

infiltration over flooded areas. A comprehensive overview of

how CTRIP is coupled with ISBA is available in Decharme

et al. (2019).

2.1.3 Data assimilation

The SEKF used in LDAS-Monde is a two-step sequential ap-

proach in which a prior forecast step is followed by an anal-

ysis step. The prior forecast propagates the initial states to

the next time step with the ISBA LSM and the analysis step

then corrects this forecast by assimilating observations. The

flow dependency (dynamic link) between the prognostic vari-

ables and the observations is ensured in the SEKF through

the observation operator and its Jacobians, which propagate

information from the observations to the analysis via finite-

difference computations (de Rosnay et al., 2013). The Ja-

cobian matrix has as many rows as assimilated observation

types (two in our case: SSM and LAI) and as many columns

as model control variables requested (eight in our case, soil

moisture from layers 2 to 8 and LAI). In addition to a control

run (i.e. the forecast step), computing the Jacobian matrix

requires perturbed runs, one for each control variable. The

eight control variables are directly updated using their sen-

sitivity to observed variables (i.e. defined by the Jacobian).

Other variables are indirectly modified through biophysical

processes and feedback from the model. Several studies (e.g.

Draper et al., 2009; Rüdiger et al., 2010) have demonstrated

that small perturbations lead to a good linear approximation

of the model behaviour, provided that computational round-

off error is not significant. Typically, for those runs, the ini-

tial state of the control variable is perturbed by about 0.1 %

(see Albergel et al., 2017; Rüdiger et al., 2010). The length

of the LDAS-Monde assimilation window is 24 h. A mean

volumetric standard deviation error of 0.04 m3 m−3 is pre-

Figure 2. Selection of 19 regions across the globe known for be-

ing potential hotspots for droughts and heatwaves. The regions are

defined in Table 1.

scribed for soil moisture in the second layer of soil (i.e. the

model equivalent of the observations, between 1 and 4 cm):

it is 0.02 m3 m−3 for soil moisture in deeper layers (soil lay-

ers 3 to 8, 4–100 cm). Both are then scaled by the dynamic

range of soil moisture (the difference between the volumet-

ric field capacity and the wilting point, calculated as a func-

tion of the soil type, as given by Noilhan et Mahfouf, 1996).

The observational SSM error follows the same approach and

a value of 0.05 m3 m−3 is used. This is consistent with er-

rors typically expected for remotely sensed SSM (e.g. de Jeu

et al., 2008, Gruber et al., 2016). Based on previous results

from Jarlan et al. (2008), Rüdiger et al. (2010) and Barbu et

al. (2011), observed LAI standard deviation errors are set to

20 % of the LAI value itself. The LAI prior forecast errors

are set equivalent to the observation errors for values higher

than 2 m2 m−2. For values lower than 2 m2 m−2, a fixed stan-

dard deviation error of 0.04 m2 m−2 has been used. More de-

tails about this approach can be found in Barbu et al. (2011)

(Sect. 2.3 and Fig. 2).
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Table 1. Continental hotspots for droughts and heatwaves and number of monthly anomalies SSM and LAI below −1 standard deviation

(SD) and above 1 SD in 2018 with respect to the 2010–2018 period.

Region name Abbreviation LON-W LON-E LAT-S LAT-N Number of monthly Number of monthly

SSM anomalies below LAI anomalies below

−1 (above 1) SD −1 (above 1) SD

Western Europe WEUR −1 15 48 55 5(1) 5(0)

Western Mediterranean WMED −10 15 35 45 0(7) 4(4)

Eastern Europe EEUR 15 30 45 55 2(1) 0(2)

Balkans BALK 15 30 40 45 3(3) 1(4)

Western Russia WRUS 30 60 55 67 0(1) 1(3)

Lower Volga LVOL 30 60 45 55 2(1) 2(1)

India INDI 73 85 12 27 3(0) 2(1)

South-western China SWCH 100 110 20 32 0(2) 0(6)

Northern China NRCH 110 120 30 40 0(3) 0(4)

Murray–Darling MUDA 140 150 −37 −26 6(0) 7(0)

California CALF −125 −115 30 42 2(0) 5(0)

Southern Plains SPLN −110 −90 25 37 0(3) 0(4)

Midwest MIDW −105 −85 37 50 1(2) 1(3)

Eastern north ENRT −85 −70 37 50 0(3) 0(7)

Nordeste NDST −44 −36 −20 −2 0(3) 1(2)

Pampas PAMP −64 −58 −36 −23 2(2) 2(0)

Sahel SAHL −18 25 13 19 2(0) 1(2)

Eastern Africa EAFR 38 51 −4 12 2(3) 1(7)

Southern Africa SAFR 14 26 −35 −26 2(0) 2(1)

2.2 Atmospheric forcing

The lowest level of the atmospheric model (about 10 m a.g.l.)

of air temperature, wind speed, specific humidity and pres-

sure, the downwelling fluxes of shortwave and longwave ra-

diations as well as precipitation (partitioned into solid and

liquid phases) are needed to force LDAS-Monde. In this

study, LDAS-Monde is driven by several near-surface me-

teorological fields from the ECMWF:

– its most recent atmospheric reanalysis (ERA5) to pro-

duce an LDAS-Monde global reanalysis;

– its high-resolution Integrated Forecast System (IFS

HRES) to monitor and predict the evolution of LSVs

for regions under severe droughts and heatwaves.

ERA5 (Hersbach et al., 2018, 2020) is the fifth generation

of global reanalyses produced by the ECWMF. This atmo-

spheric reanalysis is a key element of the Copernicus Climate

Change Service (C3S) and is available from 1979 onward

(data are released about 2 months behind real time). ERA5

produces analyses at an hourly output and at 31 km horizon-

tal resolution and consists of 137 levels in the vertical. Sev-

eral studies have validated the ERA5 dataset. For example,

Urraca et al. (2018) have compared incoming solar radiation

from both ERA5 and the ERA-Interim reanalysis (Dee et al.,

2011) at a global scale and found evidence that ERA5 out-

performs ERA-Interim. In another study, Beck et al. (2019)

have highlighted the good performance of ERA5 precipita-

tion with respect to a set of 26 gridded (sub-daily) precipita-

tion data sources by comparing them to Stage-IV gauge-radar

data over the CONUS domain (CONtinental United States

of America). Tall et al. (2019) have used in situ measure-

ments of precipitation at more than 100 stations spanning all

over Burkina Faso in western Africa as well as incoming so-

lar radiation from four in situ stations. They evaluated the

performance of ERA5 compared to ERA-Interim and found

improved results for ERA5 as well. Furthermore, they eval-

uated both reanalysis datasets for their ability to force the

ISBA LSM, which demonstrates a clear advantage for ERA5

in terms of the performance of LSVs. Albergel et al. (2018a)

made similar comparisons of the ISBA LSM forcing over

North America. They showed enhanced performances in the

representation of evapotranspiration, snow depth, soil mois-

ture and river discharge for ERA5 relative to ERA-Interim.

At the time of writing, the ERA5 model and data

assimilation system (cycle 41r2 of the ECMWF IFS)

are very similar to that of the operational weather

forecast, HRES, which has production cycles rang-

ing from 41r2 to 45r1 during the study period (more

information at https://www.ecmwf.int/en/forecasts/

documentation-and-support/changes-ecmwf-model, last

access: July 2019). The main difference between ERA5

and HRES over the considered period is the horizontal

resolution, consisting of 9 km in HRES and 31 km in ERA5.

The atmospheric forcing is interpolated from the native

grids of ERA5 and HRES to regular grids at 0.25◦ and 0.1◦

respectively, using a bilinear interpolation from the native
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grid to the regular grid. ERA5 and HRES were used in

Albergel et al. (2019) to force LDAS-Monde in order to

study the impact of the 2018 summer heatwave in Europe.

Authors have highlighted that the HRES configuration

(LDAS_HRES hereafter) exhibits better monitoring skills

than the coarser-resolution ERA5 configuration.

In forecasting mode, the HRES forecast is also available

daily from 00:00 UTC with a 10 d lead time. The HRES fore-

cast step frequency is hourly up to time step 90 (i.e. day 3),

3-hourly from time steps 90 to 144 (i.e. day 6) and 6-hourly

from time steps 144 to 240 (i.e. day 10). In the forecast ex-

periments in this study (see Sect. 2.4 for details on the ex-

perimental setup) HRES forecasts with a 10 d lead time are

used to force the LSM forecasts of the LSVs. By compar-

ing LDAS_HRES open-loop and analysis configurations it

is possible to evaluate the impact of the initialisation on the

forecast of LSVs. The original 3-hourly time steps are used

up to day 6 (time step 144). The 6-hourly time steps from

days 6 to 10 are interpolated to 3-hourly frequency to avoid

discontinuities.

2.3 Assimilated satellite Earth observations

Two types of satellite-derived variables are assimilated in

LDAS-Monde: ASCAT soil water index (SWI) and LAI

GEOV1. They are both freely available through the Coper-

nicus Global Land Service (CGLS, https://land.copernicus.

eu/global/index.html, last access: June 2019).

ASCAT stands for Advanced Scatterometer, which is an

active C-band microwave sensor that is onboard the Euro-

pean MetOp polar orbiting satellites (METOP-A from 2006,

-B from 2012 and also -C from 2019). From ASCAT radar

backscatter coefficients, it is possible to derive information

on SSM following a change detection approach (Wagner et

al., 1999; Bartalis et al., 2007). The recursive form of an ex-

ponential filter (Albergel et al., 2008) is then applied to es-

timate the SWI using a timescale parameter, T (varying be-

tween 1 and 100 d). T is a surrogate parameter for all the

processes potentially affecting the temporal dynamics of soil

moisture, including soil hydraulic properties, soil layer thick-

ness, evaporation, runoff and vertical gradient of soil prop-

erties. The obtained SWI then ranges between 0 (dry) and

100 (wet). In this study, CGLS SWI-001 (produced with a T

value of 1 d) is used as a proxy for SSM (Kidd et al., 2013).

Grid points with an average altitude exceeding 1500 m a.s.l.

as well as those with more than 15 % of urban land cover

are rejected as those conditions are known to inhibit the re-

trieval of SSM from space. Prior to the assimilation, SSM

has to be converted from the observation space to the model

space. This is done through a linear rescaling as proposed by

Scipal et al. (2007), where the mean and variance of observa-

tions are matched to the mean and variance of the modelled

soil moisture from the second layer of soil (1–4 cm depth).

In practice, the rescaling gives similar results to CDF (cu-

mulative distribution function) matching. The linear rescal-

ing is performed on a seasonal basis (with a 3-month moving

window) as suggested by Draper et al. (2011) and Barbu et

al. (2014).

The LAI GEOV1 observations are based on data from both

SPOT-VGT (up to 2014) and PROBA-V (from 2014) satel-

lites. They span from 1999 to present, have 1 km spatial reso-

lution and are produced according to the methodology devel-

oped by Baret et al. (2013). LAI GEOV1 observations have

a temporal frequency of 10 d at best and no observations are

available during cloudy conditions. LAI data are masked in

the presence of modelled snow by the ISBA LSM.

As in previous studies (e.g. Barbu et al., 2014; Albergel

et al., 2019), observations are interpolated by an arithmetic

average to the model grid points (0.25◦ or 0.10◦ in this study)

if at least 50 % of the model grid points are observed (i.e. half

the maximum amount). ASCAT SSM and LAI GEOV1 are

illustrated by Fig. 1.

2.4 Experimental setup

LDAS-Monde is first run globally, at 0.25◦ spatial resolution,

forced by the ERA5 atmospheric reanalysis. It assimilates

both SSM and LAI EOs from 2010 to 2018 (LDAS_ERA5).

LDAS_ERA5 is spun up by running the year 2010 20 times.

The LDAS_ERA5 analysis and its model counterpart (open-

loop, i.e. no data assimilation) are presented and evaluated in

this study.

This 9-year global reanalysis is then used to provide a

monthly climatology for estimating anomalies of the land

surface conditions. For each month (and variable consid-

ered) of 2018 we have removed the monthly mean and scaled

by the monthly standard deviation of the 2010–2018 period.

Significant anomalies are used to trigger more detailed moni-

toring and forecasting activities for a region of interest. A to-

tal of 19 regions across the globe have been selected, which

are known for being potential hotspots for droughts and heat-

waves. They are listed in Table 1 and presented in Fig. 2.

Monthly anomalies of SSM and LAI in the LDAS_ERA5

analysis are calculated for 2018 (with respect to the 2010–

2018 period) over these 19 regions. In turn, regions present-

ing significant levels of negative anomalies are selected and

further investigated. For those regions, a new LDAS-Monde

experiment was driven by the HRES atmospheric analysis,

leading to a 0.1◦ analysis of the LSVs from April 2016 to De-

cember 2018 (LDAS_HRES). Note that HRES is only avail-

able at a 0.1◦ spatial resolution from April 2016. April to De-

cember 2016 is used as a short period for spin-up and results

are presented for the period 2017–2018. Although a 9-month

spin-up period is rather short, evaluating LDAS_HRES over

either 2017–2018 or 2018 (using instead a 21-month spin-

up) leads to similar results on surface soil moisture and LAI

(not shown). While the system is not fully spun up, it is

long enough to capture the system response to data assim-

ilation. LDAS_HRES complements the coarser spatial reso-

lution LDAS_ERA5.
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HRES forecasts with a 10 d lead time are initialized ei-

ther from LDAS_HRES analysis or open-loop experiments

(LDAS_Fc hereafter) in order to assess the impact of the

initialization on the forecast. For simplicity, only forecasts

with a 4 and 8 d lead time are presented (LDAS_fc4 and

LDAS_fc8 respectively). A summary of the experimental

setup is given in Table 2.

2.5 Evaluation datasets and metrics

Both satellite-derived estimates of EOs and in situ mea-

surements are used as reference datasets in this study. The

LDAS_ERA5 analysis performance is assessed with respect

to the open-loop model run (i.e. no assimilation). The two

assimilated datasets, CGLS SSM and LAI, are firstly used

to verify that the data assimilation is behaving as expected.

Then several independent datasets are used for the validation,

namely evapotranspiration from the GLEAM project (Mi-

ralles et al., 2011; Martens et al., 2017, version 3b, entirely

satellite driven), GPP from the FLUXCOM project (Tramon-

tana et al., 2016; Jung et al., 2017), SIF from the GOME-

2 (Global Ozone Monitoring Experiment-2) scanning spec-

trometer (Munro et al., 2006; Joiner et al., 2016) and snow-

cover data from the Interactive Multi-sensor Snow and Ice

Mapping System (IMS, https://www.natice.noaa.gov/ims/,

last access: August 2020). The IMS snow-cover product

combines ground observations and satellite data from mi-

crowave and visible sensors (using geostationary and polar-

orbiting satellites) to provide snow-cover information in all

weather conditions. The IMS product is available daily for

the Northern Hemisphere.

Soil moisture is validated using in situ measurements of

soil moisture from the ISMN, a pool of stations which con-

sists of 19 networks across 14 countries (see Table S3 in the

Supplement). In total, 782 stations are represented with at

least 2 years of daily data over 2010–2018. In situ measure-

ments at 5 cm depth (SSM) are compared with soil mois-

ture from the third layer of soil (4–10 cm) in LDAS_ERA5.

In situ measurements at 20 cm depth are compared with

LDAS_ERA5 soil moisture from the fourth layer of soil (10–

20 cm, 685 stations from 10 networks). Besides 11 stations

located in four countries of western Africa (Benin, Mali,

Sénégal and Niger) and 21 stations in Australia, most of the

stations are located in North America and Europe (see Ta-

ble S3).

Evaluation datasets are listed in Table 3 along with the

metrics used for the evaluation. For satellite datasets of

SWI, LAI, evapotranspiration and GPP, the metrics consist

of the correlation coefficient (R), root mean square differ-

ence (RMSD) and normalized RMSD (NRMSD, Eq. 1).

NRMSD=
RMSD(Analysis)−RMSD(Model)

RMSD(Model)

×100 (1)

Regarding the SIF satellite dataset, fluorescence is not sim-

ulated directly in the ISBA LSM. However, photosynthe-

sis activity is simulated through the calculation of the

GPP, which is driven by plant growth and mortality in the

model. Modelled GPP values are expressed in g(C) m−2 d−1,

while SIF is an energy flux emitted by the vegetation

(mW m−2 sr−1 nm−1). Hence, GPP and SIF cannot be di-

rectly compared as they do not represent the same physical

quantities. However, several studies (e.g. Zhang et al., 2016;

Sun et al., 2017; Leroux et al., 2018) have found a high cor-

respondence in both time and space between those two vari-

ables, highlighting the potential of SIF products to support

the validation of modelled GPP. Therefore, the correlation

between modelled GPP and observed SIF is used as an evalu-

ation metric. Concerning the snow-cover dataset, differences

between observed and modelled snow cover are considered

for the evaluation.

For in situ datasets of soil moisture and evapotranspiration,

the standard metrics are considered, namely the correlation

coefficient, RMSD, unbiased RMSD and bias. Moreover, a

normalized information contribution (NIC, Eq. 2) measure is

applied to the correlation values to quantify the improvement

or degradation due to the specific configuration.

NICR=
R(Analysis)−R(Model)

1−R(Model)

×100 (2)

NIC scores are classified according to three categories: (i)

negative impact from the analysis with respect to the open-

loop with values smaller than −3 %, (ii) positive impact from

the analysis with respect to the open-loop with values greater

than +3 % and (iii) neutral impact from the analysis with

respect to the open-loop with values between −3 % and 3 %.

In addition, for surface soil moisture, the correlation is cal-

culated for both absolute (R) and anomaly (Ranomaly) time

series in order to remove the strong impact from the SSM

seasonal cycle (see e.g. Albergel et al., 2018a, b).

The Nash–Sutcliffe efficiency score (NSE, Nash and Sut-

cliffe, 1970, Eq. 3) is used to evaluate LDAS_ERA5 experi-

ments’ ability to represent the monthly discharge dynamics.

NSE=1−

T
∑

mt=1

(

Qmt
s −Qmt

o

)2

t
∑

mt=1

(

Qmt
s −Qmt

s

)2
, (3)

where Qmt
s is the monthly river discharge from LDAS_ERA5

(analysis or open-loop) at month mt, and Qmt
o is the observed

river discharge at month mt. NSE can vary between −∞

and 1. An exact match between model predictions and ob-

served data is defined as a value of 1, whereas a value of

0 means that the model predictions have the same accuracy

as the mean of the observed data. Finally, negative values

represent situations where the observed mean is a better pre-

dictor than the model simulation. NIC presented in Eq. (1)

has also been applied to NSE scores to assess the added

value of LDAS_ERA5 analysis over its open-loop counter-
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Table 2. Setup of the experiments performed in this study. LDAS_ERA5 and LDAS_HRES have an analysis (assimilation of surface soil

moisture, SSM, and leaf area index, LAI) and a model equivalent (open-loop, no assimilation); LDAS_fc4 and LDAS_fc8 are model runs

initialized by either LDAS_HRES open-loop or analysis. n/a stands for not applicable.

Experiments Model version Atmospheric Domain and DA Assimilated Model Control

(time period) forcing spatial resolution method observations equivalents variables

LDAS_ERA5 ISBA multi- ERA5 Global, ∼0.25◦ SEKF SSM Second layer Layers of soil 2

(2010 to 2018) layer soil ×0.25◦ (ASCAT) of soil (1–4 cm) to 8 (1–100 cm)

LDAS_HRES model CO2- IFS-HRES North-western LAI LAI LAI

(April 2016 to responsive Europe (WEUR) (GEOV1)

December 2018) version and Murray–Darling

LDAS_fc4 (interactive River basin (MUDA) n/a n/a n/a n/a

(2017 to 2018) vegetation) (see spatial extent in

LDAS_fc8 Table 1) ∼0.10◦×

(2017 to 2018) 0.10◦

part. Stations with NSE values less that −2 have been dis-

carded. A similar threshold has already been used in pre-

vious studies evaluating LDAS-Monde (e.g. Albergel et al.,

2017, 2018a). Many anthropogenic processes are not yet rep-

resented in ISBA, including water management from dams

and reservoirs, irrigation, and water uptake in urban areas.

This could lead to a poor representation of river discharges in

those regions. As with previous studies it has been decided to

exclude these areas by focusing on stations with reasonable

NSE values.

3 Global assessment of LDAS_ERA5

3.1 Gridded datasets

In this section, the LDAS-Monde open-loop and analysis are

firstly compared against the assimilated observations (SSM

and LAI) to demonstrate that the assimilation system is

working as intended. Both experiments are also compared

with independent sources of information to evaluate the anal-

ysis impact (GPP, EVAP and SIF).

Figure 3 presents mean LAI RMSD values between the

observations and LDAS_ERA5 for the open-loop (Fig. 3a)

and for the analysis (Fig. 3b) over 2010–2018. Because LAI

observations are ingested into the model, the assimilation re-

duces the LAI RMSD values almost everywhere. It should

be noted that rather large LAI RMSD values (>1.5 m2 m−2)

can remain in some areas after the assimilation, especially in

densely forested areas.

Figure 4 illustrates latitudinal plots of LAI, SSM, GPP and

EVAP for LDAS_ERA5 before assimilation (the open-loop)

and after assimilation (the analysis) along with observations.

The number of points considered per 0.25◦ stripe is also rep-

resented. From Fig. 4a it is possible to see the positive im-

pact the analysis has on LAI compared to the open-loop, with

the former being closer to the observations. Improvements in

the analysis fit are visible between nearly 80◦ N and about

55◦ S, and areas around the Equator are impacted the most

from the assimilation. This demonstrates that the data assim-

ilation system is working as intended. A smaller impact is

obtained for SSM, GPP and EVAP relative to LAI, which is

hardly visible at this scale. The mean latitudinal results show

a consistent difference in terms of GPP and EVAP between

LDAS_ERA5 and the observational products. These differ-

ences are systematic with higher values in tropical regions.

Figure 5 presents latitudinal plots of score differences

(correlations and NRMSD) for LAI, SSM, GPP, EVAP and

SIF. For SIF, it only makes sense to show the correlation dif-

ferences, since this metric is used to evaluate GPP variability

as in Leroux et al. (2018). Score differences are computed by

subtracting the open-loop from the analysis. Monthly aver-

ages are calculated over 2010–2018 for LAI and SSM, 2010–

2013 for GPP, 2010–2016 for EVAP and 2010–2015 for SIF.

For each panel of Fig. 5, the vertical dashed line represents

the 0 value. For plots of correlation differences, positive val-

ues indicate an improvement in the analysis with respect

to the open-loop simulation. Similarly, for plots of RMSD

differences, negative values indicate an improvement in the

analysis with respect to the open-loop simulation. Given that

LAI and SSM are assimilated variables, the analysis leads to

a clear improvement in both correlation and RMSD. Such an

improvement is expected and reflects the healthy behaviour

of the assimilation system. Both variables are improved at

almost all latitudes, with the exception around 45◦ S for LAI

correlation values (very few land points). For SSM a notice-

able improvement in both correlation and RMSD is found

around 20◦ N, which corresponds mainly to an improvement

in the Sahara (not shown). Being linked to LAI, GPP is also

improved across almost all latitudes (to a lesser extent than

LAI), with a particularly positive impact below 20◦ N. As

seen in Fig. 5d and i, there is a negligible impact of the as-

similation on EVAP. It highlights the difficulty of land sur-

face data assimilation in impacting model fluxes by modify-

ing model states.
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Table 3. Evaluation datasets and associated metrics used in this study. All URLs in this table were last accessed in August 2020.

Datasets used for the evaluation Source Metrics associated Independent

source

of evaluation

In situ measurements of soil moisture

(ISMN, Dorigo et al., 2011, 2015)

https://ismn.geo.tuwien.ac.at/en/ R for both absolute and anomaly

time series, unbiased RMSD and

bias, NIC on R values

Yes

In situ measurements of river discharge See Table S1 Nash–Sutcliffe efficiency (NSE),

normalized information contribu-

tion (NIC) based on NSE

Yes

In situ measurements of evapotranspi-

ration (FLUXNET-2015)

http://fluxnet.fluxdata.org/data/

fluxnet2015-dataset/

R, unbiased RMSD, bias, NIC on

R values

Yes

Satellite-derived surface soil wetness

index (ASCAT, Wagner et al., 1999;

Bartalis et al., 2007)

http://land.copernicus.eu/global/ R, RMSD and NRMSD No

(assimilated

dataset)

Satellite-derived leaf area index

(GEOV1, Baret et al., 2013)

http://land.copernicus.eu/global/ R, RMSD and NRMSD No

(assimilated

dataset)

Satellite-driven model estimates of

land evapotranspiration (GLEAM,

Martens et al., 2017)

http://www.gleam.eu R, RMSD and NRMSD Yes

Upscaled estimates of gross primary

production (GPP, Jung et al., 2017)

https://www.bgc-jena.mpg.de/

geodb/projects/Home.php

R, RMSD and NRMSD Yes

Solar-induced fluorescence (SIF) from

GOME-2 (Munro et al., 2006; Joiner et

al., 2016)

See references R Yes

Interactive Multi-sensor Snow and Ice

Mapping System (or IMS) snow cover

https://www.natice.noaa.gov/

ims/

Differences Yes

Figure 3. RMSD values between observed leaf area index (LAI) and LDAS_ERA5 (a) before assimilation and (b) after assimilation of

surface soil moisture (SSM) and LAI.

The panels of Fig. 6 illustrate histograms of score dif-

ferences (correlation and RMSD, analysis minus open-loop)

for LAI, SSM, GPP, EVAP and SIF. The number of avail-

able data and the percentage of positive and negative val-

ues are reported. For correlations (RMSD) differences, posi-

tive (negative) values indicate an improvement in the anal-

ysis relative to the open-loop. Regarding LAI, the analy-

sis improves 96.9 % of the grid points for correlations and

99.9 % for NRMSD. As for SSM, correlation values are im-

proved for 92.8 % of the grid points (92.4 % for RMSD).
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Figure 4. Latitudinal plots of (a) leaf area index (LAI), (b) surface soil moisture (SSM), (c) gross primary production (GPP) and (d) evapo-

transpiration (EVAP) for LDAS_ERA5 before assimilation (model, blue solid line) and after assimilation (analysis, red solid line) as well as

observations (black solid line). Cyan dashed line represents the number of points considered per latitudinal stripe of 0.25◦.

The independent GPP and SIF datasets also demonstrate im-

provements in the analysis relative to the open-loop. Indeed,

the GPP correlation (RMSD) is better for 81.1 % (74.1 %)

of the grid points and the SIF correlation is enhanced for

79.7 %. Results using the GLEAM dataset for evapotran-

spiration are more contrasting with 63.6 % (48.9 %) of the

grid points showing an improvement from the analysis. It

is worth mentioning that 24.9 % (39.6 %) of the grid point

shows a decrease in skill. However, GLEAM is an evapora-

tion model designed to be driven by remote sensing observa-

tions only. GLEAM only estimates (root-zone) soil moisture

and terrestrial evaporation, while the CO2-responsive version

of ISBA in LDAS_ERA5 is a physically based land surface

model, accounting for more processes linked to vegetation

(see Sect. 2.1.1). It should be noted that the auxiliary datasets

used to represent the different land cover types also differ.

Within GLEAM, the land cover types are sourced from the

Global Vegetation Continuous Fields product (MOD44B),

based on observations from the Moderate Resolution Image

Spectroradiometer (MODIS). Four land cover types are con-

sidered, namely bare soil, low vegetation (e.g. grass), tall

vegetation (e.g. trees), and open water (e.g. lakes). In ISBA,

the fraction of the 12 land cover types over some areas de-

parts from prevalent land cover products such as CLC2000

(Corine Land Cover) and GLC2000 (Global Land Cover).

It could potentially impact the distribution of the terres-

trial evaporation between GLEAM and ISBA. Further work

at CNRM will focus on understanding the differences be-

tween ISBA and GLEAM, in particular investigating the sub-

components of terrestrial evaporation.

Finally, Figs. S1 and S2 illustrate snow-cover evaluation.

LDAS_ERA5 snow cover is evaluated against the IMS snow

cover. Fig. S1 shows the averaged Northern Hemisphere

snow-cover fraction for the 2010–2018 period. It is comple-

mented by Fig. S2, which shows (i) maps of IMS snow cover

(top row) for three seasons, (ii) equivalent maps of snow

cover from LDAS_ERA5 open-loop (second row), (iii) maps

of snow-cover differences between the open-loop and IMS

data and (iv) maps of snow-cover differences between the

analysis and the open-loop. LDAS_ERA5 open-loop com-

pares very well with the IMS snow-cover data in the accumu-

lation season from September to February (Figs. S2 and S1d

to i), except for an overestimation over the Tibetan Plateau.

The issue over Tibet from ERA5 is not new and is consistent

with Orsolini et al. (2019). An early melt in spring is visi-

ble in LDAS_ERA5 compared to observations and could be

related to the snow-cover parametrization in ISBA. As ex-

pected, the analysis has an almost neutral impact on snow

as both SSM and LAI observations are filtered out during

frozen/snow-covered conditions, and there is no snow data

assimilation yet in LDAS_ERA5 (Figs. S2 and S1j, k and l).

Clearly an area of potential improvement in LDAS-Monde

is to incorporate snow data assimilation using satellite data

such as IMS (as in e.g. de Rosnay et al., 2014).
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Figure 5. Latitudinal plots of score differences (analysis minus open-loop) for correlations (a–e) and normalized RMSD (f–i) for LAI (a,

f), SSM (b, g), GPP (c, h), EVAP (d, i) and SIF (e, correlations only). Scores are computed based on the monthly average over 2010–2018

for LAI and SSM, 2010–2013 for GPP, 2010–2016 for EVAP and 2010–2015 for SIF. Dashed lines represent the zero lines (equal scores for

open-loop and analysis).

3.2 Ground-based datasets

LDAS_ERA5 analysis and open-loop are also evaluated us-

ing independent in situ measurements of evapotranspiration,

river discharge and surface soil moisture across the world.

Daily in situ measurements of evapotranspiration from the

FLUXNET-2015 synthesis dataset (http://fluxnet.fluxdata.

org/, last access: June 2019) are first used in this study.

The LDAS_ERA5 evapotranspiration performance is evalu-

ated using the correlation coefficient (R), RMSD, ubRMSD

and the bias (LDAS_ERA5 minus observations) using the 85

selected FLUXNET-2015 stations. The median R, RMSD,

ubRMSD and bias for LDAS_ERA5 analysis (open-loop) are

0.73 (0.72), 28.74 (29.60) W m−2, 27.37 (26.92) W m−2 and

4.64 (4.40) W m−2 respectively. Although these values de-

pict a small advantage of the analysis over the open-loop, it

is worth mentioning that these differences are rather small

and likely to fall within the uncertainty of the in situ mea-

surements.

Figure 7a represents the added value of the analysis based

on NICR (Eq. 2), the large blue circles represent a positive

impact from the analysis (20 stations) with a NICR greater

than +3 (i.e. R values are better when the analysis is used

than when the model is used), while large red circles repre-

sent a degradation from the analysis (5 stations) with a NICR

smaller than −3. Stations with a rather neutral impact (60 sta-

tions) have a NICR between [−3; +3] and are reported using

small dots. Note that at the scale of Fig. 7a, some stations

are overlapping. Figure 7a is complemented by panels b, c, d

and e which show scatter plots of R, ubRMSD, absolute bias

and RMSD between LDAS_ERA5 analysis (x axis) and the

open-loop (y axis) for the 85 stations from the Fluxnet2015.

Out of the 85 stations considered, 56 have better R values

in the analysis compared to the open-loop. The respective

numbers of improved stations for ubRMSD, RMSD and the

absolute bias equate to 41, 47 and 44 respectively. The set

of 20 stations from Fig. 7a where the analysis has a positive

impact on the NICR (greater than +3) are reported in green

in Fig. 7b.

Results on river discharge are illustrated by Fig. 8 (panels a

and b). Figure 8a represents NSE scores for the subset of 982

stations selected. Most of them are located in North America

and Europe, while a few are available in South America and

Africa. Figure 8a is complemented by Fig. 8b, which shows

the NIC score applied to the NSE score. It emphasizes the
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Figure 6. Histograms of score differences (correlation and RMSD, analysis minus open-loop) for (a, b) LAI, (c, d) SSM, (e, f) GPP, (g, h)

EVAP and (i) SIF. For SIF only differences in correlation are represented. Number of available data (in blue) as well as the percentage of

positive and negative values (in red) are reported. Note that for the sake of clarity, the y axis is logarithmic.

added value of the LDAS_ERA5 analysis over the open-loop.

From this subset of stations, 74 % present a rather neutral im-

pact from the analysis (with a NIC ranging between −3 %

and +3 %), while 26 % (254 stations) present a significant

impact (with a NIC above +3 % or below −3 %). When the

analysis significantly impacts the representation of river dis-

charge, this impact tends to be positive. Indeed, 74 % of this

subset of stations (189 stations) have a NIC score greater than

3 % while only 26 % (65 stations) show NIC scores smaller

than −3 %.

The statistical scores for soil moisture from LDAS_ERA5

open-loop and analysis are presented for the third and fourth

layers of soil, corresponding to 4–10 cm depth and 10–20 cm

depth respectively. The soil moisture at layers 3 and 4 is

compared with ground measurements over 2010–2018 from

the ISMN at depths of 5 and 20 cm respectively. The results

are displayed in Table S3 for each individual network. Av-

eraged statistical scores (ubRMSD, R, Ranomaly and bias)

are similar for both LDAS_ERA5 analysis and open-loop

even if local differences exist. For the analysis, averaged R

(Ranomaly) values for the third layer, along with their 95 %

Confidence intervals (CIs) (782 stations from 19 networks)

are 0.68±0.03(0.53±0.04). For the open-loop, the averaged

R (Ranomaly) values are 0.67±0.03(0.53±0.04). Averaged-

network values are highest for the SOILSCAPE network

with values of 0.88±0.01(0.58±0.04) for the analysis (49

stations in the USA). For all networks, the average R val-

ues are higher than 0.55, with the exception of ARM (10

stations in the USA), which presents an averaged R value

of 0.29±0.05. Averaged ubRMSD and bias (LDAS_ERA5

minus in situ) are 0.060 and 0.077 m3 m−3 for the analy-

sis respectively. The open-loop has a similar performance,

with an ubRMSD and bias of 0.060 and 0.076 m3 m−3 re-

spectively. NIC (Eq. 2) has also been applied to R values. In

total, 65 % of stations present a neutral impact of the analy-

sis compared to the open-loop (511 stations at NIC ranging
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Figure 7. (a) Map of the normalized information contribution (NIC, Eq. 2) applied to correlation values between evapotranspiration from

LDAS_ERA5 analysis (open-loop) and observations from the FLUXNET 2015 synthesis dataset. NIC scores are classified into two cate-

gories: (i) negative impact from the analysis with respect to the model with values smaller than −3 % (red circles, 5 stations) and (ii) positive

impact from the analysis with respect to the model with values greater than +3 % (blue circles, 20 stations). Stations presenting a neutral

impact with values between −3 % and +3 % (60 stations) are reported as small dots. Note that at this scale some stations are overlapping. (b,

c, d and e) Scatter plots of R, ubRMSD, absolute bias and RMSD between LDAS_ERA5 open-loop and the 85 stations from the FLUXNET

2015 (y axis) and LDAS_ERA5 analysis and the same pool of stations (x axis). The set of 20 stations for which the analysis has a positive

impact on R values at NICR greater than +3 is reported in (a) in green.

between −3 and +3), 12 % present a negative impact (91 sta-

tions at NIC <−3) and 23 % present a positive impact (180

stations at NIC >+3).

The number of stations where R differences between the

analysis and the open-loop are significant (i.e. their 95 %

CIs are not overlapping) is 186 out of 782 (about 26 %).

There is an improvement from the analysis with respect to

the open-loop for 128 stations (about 69 %) and a degrada-

tion for 58 stations (about 31 %). Figure 9 illustrates R dif-

ferences between the analysis and the open-loop runs over

CONUS where most of the stations are located (552 out of

782). When differences (analysis minus open-loop) are not

significant, stations are represented by a small dot (425 sta-

tions out of 552). When they are significant (127 stations out

of 552), large circles have been used, with blue correspond-

ing to positive differences (99 stations out of 127) and red to

negative differences (28 stations out of 127). For most of the

stations where a significant difference is obtained, it repre-

sents an improvement from the analysis.

Averaged analysis R (95 %CI), bias and ubRMSD for the

fourth layer of soil (685 stations from 10 networks) are

0.65±0.03, 0.049 and 0.055 m3 m−3 respectively. For the

open-loop, they are 0.64±0.03, 0.048 and 0.056 m3 m−3 re-

spectively. In terms of the NIC, about 60 % of the stations

demonstrate a neutral impact of the analysis compared with

the open-loop, while 28 % show a positive impact and 12 %

a negative impact. Although differences between the open-

loop run and the analysis are rather small, these results un-

derline the added value of the analysis with respect to the

model run. Figure S3 represents the distribution of the scores

values for LDAS_ERA5 open-loop and analysis using box

plots centred on the median value. It is difficult to see any

important differences between them.

For evapotranspiration, river discharge and surface soil

moisture there is a slight advantage for the LDAS_ERA5

analysis with respect to its open-loop counterpart. Even if the

averaged statistical metrics are rather similar for both, there

are significant differences at the regional scale.
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Figure 8. (a) Global map of Nash–Sutcliffe efficiency scores (NSE) between river discharge from LDAS_ERA5 open-loop and in situ

measurements from the networks presented in Table S1 over 2010–2016. (b) Normalized information contribution scores (NIC, Eq. 2)

based on NSE scores on river discharge. Small dots represent stations for which NICs are between [−3 %, +3 %] (i.e. neutral impact

from LDAS_ERA5 analysis), NIC values greater than +3 % (blue large circles) suggest an improvement from LDAS_ERA5 analysis over

LDAS_ERA5 open-loop, while values smaller than −3 % (large red circles) suggest a degradation. Only stations where more than 4 years of

data are available and with a drainage area greater than 10 000 km2 are considered. Stations with NSE values smaller than −2 are discarded,

also leading to a subset of 982 stations available.

4 Monitoring and forecasts for areas under

severe/extreme conditions

4.1 Selection of two regional case studies

For each individual region presented in Table 1 and Fig. 2,

monthly anomalies (scaled by the standard deviation) of

analysed SSM (second layer of soil, 1–4 cm) and LAI for

2018 are assessed with respect to the 2010–2018 aver-

age. The anomalies (see Fig. 10) highlight three regions,

two of which present strong negative anomalies for both

SSM and LAI for almost all of 2018. These are north-

western Europe (WEUR) and the Murray–Darling basin

(MUDA) in south-eastern Australia. Contrastingly, eastern

Africa (EAFR) presents strong positive anomalies of SSM

and LAI. WEUR and MUDA regions were affected by a

severe heatwave and a drought in 2018, which impacted

the LSVs analysed by LDAS_ERA5. According to Fig. 10,

monthly anomalies of SSM and LAI for MUDA are nega-

tive through 2018, with 7 (6) months presenting LAI (SSM)

anomalies below −1 standard deviation (SD) respectively.

WEUR has negative SSM anomalies from May to December

2018, with values dipping below −2 SD. LAI was severely

impacted as well, with July to October 2018 presenting neg-

ative anomalies below −2 SD. For WEUR, 5 months show

LAI and SSM anomalies below −1 SD. On the other hand,

EAFR experienced 3 (7) months with positive anomalies for

SSM and LAI in 2018 above 1 SD.

According to the National Oceanic and Atmospheric Ad-

ministration (NOAA), Europe experienced its warmest sum-

mer since continental records began in 1910 with a pos-

itive anomaly at +2.16 ◦C above mean (Global Climate

Report, https://www.ncdc.noaa.gov/sotc/global/, last access:

April 2019). In Europe, temperatures over all the summer

months in 2018 were above the climatological mean. The

summer 2018 heatwave in Europe has already been reported
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Figure 9. Map of correlation (R) differences (analysis minus open-

loop) for stations measuring soil moisture at 5 cm depth and being

available over North America. Small dots represent stations where

R differences are not significant (i.e. 95 % confidence intervals are

overlapping), large circles where differences are significant.

Figure 10. 2018 monthly anomalies scaled by standard deviation of

analysed (a) SSM and (b) LAI, with respect to 2010–2018, for the

19 regions presented in Table 1 and Fig. 2. Solid red line, dashed

red line and solid green line represent regions MUDA, WEUR and

EAFR. Solid cyan line represents all other boxes (see Table 1 and

Fig. 2).

in the scientific literature (e.g. Magnusson et al., 2018; Al-

bergel et al., 2019; Blyverket et al., 2019).

In its 70th Special Climate Statement, the Australian

Bureau of Meteorology (BoM) reported a very hot and dry

summer 2018 in eastern Australia (BoM, 2019). Like much

of Australia, the Murray–Darling basin also experienced

remarkably dry and hot weather during 2018. The annual

maximum temperature for the Murray–Darling basin as a

whole was more than 2◦ above average during 2018. The

northern Murray–Darling basin in particular was severely af-

fected, with inflows to all river catchments persistently well

below normal (http://www.bom.gov.au/state-of-the-climate/,

last access: April 2019). Finally, the East African Sea-

sonal Monitor based on the Famine Early Warning

System Network (FEWS) confirms above-average rainfall

amounts and significantly greener-than-normal vegeta-

tion conditions (e.g. https://reliefweb.int/report/somalia/

east-africa-seasonal-monitor-july-27-2018, last access:

April 2019). As this study focuses on monitoring and fore-

casting the impact of severe drought conditions on LSVs,

the WEUR and MUDA regions are selected for further

investigation.

4.2 Case studies: LDAS-Monde medium-resolution

(0.25◦) experiments

Figure 11 illustrates seasonal cycles of observed LAI

(Fig. 11a) and SWI (Fig. 11e), LDAS_ERA5 analysis and

open-loop LAI (Fig. 11b) and SSM (Fig. 11f) for the WEUR

domain. The 2018 period is compared to the 2010–2017 av-

erage. Figure 11a shows the heatwave impact with a sharp

drop in observed LAI values from June to November 2018

(solid green line). Such low LAI values have never been ob-

served over the 8 previous years (it is below the minimum

value in shaded green). A similar behaviour is also visible in

the ASCAT SWI dataset in Fig. 11e, with the lowest values

recorded in 2018 for the 2010–2018 period. Over WEUR,

LDAS_ERA5 open-loop overestimates LAI in the second

part of the year, as already highlighted by several studies

(e.g. Albergel et al., 2017, 2019). The LDAS_ERA5 anal-

ysis has a positive impact and reduces LAI values, as seen

in Fig. 11b. Figure 11c, d, g and h depict a similar situation

for the MUDA area: almost every month of 2018 presents the

lowest values for both SSM and LAI. For both MUDA and

WEUR, the smaller differences for LAI and SSM between

LDAS_ERA5 analysis and open-loop in 2018 indicates that

both extreme events were well captured in the atmospheric

forcing used to drive LDAS_ERA5.

4.3 Case studies: LDAS-Monde high-resolution (0.1◦)

analysis and forecast experiments

For the two selected areas (WEUR and MUDA), LDAS-

Monde is also run over April 2016 to December 2018 with

the atmospheric forcing from HRES (LDAS_HRES) at 0.1◦

spatial resolution. Additionally, daily forecast experiments

are performed and the results presented for LAI and SSM

for lead times of 4 and 8 d. These forecasts are initialized

by either LDAS_HRES analysis or open-loop over 2017–

2018 in order to assess the impact of the initial conditions.

In this subsection, this new set of six experiments is veri-

fied against the assimilated observations. Verification of the

forecasts with these observations can be viewed as an inde-

pendent validation as those observations are not assimilated

yet. It is worth mentioning that there is a difference between

the use of SSM and LAI observations to evaluate the fore-

cast. For SSM, the assimilation is done after a rescaling of

the observations to the model climatology (see Sect. 2.3),

which removes bias. However, for LAI this is not the case,

and the assimilation process removes the bias in the mod-

elled LAI with respect to the observations. This difference,
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Figure 11. Upper panels represent seasonal cycles of (a) observed GEOV1 LAI from CGLS and (b) LAI from the open-loop (in blue) and

the analysis (in red) for the WEUR area (see Table 1 for geographical extent). Panels (c) and (d) are similar to (a) and (b) for the MUDA

area. Lower panels represent seasonal cycles of (e) ASCAT SWI from CGLS and (f) SSM from the open-loop (in blue) and the analysis (in

red) for the WEUR area. Panels (g) and (h) are similar to (e) and (f) for the MUDA area. For each panel dashed line represents the average

over 2010–2017 along with the minimum and maximum values; the solid lines are for the year 2018.

together with the longer memory of LAI (compared to SSM),

contributes to the results presented in this sub-section. Sta-

tistical scores for LDAS_HRES open-loop and analysis are

also presented, which serve as a benchmark for the forecast

experiments.

Figure 12 (for WEUR) and Fig. 13 (for MUDA) up-

per panels illustrate the seasonal RMSD (Figs. 12a, 13a)

and correlation (Figs. 12b, 13b) between LDAS_HRES

SSM from the second layer of soil (1–4 cm) and ASCAT

SSM estimates over 2017–2018. Scores are also reported

for the LDAS_HRES 4 d (LDAS_fc4) and 8 d forecasts

(LDAS_fc8). From the upper panels of those figures one

may notice a small improvement from the analysis (solid

red line) over the open-loop simulation (solid blue line),

with slightly reduced RMSD values and increased corre-

lation values. However, no improvement (or degradation)

is visible from the 4 and 8 d forecast experiments initial-

ized by LDAS_HRES analysis over those initialized by

LDAS_HRES open-loop. As expected, LDAS_HRES SSM

is closer to the observations compared with LDAS_fc4 and

LDAS_fc8. It is worth pointing out that for the MUDA area

there is a small positive impact of the initialization on the 4

and 8 d forecasts of surface soil moisture (Fig. 13a, b). These

results suggest that the fast-evolving SSM model variable is

more sensitive to the atmospheric forcing than to the initial

conditions (at least within the forecast range presented in this

study). Results for LAI are different from SSM (Figs. 12c, d

and 13c, d). Firstly, there is a large improvement from the

analysis (solid red line) over the open-loop (solid blue line),

particularly during the LAI decaying phase (boreal and aus-

tral autumns mainly). Secondly, the LDAS_HRES open-loop

(solid blue line) and the forecasts initialized by the open-

loop (LDAS_fc4 and LDAS_fc8) perform similarly. Further-

more, the LDAS_fc4 and LDAS_fc8 forecasts are quite con-

sistent when initialized by the LDAS_HRES analysis. Impor-

tantly, the LDAS_HRES analysis and forecasts outperform

the LDAS_HRES open-loop initial conditions and forecasts.

This suggests that LAI forecasts are more sensitive to initial

conditions than to the atmospheric forcing within the 4–8 d

range for both WEUR and MUDA regions.

These results are corroborated by Figs. 14 (for WEUR)

and 15 (for MUDA) for both SSM (top) and LAI (bot-

tom). Figures 14a and 15a show RMSD values between

LDAS_HRES open-loop SSM (1–4 cm) and ASCAT SSM

over 2017–2018 for the WEUR and MUDA domains respec-

tively. Due to the seasonal linear rescaling applied to ASCAT

estimates, the RMSD values are rather small. For the WEUR

(MUDA) domain they range from 0 to 0.048 m3 m−3 (0 to

0.040 m3m−3). Figures 14b and 15b present maps of RMSD

differences between LDAS_HRES analysis (open-loop) and

ASCAT SSM estimates over 2017–2018 for the WEUR and

MUDA domains. Both maps are dominated by negative val-

ues (in blue) indicating that RMSD values are consistently

smaller when using LDAS_HRES analysis than when us-
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Figure 12. Seasonal (a) RMSD and (b) correlation values between soil moisture from the second layer of soil (1–4 cm) from the model

forced by HRES (LDAS_HRES, open-loop in blue solid line, analysis in red solid line) and ASCAT SSM estimates over 2017–2018 over

the WEUR area. Scores between SSM from the second layer of soil of LDAS_HRES, 4 d (dashed/dotted blue – when initialized by the

open-loop – and red – when initialized by the analysis – lines) and 8 d (dashed blue and red lines) forecasts and ASCAT SSM estimates are

also reported. Panels (c) and (d): same as (a) and (b) between modelled/analysed LAI and GEOV1 LAI estimates.

Figure 13. Same as Fig. 12 for the Murray–Darling River (MUDA) area in south-eastern Australia.

https://doi.org/10.5194/hess-24-4291-2020 Hydrol. Earth Syst. Sci., 24, 4291–4316, 2020



4308 C. Albergel et al.: Data assimilation for continuous global assessment of severe conditions over land

Figure 14. (a) RMSD values between LDAS_HRES open-loop and ASCAT SSM estimates over 2017–2018 for the WEUR domain; (b)

RMSD differences between LDAS_HRES analysis (open-loop) and ASCAT SSM. (c), (d) and (e): same as (b) between LDAS_fc4 initialized

by the analysis (open-loop) and LDAS_fc8. Bottom row: same as the top row for LAI from the different experiments and LAI GEOV1.

ing LDAS_HRES open-loop. For the MUDA domain, the

RMSD values are reduced by about 15 %. Figures 14c, d and

15c, d show maps of RMSD differences for forecast experi-

ments (LDAS_fc4, LDAS_fc8). It appears that over both do-

mains, the impact from the initialization is rather small. This

supports previous results indicating that the forcing quality

is more important than the initial conditions for the SSM

forecast. However, the results for LAI support the opposite

conclusion. The RMSD values for LDAS_HRES open-loop

range from 0 to 1.6 m2 m−2 over WEUR and 0 to 1 m2 m−2

over MUDA (Figs. 14e and 15e). The RMSD values are re-

duced by up to 37 % over WEUR and up to 60 % over MUDA

by the analysis (Figs. 14f and 15f). The enhancement from

the data assimilation is consistent throughout the WEUR do-

main, while the improvement over the MUDA domain is con-

centrated in the south-eastern part (the north-western part is

largely unchanged).

Similarly to Fig. 14a, b, c, d, Fig. 16 illustrates the impact

of the analysis on SSM in terms of the correlation coefficient.

But this time, ASCAT SWI (i.e. no rescaling) has been used

for the validation. Figure 16 (top panels) shows maps of R

values based on the absolute values, while Fig. 16 (bottom

panels) shows R values based on the anomaly time series

(capturing short-term variability) as defined in Albergel et

al. (2018a). Figure 16a and e represent R values and anomaly

R values for LDAS_HRES respectively. As expected, R val-

ues are higher than anomaly R values. Maps of differences

(panels b and f) of Fig. 16 suggest that after assimilation,

both scores are improved almost equally. The 4 and 8 d fore-

casts still show improvements from using initial conditions

from the analysis over the open-loop on R values (Fig. 16c,

d). Looking at Ranomaly values (Fig. 16g, h), no negative or

positive impact from the initial conditions can be seen.

Finally, the top panels of Fig. 17 illustrate the im-

pact of the analysis on drainage monitoring and fore-

casts over WEUR. Figure 17a represents drainage from the

LDAS_HRES open-loop, with values ranging between 0 and

1 kg m−2 d−1. Figure 17b shows the drainage difference be-

tween LDAS_HRES analysis and open-loop. The analysis

impact on drainage is rather small (within ±3 %) and more

pronounced in areas where the analysis has largely affected

LAI (see Fig. 14f, g and h). As seen in Fig. 17c and d, the

forecasts are also sensitive to the initialisation in areas where

the analysis effectively corrected LAI. The bottom panels of

Fig. 17 illustrate a similar impact on runoff. Although we did

not validate drainage and runoff in this study, previous find-

ings suggest a neutral to positive impact of the analysis on

river discharge through modifications to drainage and runoff

(Albergel et al., 2017, 2018a).

5 Discussion and conclusions

This study has demonstrated the potential of LDAS-Monde

to assimilate Earth observations (EOs) into a land sur-

face model (LSM) to predict the impact of heatwaves and

droughts on land surface conditions. LDAS-Monde is now

ready for various applications, including (i) land surface re-

analyses of essential climate variables (ECVs), (ii) moni-

toring of water resources, such as the impact of droughts

on vegetation, (iii) the detection of extreme land surface

conditions; and (iv) the effective initialization of LSVs for

land surface forecasting. LDAS-Monde has been applied

in this study to past events of 2018 with respect to a rel-

atively short climatology (2010–2018). It is planned that

it will be applied to much longer periods for future re-

analysis applications. The operational application of LDAS-

Monde near-real time could potentially improve emergency

monitoring systems for LSVs. Using high-quality atmo-

spheric reanalyses like ERA5 to force LDAS-Monde guar-

antees a high level of consistency since the configuration

is frozen in time (no changes in spatial and vertical reso-
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Figure 15. Same as Fig. 14 for the Murray–Darling River (MUDA) area in south-eastern Australia.

Figure 16. (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates over 2017–2018 for the WEUR domain; (b) R

differences between LDAS_HRES analysis (open-loop) and ASCAT SWI. (c) and (d): same as (b) between LDAS_fc4 initialized by the

analysis (open-loop) and LDAS_fc8. Bottom row: same as top row for R values based on anomaly time series.

lutions, data assimilation or parameterizations). The coarse

spatial resolution of ERA5 makes it affordable to run long

time periods and large-scale LDAS-Monde experiments.

With ERA5 available from 1979 and now covering near-

real-time needs with its ERA5T version (https://climate.

copernicus.eu/climate-reanalysis, last access: August 2020),

an LDAS_ERA5 configuration would be able to provide a

long-term climatology as well as near-real-time anomaly de-

tections of the land surface conditions at coarse resolution

(0.25◦). Significant anomalies could then be used to trigger

more focused “on-demand” simulations for regions experi-

encing extreme conditions. For these simulations, LDAS-
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Figure 17. (a) Drainage values for LDAS_HRES open-loop over 2017–2018 for the WEUR domain; (b) drainage differences between

LDAS_HRES analysis and open-loop. (c) and (d): same as (b) between LDAS_fc4 initialized by the analysis and LDAS_fc4 initialized by

the open-loop and between LDAS_fc8 initialized by the analysis and LDAS_fc8 initialized by the open-loop. Bottom row: same as the top

row for runoff. Units are kg m−2 d−1.

Monde could be run at higher resolution by forcing the LSM

with an enhanced resolution forecast in order to provide

more information, such as the ECMWF operational high-

resolution product (0.10◦). The capability of such an ap-

proach was illustrated in our study for two regions in north-

western Europe and south-eastern Australia. In terms of the

RMSD, our results showed a very small impact of initial con-

ditions on the forecasts of SSM. This was expected due to the

short-term memory of the surface soil layer, which is dom-

inated by the antecedent meteorological forcing. However,

the LAI initialization had significant impact on the LAI fore-

cast skill. This was also expected due to the long-term mem-

ory of vegetation evolution. For SSM, the assimilation is per-

formed after a rescaling of the observations to the model cli-

matology (see Sect. 2.3), which ensures that the model and

observations are unbiased with respect to each other. How-

ever, LAI is not bias-corrected, which allows the assimilation

process to remove bias in the modelled LAI (with respect to

the observation). This technical difference between SSM and

LAI assimilation, combined with the longer memory of LAI

compared to SSM, contributes to the results presented in this

study. Despite the expected behaviour of these two LSVs in

forecasting, our results show that the LDAS-Monde system

is capable of propagating the initial LAI conditions, which is

relevant for LSV medium-range forecasting and potentially

for longer lead times, such as seasonal forecasts. The strong

impact of LAI initialization on the forecast does not seem to

propagate to the surface soil moisture, and further studies are

necessary to test the impact of initial conditions on other vari-

ables from LDAS-Monde (including soil moisture in deeper

layers and evapotranspiration). Another possibility would be

to force LDAS-Monde using the 51-member ECMWF en-

semble forecasts. Although the ensemble system has coarser

spatial resolution (∼0.20◦) than the deterministic forecast, it

accounts for forcing uncertainty in the LSVs through the en-

semble spread and extends to a 15 d lead time. The maximum

range of the soil and vegetation forecasts could even be ex-

tended to 6 months if seasonal atmospheric forecasts were

used as forcing.

LDAS-Monde has some limitations, where future devel-

opments are needed to improve the representation of LSVs.

For instance, it does not consider snow data assimilation yet.

It has been shown in this study that if the snow accumulation

seems to be represented correctly in the system, the onset of

snowmelt is too early in the spring. To overcome this issue,

two possibilities will be explored. Firstly, a recently devel-

oped ISBA parametrization, MEB (Multiple Energy Budget),

is known to lead to a better representation of the snowpack

(Boone et al., 2017). This could be particularly useful in the

densely forested areas of the Northern Hemisphere, where

large differences between LDAS-Monde and the IMS snow

cover were found in spring (Fig. S2i, Aaron Boone CNRM,

personal communication, June 2019). Another enhancement

of LDAS-Monde will be to adapt the current data assimila-

tion scheme to permit the assimilation the IMS snow-cover

data, which is implemented at NWP centres such as the

ECMWF (de Rosnay et al., 2014). The current SEKF data as-

similation scheme is also being revisited. Even though it has

provided good results, one of its limitations is the computa-

tional cost of the Jacobian matrix, which needs one model

run for each control variable. As the number of control vari-

ables is expected to increase, this approach would require

significant computational resources. Therefore, more flexible

ensemble-based data assimilation approaches have recently

been implemented in LDAS-Monde, such as the ensemble

square root filter (EnSRF, Fairbain et al., 2015; Bonan et al.,

2020). Bonan et al. (2020) have evaluated performances from

the EnSRF and the SEKF over the Euro-Mediterranean area.

Both data assimilation schemes have a similar behaviour for

LAI while for SSM, the EnSRF estimates tend to be closer
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to observations than those from the SEKF. They have also

conducted an independent evaluation of both assimilation ap-

proaches using satellite estimates of evapotranspiration and

GPP together with river discharge observations from gauging

stations. They have found that the EnSRF gives a systematic

(moderate) improvement for evapotranspiration and GPP and

a highly positive impact on river discharges, while the SEKF

leads to more contrasting performance. As for applications

in hydrology, the 0.5◦ spatial resolution TRIP river network

is currently being improved to 1/12◦ globally.

CNRM is also investigating the direct assimilation of AS-

CAT radar backscatter (Shamambo et al., 2019). This has the

potential to improve the way vegetation is accounted for in

the change detection approach used to retrieve SSM with an

improved representation of its effect. Assimilating ASCAT

radar backscatter also raises the question of how to properly

specify SSM observation, background, and model error co-

variance matrices, which are currently based on soil proper-

ties (see Sect. 2.1.3 on data assimilation). The last decade has

seen the development of techniques to estimate those matri-

ces. Approaches based on Desroziers diagnostics (Desroziers

et al., 2005) are computationally affordable for land data as-

similation systems and could provide insightful information

on the various sources of the data assimilation system.

Furthermore, a comparison of LDAS-Monde with exist-

ing datasets from other centres needs to be considered. Cur-

rent work at Météo-France has began to compare its qual-

ity against state-of-the-art reanalyses such as those from

NASA at both the global scale (GLDAS, Rodell et al., 2004,

MERRA-2, Reichle et al., 2017; Draper et al., 2018) and re-

gional scale (NCALDAS over the continental USA, FLDAS

over Africa). Finally, first work has begun to run LDAS-

Monde at kilometric- and sub-kilometric-scale spatial resolu-

tions. Promising results have been obtained by assimilating

SSM and LAI over the AROME domain (Applications de

la Recherche à l’Opérationnel à Méso-Echelle, https://www.

umr-cnrm.fr/spip.php?article120, last access: July 2019) of

Météo-France.

Code availability. LDAS-Monde is a part of the ISBA land surface

model and is available as open source via the surface modelling

platform called SURFEX. SURFEX can be downloaded freely at

http://www.umr-cnrm.fr/surfex/ (CNRM, 2016) using a CECILL-

C Licence (a French equivalent to the L-GPL licence; http://

cecill.info/licences/Licence_CeCILL_V1.1-US.html, CEA-CNRS-

Inria, 2013). It is updated at a relatively low frequency (ev-

ery 3 to 6 months). If more frequent updates are needed or if

what is required is not in Open-SURFEX (DrHOOK, FA/LFI

formats, GAUSSIAN grid), you are invited to follow the pro-

cedure to get a SVN account and to access real-time mod-

ifications of the code (see the instructions at the first link).

The developments presented in this study stemmed from SUR-

FEX version 8.1. LDAS-Monde technical documentation and con-

tact points are freely available at https://opensource.umr-cnrm.fr/

projects/openldasmonde/files (CNRM, 2019).

Data availability. Data used in this paper are available upon re-

quest by contacting the corresponding author.

Supplement. The supplement related to this article is available on-

line at: https://doi.org/10.5194/hess-24-4291-2020-supplement.
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