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SUMMARY

During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean
forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has
been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French
MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate
a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and
salinity profiles, focusing on high-resolution scales of the ocean dynamics.

The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication
including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed
through the Système d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal
interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of
separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions.
The second release, SAM-2, is being developed to include new features from the singular evolutive extended
Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third
one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm.

Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estima-
tion assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the
European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring
and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limita-
tions of the current systems. This paper provides an overview of the developments conducted in MERSEA with
the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.
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1. INTRODUCTION

Operational oceanography is an emerging field of activities that can be defined as
the process of systematic and real-time monitoring and prediction of the state of oceans
and coastal seas (including living resources) in a way that will promote and engender
wide utility and availability of this information for maximum benefit to the community
(Verron and Chassignet 2006). The scientific and technological feasibility of operational
ocean forecasting systems results from several factors.

(i) The maturation of numerical models and computing techniques available to simu-
late the ocean circulation. Substantial progress has been achieved especially in terms
of: model formulations, discretization techniques, numerical schemes, parametrization
of subgrid-scale processes, coupling with the overlying atmosphere and sea ice etc.
(Griffies 2006). In addition, the growth of resources for high-performance computing
has permitted an increase of the spatial resolution to such an extent that, today, basin-
scale models are able to resolve the mesoscale dynamics explicitly.
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(ii) A concerted international effort to establish global ocean observing systems.
During the past decade, major international programs have taken place (e.g. the World
Ocean Circulation Experiment) with the objective to better characterize the state of
the global ocean. The contribution of satellite altimetry to that effort has been critical,
providing for the first time continuous and accurate observation of the surface signature
of the ocean dynamics at global scale (Fu and Cazenave 2001). Today, the deployment
of ARGO floats covering the major ocean basins provides additional information about
the sub-surface ocean properties (Send 2006).

(iii) The progress achieved in data assimilation techniques. The first application of
data assimilation in oceanography dates back to the 1980s, involving simple ocean
models. Since then, the theoretical framework of data assimilation has been progres-
sively adapted to meet the specific requirements of more sophisticated ocean models
and observational datasets. Major advances have been achieved to:

• Adapt the assimilation algorithms to ocean systems of very large dimensions;
• Develop sophisticated representations of the error statistics with primitive-equation

models;
• Implement multivariate algorithms for assimilating several data types simultane-

ously; and
• Extend the theoretical framework from linear to nonlinear problems (e.g. Verron

1992; Blayo et al. 1997; De Mey 1997; Fukumori 2001; Brusdal et al. 2003;
Evensen 2003).

As a consequence of this overall progress, ocean forecasting in the meteorological
sense is becoming a reality. A number of initiatives have been undertaken at national
level to develop ocean forecasting systems operating at regional and/or global scales,
e.g. MERCATOR in France, FOAM in the United Kingdom and MFS in Italy (Crosnier
and Le Provost 2006); TOPAZ in Norway, HYCOM (Crosnier and Le Provost 2006)
and ECCO (Fukumori 2006) in the United States, and BLUElink in Australia (Schiller
and Smith 2006). One of the main objectives during the GODAE project (Smith 2006)
has been to compare the assimilation systems implemented operationally and evaluate
their overall performances in real-time conditions.

The French MERCATOR project (Bahurel 2006) is one of the leading participants
in GODAE. The project was launched in 1995 by the major French agencies involved
in oceanography. The MERCATOR system is based on several components: the ocean
model, the surface forcing fields, the remotely sensed data (e.g. sea surface tempera-
ture (SST) and altimetric data) and in situ observations (e.g. temperature and salinity
profiles). These various components are integrated through an assimilation system, the
objective being to provide the best possible description of the real ocean. The assimi-
lation methods are all derived from least-squares estimation principles. In the first part
of this paper, the suite of assimilation tools implemented in the MERCATOR system is
reviewed and illustrated.

In the future, MERCATOR will be extended to the European scale through the
EU MERSEA (Marine EnviRonment and Security for the European Area) project. The
overarching objective of MERSEA is to develop a single European system for global
monitoring and forecasting of the ocean with a co-ordinated network of regional systems
for European waters. This integrated system will form the ocean component of the
future Global Monitoring for Environment and Security system. The high-resolution
global ocean forecasting system to be shared by the European partners will be inherited
mostly from the MERCATOR experience, while FOAM will be focused on the European
coastal area, TOPAZ on the Arctic ocean and MFS on the Mediterranean Sea.
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In the second part of the paper, we discuss the research effort in data assimilation
carried out in MERSEA to achieve this integration. Following the pathway taken by
numerical weather prediction (NWP) organizations, it is believed that a strong invest-
ment in research and development is necessary to support operational oceanography in
the long-term, with strong beneficial feedback on the research side.

An overview of the MERCATOR prototypes in use today is presented in section 2,
while the suite of assimilation schemes is presented in section 3. The research directions
that are being investigated in the MERSEA project to build the future integrated system
are described in section 4, and conclusions follow in section 5.

2. THE MERCATOR OPERATIONAL SYSTEM

Operational ocean prediction systems are being developed with a variety of objec-
tives in mind, such as: ocean current hindcasting and short-range forecasting; monitoring
and prediction of properties of the surface layer; estimation of the thermodynamic state
of the ocean for seasonal and climate predictions; production of retrospective analyses of
the changing ocean; and representation of the background physical environment which
is critical to the functioning of marine ecosystems.

The representation of the ocean state at eddy-resolving resolution is necessary to
meet the requirements of end-users, but this is also fully justified from a scientific point
of view. The dominant energetic activity of the mesoscale ocean, its non-deterministic
nature and the interactions with the large-scale circulation are now well recognized
properties, requiring sophisticated numerical models and assimilation methods that
make the best use of sparse observations. To produce reliable forecasts, the models must
be initialized with conditions that represent as accurately as possible the actual state
of the ocean at eddy-resolving scales. Fortunately, the arrival of satellite observations
has played a pivotal role in the development of operational oceanography, providing the
observational basis needed to respond appropriately to the ‘high-resolution challenge’.

The long-term goal of MERCATOR is, therefore, to provide a three dimensional
(3D) description of the global ocean dynamics and thermohaline circulation in terms
of temperature, salinity, currents and sea-surface elevation, with the highest possible
resolution in space and time permitted by the observing systems and the computational
resources. In the future, an additional objective will be to run a coupled physical–
biogeochemical model in order to continuously monitor the biogeochemical and
ecosystem properties of the ocean.

The MERCATOR prototypes available today consist of an ocean circulation model,
an assimilation system and different datasets that are assimilated routinely. The ocean
model is based on the rigid-lid version of the OPA-NEMO primitive-equation model
developed at the LOCEAN laboratory (Madec et al. 1998), and the transition to the free-
surface version of the ocean code is underway. Surface forcings consist of daily fields
of wind stress, evaporation, precipitation, non-solar and solar heat fluxes provided by
analyses and forecasts from the European Centre for Medium-range Weather Forecasts.
The surface forcing includes a retroaction term in the net heat flux, based on the
difference between the model SST and the weekly Reynolds SST product, in order to
reflect the coupling between the ocean and the atmosphere. The main river outflows are
represented by an input of fresh water at the river mouth given by the climatological
monthly database from UNESCO (Vörösmarty et al. 1996). A realistic topography is
adapted to the resolution of the model, based on the bathymetric database produced by
Smith and Sandwell (1997).
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(a) (b)

(c) (d)

Figure 1. Different kinds of assimilated data for the first week of January 2002, and resulting sea surface
temperatures as analysed by the MERCATOR North Atlantic (1/3◦) prototype: (a) along-track sea-level height
anomaly data (from satellites Jason1, ERS2, GFO); (b) in situ temperature vertical profiles; (c) salinity vertical

profiles; and (d) resulting sea surface temperature analysis.

Input data for the MERCATOR system include in situ as well as remotely sensed
observations which are used for several applications: forcing, data assimilation, model
verification and validation. Here we focus on the data used for assimilation. Figure 1
shows an example of data (observations of sea-level anomalies, temperature and salinity
profiles) assimilated over a 7-day window and the resulting model state after assimi-
lation. One can see the high spatial coverage of the altimetric data (three satellites are
available, see Fig. 1(a)) and the relative scarcity of in situ data, especially salinity pro-
files (Fig. 1(c)). The continuous line in Fig. 1(b) corresponds to expendable bathyther-
mograph (XBT) temperature profiles collected along shipping tracks. The analysed SST
field in Fig. 1(d), which incorporates information coming from both the model integra-
tion and the available observations, shows important mesoscale structures.

The system components are assembled into a hierarchy of prototypes; at present
three prototypes are being used operationally:

• The first prototype (denoted PSY1) covers the North and equatorial Atlantic with
an intermediate resolution of 1/3◦ and 43 vertical levels. The grid spacing is stretched
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in the vertical, with the resolution changing from 12 m at the sea surface to 200 m at
the bottom. Every week, this model assimilates vertical temperature/salinity profiles in
addition to satellite data from AVHRR∗ SST and radar altimetry. The Mediterranean
Sea is not explicitly included in the model domain, but its impact on the North Atlantic
basin is taken into account through a buffer zone in the Gibraltar Strait and Alboran Sea
where a relaxation to climatology is applied.

• The second prototype (PSY2) is a high-resolution model (5 to 7 km horizon-
tal resolution) covering the North Atlantic basin from 9 to 70◦N, and including the
Mediterranean Sea. There are 43 vertical levels with the resolution changing from 6
m at the surface to 300 m at the bottom of the Atlantic basin. This configuration is
more specifically focused on mesoscale processes (Drillet et al. 2005). It is intended
to provide boundary conditions for coastal modelling in European seas. Until recently
only altimetric data were assimilated in PSY2 but the system has been upgraded in late
2005 for incorporation of in situ data, still on a weekly basis. The next version of the
high-resolution Atlantic model will be developed on the same grid as the future global
high-resolution model (1/12◦) with: a free surface, a partial-step vertical coordinate,
atmospheric bulk formulae, and a sea ice model (Garric and Charpentier 2005; Timmer-
mann et al. 2005). In the future, this system is intended to produce ocean analyses every
day in order to better meet the requirements of end users.

• The third prototype (PSY3) is a global ocean configuration with 31 levels in
the vertical. Today, PSY3 assimilates altimetric data only, but the extension to in situ
temperature and salinity data is ongoing. There are 21 levels located in the top 1000 m
of the water column, and the thickness of the levels varies from 10 m at the surface
(within the first 100 m) to 500 m below the 3000 m level. The initial version of the
global prototype had a horizontal resolution of 2◦, but an upgrade was achieved in late
2005 with a new global version at 1/4◦ resolution. This prototype will provide up-to-date
oceanic initial conditions for seasonal climate predictions every month.

Figure 2 illustrates several results obtained from these models, and the typical
oceanic structures present in the numerical model outputs.

3. ASSIMILATION SCHEMES IN THE MERCATOR SYSTEM

(a) Incremental approach

MERCATOR is developing a suite of assimilation tools of increasing complexity
(denoted as Système d’Assimilation MERCATOR or SAM) ranging from pragmatic se-
quential schemes to variational methods. This incremental approach was adopted at the
start of the project as a compromise between the operational needs for high-resolution
products and the available computational resources. A few years ago, the feasibility of
sequential methods based on optimal interpolation (OI) to assimilate altimeter data with
mesoscale ocean dynamics was demonstrated (De Mey 1997). In the long-term, high-
performance computing resources are expected to increase further, and research and
development activities are being conducted in anticipation of the introduction of more
advanced assimilation techniques, such as 4D variational assimilation (4D-Var).

The MERCATOR assimilation tools in place today have their roots in the theoretical
framework of least-squares statistical estimation. The first release, SAM-1, has been
developed from an OI scheme; SAM-1 has been running on an operational real-time
basis since early 2001. The second release, SAM-2, is considering a singular extended
evolutive Kalman (SEEK) filter analysis method; it has been evaluated and compared to

∗ Advanced Very High Resolution Radiometer.
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Figure 2. Examples of MERCATOR ocean system outputs from prototypes PSY1, PSY2 and PSY3 (see text) all
computed on 1 June 1995: (a) global ocean sea surface temperature field, real-time analysis 1 June 2005—from
PSY3; (b) North and Tropical Atlantic (1/3◦ model) 1000 m depth salinity, 2-week forecast verifying 15 June
2005—from PSY1; (c) Mediterranean Sea (5–7 km model, 1/16◦) surface currents—from PSY2, and (d) vertical
section of sea temperature between Sète and Tunis, 2-week forecast verifying 15 June 2005. See text for further

details.

SAM-1 in several hindcast experiments and will be integrated soon into the operational
system. The third release, SAM-3, targets more advanced approaches such as 4D-Var,
and is still under construction in research and development mode.

(b) SAM-1

SAM-1 is based on the reduced order OI method developed by De Mey and
Benkiran (2002) and Demirov et al. (2003). Two different versions of SAM-1 are
implemented in the MERCATOR prototypes. Version 1 (SAM-1v1) employs a vertical
extrapolation scheme based on the Cooper and Haines (1996) method to assimilate
observations of sea-level anomalies (SLA). The assimilation scheme is described in
detail in Ferry et al. (2006). The algorithm starts by calculating a SLA increment
from ‘innovations’ collected over a one-week cycle (i.e. differences between along-
track measurements and the model forecast at the corresponding time within the cycle)
using a background-error covariance that is constant in time. The SLA increment
is partitioned into a baroclinic and a barotropic contribution, in proportions that are
determined according to the behaviour of the model for the period and the location
under consideration (Ferry et al. 2006). This is achieved by estimating for each water
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column how much the forecast dynamic height (ηbclinic) and the forecast barotropic
height (ηbtropic) contribute to the model’s forecast sea surface height: ηbclinic is calculated
as a vertical density anomaly integration from the bottom to the surface, and ηbtropic

is calculated away from the shelves (for depths >300 m) by using the approximation
ηbtropic = fψ/(gH), where ψ is the model barotropic stream function, H is the ocean
depth, f is the Coriolis parameter and g is the acceleration due to gravity. The baroclinic
(barotropic) partition of the SLA is based on a linear regression between ηbclinic (ηbtropic)
and the model SLA, which is achieved using a collection of oceanic states. This
collection of oceanic states (13 weekly fields for ηbclinic, ηbtropic and SLA collected
during the preceding 3 months) is continually updated during the simulation, which
allows the statistics to evolve with time. The linear regression determines the average
η′

bclinic/SLA and η′
btropic/SLA ratios used to split the SLA increment into its respective

baroclinic and barotropic parts. The results indicate that this partition of the SLA
increment is time- and space-dependent.

The barotropic component is then converted into an increment of horizontal velocity
and barotropic stream function of the model, while the baroclinic part is used to modify
the thermohaline structure of the water column by lifting or lowering the isopycnals
with the Cooper and Haines (1996) technique. This scheme relies on the idea that, in
oceanic regimes where baroclinicity dominates, sea level is closely related to the depth
of isopycnals: the deeper the isopycnals, the higher the sea level. Conceptually, if the
density changes as a result of temperature increase, the warming water (which is then
less dense and takes up more room than cold water) produces a higher SLA and vice
versa.

SAM-1v1 has been implemented in the PSY2 and PSY3 prototypes. To illustrate
the impact of SLA data on the oceanic state, Fig. 3 represents the sea level and isopyc-
nals along the equatorial Pacific between 180 and 140◦W on 22 June 1993, before and
after assimilation of altimetric data. The figure actually shows that the displacement of
isopycnals is negatively correlated to the sea-level change: the assimilation induces an
upward motion of isopycnals in the central and eastern regions, and a downward motion
in the western region. In terms of temperature, an upward isopycnal motion is equivalent
to raising the isotherms, i.e. to cooling the water at a fixed depth. By decreasing (increas-
ing) the surface elevation, the ocean heat content is therefore decreased (increased).

Although this approach gives satisfactory results for assimilating SLA data in
subtropical and midlatitude regions, the method cannot easily be extended to assimilate
other observations, such as SST or in situ temperature and salinity profiles, with a
primitive-equation model. In addition, the modelling error is not necessarily distributed
in the vertical as an isopycnal mode, and more complex error structures must be
considered. A fully multivariate, multi-data version of the OI scheme was therefore
developed to assimilate simultaneously in situ temperature and salinity profiles and
along-track altimetric data.

Version 2 (SAM-1v2) of the OI assimilation tool is based on the formulation
described in De Mey and Benkiran (2002). It has been running operationally since
January 2004 in the PSY1 North Atlantic prototype at 1/3◦, and was transposed to
the PSY2 prototype in late 2005. The background-error covariance is still constant, but
the algorithm performs a reduced-order OI by means of multivariate vertical empirical
orthogonal functions (EOFs) of barotropic stream function, and vertical temperature
and salinity profiles, computed from a priori model simulation. The update of the
model state is then expressed as a sum of contributions from each EOF weighted by
the product of the innovation and the Kalman gain in the reduced space. The number
and shape of the vertical modes permitted by this approach can be adjusted regionally
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Figure 3. (a) Sea level (m), and (b) isopycnals (water density minus 1000, in kg m−3) at the equator in the Pacific
for 23 June 1993, as simulated by the MERCATOR global ocean analysis system. The model state before (after)

assimilation is represented by black (red) lines.

and seasonally. This option has been implemented in PSY1 and PSY2, leading to a
better representation of the local physics than with the uni-modal scheme implemented
in SAM-1v1. A variant of this multivariate scheme has also been implemented in the
MFSPP (Mediterranean Forecasting System Pilot Project) model of the Mediterranean
Sea (Demirov et al. 2003), showing its capacity to accommodate a fairly wide spectrum
of surface and sub-surface dynamical regimes.

(c) SAM-2

By construction, the SAM-1 algorithm assumes that the correlations can be sepa-
rated into horizontal and vertical correlations. The concept of separability is related to
the predominant role of stratification, and the very different scales involved horizontally
and vertically in the open ocean. However, different behaviours can be expected near
boundaries and coastal regions (e.g. Echevin et al. 2000). These limitations motivated
the development of a more advanced assimilation scheme, SAM-2, that does not require
the hypothesis of horizontal/vertical separability.

The SAM-2 algorithm is inherited from the analysis scheme of the SEEK filter,
which is a reduced-order Kalman filter introduced by Pham et al. (1998) in the context
of ocean circulation models. The error statistics of the SEEK filter are represented in
a sub-space spanned by a small number of dominant error directions. The formulation
of the assimilation algorithm relies on a low-rank background-error covariance matrix,
which makes the calculations tractable even with state vectors of very large dimension.
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Several strategies can be adopted to initialize the vectors of the reduced basis. A
method involving the computation of EOFs obtained from prior simulations (without
assimilation) has been applied in the majority of case-studies; this approach leads to
corrections of the model trajectory that are multivariate and consistent with the dynamics
of primitive-equation models. The extrapolation of the data from observed to non-
observed variables is performed along the directions represented by these error modes
which connect all dynamical variables and grid points of the numerical domain. The
3D modal representation for the error statistics is intended to overcome some of the
limitations of SAM-1v2 in anisotropic and non-separable regions of the world ocean,
such as shallow areas or in the surface layers (Testut et al. 2003).

Unlike the original SEEK filter, the variant of SAM-2 considered here does not
evolve the error statistics according to the model dynamics (Ballabrera-Poy et al. 2001).
This would require prohibitive costs given the size of the operational systems. However,
some form of evolution of the background error is taken into account by considering
different error sub-spaces for the four seasons. The error modes can be computed using
different techniques: (i) EOFs of model states extracted from a prior simulation (without
assimilation); (ii) EOFs of system states extracted from a prior hindcast experiment
(obtained, for instance, with SAM-1); or (iii) EOFs of the system tendencies that occur
over weekly cycles. These various approaches are currently being tested by investigating
their capacity to control the model trajectory with the PSY1 configuration.

An issue of practical interest is how to suppress spurious correlations with distant
variables, that may appear as a result of the truncation of EOFs. In order to prevent
the data from exerting an artificial influence at remote distances through large-scale
signatures in the EOFs, a simplification of the analysis scheme has been adopted by
setting to zero the error covariances between distant variables which are believed to be
uncorrelated in the real ocean. Previous experiments with the SEEK filter have shown
that the local representation of the error sub-space is particularly effective for capturing
the mesoscale features of the turbulent ocean (e.g. Penduff et al. 2002; Testut et al.
2003; Birol et al. 2005). This simplification is implemented in SAM-2 by assuming that
distant observations have negligible influence on the analysis. The global system is split
into sub-systems, and for each of these the traditional analysis is computed. Only data
points located within individual regions, centred on a sub-domain of one or several grid
points to be updated, actually contribute to the gain. This approach can be understood
as a tuning of the observation operator according to the sub-domain in question. The
size of the regions is determined in such a way that the distribution of the observations
available on the model domain always provides at least a few data points within each
region of influence. The typical size of the regions of influence in the MERCATOR
prototypes extends from about 200 to 500 km, i.e. several Rossby radii of deformation.

The analysis step of the conventional Kalman filter is reformulated to take advan-
tage of the low-rank approximation, leading to more efficient inversions of the data in
the reduced space than in observation space (Brasseur 2006). To minimize the com-
putational requirements, the analysis kernel in SAM-2 has been massively parallelized
and integrated in a generic platform hosting the SAM-1 and SAM-2 kernel families.
This platform provides a technological capacity to extend the dimension of the error
sub-space up to several hundred modes (typically 200 with the MERCATOR prototype
configurations).

Hindcast experiments have been conducted to evaluate the performance of SAM-1
with respect to SAM-2 in a similar set-up; these have demonstrated the overall supe-
riority of SAM-2. Significant improvements have been reported with SAM-2 in most
oceanic regions. For instance, coastal regions are now better represented, in particular
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across the shelf. Biases in the equatorial regions have been much reduced with SAM-2,
and the occurrence of spurious equatorial upwelling patterns, which had been noticed
with SAM-1, has been suppressed. As a result, SAM-2 is planned to supersede SAM-1
in all high-resolution prototypes. For example, the multivariate global system at 1/4◦

resolution now under construction will be based on SAM-2, with an operational start in
late 2006 or early 2007.

As an illustration of the spatial properties of the background errors used in SAM-2,
Fig. 4 shows the ‘representer’ function as defined by Echevin et al. (2000) for the SST
in two different regions: in the equatorial Pacific at 0◦N, 140◦W (PSY3 configuration)
and near the eastern Florida coast at 27◦N, 80◦W in the subtropical Atlantic (PSY1
configuration). The representer field is based on error statistics reflected in the EOFs,
and indicates how the model state is influenced by a single observation. In Fig. 4(a),
the impact of this virtual SST observation extends eastwards and westwards about ±10◦

of longitude, but also 1◦ northwards and southwards. The shape of the representer is
slightly anisotropic zonally, reflecting the behaviour of equatorial dynamics. In Fig. 4(b),
the representer function exhibits a structure influenced by the Gulf Stream current,
which flows eastwards out of the Caribbean Sea and circulates northwards following
the American coast. The largest values of the representers are located near 27◦N, 80◦W
with a meridional structure. Values greater than 0.5 degC can be also found west of
Florida, which may indicate that SST changes could also be due to surface heat fluxes
at larger scale in this particular area.

The SAM-2 scheme has been tested in the PSY1 eddy-permitting North Atlantic
configuration, assimilating a multivariate set of observations (along track altimetry,
in situ temperature and salinity profile data, and SSTs). The estimation state vector
includes temperature, salinity and barotropic stream function, and a geostrophic adjust-
ment is performed after each analysis step to extend the correction to the whole model
state. Several hindcast experiments were conducted during 2003 to validate the method
with independent (non-assimilated) in situ temperature data profiles. The distribution of
the profiles covers all regions of the North Atlantic basin, but the best data coverage is
achieved in the zonal band between 20 and 50◦N.

The skill of the assimilation is illustrated in Fig. 5, which shows the vertical dis-
tribution of the misfit variance computed between the validation profiles and the clima-
tology, the run without assimilation and the hindcast experiment. The model simulation
without assimilation competes reasonably well with the climatology, and improves the
fit to the data in the top 70 m only. The assimilation improves the temperature field at
all depths, with a significant reduction of the error in the thermocline.

The performance of the assimilation in correcting non-observed variables such as
the currents has also been verified. Figure 6 shows the annual mean surface current
computed from the hindcast experiment in the Gulf of Mexico and Caribbean Sea;
this displays a much more realistic structure of the mean flow (especially off Cape
Hatteras) than typical representations obtained from simulations without assimilation
(e.g. Chassignet et al. 1996).

It is intended to upgrade the future MERCATOR prototypes to include the SAM-2
assimilation tool, and to pursue the development of the algorithm by improved temporal
strategies, such as the Incremental Analysis Updating method (Bloom et al. 1996), and
new statistical parametrizations such as adaptive schemes (e.g. Brankart et al. 2003;
Testut et al. 2003). An extension to a wider variety of assimilation data types is also
foreseen, in the perspective of new observing systems such as sea surface salinity
measurements from satellites with the forthcoming SMOS (Soil Moisture and Ocean
Salinity) mission.
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(a)

(b)

Figure 4. Representer function associated with a SST observation (◦C): (a) the representer is computed
with respect to a point located at 0◦N, 140◦W (blue square), in the central Pacific; (b) the representer is relative
to a point located at 27◦N, 80◦W (blue square), in the Atlantic. The arrow indicates the Gulf Stream path.

See text for details.

 

 

(a) (b)

Figure 5. Vertical distribution in the North Atlantic Ocean domain of: (a) variance of the temperature misfit (in
degC2) between independent temperature data, and: (i) climatology (small circles), (ii) the control run (solid line)
and (iii) the assimilation simulation (dashed line) during 2003; (b) number of measurements available for each

assimilation cycle during 1993, as a function of depth.
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(a) (b)

Figure 6. Annual mean surface current (m s−1) in the region of the Gulf of Mexico (Florida strait, Cape
Hatteras, Yuccatan strait), computed from the model: (a) without assimilation, and (b) from a hindcast experiment

performed during 2003 with SAM-2. See text for details.

(d) SAM-3

A major simplification made in the SAM-1 and SAM-2 schemes is to perform the
analysis at regular time intervals that do not necessarily correspond with the measure-
ment times. This was identified as a serious weakness of operational NWP systems,
and lead many operational centres to initiate major research efforts to develop 4D
assimilation algorithms such as 4D-Var (Courtier et al. 1994). Variational assimilation
methods were then developed in the oceanographic context (e.g. Luong et al. 1998;
Weaver et al. 2003). The 4D-Var algorithm takes rigorous account of the temporal
dimension by including the prognostic model equations as constraints in the assimilation
problem. The 4D-Var formulation is based on the minimization of a cost function that
measures the weighted model departures from observations and from the model back-
ground state. The minimizing solution is the closest model trajectory that simultaneously
fits both sources of information (observations and background) within error bars set by
estimates of their respective error covariance matrices (the inverse of these matrices are
used to weight the observation and background terms in the cost function). At a given
time, this solution is constrained by both past and future observations available in the
assimilation window. As a result, the variational approach is particularly well suited to
control the dominant processes taking place in tropical regions, where equatorial waves
can propagate over large distances within a typical assimilation window width of several
days.

Hence the implementation of a third assimilation strategy, SAM-3, has been initi-
ated in MERCATOR, which is based on the incremental variational assimilation system
developed at CERFACS (Centre Européen de Recherche et Formation Avancée en Cal-
cul Scientifique) for the OPA model (Weaver et al. 2003). A preliminary assessment
of the first SAM-3 version (based on a 3D-Var algorithm) has been carried out, using
hindcast experiments to assimilate altimetric data or temperature/salinity profiles in the
global model configuration at 2◦ resolution. Further evaluations of the variational sys-
tem will be conducted by comparing re-analyses obtained with SAM-2 and SAM-3 in
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the tropical regions. The outcome of these evaluations will provide some guidance in
defining the MERCATOR assimilation strategy concerning SAM-3 in coming years.

In order to meet the operational requirements of the MERCATOR applications,
several technical and scientific features of the algorithm need to be investigated. First
of all, SAM-3 must be able to assimilate in situ and altimetric data simultaneously in
a global ocean configuration. Most global applications to date (e.g. those conducted
within the framework of the EU ENACT∗ project) have involved the assimilation of
each of these data types separately. A key point for a successful assimilation is how
the multivariate background-error covariance is specified. A promising technique to
model these covariances implicitly has recently been developed by Weaver et al. (2006);
this uses a balance operator to transform from model space, where variables are highly
correlated, to a control space where variables are approximately uncorrelated.

A second question that requires further investigation is the feasibility of running
variational assimilation algorithms with eddy-resolving ocean models and, most impor-
tantly, the required computational resources for doing so. So far, only a few 4D-Var
studies have been conducted in the context of eddy-resolving ocean models, and these
have shown the necessity of reducing the length of the assimilation window to preserve
the validity of the tangent-linear approximation (Luong et al. 1998). The exploration
of these issues with realistic basin-scale models at eddy-permitting resolution is in
progress.

A third issue that is worthy of investigation is the possibility of combining the
advantages of 4D-Var assimilation with the propagation of the error statistics from
one assimilation cycle to the next, as permitted by Kalman filters. Veersé et al. (2000)
proposed a hybrid algorithm that combines the variational analysis with the state error
propagation of the SEEK filter. In future, such approaches could be explored to provide
a hybrid version of the SAM-2 and SAM-3 systems.

4. DEVELOPMENT OF AN ADVANCED ASSIMILATION CAPACITY IN MERSEA

(a) The assimilation research and development effort in MERSEA

Most operational forecasting systems in evaluation today, not only in MERCATOR
but also in the FOAM, HYCOM and MFS projects, are based on simplified assimilation
schemes such as reduced-order OI. These methods are fairly robust and require relatively
few computer resources, however, they rely on quite severe assumptions about the error
statistics which are rarely verified in reality, and therefore cannot make optimal use of
all available observations to estimate the state of the ocean and predict its evolution. The
assimilation scheme of TOPAZ, however, is inherited from the more advanced Ensemble
Kalman filter (EnKF) method, which for some applications is reduced to an ensemble
OI scheme (Evensen 2003).

One of the goals of MERSEA is to improve the existing assimilation methods
implemented in European forecasting system by: (i) addressing new issues which are
particularly relevant for ocean forecasting at high resolution, such as the existence
of nonlinear processes and non-Gaussian statistical behaviours; and (ii) extending the
assimilation to new data types such as sea-ice parameters or biogeochemical properties
in coupled circulation/ecosystem models. The focus in MERSEA is on fully multivariate
assimilation methodologies with proven capabilities, that have been developed and
applied extensively in previous European operational oceanography projects (Brusdal
et al. 2003).

∗ European Union funded project: ENhanced ocean data Assimilation and ClimaTe prediction.
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Three classes of assimilation methods are being considered here:

• Very computationally efficient multivariate statistical schemes (e.g. SAM-2 or the
ensemble-based OI schemes) which use time-invariant error statistics. This effort will
mainly serve the consolidation phase of the MERCATOR and MFS systems.

• Ensemble-based methods (EnKF and SEEK) which can evolve the error statistics
in time using nonlinear models, and thereby provide more realistic predictions of error
statistics to be used in the analysis scheme. Earlier versions of these methods have
been tested during the DIADEM experiment (Brusdal et al. 2003), and their further
development in MERSEA will serve the consolidation phase of the TOPAZ assimilation
system.

• Fully nonlinear filters such as the Sequential Importance Resampling (SIR)
filter, which is a property-conserving Monte Carlo method designed to handle non-
Gaussian error statistics. However, the research on nonlinear filters is exploratory, and
the transition to a particular operational system will depend on the progress achieved
during MERSEA.

In addition to these methods, research and development efforts on variational
assimilation techniques will be pursued by MERCATOR and collaborators to develop
the SAM-3 variant of the MERCATOR assimilation system.

(b) MERSEA developments with the SEEK filter

Turbulent momentum, heat and fresh water fluxes at the air–sea interface (usually
computed using bulk formulations) are one of the main sources of error in ocean mod-
els (Large 2006), which strongly reduce the operational capacity to provide realistic
forecasts of thermohaline characteristics of the mixed layer and of the surface ocean
currents. This problem is explored in the framework of MERSEA, in order to better un-
derstand the nature of these errors and improve our knowledge of the ocean–atmosphere
fluxes by assimilation of oceanic observations.

The starting point of this investigation is a reduced order OI scheme (like the SAM-
2 scheme or the SEEK filter with a pre-determined background error covariance) in
which the background-error covariance matrix is represented by means of a set of
3D error modes (e.g. EOFs of the model variability) in the state space of the ocean
model. The idea is to augment the control space of the filter to include, in addition
to the state variables, information about the air–sea fluxes. This information could be
the fluxes themselves, or the atmospheric parameters from which they are computed.
An approach is developed here that includes a selection of key parameters of the bulk
formulae in the control vector, because: (i) these parameters are likely to persist in time
(the aim is to improve the forecast); (ii) they are expected to be controllable by ocean
observations (provided that the chosen parameters are linearly linked to the value of the
flux); and (iii) they are assumed to be the real source of error (in spite of a possible
risk of compensating for errors in the atmospheric parameters by correcting the bulk
coefficients).

In the example discussed here, only the sensible-heat flux coefficient (CH) and the
latent-heat flux coefficient (CE) are included in the control vector. The procedure is
tested using twin assimilation experiments with a similar model, as in the MERCATOR
global prototype at 2◦ resolution. The reference simulation (the true ocean) is a standard
interannual simulation for the year 1993, with the original bulk formula:

QS = ρaCCHW(Tw − Ta),
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Figure 7. Spatial distribution of the latent-heat flux coefficient: (a) as obtained in the reference simulation, and
(b) as reconstructed by the statistical analysis with the augmented state vector. See text for details.

where ρa is the air density, C is the air specific heat, W is the wind speed, Tw and Ta are
the sea-surface and air temperatures, respectively, and:

QL = ρaLCEW max(0, qs − qa),

where L is the latent heat of vaporization, and qs and qa are the surface and atmos-
pheric specific humidities, respectively. CE and CH receive complex parametrizations
depending, in particular, on the stability of the air column close to the sea surface.
Figure 7(a) shows the value of CH in the reference simulation for 31 January 1993.
Synthetic observations of temperature and salinity profiles are then sampled from this
reference simulation, to be assimilated in a modified simulation in which the values of
CE and CH are kept constant (CE = 1.12 × 10−3 and CH = 10−3). Hence, the experi-
ment is built in such a way that the only source of error in the model is due to CE and CH.
The sampling has been designed to approximately mimic the Argo network of profiling
floats, i.e. one profile every 10 days and every three grid points in both directions.

To perform the assimilation experiment with sequential corrections of the bulk co-
efficients, a background-error covariance matrix in the augmented control space was
generated as follows. From a series of six initial conditions extracted every 10 days from
the reference simulation in 1993, an ensemble of 10-day forecasts was computed using
the ocean model with 10 different values of CE and CH. The dispersion of these values
reflects the a priori uncertainty of the corresponding parameters. The 10-day forecast
period was chosen to correspond to the assimilation window of the sequential assimila-
tion scheme. In that way, an ensemble of 6 × 9 10-day forecast anomalies (augmented
by the CE and CH anomalies) was obtained, and the 20 dominant EOFs were used to
parametrize the background-error covariance matrix for the assimilation experiment.
However, since in each member of the ensemble the coefficients are constant horizon-
tally, the resulting error covariance matrix is unable to represent correctly the horizontal
correlation structure between errors in CE and CH, and the ocean state error. Hence, this
ensemble will only be used to estimate the local multivariate correlation between the
ocean state and the bulk coefficients.

Figure 7(b) illustrates the statistical analysis obtained for the augmented state
vector after a forecast from perfect initial conditions, using temperature and salinity
observations sampled from the reference simulation. The analysed field for the latent-
heat flux coefficient (CE) is compared to the same field in the reference simulation.
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It shows that significant values of the bulk coefficients can be inferred from only
temperature and salinity observations. This experiment is ideal in the sense that the
only source of error is in CE and CH, and the atmosphere and ocean initial conditions
are both perfectly known, but it illustrates that it is theoretically possible to estimate the
turbulent air–sea flux bulk coefficients by inverting oceanic observations. To go further
two questions need to be addressed. How many bulk parameters can be controlled using
only oceanic observations? What is the impact of initial errors in the ocean state? In
other words, is it possible to control the full system, i.e. the ocean state and the flux
parameters, with the available ocean observation system?

(c) MERSEA developments with the EnKF

The EnKF was originally introduced by Evensen (1994) as a more stable alterna-
tive to the extended Kalman filter. Monte Carlo (ensemble) model forecasts have the
advantage of not requiring a linearization of the numerical model, and are therefore
better suited for strongly nonlinear systems. A review of the EnKF applications can be
found in Evensen (2003). The analysis scheme is based on linear statistical estimation
theory, which is conceived for Gaussian variables. The analysis scheme can, however,
be adapted to nonlinear estimation by geo-statistical extensions (Bertino et al. 2003).
The evolutive SEEK filter shares many common features with the EnKF, as pointed out
by Brusdal et al. (2003). The main differences are in the Monte Carlo propagation step
and in the details of the solution algorithm of the analysis scheme.

In the TOPAZ operational system, which is the Arctic component of MERSEA,
the EnKF is applied to the HYCOM model. Lisæter et al. (2003) have evaluated the
assimilation of satellite-measured ice concentrations by the EnKF in a coupled ice–
ocean model. The TOPAZ model used here is identical, but it has double the horizontal
resolution in order to represent mesoscale processes. Two examples of forecast-error
covariances in winter situations are given in Figs. 8(a) and (b), showing the predicted
ensemble correlation between ice concentration and sea surface salinity at two instants
separated by three weeks. The EnKF forecast-error statistics are evolving dynamically
with model error prescribed in the forcing fields, so that every member runs with slightly
different wind stress and heat fluxes. The resulting multivariate ensemble correlation is a
combination of different model processes. In Figs. 8(a) and (b) the correlation intensifies
along the ice edge (presented as the ensemble average 15% ice concentration isoline in
green) and near land. The negative correlation in the interior of the ice pack can be due to
wind-induced ice convergence. Parts of the marginal ice zone with negative correlations
can be areas where ice is blown into the ice pack by southerly winds (wind fields not
shown here) and open water is mixed with the fresher water below. The same applies
along coasts from which winds are blowing the ice away. Other parts with positive
correlations are areas where new ice is freezing and brine is released into the surface
waters.

Since the forecast multivariate statistics are strongly related to winds, the use
of an evolutive data assimilation method where wind fields are used as a source of
model error is fully justified (K. A. Lisæter 2006, personal communication). Further
improvements can be achieved by applying non-Gaussian transformations when the ice–
ocean relationships are strongly nonlinear.

(d) MERSEA developments with the SIR filter

The SIR filter is an ensemble-based Monte Carlo method similar to the EnKF. How-
ever, the SIR filter updates probabilities of the ensemble members and not the ensem-
ble states themselves. This difference makes the SIR filter a truly variance-minimizing
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(a) (b)

Figure 8. Correlations between ice concentration and sea surface salinity on: (a) 21 December 2005, and
(b) 11 January 2006.

scheme, which can easily be applied for nonlinear systems with any probability density
function (pdf) that is not necessarily Gaussian.

Such a method is well suited to the problem of assimilating data into strongly non-
Gaussian ecosystem models that MERSEA needs to investigate. Indeed, monitoring the
ocean environment requires not only physical but also ecosystem models. Although
significant advances have been made in recent years, understanding and modelling the
complex processes in ecosystems requires an integrated approach based on observed
data. MERSEA will contribute to progress by developing an advanced biogeochemical
model to be coupled with the global ocean circulation model.

The SIR filter has been used successfully for simultaneous state and parameter esti-
mation in a relatively simple ecosystem model with 15 poorly known model parameters
(e.g. Losa et al. 2003). The observations came from the BATS (Bermuda Atlantic Time-
series Study) dataset, i.e. real observations were used. The obtained model solution
agreed reasonably well with the data, even with independent values which had not been
assimilated. The model parameters, however, revealed strong seasonal variations, which
may point to possible uncertainties in the parametrization of biological processes. This
motivated us to also try to estimate the model noise level in the data assimilation scheme.

In general, the magnitude of the noise level is very difficult to determine; usually
it is based on ‘educated guesses’. On the one hand this is satisfactory, because it is
here where scientific intuition comes in; on the other hand, a more objective way of
determining it is desirable. Furthermore, there is no a priori reason why the model noise
should not be time-dependent.

In the SIR filter, the pdf of the ecosystem model is represented by a finite number of
ensemble members. By integrating the ensemble forward in time, subject to model noise,
the evolution of the pdf with time is simulated. As soon as observations are present,
each ensemble member is weighted by the ‘distance’ to these observations. To be more
precise, the weight wi for ensemble member ψi is calculated from:

wi =
p(d | ψi)

∑

i

p(d | ψi)
,

which follows directly from Bayes theorem (Kivman 2003; Losa et al. 2003; Van
Leeuwen 2003). Here, p(d | ψi) is the pdf of the observations, d , given the ensemble
member, i. The specific form for this pdf will be presented below. This leads to a
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weighted ensemble, and the statistical moments, like the mean of the pdf or its variance,
are calculated using the weighted members.

After several updates of the ensemble by observations, some ensemble members
get relatively high weight, while the weight of others becomes negligible. This leads
to a reduction in the effective size of the ensemble. To avoid this, the ensemble is re-
sampled after each update to give each member equal weight again. This re-sampling
can be done in several ways. Here we used the weights as probabilities of the members,
and drew a new ensemble from the resulting probability, with replacement∗.

The result of the re-sampling is an ensemble of the same size, in which some
ensemble members are identical and others have disappeared. This new ensemble is
then integrated forward in time to the next observation time, where the weighting and
re-sampling is repeated. To increase the spread in the re-sampled ensemble, the identical
members are slightly perturbed. No general rule exists on the size and form of the
perturbations. In the experiments described here the perturbations are applied to the
parameter values of identical members.

The SIR filter has been implemented for estimating poorly known biological
parameters of an ecosystem model developed by Drange (1996), which describes
the dynamics of phytoplankton, zooplankton, bacteria, dissolved inorganic nitrogen—
represented by nitrate and ammonium—and particular and dissolved organic matter
within the upper mixed layer. The ecosystem model was constrained by BATS data, in
particular by nitrate, chlorophyll, dissolved organic nitrogen and carbon concentrations,
observed for the period from December 1988 to January 1994. Various biological
parameters have been adjusted.

It is worth noting that the experiment is very similar to those designed and discussed
in detail in the study by Losa et al. (2003). Thus, an initial ensemble of 1000 particles
is drawn randomly from an exponential distribution:

p(ψ) = ψ exp

(

−
ψ

ψ

)

,

where ψ is equal to a first guess. Then, each ensemble member evolves according to
the model equations, with some random model (system) noise added to the model at
every time step of the integration. In the study by Losa et al. (2003) model noise was
estimated simply by trial and error. Here, the level of the system noise is implemented
as nine additional parameters added to the 15 biological parameters to be optimized. At
the analysis step when filtering the ensemble the observation errors are assumed to be
Gaussian distributed, which leads to weights of the following form:

wi ≈ exp{−0.5(d − ψi)
2/s2},

where s2 is the variance of the observation.
As mentioned above, all the optimized parameters of the re-sampled ensemble are

perturbed to avoid ensemble collapse. The procedure is as follows: if, at an analysis
step, some parameter values a are re-sampled many times, a uniform pdf is created in
the interval (a − nearest smaller value, to a + nearest higher value), and new parameter
values are drawn from this uniform density.

Figure 9(a) depicts the temporal evolution of one of 15 optimized model parameters
(red solid curve) obtained from the experiment with the variable level of model noise,
against previous estimates of the same parameters (black solid curves) when the model

∗ It has been shown that this procedure introduces extra variance in the ensemble (Liu and Chen 1998), which can

be minimized by other even more efficient re-sampling procedures.
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Figure 9. The evolution of the estimates for: (a) one of the optimized biological model parameters, and
(b) model-noise variance. All the parameters are normalized with respect to their initial values. See text for details.

noise-level is constant in time. One can see that the previous estimates revealed quite
strong seasonal variations and trends, which are difficult to understand, while optimizing
the model noise has allowed one to get model parameter values almost constant in time.
The temporal variations are present on Fig. 9(b), which depicts the model-noise variance
over the period 1989–94.

The results obtained with the SIR filter show that strong seasonal variations found
in estimated model parameters can be linked to errors in the model equations and
forcing fields. In reality some of the biological parameters may vary in time as they
may depend on a number of environmental conditions (water temperature, for instance).
Such dependencies however are not yet parametrized properly.

In principle, one would like to run the SIR filter scheme with parameter and noise
estimation along with the biogeochemical model. Unfortunately, this is too expensive
in operational mode. A practical implementation is to estimate from a long hindcast
the seasonal dependence of the model parameters and the noise level. In operational
mode, the biogeochemistry model is then run with these seasonally varying parameters,
and a realization of the model noise from the appropriate noise level at that time.
More research is needed to find the optimal strategy.

5. CONCLUSIONS

In this paper, an overview has been given of the progress made in the field of ocean
data assimilation, in the perspective of operational monitoring and forecasting. In the
MERCATOR context, advantage is taken from the whole spectrum of complexity that
assimilation methods can offer to provide the best possible description of the ocean in
space and time. Through the MERSEA project, a transition is underway from OI-type
statistical schemes to more advanced methods which can address nonlinear processes
more rigorously.
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The GODAE initiative has contributed to the establishment of a feedback loop
within the oceanographic community, in order to guarantee coherent progress between
science, research and development activities, operational applications, and the user
requirements. This is also a main goal of the MERSEA project. The expected benefit
will be improved quality standards of operational products and services, and thereby
strengthened credibility in, and sustainability of, operational oceanography through the
satisfaction of users.
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Vörösmarty, C. J., Fekete, B. and
Tucker, B. A.

1996 ‘A contribution to IHP-V Theme discharge database, version 1’.
River 1.0 (RivDIS v1.0), Volumes 0 through 6. Technical
Documents in Hydrology Series. UNESCO, Paris

Weaver, A., Vialard, J. and
Anderson, D. L. T.

2003 Three- and four-dimensional variational assimilation with a
general circulation model of the tropical Pacific Ocean. I:
Formulation, internal diagnostics, and consistency checks.
Mon. Weather Rev., 131, 1360–1378

Weaver, A., Deltel, C., Machu, E.,
Ricci, S. and Daget, N.

2006 A multivariate balance operator for variational ocean data
assimilation. Q. J. R. Meteorol. Soc., 131, 000–999


