
T ellus (1999), 51A, 167–194 Copyright © Munksgaard, 1999
Printed in UK – all rights reserved TELLUS

ISSN 0280–6495

Data assimilation into nonlinear stochastic models

By ROBERT N. MILLER1*, EVERETT F. CARTER, Jr.2 and SALLY T. BLUE3†, 1College of Oceanic
and Atmospheric Sciences, Oregon State University, Oceanography Admin. Bldg. 104, Corvallis, OR, USA
97331-5503, 2Taygeta Scientific Inc., 1340 Munras Ave. Suite 314 Monterey, CA, USA 93940 and 3College

of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA 97331-5503

(Manuscript received 23 March 1998; in final form 24 September 1998)

ABSTRACT

With very few exceptions, data assimilation methods which have been used or proposed for
use with ocean models have been based on some assumption of linearity or near-linearity. The
great majority of these schemes have at their root some least-squares assumption. While one
can always perform least-squares analysis on any problem, direct application of least squares
may not yield satisfactory results in cases in which the underlying distributions are significantly
non-Gaussian. In many cases in which the behavior of the system is governed by intrinsically
nonlinear dynamics, distributions of solutions which are initially Gaussian will not remain so
as the system evolves. The presence of noise is an additional and inevitable complicating factor.
Besides the imperfections in our models which result from physical or computational simplifying
assumptions, there is uncertainty in forcing fields such as wind stress and heat flux which will
remain with us for the foreseeable future. The real world is a noisy place, and the effects of
noise upon highly nonlinear systems can be complex. We therefore consider the problem of
data assimilation into systems modeled as nonlinear stochastic differential equations. When the
models are described in this way, the general assimilation problem becomes that of estimating
the probability density function of the system conditioned on the observations. The quantity
we choose as the solution to the problem can be a mean, a median, a mode, or some other
statistic. In the fully general formulation, no assumptions about moments or near-linearity are
required. We present a series of simulation experiments in which we demonstrate assimilation
of data into simple nonlinear models in which least-squares methods such as the (Extended)
Kalman filter or the weak-constraint variational methods will not perform well. We illustrate
the basic method with three examples: a simple one-dimensional nonlinear stochastic differential
equation, the well known three-dimensional Lorenz model and a nonlinear quasigeostrophic
channel model. Comparisons to the extended Kalman filter and an extension to the extended
Kalman filter are presented.

1. Introduction linear systems with Gaussian noise. In nonlinear
systems, even if the errors are initially Gaussian,
they do not, in general, remain so. It is thereforeThe vast majority of the data assimilation
important to ask what happens when our linear-methods in use or proposed for application to
ized methods are applied to stochastically per-numerical modeling in oceanography or numerical
turbed nonlinear systems.weather prediction were derived and validated for

Least-squares variational methods have been
applied with some success in numerical weather* Corresponding author.
forecasting. Solution of the variational problememail: miller@oce.orst.edu
proceeds by a sequence of adjoint calculations. An† Present affiliation: Rogue Wave Software, Inc.,

Corvallis, OR, USA 97333. extensive bibliography of articles on applications
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of adjoint calculations to meteorological problems Carlo estimates of covariance statistics and applied
it to the unperturbed Lorenz system with goodwas given by Courtier et al. (1993). The incre-

mental form of the variational method which made results. We shall see below that Evensen’s (1994)

method also performs reasonably well on anfour dimensional variational methods practical for
operational numerical weather prediction was pre- example with the stochastically perturbed Lorenz

system. Evensen and Fario (1997) also demon-sented by Courtier et al. (1994). The different

formulations of the variational inverse problem strated a smoother for the Lorenz system based
on a Monte-Carlo method.are well known to be closely related, and all are

related to the Kalman filter. For rigorous demon- We work directly with stochastic differential

equations in order to model systems with randomstrations of the relation between the different least-
squares methods, the reader may consult Courtier forcing or random parameter values. Such systems

arise in practice when forcing functions or para-(1997) or Miller (1998), and references therein.

Sophisticated iterative methods have been meter values are derived from noisy data.
Stochastic terms in the equations are also usefuldeveloped for the solution of the variational

inverse problem for nonlinear quasigeostrophic for parameterization of neglected physics, such as

sub-gridscale interactions. The probability densitysystems (Bennett and Thorburn, 1992; Bennett
et al., 1993). The extended Kalman filter (hereafter function (pdf ) associated with a given stochastic

differential equation evolves according to theEKF) has also been applied to nonlinear quasigeo-

strophic systems (Evensen, 1992; Gauthier et al., Fokker–Planck equation, a parabolic equation in
a number of spatial dimensions equal to the state1993). This was a reasonable approach, since the

linearizations in time and phase space which are dimension of the underlying stochastic system.
The only practical way to solve equations of thisessential to the variational approaches and to

the EKF are widely applicable (Lacarra and type for models of high state dimension is through

the use of Monte-Carlo methods. In cases in whichTalagrand, 1988; Budgell, 1986), but Evensen
(1992) found that the estimated error variance the qualitative behavior of a system is governed

by its behavior on some low-dimensional subsetgrew unreasonably rapidly in a model run without

assimilation. Gauthier et al. (1993) found a similar of state space, we believe that practical Monte-
Carlo methods can be implemented at costs com-result in data-poor regions, as did Bouttier (1994)

in his study of the application of an approximate parable to the EKF.

Within this framework, observations are alsoKalman filter to an operational numerical weather
forecast model. considered as pdf ’s rather than single numerical

values. Here we do the simplest thing: we considerBouttier (1994) solved the problem of excessive

growth of the error covariance by modifying his observed values as the means of Gaussian distribu-
tions, with variances given by estimates of theapproximate Kalman filter to include an explicit

saturation mechanism. Evensen (1992) solved the observation errors. Assimilation of data is then

accomplished by using Bayes’ formula to combineproblem at first by modifying the dynamical oper-
ator, and later (Evensen, 1994) by implementing the prior pdf, calculated from the Fokker–Planck

equation with the observation pdf to form aa generalization of the extended Kalman filter

based on a Monte-Carlo estimate of covariance conditional distribution (Lorenc and Hammon,
1988). Statistics including means, medians, modes,statistics. This approach was also suggested by

Bouttier (1994) who felt at the time that it would standard deviations and confidence intervals may

then be calculated directly from the pdf ’s tonot be computationally practical for numerical
weather prediction. In most of these systems calcu- produce numerical assimilation products.

Specification of the random components of ourlations have been performed over times which are

within predictability limits imposed by the stochastic models is one of the most important
tasks in the construction of models for the studydynamics, and regime transitions are not observed.

Our purpose here is to approach the problems of of the data assimilation process. Little is known
of the characteristics of natural noise processes.intrinsically nonlinear behavior such as bifurcation

and chaos directly. Simulations with stochastic models require explicit

models of the relevant noise processes. ThisMiller et al. (1994), hereafter MGG, also devised
a generalization of the EKF based on Monte- requirement is stronger than is needed for most
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data assimilation methods (e.g., the EKF) which are everywhere continuous and nowhere differen-
tiable with probability 1.0.require only estimates of the moments. Future

data assimilation systems which use techniques Numerical integrations of individual realiza-

tions of stochastic differential equations like (1)based on explicit noise models must be subjected
to sensitivity tests and posterior tests of consist- are done here with the third-order method of

Milshtein (1978). Throughout this paper, we shallency. Similar tests should be applied to any data

assimilation system. view xt as a vector random process, which has a
properly defined pdf. The differential equationStochastic differential equations do not have

solutions in the classical sense. Extensions of that describes the evolution of the pdf, P(x, t), is

the Fokker–Planck equation (Gardiner, 1983),classical calculus to stochastic functions were for-
mulated by Itô (1951) and Stratonovich (1966).
General background on stochastic calculus may ∂P

∂t
=−VΩ ( f (x, t)P)+∑

i,j

∂2
∂x

i
∂x

j
(Q/2)

ij
P

be found in Jazwinski (1970) or Kloeden and
Platen (1992). For the purposes of the present =L FP (P) (2)
discussion we will not need to introduce a full

rigorous treatment of the stochastic calculus, where Q=g(x, t)gT (x, t). The Fokker–Planck
beyond stating at this point that we use the Itô equation (also known as the forward Kolmogorov
stochastic calculus. equation), is a parabolic partial differential equa-

We first describe, in the next section, the equa- tion with the number of space dimensions equal
tions necessary to propagate the pdf of a system to the number of state variables of the underlying
in time, given the physics. Section 3 describes data stochastic differential equation (1). The reader
assimilation into nonlinear systems for both time should note that (2) is a deterministic partial
discrete and time continuous observations. In differential equation. In its simplest form with f=
Section 4 we demonstrate the method with a 0 and constant g, (2) becomes the simple diffusion
simple one-dimensional system. We then proceed equation which describes the evolution of the
to more complex models. The familiar Lorenz concentration of a passive tracer, which in turn
model, a three state variable system which exhibits consists of particles moving at random according
chaos, is considered in Section 5. Our final to (1).
example, presented in Section 6, is a nonlinear The Fokker–Planck equation is an advection-
quasigeostrophic channel model in spectral form. diffusion equation, and thus numerical integration
With the resolution chosen, that model has forty- of the Fokker–Planck equation shares many of
four state variables. Section 7 contains discussion the difficulties of numerical integration of the
and summary. Navier–Stokes equations. The Fokker–Planck

equation is further complicated by the requirement

that for all times the probability density must be
2. The Fokker–Planck equation nonnegative, and that the total probability density

must integrate to one. The obvious approximation
Consider a system described by the vector Itô of shifting (or truncating) the negative part and

stochastic differential equation, renormalizing at each step in the integration intro-
duces appreciable errors into the calculation evendxt= f (xt , t) dt+g(xt , t) dwt (1)
after a short integration time. The difficulties in

where xt is a vector of dimension n, f is a vector integrating the Fokker–Planck equation can be
function of dimension n, wt is a k-dimensional illustrated with a simple example. Consider the
Wiener process and g is an n×k matrix valued simple scalar Langevin equation:
function. The notation in (1) is standard in the

dxt=−xt dt+Q1/2 dwt . (3)stochastic differential equations literature. We use

it here to remind the reader of the distinction
The corresponding Fokker–Planck equation is:

between stochastic differential equations and clas-
sical ordinary differential equations. Eq. (1) does pt= (Q/2)p

xx
+ (xp)

x
. (4)

not have solutions in the classical sense. Solutions
to (1) defined in terms of the stochastic calculus We can write a simple centered difference
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scheme for the steady solution: a white sequence of Gaussian random variables
with covariance given by the m×m identity. The

(Q/2)( p
j+1−2p

j
+p

j−1 )/Dx2
matrix R is assumed to be diagonal. Given obser-

+ (( j+1)p
j+1− ( j−1)p

j−1 )/2=0. (5) vations (7) we may examine the evolution of the
conditional pdf of the system (1). We alreadyThe solution to the difference equation can be
know that in the absence of observations, the pdfwritten:
will evolve according to the Fokker–Planck equa-
tion (2). Given this prior pdf, we can then applyp

j
= a

j−1
l=1

(1− lDx2/Q)Na
j

l=1
(1+ lDx2/Q). (6)

Bayes’ theorem (Lorenc and Hammon, 1988;

Jazwinski, 1970) to obtain a new one that is
This expression will eventually produce negative

conditioned on the observation y
k
,

values when j becomes large enough. This can be
interpreted as the familiar cell Reynolds number

P(x, t
k
| y
k
)=

P(y
k
| x)P(x, t

k
| y−
k

)

P P(y
k
| x)P(x, t

k
| y−
k

) dx

(8)
criterion from computational fluid dynamics
(Fletcher, 1988), with the advection speed identi-
fied as x= lDx and Q identified as the viscosity.

where P(x, t
k
| y−
k

) is the pdf given by the Fokker–For smaller Dx, i.e., lower cell Reynolds number,
Planck equation up to but not including the newthe loss of positivity occurs further from the origin.
observation and P(y

k
| x) is the probability ofThis is a particularly unhappy circumstance: fine

seeing the observation y
k

given the current stateresolution is evidently needed far from the region
of the system x.of interest in order to prevent unrealistic effects

If we assume that the observation noise processfrom appearing. Different approaches to the solu-
is Gaussian white noise with covariance R

k
, thention of the Fokker–Planck equation will be discus-

we can write (Jazwinski, 1970):sed in the section.

P(y
k
| x)=

1

(2p)m/2√R
k3. Nonlinear data assimilation

×exp A−1

2
[y
k
−h(x, t

k
)]TR−1

k
[y

k
−h(x, t

k
)]B ,In this section, the formalism for constructing

data assimilation schemes within the framework
(9)

of pdf ’s is described. The observations themselves
where m is the dimension of the observationmay be viewed as means, medians, modes or some
vector y.other functionals of a pdf. For the present pur-

The conditional pdf obtained from (8) containsposes, we shall view observations as the means of
all of the information available about the stoch-Gaussian distributions with given variances. Data
astic system. Eq. (2) along with (7), (8) and a priorassimilation is then accomplished by constructing
estimate of the observation pdf such as (9) consti-a conditional pdf: for a small volume in state
tute a data assimilation system. Specific estimatesspace, the conditional pdf is the probability that
of the state of the system can be constructed bythe system is in that volume, given that we know
computing the mean or the mode of the pdfthe observation pdf ’s and the prior pdf from the
calculated in (8). This pdf can also be used toFokker–Planck equation. Formulas can be derived
calculate confidence intervals for the state estim-for both discrete and continuous observations.
ates. We call this discrete observation assimilation

scheme the Bayes’ theorem assimilation.
3.1. Calculation of conditional probabilities

We note here that in the limit as observations
We first consider the case in which the system become more frequent, the observation process

is described by the Itô stochastic differential equa- can itself be modeled as a continuous process
tion (1) and the observation process is discrete in governed by an Itô stochastic differential equation:
time,

dz
t
=h(x

t
, t) dt+√R dg

t
(10)

y
k
=h(x

k
, t
k
)+√Rv

k
, (7)

where g
t

is a Wiener process, uncorrelated with
the system noise process dw. In this case thewhere y

k
is a vector with m components and v

k
is
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corresponding limit of our Bayesian updating parisons with Chang and Cooper’s method for a
one-dimensional example.process is the Zakai equation: (Zakai, 1969; see

also Kushner, 1962, Rozovskii, 1990). All Monte-Carlo methods involve the genera-

tion of an ensemble of trials. It is therefore neces-
dP=L FP(P) dt+ (h

t
− ĥ

t
)TR−1(t)(dz

t
− ĥ

t
dt)P,

sary to implement some method of calculating
(11)

values of the pdf at arbitrary points. We use the

adaptive kernel method to accomplish this task inwhere h
t
=h(x

t
, t), ĥ

t
=∆ h(x, t)P(x, t |Y

t
) dx, Y

t
is

our low-dimensional examples, but computationalthe time series of observations for all times less
considerations force us to resort to a fixed kernelthan t and R(t) is again a diagonal matrix whose
method for the case of our stochastically perturbednonzero elements are the error variances of the
spectral model. A brief description of the adaptiveobservation process. Because of the integral in ĥ

t
,

kernel method is given in Subsection 9.2. Moreeq. (11) is integro-differential. Further, because the
detail on kernel methods in general can be foundinnovation dz

t
− ĥ

t
dt is random, (11) is a stoch-

in Silverman (1986).astic integro-differential equation. Proof that (11)
A generalization of the EKF which is related tois the limiting case of the Bayes process was given

the Bayes approach was suggested by Evensenby Florchinger and LeGland (1990).
(1994). In Evensen’s generalization, an ensemble
of random initial conditions is constructed at the

3.2. Numerical methods
initial time, and then allowed to evolve according
to a stochastic differential equation with someThe Bayes scheme requires a solution to the

Fokker–Planck equation (2) as a prior pdf. As noise model. When observations become available,
the ensemble covariance is calculated and used toshown in Section 2, the simple centered scheme

for (2) is unsatisfactory, since it results in negative calculate the Kalman gain, which is in turn used

to update the state estimate according to thevalues of the pdf. Chang and Cooper (1970)
proposed an implicit finite difference method for standard EKF formula. As Evensen showed, the

posterior pdf can be approximated by updatingthe solution of the Fokker–Planck equation (2)

which was specifically designed to conserve prob- each member of the ensemble by the Kalman filter
formula. Once each member of the ensemble hasability and preserve positivity. Details of Chang

and Cooper’s method are given in Subsection 9.1. been updated, the cycle continues as before until

the next observation becomes available. EvensenA finite element method for the Fokker–Planck
equation was implemented by Bergman and found this method to perform better than the

EKF in a series of simulated prediction experi-Spencer (1992); see also Bergman et al. (1996) and

Wojtkiewicz et al. (1995). Bergman and colleagues ments with a quasigeostrophic model at compar-
able or lower cost.did not encounter the problem of loss of positivity.

They attribute this to the fact that they do Another modified EKF based on a Monte-

Carlo method was described by MGG. Theynot retain the Fokker–Planck equation in con-
servative form; rather they expand the divergence modeled the local nonlinear effects in the Lorenz

system as a stochastic forcing term, and performedterm explicitly (S. Wojtkiewicz, personal

communication). a Monte-Carlo calculation to estimate the statis-
tics of that stochastic term. They were then ableWe implemented Chang and Cooper’s method

only in our one-dimensional example. Gridded to calculate an augmented system noise covariance

matrix which could be used in the standard EKF.methods become increasingly cumbersome as the
dimension of the system grows, and direct integra- For a linear model, Evensen’s method can be

shown to approach the Kalman filter in the limittion of the Fokker–Planck equation by gridded

methods becomes impractical for more than about as the number of members of the ensemble grows.
The calculation of the evolution of the ensemble5 dimensions. Our primary interest is in models

of the atmosphere and ocean, and even the most covariance is exactly a Monte-Carlo estimate of
the covariance of the solution of the Fokker–schematic of these models cannot be represented

in terms of a handful of state variables. We there- Planck equation, from which the standard

Kalman–Bucy expression for evolution of thefore used a Monte-Carlo method for all of the
results displayed in this paper beyond initial com- error covariance is easily derived. The Kalman
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updating formulas can then be derived from Bayes’ calculate the mean residence time within a given
well (Gardiner, 1983) to be 4600 time units.theorem (Lorenc and Hammon, 1988). In the

Bayes method, no prior assumption is made about The evolution of the pdf for (12) is given by the

Fokker–Planck equation:the evolution of the higher moments.

∂P
∂t

=
∂
∂x

[4x(x2−1)P]+
1

2
q
∂2P
∂x2

. (15)

4. The double-well
The steady state solution to (15) can be derived

by integrating the right-hand-side twice withAs a simple example of data assimilation in a
respect to x, noting that the integration constantstrongly nonlinear system we will first consider
must vanish to ensure normalization. The resultingthe stochastically forced double-well model (see
steady-state is given by:MGG),

dx=−4x(x2−1) dt+q1/2 dw, (12)
P(x)=N exp C− 2x2(x2−2)

q D , (16)

where w represents a Wiener process. Without

stochastic forcing, this equation describes a system where N is a normalization constant.
Fig. 1 shows the steady solution (16), plottedwith two stable states, separated by an unstable

critical point at zero. The stable states can be along with the results of long-time integrations by

Chang and Cooper’s (1970) difference method andthought of as potential wells for the potential
by the Monte-Carlo method. The solid curve

F(x)=x2(x2−2). (13)
plotted in this figure was evaluated from an
ensemble of trials by the adaptive kernel method,The deterministic form of (12) can then be written:
as noted above. The width of the two peaks is

ẋ=−VF . (14)
controlled by the noise level q. This solution is
clearly unique and can easily shown to be stableIf no forcing is present, for any initial condition

but the unstable steady state x(0)=0, x will (Risken, 1984). A numerical integration of the

Fokker–Planck equation (15) will thereforeapproach one of the stable steady states. In the
presence of stochastic forcing, the value of x stays approach this curve for large time, regardless of

the initial condition of the system. The finitein the vicinity of one or the other of the stable

solutions for the noise free system (x=±1) for a difference result is obviously smoother than that
obtained from the Monte-Carlo calculation. Thewhile, but eventually the random fluctuations

drive the system into the potential well for the Monte-Carlo result could be smoothed further by

using broader kernels, at a corresponding cost inother stable steady solution. In our experiments,
we choose q=0.24. With this value of q one can resolution. Smoother results could also be

Fig. 1. Comparison of computations of the steady solution of the Fokker–Planck equation for the double-well with
stochastic forcing. The forcing has variance q=0.24. Solutions by Chang and Cooper’s finite difference method (plus
signs) and by a Monte-Carlo simulation with 5000 trials (solid curve) are shown along with the analytical solution
(dotted curves). Numerical solutions are for an initial value problem with Gaussian initial conditions with mean
zero and variance 0.1. The equation was integrated for a time interval of 1.75.
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obtained from the use of a larger ensemble, at The evolution of the pdf from a Gaussian pdf to
the bimodal equilibrium distribution (16) can begreater expense. This smoothness is probably not

important for our purposes. The curve shown is interpreted as reflecting the increasing uncertainty

of the randomly perturbed system. Ultimately, thethe result of an experiment with 5000 trials.
Fig. 2 depicts solutions of (15) for the pdf of the system will approach one equilibrium point or the

other, with equal probability. In this view we alsostochastically perturbed double-well, drawn in

perspective as a function of x and t, for Gaussian see the greater smoothness of the finite difference
solution (panel a) compared to the Monte-Carloinitial condition, with mean 0.0 and variance 0.1.

Fig. 2. Solution of the Fokker–Planck equation for the double-well with Gaussian initial condition as in Fig. 1. Note
convergence to the bimodal steady state. (a) The Chang and Cooper implicit finite difference method. (b) The Monte-
Carlo method.

Tellus 51A (1999), 2
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result (panel b). It is also clear in this view that that the expected value will be biased towards the
opposite well.there is little difference between the modes,

medians and confidence intervals in the finite- Fig. 4 shows a comparison of the general non-

linear filter by Bayes’ theorem, the EKF anddifference and Monte-Carlo cases.
As Figs. 1 and 2 show, the double-well problem Evensen’s ensemble method. For Bayes’ assimila-

tion, we choose the mode of the pdf as ourhas a pdf that is far from Gaussian. As a con-

sequence the EKF will not perform well, as shown estimate. As expected, the EKF failed to follow
the transition from the well at x=−1 to that atby MGG. A nonlinear assimilation scheme is

therefore required. In this section we show com- x=1. Both the ensemble method and the Bayes’

assimilation track the transition successfully, butparisons of nonlinear filtering with the EKF and
with Evensen’s ensemble method. the ensemble method is one observation behind

the Bayes method.For the discrete assimilation of data into this

system, we will take observations at time intervals
of one unit and use an observation noise variance
of 0.1. This is a case in which, according to the 5. A stochastic Lorenz model
semi-analytical criterion derived by MGG, the
EKF will be expected to fail. The results of this A somewhat more relevant but still highly sim-

plified model is a stochastic version of Lorenz’assimilation experiment are shown in Figs. 3, 4.

Fig. 3 shows the conditional pdf from the Bayes’ (1963) now classic spectral truncation of the
Boussinesq equations,assimilation. The best estimator for the system is

the mode of the pdf. Note that the expected value
dX=s(Y −X) dt+g1 dw1 , (17)

is consistently biased towards zero from the actual
value. As long as there is some probability that dY = (rX−Y −XZ) dt+g2 dw2 , (18)

the system is in the other well, the expected value
dZ= (XY −bZ) dt+g3 dw3 , (19)

will be slightly shifted towards the other well. In
addition, as Fig. 3 shows, the pdf falls off more where s is the Prandtl number, r is a normalized

Rayleigh number and b is a non-dimensionalslowly on the side towards the other well than it
does on the outermost side. Again the result is wavenumber. We choose the parameters first used

Fig. 3. Evolution of the conditional pdf for the double-well with observations, computed by Bayes’ assimilation.
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Fig. 4. Comparison of the EKF, the ensemble method and nonlinear filtering by Bayes’ theorem for the double-
well problem.

by Lorenz to obtain chaotic solutions: s=10.0, ated by applying the Box–Muller transformation

(Box and Muller, 1958) to uniformly distributedr=28.0 and b=8/3. The stochastic forcing
given by: dw= (dw1 , dw2 , dw3 )T is a stationary pseudo-random numbers obtained from the

random number generator R250 (Kirkpatrick andwhite noise process with covariance given by the

identity. We choose g1=g2=g3= (0.5)1/2. The Stoll, 1981). The duration of that integration was
45.0 time units. The reference solution wasFokker–Planck equation for this system can

be obtained by substituting the vector valued sampled at intervals of 0.48, and Gaussian noise

with variance 2.0 was added to the samples tofunction f (X, Y, Z)= (s(Y −X), rX−Y −XZ,
XY −bZ)T into (2), along with Q= form a set of simulated noisy observations. With

the parameters chosen, the solution is dominateddiag(0.5, 0.5, 0.5). We constructed a reference solu-
tion by solving (17)–(19) by Milshtein’s (1978) by oscillations of roughly unit period. These simu-

lated observations were then used to perform datamethod (see also Kloeden and Platen, 1992)

with initial conditions given by (X, Y, Z)= assimilation experiments.
A Monte-Carlo simulation with 1750 trials was(−5.91652, −5.52332, 24.5723), and noise gener-
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used to calculate a solution to the Fokker–Planck is invariant in the unperturbed system; near the
origin of the X–Y plane, Ẋ and Ẏ are small. Thisequation for the stochastically perturbed Lorenz

system (17)–(19). The pdf was calculated explicitly accounts for the maximum at the origin in this

plot. Careful examination of a well resolved plotby the adaptive kernel method; cf. Subsection 9.2
or Silverman (1986). Fig. 5 shows a contour map of this quantity shows that the slopes of the slice

curves along the major axes of the elliptical con-of the pdf on the z=33 plane. In this representa-

tion, the bimodality of the attractor, sometimes tours depicted in this plot flatten out significantly.
Rather than resembling a bell curve, as one mightreferred to in terms of the two wings of a butterfly,

is clear. A more familiar view of the butterfly wing guess from this figure, the slice curves have distinct

shoulders. This is what one would expect from ashape can be found in Ghil and Childress (1987).
A similar figure of the unperturbed system, along system of two harmonic oscillators with overlap-

ping ranges, in which the decision of which har-with an analysis of the Lorenz system subject to

systematic perturbation was given by Palmer monic oscillator is active is determined by the toss
of a fair coin. A figure corresponding to a slice(1993). As we shall see later on, Z=33 is near the

maximum attained by the system in any given curve of Fig. 6 for the unperturbed system appears

in Fig. B2 of MGG.oscillation The maxima in this picture correspond
to those values of X and Y where the correspond- A slice along Y=0 is shown in the central panel

of Fig. 7. This figure exhibits the expected sym-ing Ż is small.

A different view of the pdf of the Lorenz system metry. As noted above, Ẋ is small near the Z axis
and the maximum at X=0 is expected. It is alsois shown in Fig. 6. In this figure, the integral of

the pdf over all z is shown as a function of x and expected that the maximum density be reasonably
far from the highly unstable saddle at the origin.y. Here the bimodal structure is not apparent.

Examination of (17)–(19) shows that the Z-axis Three methods were used to assimilate data in

Fig. 5. Contour map of a slice of the probability density function for the stochastically perturbed Lorenz equations.
A map in X–Y coordinates on the plane z=33 is shown following an integration of 46 non-dimensional time units.
At this time this picture is relatively steady. Asterisks ‘‘*’’ denote the locations of the critical points in the X–Y plane.
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Fig. 6. Contour map of the probability density function for the stochastically perturbed Lorenz equations, integrated
in the Z direction.The quantity depicted on this map is actually ∆P(X, Y, Z) dZ following an integration of 46 non-
dimensional time units.

the stochastically perturbed Lorenz system: the EKF fails to follow the reference solution. The

results of the EKF experiment appear in panel (a).EKF, Evensen’s ensemble method and the Monte-
Carlo–Bayes method, as before. In all three cases, This panel shows several missed transitions

between t=20 and t=30. The reader should notethe noise characteristics were assumed to be

known exactly, and data were assimilated for all that this experiment has less frequent observations
than those shown in MGG by nearly a factor ofthree state variables.

The top and bottom panels of Fig. 7 show the two. In a preliminary experiment similar to the

one shown in MGG, i.e., with observations takenexplicit results of the Bayes’ assimilation scheme.
These panels reflect another view of the butterfly at intervals of 0.24 but with the stochastic terms

in (17)–(19) present, the EKF performed betterwing structure of the attractor. Panel (a) shows a

slice along Y =0 of the conditional pdf in a case than it did in the noise-free case described in
MGG.in which the system is observed on the left butterfly

wing. Panel (c) shows a similar picture, but for a The results of the experiment with the ensemble

Kalman filter are shown in panel (b). The ensembledifferent time in the simulation. At that time, the
system was observed in the right butterfly wing. method performed better than the EKF. The only

obvious qualitative error in panel (b) is the spikeWhen there is no specific information about the

state of the system at a given time, there is no in the reference solution near t=22 which the
ensemble method does not follow. It does not,way of knowing whether the system state point is

in the left or right wing. This is the meaning of however, appear to ignore the data, as the EKF
does near t=26. It is curious that the EKF doesthe symmetry in the central panel.

Fig. 8 shows the reference solution along with reproduce the spike near t=22.0, despite the fact

that its performance does not match that of thethe results of the three data assimilation experi-
ments for the X state variable. As in MGG, the ensemble method for the experiment as a whole.
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Fig. 7. This figure shows slice curves of contour surfaces of the pdf ’s for the Lorenz equation in three different
situations. Slice curves through Y=0 are shown. The top panel is the conditional pdf for the system observed near
the equilibrium point shown on the left in this view. The middle panel is the equilibrium pdf for the system with no
observations, and the bottom panel is like the top, but for the opposite butterfly wing.

The results of the Bayes’ assimilation technique in the Z variable, and here also the difference
between the EKF and the ensemble method isare shown in panel (c). Here the mode of the pdf

determined by the Bayes’ assimilation is taken as visible. The EKF captures, but the ensemble

method misses the peak in the reference Z nearthe estimate of the system state. This scheme
captures the spike which is not present in the t=22 which signals the downward spike in the X

variable. This is the occasion of the worst perform-ensemble case. The lack of smoothness in panel (c)

is due to the relatively coarse temporal interval ance of the ensemble method. While the analysis
goes nearly through the data point, the ensembleon which the mode was calculated. A kernel

calculation is necessary to evaluate the mode, and method underestimates the maximum of Z in that

vicinity. On the other hand, it follows nicely forthese are relatively expensive. When the mean
instead of the mode of the pdf derived from the most of the interval, while the EKF is distinctly

wrong in both X and Z variables from about t=Bayes calculation was used as the estimate of the
system state, the spike in the reference solution 23 to t=28. No such errors are present in the

Bayes’ assimilation. All three methods follownear t=22.0 was also missed.

Fig. 9 is similar to Fig. 8, but for the Z state closely from about t=28 to t=35.
Fig. 10 shows a view in state space of thevariable. Regime transitions are usually indicated
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Fig. 8. Results of data assimilation experiments. State variable X, reference solution, observations, and output of
data assimilation scheme. (a) The extended Kalman filter (EKF). (b) The ensemble EKF. (c) The mode of the
conditional distribution, calculated by Monte-Carlo and Bayes’ theorem.

operation of the Bayes’ assimilation method. One contour surface of the Bayes pdf is shown
as the small dark shape at the upper left ofContour surfaces are shown in shaded perspective

of the solutions to the Fokker–Planck equation Fig. 10. This surface contains nearly the entire
support of the conditional pdf, i.e., the integral(i.e., no updating) and the Bayes’ assimilation run.

The larger shaded surfaces in the center of Fig. 10 of the Bayes pdf over that volume is very close

to 1.0. The observation is shown as the blackshow the solution to the Fokker–Planck equation,
near equilibrium. Note that these surfaces contain polygon inside the dark shape. A movie of these

contour surfaces would show the dark surfacesvery little of the structure of the attractor. The
reader should note further that a plane perpendic- following the observations as they trace out the

shape of the attractor. The trajectory wouldular to the z axis at z=33 would intersect the

largest of the shaded surfaces in a curve similar appear similar to that shown in Figs. 5.10 to
5.12 of Ghil and Childress (1987).to one of the contour lines in Fig. 5.
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Fig. 9. Similar to Fig. 6, but for state variable Z.

6. A truncated spectral barotropic model Similar systems have been investigated since the
work of Charney and DeVore (1979) and Pedlosky
(1981) for the purpose of elucidating the occur-The examples presented so far were chosen to

suggest specific aspects of the expected behavior rence of multiple equilibria in oceanic and atmo-
spheric models. For more recent treatments,of models of the ocean and atmosphere. In this

section we examine a truncated spectral model of including baroclinic extensions, see Jin and Ghil

(1990) and references therein. Here we work witha barotropic system in a periodic channel with
sinusoidal topography on a b-plane. While still a a system described by Gravel and Derome (1993).

The model describes the evolution of the devi-simplified system, this example is drawn directly
from a model of the mid-latitude atmosphere. We ation from uniform flow with speed u*. The total

streamfunction is given by Y=−u*y+w(x, y, t).therefore expect it to exhibit the features of prac-

tical oceanic and atmospheric models more faith- Dissipation is by Rayleigh friction with time con-
stant t. H is the mean depth of the fluid, and thefully than the previous examples.
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u*~U, (24)

h~H. (25)

In this scaling (20) becomes:

∂
∂t

V2w+J(w, V2w+ (b*a/R0 )y+(a/R0 )h)

+u*
∂
∂x

(V2w+ (a/R0 )h)=−
1

t*
V2w , (26)

where:

a=D/L the aspect ratio, (27)

b*=bD/ f0 dimensionless b , (28)

R0=U/ f0L=the Rossby number, (29)

t*=Ut/L the dimensionless decay time.
(30)

The Laplacian operator becomes V2=a2 ∂2/∂x2Fig. 10. Contour surfaces of pdf ’s of Lorenz equations
from Monte-Carlo and Monte-Carlo/Bayes’ experi- +∂2/∂y2.
ments. Outer surface: 1.28×10−5 contour. Inner surface: The perturbation streamfunction w is expanded
1.09×10−4 contour. The small dark surface at the upper

spectrally:
left is the p=0 contour of the conditional pdf, deter-
mined by Bayes’ theorem. This surface contains the entire w(x, y, t)=∑

i
x
i
(t)G

i
(x, y), (31)

support of the conditional pdf, i.e., all Monte-Carlo–
Bayes’ trials fall within it. The small black surface where the basis functions G are from the set,
contained in the dark contour is centered at the obser-
vation point. G

i
µ{√2 cos pny, 2 sin 2pmx sin pny,

2 cos 2pmx sin pny},
variable topography is given by h. The perturba-

m=1, 2, . . . , M, n=1, 2, . . . , N. (32)tion streamfunction w then evolves according to
the equation of conservation of potential vorticity, We refer to the three forms of the G

i
,

which we write in the form: E2 cos pny, 2 sin 2pmx sin pny, 2 cos 2pmx sin pny

as the G
a
, G

b
and G

c
respectively.∂

∂t
V2w+J Aw, V2w+by+

f0
H

hB The resulting equations for the spectral com-
ponents are:

+u*
∂
∂x AV2w+ f0

H
hB=−

1

t
V2w dx

i
dt

=
1

a2
i
R0 Gu* ∑

j
b
ji
(ah

j
−R0a2j xj)

Following Gravel and Derome, we chose the
+∑

j,k
c
ijk

x
j
(ah

k
−R0a2kxk )parameters of our channel to mimic the mid-

latitude atmosphere at 45°N. Our channel has

length L =28 000 km and width D=4000 km. +b*a ∑
j

b
ji
x
j
− (R0/t*)a2

i
x
iH . (33)

At this latitude, we have the Coriolis parameter
f0=1.03×10−4 s−1 and b, the meridional rate The coefficients a

i
, b

ji
and c

ijk
are given by:

of change of the Coriolis parameter given by:
a2
i
=4a2m2p2+n2p2, (34)b=1.6×10−8 s−1 km−1.

We adopt the following scaling:
b
ji
= P

x
P
y

G
j
∂G

i
∂x

dy dx, (35)
U=scale speed, (21)

x~L , y~D, w~UD, (22)
c
kij
= P

x
P
y

G
k
J(G

i
, G

j
) dy dx, (36)

t~L /U, the advective time scale (23)
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where m and n in (34) are the zonal and meridional there is no choice of u* for which multiple stable
equilibria were found.wavenumbers corresponding to the ith spectral

component. There are, however, stable limit cycles in much

of the range in which the equilibria are unstable,Following Gravel and Derome, we use a spec-
tral expansion with 5 zonal wavenumbers and and at least one case in which multiple stable limit

cycles coexist at the same parameter values. We4 meridional wavenumbers (M=5 and N=4),

and we choose parameter values that mimic calculated these limit cycles and determined their
stability by a method similar to that described bythe mid-latitude atmosphere. In this model,

H=10 km and h is chosen to have peak ampli- Strong et al. (1995). The bifurcation diagram for

the limit cycles is shown in Fig. 12. This figuretude of 500 m with functional form given by
shows that there are at least two branches of2 sin (2px/L ) sin (py/D). With t=22 days, the qual-
stable limit cycles. The interval in the parameteritative structure of the system is highly complex.
u* in which the branches overlap is small, but notThe stability of the equilibrium solutions is
empty. Near u*=20 m s−1 the bifurcation dia-governed by Hopf bifurcations in the parameter
gram for limit cycles becomes very complex.u*. We follow Gravel and Derome, who used the

Examples of limit cycles projected into threearclength continuation method described by
dimensions are shown in Fig. 13. Two of the limitLegras and Ghil (1985). The bifurcation diagram
cycles shown here are stable, and the other twofor the equilibria is shown in Fig. 11. In this figure,
are not. The bifurcation diagram shown in Fig. 12for steady solutions of (33), the RMS kinetic
is by no means complete. We believe that thereenergy of the perturbation streamfunction w is
are still other limit cycles at this value of u*, butplotted against u*. As expected, the perturbation
did not pursue the calculation of other branches.streamfunction w draws energy from the mean

Fig. 12 shows that Hopf bifurcations offlow most efficiently at speeds near the linear
branches of limit cycles occur at a number ofRossby wave resonance at 24 m s−1.

The equilibria of the system lose stability

through a Hopf bifurcation near 18 m s−1 and

regain stability through another Hopf bifurcation
near 28 m s−1. For this choice of parameters, we

found the same result as Gravel and Derome, i.e.,

Fig. 12. Bifurcation diagram of limit cycles for truncated
Fig. 11. Bifurcation of equilibria for truncated spectral spectral approximation to the b-plane channel with

sinusoidal topography. Axes are similar to those inapproximation to the b-plane channel with sinusoidal
topography. Abscissa is the speed of the mean flow; Fig. 11 but perturbation kinetic energy for a periodic

orbit is averaged over a period. The bifurcation of equi-ordinate is the ratio of the RMS kinetic energy of the
perturbation to the speed of the mean flow. libria is shown as a dashed line.
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Fig. 13. Four limit cycles. Two are stable and the other two are not. Two of the coordinates are the real and
imaginary parts of the eigenvector corresponding to the most unstable mode of the equilibrium point at this parameter
value u*=19.98. That equilibrium point is the origin of the present plot. The third dimension was constructed by
calculating the vector average of the differences between points on the most stable limit cycle, in the case the one
shown on top, and the equilibrium point, and then applying the Gram–Schmidt process to determine a direction
orthogonal to the other two.

points on the diagram. These bifurcation points an explicit example of a trajectory we believe to

lie on an invariant torus. We have not investigatedin some portions of this diagram mark regions in
which we have not been able to find stable equilib- the stability of the invariant torus itself. We cannot

rule out the possibility that this trajectory aroseria or limit cycles. Long integrations of the model

in those parameter ranges result in complicated from a period multiplying bifurcation of a limit
cycle at a nearby parameter value, and is thereforepatterns which we have been unable to resolve

into limit cycles or equilibria. A Hopf bifurcation a long limit cycle.

We now consider the system (33) with stochasticfrom a limit cycle signals either the existence of
a new limit cycle whose period is an integer mul- perturbations added. We expect this system to

behave qualitatively like the double-well when u*tiple of the original one, or an invariant torus,

depending on whether the argument of the eigen- is chosen in a regime with multiple stable limit
cycles. Before we look explicitly for transitionsvalue of the return map which crosses the unit

circle is a rational or irrational multiple of p. As from one limit cycle to another, let us examine
the local behavior of the system, without assimila-one would expect, it is therefore all but impossible

to distinguish an invariant torus from a tortuous tion, in the neighborhood of one of the limit cycles.

For a stochastic system whose deterministicperiodic orbit which arose by a period multiplying
bifurcation from a simple limit cycle. Fig. 14 shows part is characterized by an attractor consisting of
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Fig. 14. Projection into three dimensions of a trajectory believed to lie on the surface of an invariant torus. The
three coordinates are amplitudes of the spectral components shown on the axis labels. Here u*=24 m s−1. We
cannot entirely rule out the possibility that this is a long period limit cycle.

a single stable limit cycle, we expect the equilib- the limit cycle are complex, but there are two
features to notice. First, after 1.25 periods, therium pdf to be supported in a neighborhood of

the attractor itself, but distributed in some fashion longest time shown in Spencer and Bergman’s
figure, the pdf has not spread out very far alongaround the limit cycle. Perturbations in directions

transverse to the limit cycle will tend to decay, the limit cycle; in other words, not much phase

information has been lost due to the stochasticwhile the system will be neutrally stable to per-
turbations tangential to the limit cycle. Therefore, perturbation. Second, Spencer and Bergman’s cal-

culation of the stationary solution to the Fokker–we expect that any initial phase information will

eventually be lost. Eventually, we expect the high- Planck equation, illustrated in their Fig. 9, shows
the expected roughly cylindrical distribution. Theest probability regions of state space to be near

the limit cycle, but we will have trouble determin- highest points on the perspective graph of the pdf

lie on the limit cycle, but some are higher thaning exactly where on the limit cycle the system is.
This point was illustrated by Spencer and others, due to the fact that the angular speed of

the phase point around the limit cycle is notBergman (1993) for the van der Pol oscillator,

perhaps the most extensively studied limit cycle uniform, and the system spends more time in some
quadrants than in others.oscillator. Their solution of the Fokker–Planck

equation for the stochastically perturbed van der Spencer and Bergman solved the Fokker–

Planck equation in two space dimensions. ForPol oscillator shows the expected behavior. Their
initial pdf is chosen to be Gaussian, centered calculations in systems with very high dimension,

the representation of the Fokker–Planck equationoutside the limit cycle. The initial pdf is rapidly
attracted to the limit cycle, and is, in general, is critical in determining whether the calculation

can be implemented on any modern computer.elongated in the direction tangential to the limit

cycle and compressed in the transverse direction. Clearly, a regular grid of points can only be stored
if the dimension of the lattice is small. We can,The details of its behavior as it proceeds around
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however, calculate ensembles of trajectories of the kernel calculation of the pdf resulting from the
distribution of these two coordinates of thestochastic system, and evaluate the functionals of

the pdf directly on regular grids imposed on low- ensemble, ignoring the other 42. This amounts to

an approximation of the integral of the pdf overdimensional subspaces of state space. Fig. 15
shows the result of such a calculation. We per- the other 42 dimensions. Fig. 15 is shown normal-

ized so that the largest value is unity. It is likelyformed that calculation with the initial pdf chosen

to be multivariate Gaussian, centered at a point that some information is lost in this representation.
Comparison of Figs. 5 and 6 shows that this wason the more stable of the limit cycles shown in

Fig. 13. We generated an ensemble of 10 000 points the case for the pdfs of the stochastic Lorenz

model.from that pdf, and integrated forward for ten
periods. We then chose the two-dimensional sub- At that point in the integration, ten periods

from the initial time, the pdf was still localized atspace of the full 44 dimensional state space deter-

mined by the amplitudes of two spectral one end of the trajectory, i.e., phase information
from the initial ensemble remains. Further insightcomponents. These particular components were

chosen by examining the projections of the limit into this figure can be gained by comparison to

Fig. 8 of Spencer and Bergman (1993). We clearlycycle into two-dimensional subspaces of this form,
and choosing a pair of coordinates which gave a cannot say from this figure whether there is signi-

ficant probability of transition from the basin ofgood graphic representation of the limit cycle. It

is then a simple matter to impose a regular grid attraction of this limit cycle to the basin of attrac-
tion of another stable limit cycle.on this two-dimensional subspace, and perform a

Fig. 15. Two views of the marginal pdf of the truncated spectral model in the neighborhood of the more stable limit
cycle, following integration for 10 periods. The horizontal axes are the amplitudes of two spectral components which
exhibit the limit cycle clearly. The values plotted at each gridpoint represent the integral at that gridpoint over the
other 42 dimensions. Top: three-dimensional plot, shown in perspective of the marginal pdf. The limit cycle projected
into this coordinate plane is shown as a solid line above. Bottom: two-dimensional view of marginal pdf. The limit
cycle is shown superimposed as a solid line.
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While projections of the pdf into selected sub- exhibit transitions from one stable limit cycle to
another. Two views of such a transition are shownspaces can give us insight into the nature of the

evolution of the pdf, they are not sufficient for in Fig. 17. The top panel of that figure shows the

transition in phase space, projected into twostudy of the assimilation process. If we look at
eqs. (8) or (11), we see that a high dimensional dimensions. The bottom panel shows the result of

observing the transition at point number 2 in theintegration will be necessary in order to proceed

with the assimilation. Such integrals will be done physical space array shown in Fig. 16. The
example illustrates the fact that the system behavesusing Monte-Carlo sampling on a quasi-random

set of points (quasi-random points are used instead qualitatively like the double-well. We therefore

expect to encounter the same type of problems inof pseudo-random points, because this gives con-
siderably improved integral estimates for a given assimilating data into this model as we did in the

double-well.number of points) (Press and Teukolsky, 1989).

This means that we will only use the values of the From our experience with the double-well, we
expect the extended Kalman filter to be mostpdf P(x, t

k
| y
k
) on the quasi-random lattice. We

therefore calculate the pdf only on these points. likely to fail in the case of small system noise and

large observation noise (see MGG and section ofAs a result, the number of points at which we
calculate the pdf is limited by the available the present manuscript). For our simulations, we

chose the system noise to be the smallest whichmemory of the computers being used and is not

directly related to the dimensionality of the prob- would produce a transition in a reasonable
amount of time, and we chose the observationlem. We further adapt the size of the domain

(keeping the number of points fixed) as the calcula- noise to be as large as we could make it and still
be small enough that the observations wouldtion proceeds. The result of this is that the density

of sampled points goes up as the probability distinguish the basins of attraction of the stable

limit cycles from one another. For the experimentsdistribution sharpens, so the resolution improves
where it is most needed. presented here, we chose the system noise to have

RMS amplitude equal to 20% of the RMS ampli-While the actual implementation of these calcu-

lations on a quasi-random lattice requires careful tude of the more stable limit cycle, and the same
spectral characteristics in wavenumber space assoftware design, we have encountered no funda-

mental limitation to this type of implementation that limit cycle.

Observations were taken at the nine pointswith the models that we have attempted to date.
We clearly have a long way to go in the area of shown in Fig. 16 at a time interval of one half the

period of the less stable of the two limit cycles.visualization. A major obstacle to understanding

of high dimensional stochastic systems is the The periods of the two limit cycles are similar,
and the less stable one was chosen because thedifficulty of graphical representation of the results.

In order to make our data assimilation experi- system started out near it. Noise was added to the

synthetic observations. The observation noise wasments as realistic as possible, we have performed
our simulated observations in physical space. Our assumed to be white in time and uncorrelated

from one observation to another. The observationsimulated observations were constructed by sam-

pling the full perturbation streamfunction w at noise variance was chosen by a rough subjective
criterion. We examined graphs of noisy observa-nine points in physical space. The array is shown

in the top panel of Fig. 16. tions, i.e., the points marked by stars in the lower

panels of Figs. 18 and 19, and chose the observa-The center and bottom panels of Fig. 16 show
the results of observing the two stable limit cycles tion noise variance to be the largest value consist-

ent with our ability to distinguish between theshown in Fig. 13. From these figures we see that

a clear distinction between the two stable limit two limit cycles by inspection.
Fig. 18 shows the result of the application ofcycles appears in observations of the system in

physical space. There is therefore some hope that the extended Kalman filter to the truncated spec-
tral system. The extended Kalman filter was imple-we will be able to use data assimilation to track

the system through a transition from one regime mented in the square root form (see, e.g., Bierman,

1977). The square root filter is equivalent to theto the other.
The stochastic differential equation does indeed extended Kalman filter, but is more stable numer-

Tellus 51A (1999), 2



      187

Fig. 16. Simulated observations for the periodic channel: Top: the nine observation points, superimposed on a shaded
map of the bathymetry. Center: result of observation of the stable limit cycles at point number 2. The blue curve
shows the result of observing the two stable limit cycles shown in Fig. 13. No observation noise is imposed here.
Bottom: similar to center panel, but for observation at the point number 7.

ically. We did not observe the instabilities reported should compare these panels to Figs. 4 and 8,

which show similar failures of the extendedby Evensen (1992), Gauthier et al. (1993) or
Bouttier (1994), probably because of our fairly Kalman filter.

The ensemble Kalman filter devised bydense uniformly spaced observing array.
The top and bottom panels of Fig. 18 show Evensen and colleagues (Evensen, 1994; Evensen

and Fario, 1997; and references therein) alsoclearly that the filter estimate does not follow the

state transition, even though this transition is fails in this case. We used 100 members in our
ensemble, as Evensen (1994) did, and found thatclearly indicated in the observations. The reader
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Fig. 17. Top: trajectory in phase space of a realization of the stochastic system undergoing a transition from the
basin of attraction of one stable limit cycle to that of another, shown here projected into two dimensions. The
trajectory is shown in blue and the limit cycles are shown in green and red. The system begins in the basin of
attraction of the limit cycle shown in green. Bottom: observations taken continuously at point number 2 of the top
panel of Fig. 16 of the same transition shown in the upper panel. No noise is added to the reference observations.
Observations of the exact unperturbed limit cycles are shown in green and red to emphasize the transition.

the method failed in exactly the same fashion as to Fig. 18 for the ensemble Kalman filter are
nearly identical to those resulting from the EKFthe EKF. This may be due to the relatively

small ensemble, but as noted here, this ensemble and are therefore not shown here.

Results of the Bayes’ assimilation are shown insize is typical of applications of this method
reported in the literature. Graphs corresponding Fig. 19. The estimate of the state given by the
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Fig. 18. Results of extended Kalman filter experiment for the periodic channel. Top: projection of result of the square
root implementation of the EKF into state space, shown in magenta, along with the reference trajectory, shown in
blue. Bottom: output of the EKF, along with the reference solution and the observations for observation at point
number 2 in Fig. 16. Observations are taken at time intervals of about 0.375, and contaminated with random noise.

mode of the conditional pdf stays roughly in the tions did not contain sufficient information to
track the phase space trajectory faithfully. Wegeneral vicinity of the correct limit cycle, as

opposed to losing track entirely, but fails to track used 10 000 trials in the estimate of the pdf, and
this may be too few. Results may also be improvedthe observations faithfully. There are two possible

causes for this: either the errors in our approxi- by fine tuning of the kernel method, but previous

experience does not lead us to be optimistic aboutmation of the conditional pdf ’s in the Bayes run
were insufficiently accurate, or the noisy observa- this approach.
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Fig. 19. Result of Bayes’ assimilation experiment. Legend similar to Fig. 18. The results of the assimilation shown
here are the modes of the conditional pdf ’s computed at each observation.

We believe that the apparently poor perform- the upper panel of Fig. 20 shows that while the

observations are concentrated in the general areaance of the Bayes system in this case is due to the
information content of the noisy observations. of the limit cycles, they do not appear to follow

the limit cycles closely. Evidently the system noiseFig. 20 shows the limit cycles and the observations
in a plane defined by two of the measurements. is too large for that. Given this picture, it should

not be surprising that the best we can do with theIn the case of vanishing or very small system

noise, one would expect the noise-free observations Bayes’ assimilation is to stay in the right general
part of phase space. The addition of observationto cluster about the limit cycles. Examination of

Tellus 51A (1999), 2



      191

complex examples, beginning with a simple scalar
system and ending with a coarsely resolved spec-
tral truncation of a barotropic channel model with

topography on the mid-latitude b plane.
This data assimilation method is general enough

to handle nonlinear systems and observation pro-

cesses. It can also work with complicated noise
processes such as correlated or multiplicative
noise.

For high dimension systems the Fokker–Planck
part of the calculation must be implemented using
Monte-Carlo methods. Because of this, it is most

practical to implement the method with either
massively parallel computers or with distributed
processor systems such as PVM (Geist et al.,

1991). In high dimension the interpretation/visual-
ization problem is not trivial.

While this method failed to track the phase of

the limit cycles in the most complicated of our
examples, it did not lose track entirely, as the

extended Kalman filter did. The extended Kalman
filter is based on the assumption that the dynamics
of paths near the reference trajectory are well

described by linearizing the full evolution operator
about the current estimate. It is possible to discard
this assumption without abandoning the least

squares formulations entirely, and thus gain some
of the benefits of the simplicity of least squares
systems. The simplest of these systems are theFig. 20. Phase plot of Bayes’ experiment. The horizontal
ensemble methods devised by Evensen and col-axis is observation no. 1 and the vertical axis is observa-

tion no. 9; see Fig. 16. The solid curves depict the limit leagues (Evensen, 1994; Evensen and Fario, 1997).
cycles. The curve to the upper left is the more stable These schemes can work well when the extended
limit cycle, and the one to the lower right is the less Kalman filter fails. Failures of ensemble schemes
stable. Top panel: limit cycles shown with noise-free

of this type, when they occur, are as likely to be
observations of the stochastic system, shown here as ‘‘*’’.

the result of the ensemble mean being a lessBottom panel: limit cycles shown with noisy observa-
satisfactory estimator than the maximum likeli-tions, shown here as open circles.
hood as they are to result from the underlying
least squares assumptions in the Kalman gain

formula. One must also consider the fact thatnoise only makes the situation worse, as shown in
the lower panel of Fig. 20. most of the examples in the literature of ensemble

calculations were performed with small ensembles,

i.e., hundreds of trials at most, while our Bayes
calculations were performed with 10 000 trials.7. Discussion
This still may be too small for detailed calculation

of pdf ’s in cases of practical interest.Nonlinear filtering, viz. calculation of the pdf of
the stochastic system, conditioned upon observa- Once we accept the stochastic nature of the

systems we deal with, we must conclude that thetions, was implemented by explicit calculation of
an approximate solution to the Fokker–Planck pdf ’s conditioned upon observations contain all

of the information available to us about theequation between updates, and updating by Bayes’

theorem when observations became available. This system. We are free to choose the statistic which
best suits our purpose as our estimate of ‘‘the’’technique was applied to a series of increasingly
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state of the system — we favor the mode — but on stochastic systems. The final versions of the
figures were produced by L. Ehret, and the finalthe pdf, as opposed to any time series of estimated

states, is really the solution to the problem. version of the text prepared by C. Withrow. This

work was supported by ONR ContractThe theory of stochastic nonlinear filtering is
well developed but little studied in the oceanic N00014-92-J-1595.
and atmospheric science community. We speculate

that this is due to the high dimensionality of even
9. Appendix: details of numerical methodsthe simplest relevant problems, which renders

these calculations cumbersome in the extreme. To
9.1. Chang and Cooper’s numerical method for theour knowledge, our spectral model of the baro-

Fokker–Planck equationtropic b plane channel is the most relevant
example to the geophysical fluid dynamics com-

Given the one-dimensional Fokker–Planck
munity to be studied by these techniques.

equation:
In many cases the choice of a specific method

for use in a practical data assimilation system is ∂p
∂t

=
∂
∂x C f (x, t)p+(Q/2)

∂p
∂xD , (37)

a tactical decision, based on data interfaces and
on the details of model implementations. Most of

we can find a solution by Chang and Cooper’sthe methods under widespread consideration are
finite difference scheme in three steps.closely related if not precisely equivalent (Courtier,

First, solve the ordinary differential equation1997). Larger questions of error statistics and

representation of the measurement process, i.e., ∂
∂x C f (x, t)p+ (Q/2)

∂p
∂xD=0. (38)the explicit form of h in (7), are the defining

characteristics of practical systems. In this work
Second, calculate the dn+1

j
s where dn

j
=we have not systematically explored the con-

d( jDx, nDt):sequences of uncertainties in these quantities;
rather we have focused on the implications for

data assimilation of the interaction between non- C(1−dn+1
j

) f n
j+1/2+

1

Dx
(Q/2)D pn+1

j+1
linearity and noise. The description of the various
noise sources must be considered carefully in

−A 1

Dx
(Q/2)−dn+1

j
f n
j+1/2B pn+1

j
=0. (39)evaluating the practical applicability of results of

simulation experiments.
It is not our purpose to advocate nonlinear Last, solve the following implicit difference

filtering as a competitor to other data assimilation equation by back substitution.
methods for operational use. At this time, it is far
too resource intensive for that, but we propose it

1

Dt
( pn+1
j

−pn
j
)

as a conceptual tool, to be used to gain insight
into the performance of approximate schemes in

=
1

Dx GC(1−dn+1
j

) f n
j+1/2+

1

Dx
(Q/2)D pn+1

j+1highly nonlinear settings. The reader should be

reminded that this was the status of the Kalman
filter a decade ago. While this remains so to a

−C 1

Dx
Q+(1−dn+1

j−1 ) f nj−1/2−dn+1
j

f n
j+1/2Dpn+1

jlarge extent today, the most cursory glance at the

literature shows application of the Kalman filter
and other weak constraint schemes to problems +C 1

Dx
(Q/2)−dn+1

j−1 f n
j−1/2D pn+1

j−1H . (40)
of complexity far beyond anything envisioned by

the early investigators of those methods.

9.2. Adaptive kernel method

The adaptive kernel approach first requires an8. Acknowledgments
initial estimate of the probability density function

f (t). This inital pdf can be obtained by the kernelWe would like to thank L. Bergman,
S. Wojtkiewicz and S. Yim for helpful discussions or nearest neighbor method, however, since the
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adaptive kernel method is insensitive to the inital by
guess, any estimate can be used. This estimate is

f̂ (x)=n−1 ∑
n

i=1
h−dl−d

k
K{h−1l−1

i
(t−x

i
)}, (43)used to calculate the local bandwidths. The band-

widths determine the adaptive kernel estimate.
where K is the kernel function and h is theThe following steps describe the process in detail.
bandwidth.

Step 1: Find an initial estimate to the probabil-
In this paper, we used the Epanechnikov kernel

ity density function f (t) such that f (x
i
)>0 for all i.

as the kernel function. The Epanechnikov kernel
Step 2: Define the local bandwidth factors l

i is defined as
by

3
4
(1−1

5
t2 )/E5, for |t |<E5 ;

0, otherwise
(44)l

i
={ f (x

i
)/g}−a, (41)

The sensitivity parameter a was set to 1
2
. As awhere g is the geometric mean of f (x

i
),

increases, the differences in bandwidths also
increases. The resulting adaptive kernel method islog g=n−1∑ f (x

i
) . (42)

more sensitive to the initial estimate. As a
The sensitivity parameter a must satisfy the condi- decreases, the bandwidths become uniform, until,
tion 0∏a∏1. for a=0, the adaptive kernel method is reduced

to the fixed width kernel method.Step 3: Define the adaptive kernel estimate f̂ ( t)
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