
Data assimilation schemes for non-linear shallow

water flow models

M. Verlaan, A.W. Heemink

Department of Applied Mathematics, Delft University of

Abstract

In theory K aim an filters can be used to solve many on-line data assimilation
problems. However, for models resulting from the discretization of partial
differential equations the number of state variables is usually very large,
leading to a huge computational burden. Therefore approximation of the
Kalman filter equations is in general necessary.

In this paper two new algorithms are proposed, that extend the idea of
the Reduced Rank Square Root filter [15] for use with non-linear models.
The algorithms are based on a low rank approximation of the error covari-
ance matrix and use a square root representation of the error covariance.
For both algorithms the tangent linear model is not needed. The first al-
gorithm proposed is accurate up to first order terms, which is comparable
to the extended Kalman filter. The second, at the cost of twice the num-
ber of computations, is second order accurate, which may be important for
strongly nonlinear models.

Several experiments were performed on a model of the southern part
of the North Sea to measure the performance of both algorithms. Both
algorithms perform well when the the number of modes, i.e. the rank of
the approximation, is set to 30. This corresponds to a computation time
of approximately 30 model runs for the first order algorithm and 60 for the
second order algorithm.

1 Introduction

Accurate forecasts of storm surges in the North Sea are very important for
a timely closure of the storm surge barriers in the 'Eastern Scheldt' and
for protection of the many dikes along the Dutch coast. These barriers and
dikes are vital for protection of the densely populated western part of the
Netherlands against the sea. The storm surge forecasts are also used by
large ships entering the Rotterdam harbour, because at some points the
depth is not enough at low-tide.

In the current operational system forecasts are based on simulations of
a numerical model of the continental shelf of the North Sea. To improve
the forecasts waterlevel measurements are assimilated into the model with
a steady state Kalman filter. Essential in the steady state approach is that
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278 Advances in Fluid Mechanics

the model is nearly linear and the use of a fixed measurement network that
produces reliable measurements at regular intervals.

In order to further improve the forecasts and extend the applicability of
the K aim an filtering program it is desirable to add nonlinearities and time
varying parts to the model. Although the general K aim an filter approach
can still be used, the number of computations needed for direct use of the
K aim an filter equations [13] is not feasible with the available computers and
thus clever approximations are needed. After Colin and Todling [5] we will
call these approximate K aim an filters, SubOptimal Schemes or SOS's.

For nonlinear models computation of the minimum variance estimate
is only feasible for very small systems. Therefore approximations like the
extended K aim an filter and second order filters [11, 10] are often used. For
very large systems these second order filters are very time consuming and
can not be used.

In the sequel two new algorithms will be described that are approx-
imations to the extended K aim an filter and the truncated second order
filter respectively and some experiments will be presented that show that
computation times can be reduced dramatically without significant loss in
performance.

2 Model and data

In order to obtain forecasts that are consistent with physical laws, like
conservation of mass and momentum, the stochastic model was based on
the two dimensional shallow water equations with a stochastic disturbance
on the forcing. The advection of momentum was neglected since it is not
very important for this application. This results in the following set of
equations:

— 0 (1 )
^

where (u,u) denotes depth averaged current, h is the waterlevel relative to
the reference plane, D is the depth relative to the reference plane, H = h-\-D
is the total water depth, g is the gravity acceleration, / a coefficient for the
Corriolis force, C the Chezy coefficient and (r*, T%) is the wind stress.

At the land-sea boundaries the normal current velocity was set to 0 and
at the 'open' boundaries, where the model borders on the northern part of
the North Sea, a set of harmonic constituents was given for the waterlevels.
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The numerical integration was performed with an ADI type scheme on a

staggered grid.
The main sources of error in this model are the waterlevels at the open

boundary in case of an external surge and the meteorological forcing (T*, Ty).
These errors were modeled using AR(1) processes [3]. For the error at the
open boundary independent processes were used in a few points, after which
linear interpolation was used for the rest of the boundary. The error in the
wind was first modelled on a coarse grid and then interpolated ([9] p!40).
Exponential correlation in space was used. Kalman filter algorithms can be
expressed more easily when a state space formulation of the model is used.
Therefore the above model was formulated in a state space form (see for eg.

[9])-

3 Suboptimal Kalman filters

3.1 Introduction

The Kalman filter, as derived by Kalman [13], gives a recursive procedure
for computation of the optimal estimate, in the minimum variance sense, in
case of a linear system with Gaussian noise. Consider the linear system

x(k + l) = A(k)x(k) + B(k)u(k) + F(k)w(k) (4)

y(k) = C(k)x(k) + v(k) (5)

where x(k) € R\ w(k) € A'" and v(k),y(k) € W, u(k) E Rf. The system
noise w and the measurement noise v are are zero mean white and Gaussian
and. The covariances are given by E[w(k)w(k)̂ \ = S,(fc), E[v(k)v(k)1 =
Eo(fc) and E[w(k)v(l)'} = 0 for all k, I. The initial condition is given by

E[x(0)] = xo (6)

E[(x(0) - xo)*] = Po (?)

Using this notation the Kalman filter equations can be denoted as

x(k + l\k) = A(k)x(k\k) + B(k)u(k) (8)

P(k + l\k) - A(k)P(k\k)A(k)'+ F(k)X.(k)F(k)' (9)

x(k + \\k + l) = x(k+l\k)

+K(k + l)(y(k + 1) - C(k + l)x(k + l|fc)) (10)

K(k + l) = P(k + l\k)C(k + l)'

(C(k + l)P(k + l\k)C(k + 1)' + Eo(* + l))-i (11)

P(fc+l|Jb+l) = P(k + \\k)-K(k + \)C(k + \)P(k + l\k) (12)

i(0|-l) = zo (13)

P(0|-l) = Po
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280 Advances in Fluid Mechanics

where x(k\l) denotes the estimate at time k using the measurements y(O),. . . ,
y(l] and P(k\l) denotes the covariance matrix of the error of this estimate.
Although these equations can in principle be used for many on-line data assim
-ilation applications, there are in practice three major problems that hamper
their use.

The first problem is that the number of computations needed for equa-
tion 9 becomes infeasible for large systems, as well as the storage needed
for the error covariance matrix. For some applications the steady state ap-
proach can be used, where the K aim an gains K(k) are replaced by K —
limfc_>oo K(k). For this the limit should of course exist, which is not true
in most applications. In order to reduce the number of computations also
for these applications several approximations of the K aim an filter equations
(SOS's) have been proposed (see eg. [7, 6, 1]).

One approach to reduce of the number of computations is the approx-
imation of the matrices A(.) or the matrices P(.\.) by matrices of a lower
rank. By means of a factorization the lower rank can be exploited to re-
duce the number of computations as well as the storage. Both the eigen
decomposition and the singular value decomposition are very suited for the
factorization, because they can easily be used to approximate a matrix by
one of a lower rank. The Partial Singular value K aim an Filter (PSKF) [5]
is based on a truncated singular value decomposition of the state transi-
tion matrices A(.). The largest singular values and the singular vectors are
computed using a Lanczos [8] algorithm, which requires the tangent linear
model as well as the adjoint. The PSKF is most efficient if A(.) is constant
in time, so that the decomposition has to be computed only once. Two
other algorithms, the Partial Eigen decomposition K aim an Filter (PEKF)
[5] and the Reduced Rank SQuare RooT algorithm (RRSQRT) [15] use a
truncated eigen decomposition of the matrices P(. .). The PEKF computes
the truncated eigen decomposition with a Lanczos type algorithm, while
the RRSQRT algorithm uses a square root approach [14] to maintain the
factorized form of the error co variances.

In algorithms where the error covariance is approximated a major dif-
ficulty is the ill conditioning of these matrices (eg. [2, 5, 15]). Small
changes, because of the approximations and finite precision computations,
easily cause negative eigenvalues to appear in the computed error covari-
ance, and subsequent instability of the filter. The approximation in terms
of the square root of the error covariance is more robust since the the con-
dition number of the square root factor is much lower than that of the error
covariance matrix and also this formulation guarantees that the matrices
P(.\.) remain positive semi-definite at all times.

A third difficulty encountered in application of the K aim an filter is that
in reality most systems exhibit some kind of nonlinearity. Although a re-
cursive formulation of the minimum variance estimate for nonlinear systems
exists [11] numerical computation of the solution does not seem to be pos-
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sible for all but some very small systems in the near future. If the solution
is expanded in terms of the central moments and subsequently truncated,
several several approximate algorithms can be obtained (see [11, 10] for a
derivation), of which the Extended K aim an Filter (EKF) is the most popular
(eg.[9, 4]). No applications of higher order truncated niters to large systems
are known to the authors, which is probably due to the dramatic increase
of the computation time needed compared to the (extended) K aim an filter.

3.2 The RRSQRT filter

The RRSQRT algorithm is based on the fact that for the application in this
paper the error covariance matrices P(k -f l|fc) and P(k\k) tend to have
only a few large eigenvalues and many small ones. Boggs [2] and Cohn
and Todling [5] also observed this property for meteorological models. The
RRSQRT algorithm exploits this property using an eigendecomposition. Let
ui,. . . Un E R™ be the eigenvectors of a covariance matrix P E R"*" with
the corresponding eigenvalues di > d^ > ... > dn > 0, i.e. P = UDU' with
U — [ui,.. .Un] and D is diagonal with the eigenvalues on the diagonal. It
is well known [8] that the error introduced by truncating the decomposition
after the </'th eigenvalue introduces an error of dq+i for the 2-norm. If there
are only a few large eigenvalues, then P can be approximated accurately
with only a few eigenvectors.

In order to preserve the positive semi defmiteness of the error covariance
matrices a square root approach is used for the RRSQRT filter. Also square
root algorithms have better numerical properties than algorithms based on
the covariance form [14]. It is easily seen that the matrix

I :=[^/d,/,,... ̂/d,/,J (15)

is an approximate square root factor of the matrix P. If q « n then this
matrix is much smaller than the matrix P.

If the RRSQRT algorithm [15] is combined with the finite difference
approximation of equation

df,f(x(k\k) + el,u(k))-f(x(k\k),u(k))

and the state transition 4 replaced by

# + 1) = /(%(&),%(&)) + F(&M&) (17)

the following algorithm is obtained:
time step:

x(k+l\k) = f(x(k\k)Mk)) (18)
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\f(x(k\k)+eh,u(k))-f(x(k\k),u(k))
L(k + l\k) =

L s
frwm.̂ ,7 ,,(l.\\-fi,r(l.\l.\ ,,(̂  .1 ^̂

where li is the i'th column of L(k\k) and [.,.,.] denotes building a block
matrix from the arguments.

reduction step:

I(6 + l|6) = 6(6 + 1|6)(7(6 + 1|6) (20)

(7(6 + 1|6) = [(/(& 4-l|&)]l:,+m,l:, (21)

(7(6 + 1|1)D(6 + l|6)f/(6 + 1|6/ = 6(& + 1 16/6(6 4-l|6) (22)

where [U(k -f l|6)]i:g+w,i:g means that all the rows 1 through q + m are
used, but only the columns 1 through q. Equation 22 denotes the eigen-
decomposition of the matrix L(k + 1|6)'L(6 + 1|6), which is a q + rn by
q + m matrix. This step of the RRSQRT algorithm reduces the num-
ber of columns, while the covariance remains approximately the same, i.e.
2(6 + 1|6)6(6 + 1|6)' % 1(6 + 1|6)6(6 4- 1|6)\

measurement step:
The measurements are processed one at a time. If the measurements are

correlated, then the measurements should be transformed using E<,. In the
following equations it is assumed that 2<, is diagonal.

(23)

(24)

,+i(& +1)' (25)

1) = (#+i(6 + !)'#,+, (6 4- 1) + [2,(6 4- 1)]̂ ,,+, (26)

1) = Z,-(6 + l|6)#,-+i (6 4-lh,+i (6 + 1) (27)

4- /Q+,(%,(6 4- 1)-- C,+i(6 4- l)z,-(6 + 1|6)) (28)

= Z,(64- 1|6)- K+,(6 4-l)#,+i(6 4- 1)'

(1 + (7̂(6 4- 1)[E,(6 + l)],+î)'/')̂  (29)

(30)

6(6 4-l|6 + 1) = Z_(6 4-l|6) (31)

Where yi(k) is the z'th measurement (i = 1, . . . , rn) at time 6. The index i
denotes that i measurements have been processed.

For large systems most computations are needed for equation 19. This
number is reduced considerably if q « n. Note that for q = n the filter
reduces to a 'full' square root filter, i.e. there are no approximations. The
columns of L are called modes since they resemble the modes of the system
in some respects.
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3.3 A second order accurate RRSQRT filter

The main idea of the second order accurate algorithm by Julier [12] is that
a finite sample can represent the mean and co variance of a random variable
and that the mean and co variance of a function of this random variable
can be approximated by the sample mean and sample co variance of the
sample obtained by applying the function to all elements in the sample.
This approximation was then shown to be second order accurate.

It is easy to show that the sample

$ = {* + \/̂ i,£ - )/<7f i ,...,% + T/qlq,x ~ \M?) (32)

where L = [/i, . . . /<?], has sample mean x and sample co variance LL'. Using
the theorem by Julier [12] the sample

u),/(z-̂  (33)

has approximately sample mean E[f(x, u}} and sample co variance E[f(x,u) —
E[f(x, u)]}. The errors in this approximation are all fourth order. Therefore
this procedure can be used for the time step in a truncated second order
filter.

If the columns /; are orthogonal the factor ^Jq compensates for the fact
that there are only two terms that contribute in that direction, contrary
to a random sample where all columns contribute approximately the same
amount. Because of this factor the points in the sample S are further away
from the mean, if q > 1. This will amplify the effect of higher order terms
which is not desirable. Therefore we will scale the elements in the sample.
This scaling has to be compensated for when computing sample mean and
sample co variance.

This approach results in the following second order accurate timestep:

x(k + l\k) = f(x(k\k),u(k))

f(x(k\k) + e/i,u(*0) - f(x(k\k)Mk))

f(x(k\k)-eh,u(k)}-f(x(k\k),u(k))

* ^' '

L(k + l\k) =

f(x(k\k) + el,, u(k)) - f(x(k\k)l, u(k))

f(x(k\k)-eh,u(k))-f(x(k\k),u(k))

f(x(k\k)-el,,u(k)}-
V2e

_ f(r(l.\l.M ,,ll.\\̂ ^
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284 Advances in Fluid Mechanics

For small e one can also prove also directly that the equations 34 and 35
are equivalent to the truncated second order timestep.

The equations 34 and 35 need 2q -f 1 evaluations of the function /. If
q « n the number of computations is reduced considerably. The number
of computations about two times that needed for the RRSQRT algorithm,
but this timestep is second order accurate.

4 Experiments

To evaluate the performance of the algorithms some experiments were per-
formed. For all experiment the model of section 2 was used. The model
area in shown in figure 1. Ten harmonic constituents of the astronomical
tide were used at the open boundaries. In a 'truth' model an external surge
was simulated by a disturbance on the northern boundary and the wind
was neglected. In the 'estimation' model measurements at Scarborough,
Lowes toft and Hoek van Holland were assimilated into the model; the other
points were used as checks.

Figure 2 and 3 show the results of the RRSQRT algorithm of section 3.2
for 30 modes, which roughly corresponds to a computation time of 30 model
runs. It can be seen that the algorithm picks up the signal very well, whereas
the model run without data assimilation only shows the astronomical tide
after the initial transient.

Figure 4 shows the 2-norm of the error between the estimate and the
true state as a function of time for both the first order algorithm of section
3.2 and the second order algorithm of section 3.3. For both algorithms 30
modes,i.e. q = 30, were used. It can be seen that the second order algorithm
works and performs slightly better than the first order algorithm.

5 Conclusions

In this paper two new algorithms were introduced, that extend the Reduced
Rank Square Root algorithm for use with non-linear models. Both models
reduce the computation time considerably compared to the 'full' K aim an
filter. One algorithm includes second order terms with only relatively few
additional computations, the other is comparable to the extended K aim an
filter. Experiments were shown that indicate that both algorithms are very
efficient and that the second order algorithm indeed provides slightly better
estimates.
Acknowledgements This work has been carried out in cooperation
with and with financial support from the RIKZ.

                                                             Transactions on Engineering Sciences vol 9, © 1996 WIT Press, www.witpress.com, ISSN 1743-3533 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Advances in Fluid Mechanics 285

SCARBOROUGH

figure 1:

figure 2:waterlevel for measurement
station Hoek van Holland: filter (—
),measurements ( + ) and without filter

« o.i T'r i i .- figure 4:RMS value oi error lor first
figure 3:waterlevel for check station ° , . , . . ,
/-, ,1 j order — • — •) and second order (—)
Southend DocnoT^ifRRSQRT filters
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