
796 VOLUME 126M O N T H L Y W E A T H E R R E V I E W

q 1998 American Meteorological Society

Data Assimilation Using an Ensemble Kalman Filter Technique

P. L. HOUTEKAMER AND HERSCHEL L. MITCHELL
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ABSTRACT

The possibility of performing data assimilation using the flow-dependent statistics calculated from an ensemble
of short-range forecasts (a technique referred to as ensemble Kalman filtering) is examined in an idealized
environment. Using a three-level, quasigeostrophic, T21 model and simulated observations, experiments are
performed in a perfect-model context. By using forward interpolation operators from the model state to the
observations, the ensemble Kalman filter is able to utilize nonconventional observations.

In order to maintain a representative spread between the ensemble members and avoid a problem of inbreeding,
a pair of ensemble Kalman filters is configured so that the assimilation of data using one ensemble of short-
range forecasts as background fields employs the weights calculated from the other ensemble of short-range
forecasts. This configuration is found to work well: the spread between the ensemble members resembles the
difference between the ensemble mean and the true state, except in the case of the smallest ensembles.

A series of 30-day data assimilation cycles is performed using ensembles of different sizes. The results indicate
that (i) as the size of the ensembles increases, correlations are estimated more accurately and the root-mean-
square analysis error decreases, as expected, and (ii) ensembles having on the order of 100 members are sufficient
to accurately describe local anisotropic, baroclinic correlation structures. Due to the difficulty of accurately
estimating the small correlations associated with remote observations, a cutoff radius beyond which observations
are not used, is implemented. It is found that (a) for a given ensemble size there is an optimal value of this
cutoff radius, and (b) the optimal cutoff radius increases as the ensemble size increases.

1. Introduction

For two decades, statistical interpolation (e.g., Lorenc
1981), and more recently the closely related three-di-
mensional variational (3DVAR) algorithm (e.g., Parrish
and Derber 1992), have been the foremost data assim-
ilation methods for operational numerical weather pre-
diction (NWP). Applied multivariately, with different
observational errors for different types of observations
and using a short-range forecast (typically 6 h) as back-
ground, these methods have proved capable of combin-
ing information from model forecasts and the hetero-
geneous set of available observations. They have sup-
ported a remarkable increase in forecast accuracy over
the period, as shown by, for example, Kalnay et al.
(1990, Figs. 4 and 5), Hollingsworth and Lönnberg
(1990), and Mitchell et al. (1993, Fig. 14).

Of the various aspects of statistical interpolation, the
one that has received the most attention in the literature
has been the determination and specification of the fore-
cast and observation error statistics (see, e.g., Hollings-
worth and Lönnberg 1986; Lönnberg and Hollingsworth
1986; Bartello and Mitchell 1992; Polavarapu 1995; and
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references therein). Consideration of statistical inter-
polation in the context of Kalman filtering validates this
preoccupation, since, as discussed, for example, by
Cohn and Parrish (1991), the analysis of data is the same
in the two methods. Rather, it is in the specification of
the forecast-error statistics, or more precisely covari-
ances, that the two methods differ. On the one hand, the
Kalman filter gives a systematic way to calculate the
time evolution of the forecast-error statistics according
to the dynamics of the forecast model. In contrast, the
statistics used in statistical interpolation and the 3DVAR
algorithm are generally taken to be isotropic and largely
homogeneous with little variation in time (see e.g., Ra-
bier and McNally 1993 and the references cited above).
Despite the demonstrated deficiencies of these restric-
tions [due to, e.g., data discontinuities (Cohn and Parrish
1991; Daley 1992b), baroclinic zones (Jørgensen 1987),
and fronts (Desroziers and Lafore 1993)], it has not yet
been possible to eliminate them in operational data as-
similation systems.

Following the approach of stochastic–dynamic pre-
diction, proposed by Epstein (1969), Evensen (1994)
recently considered the use of an ensemble to estimate
the forecast-error statistics. Using Monte Carlo methods
to generate the ensemble and assuming four available
measurements, he considered data assimilation in the
context of a two-layer quasigeostrophic ocean model on
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a 17 3 17 grid. In comparisons with the extended Kal-
man filter, the new method (termed an ensemble Kalman
filter) was shown to work well, requiring ensembles
having of the order of 100 members. In a further study
(Evensen and van Leeuwen 1996), a 500-member en-
semble Kalman filter was used to assimilate gridded
Geosat altimeter data for the Agulhas current into a two-
layer quasigeostrophic model on a 51 3 65 grid.

Related work with a global atmospheric data assim-
ilation system utilizing a 23-level T63 spectral primitive
equations model has been performed by Houtekamer et
al. (1996a). Working with an eight-member ensemble,
the forecast-error statistics (variances and correlation
lengths) obtained from the ensemble and averaged over
different regions were compared to the corresponding
statistics utilized in the statistical interpolation algo-
rithm. These latter statistics had been obtained, assum-
ing regional and seasonal homogeneity, using the tra-
ditional method (e.g., Hollingsworth and Lönnberg
1986; Daley 1991, section 4.3) from radiosonde obser-
vation innovations. Although the spread in the ensemble
tended to be too small, the possibility of estimating
forecast-error statistics from an ensemble showed prom-
ise.

The purpose of this study is to further examine the
possibility of using ensembles, generated using Monte
Carlo methods, to calculate spatially and temporally
varying forecast-error covariances for the purpose of
performing data assimilation. These flow-dependent sta-
tistics will be calculated at each point directly from the
ensemble. As in Evensen (1994), they will not be par-
ameterized in terms of simple correlation models, as is
normally done, and, of course, they need not be either
homogeneous or isotropic. Unlike the previous imple-
mentations of the ensemble Kalman filter, a cutoff radius
will be used for purposes of data selection and it will
be shown that this approach deals effectively with the
practical computational problems that arise due to the
limited size of the ensemble. In addition, we will ex-
amine the correlation structures generated by the en-
semble Kalman filter and perform a systematic study of
the effect of ensemble size on filter performance.

Our study will be performed in the context of a sim-
plified atmospheric model using simulated radiosonde
and satellite observations. These components of the data
assimilation system and various aspects of the ensemble
Kalman filter are described in the next section.

2. The experimental environment

In a pilot study for a new data assimilation method,
intended to be used eventually to obtain analyses of the
atmospheric state, one needs an environment that has
similar characteristics to the system formed by the at-
mosphere, a global forecast model, and the observa-
tional network. We have decided to use a T21 global
spectral model together with a subset of the current
observational network. We simulate observations by ap-

plying random perturbations to the (known) true state.
Here the true state is obtained from a long integration
with the model, which is considered perfect. The actual
assimilations are performed using a pair of ensemble
Kalman filters. With a view toward the real-time con-
straints associated with operational atmospheric data as-
similation, we focus on small- and moderate-sized en-
sembles.

a. The model

The nonlinear model used in this study is the three-
level, quasigeostrophic global spectral model of Mar-
shall and Molteni (1993). It has a resolution of T21,
includes orography, and is driven by empirical forcing
functions. The global model has been tuned to describe
a perpetual winter situation in the Northern Hemisphere.
As a measure of the error variance, we use the domain-
averaged streamfunction error squared north of 208N at
50 kPa. Thanks to its ease of use, transparent coding,
and realism, the model has by now been used for a large
number of predictability studies (e.g., Barkmeijer et al.
1993; Molteni and Palmer 1993; Houtekamer and De-
rome 1995; Lin and Derome 1996).

b. The observational network

Observations are performed by radiosondes and sat-
ellites. Each day the observations are taken at 0000 and
1200 UTC at which times the analysis is performed. We
have one network for 0000 UTC and another for 1200
UTC.

1) RADIOSONDES

To obtain a reduced radiosonde network that is more
or less realistic, we performed the following procedure.

We started with a list of 671 and 568 radiosonde
locations for 0000 and 1200 UTC, respectively. These
radiosonde positions have been used by Houtekamer and
Derome (1995) and are presented in their Fig. 2. These
networks are rather dense in comparison with the num-
ber (483) of spectral coefficients at each level of the
T21 model. We decided to randomly select only 9% of
these sites. For convenience of calculation, we shifted
the position of each radiosonde to the nearest point of
a reduced Gaussian grid (the original Gaussian grid be-
ing the 64 3 32 quadratic grid used by the T21 model).
At most, one radiosonde is allowed at each point of the
reduced grid. In this way, we obtained 57 (49) radio-
sondes for the analyses at 0000 (1200) UTC. The po-
sitions are presented in Fig. 1.

Radiosondes observe streamfunction values at the
three model levels (20, 50, and 80 kPa). At the same
levels, the horizontal derivatives of the streamfunction
(u and y) are also observed. This yields a total of nine
reported values per radiosonde and a total of 513 and
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FIG. 1. (a) The observational network at 0000 UTC. Dots indicate the positions of radiosonde observations. The plus signs indicate the
positions of satellite observations. (b) As in (a) but at 1200 UTC.

441 observed values at 0000 and 1200 UTC, respec-
tively.

For the observational errors we have for each com-
ponent of the wind (m2 s22)

7.0 0.0 0.0 
 

TR 5 (e , e , e ) (e , e , e ) 5 0.0 5.4 0.4 . wind 20 50 80 20 50 80  
0.0 0.4 4.1 

(1)

These values have been modeled after the values used
in the operational analysis at the Canadian Meteorolog-
ical Centre.

For the streamfunction errors we start from the co-
variances for the heights (m2) used by the operational
analysis:

260 80 20 
 

TR 5 (e , e , e ) (e , e , e ) 5 80 80 20 . height 20 50 80 20 50 80  
20 20 30 

(2)

We then divide by the value of /g2, with f 0 5 2V2f 0

sin458, in order to obtain covariances for streamfunction
values. (Note V 5 7.292 3 1025 rad s21 and g 5 9.81
m s22.)

2) SATELLITES

The satellites report thicknesses at the points of the
reduced Gaussian grid. Observations are simulated for
the Western Hemisphere at 0000 UTC and for the East-
ern Hemisphere at 1200 UTC, as shown in Figs. 1a,b.
The satellite observations that were coincident with ra-
diosondes (i.e., over land) have been removed. Alto-
gether we simulate 306 satellite soundings at 0000 UTC
and 291 soundings at 1200 UTC. Each sounding consists
of two thicknesses: one for the difference between the
streamfunction at 20 and 50 kPa, and another for the
difference between the values at 50 and 80 kPa.

For the error covariance matrix, Rsat , we were guided

once more by the values used by the operational system.
We specified (m2),

e 2 e20 50R 5 (e 2 e , e 2 e )sat 20 50 50 801 2e 2 e50 80

1300 2202
5 . (3)1 22202 450

Using the same factor /g2 as before, these covari-2f 0

ances are then converted to streamfunction.

c. Initial forecast-error covariances

To start the experiments at the initial time t0, we use
a first guess (background) that is not equal to the true
state. In fact, the difference is obtained as a realization
of a multivariate probability distribution. The same dis-
tribution will be used for the generation of an ensemble
of first-guess fields valid at t0. Our choice for the mul-
tivariate distribution is based on the forecast error sta-
tistics (in particular a vertical covariance matrix and a
horizontal correlation function) used by the operational
system.

For the vertical covariances of the streamfunction er-
rors, we start from the error covariance matrix (m2) for
height,

f TP (t ) 5 (e , e , e ) (e , e , e )height 0 20 50 80 20 50 80

390 80 20 
 

5 80 120 20 , (4) 
 

20 20 50 

and convert to streamfunction as after (2).
For the horizontal correlation function, we specify a

sum of two third-order autoregressive functions, as in
the operational system (Mitchell et al. 1990)

2 21 c r
r(r) 5 1 1 cr 1 exp(2cr)1 2[1 1 a 3

2 2cr c r 2cr
1 a 1 1 1 exp , (5)

21 2 1 2]N 3N N
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where a 5 0.2 and N 5 3. The scale parameter c is set
to 11.5 rad21.

As discussed in section 2d, these values will be used
at some initial time, t0, to generate an isotropic and
homogeneous error (with respect to a ‘‘true’’ state) for
an ensemble of first-guess (background) fields.

The sensitivity of our results to these initial conditions
is of interest. The asymptotic stability of the Kalman
filter is guaranteed only if the dynamics are linear and
the system is observable and controllable (Cohn and
Dee 1988; Daley 1991, 382; Ménard 1994, Chapter 2;
Ghil and Todling 1996). In this study, the dynamics are
nonlinear and we have no model error and therefore
these theoretical results do not apply. The sensitivity of
our results to the initial conditions will be examined
experimentally in section 3.

d. Simulation concepts

The simulation of the true atmospheric state is de-
noted by the symbol C t(t), where the subscript t stands
for ‘‘true.’’ It is obtained from a long model integration
that is interrupted every 12 h. The true atmospheric state
at the initial time t0, C t(t0), is itself the product of a
long integration.

Every 12 h from time t0 onward, we simulate the
(imperfect) observations that are available in a real sit-
uation. These simulated observations, Os(t), where the
subscript s stands for ‘‘simulated,’’ are generated from
the true state using

Os(t) 5 HCt(t) 1 a random vector. (6)

Here H interpolates the true state to the observed quan-
tities. The random vector (actually a specific realization)
is obtained from a multivariate normal distribution hav-
ing the error statistics of the observations.

To start up our experiments, we require a field
(t 0 ), which represents the best available estimatefC c

of the true field C t (t 0 ). In a real situation the latter
is, of course, unknown. The field (t 0 ) is generatedfC c

by adding a random perturbation field to the true state
C t (t 0 ):

(t0) 5 C t(t0) 1 a random field,fCc (7)

where the superscript f indicates that this field is to be
used as a forecast (first-guess) field. The random field
(again actually a specific realization) is generated as
discussed in the appendix using the 3D covariance struc-
ture given in section 2c. The field (t0) will serve asfCc

a central field for the initial ensemble of first-guess
fields, hence the subscript c.

e. Generation and use of the ensembles

We are now in a position to generate the initial en-
semble members. As discussed at the end of this section,
it will prove useful to have a pair of N-member ensem-

bles. To obtain the pair of N-member ensembles of first-
guess fields at time t0, we use the following equation:

(t0) 5 (t0) 1 random field i1(j21)N,f fC Ci,j c (8)

where the random fields are generated using the same
method and prescribed covariance structure as for (7).
Here the index i is over the N ensemble members and
j 5 1 or 2, so we require a total of 2N different reali-
zations of the random field.

Every 12 h from time t0 onward, we generate per-
turbed sets of observations to be assimilated into the
different ensemble first-guess fields. These are gener-
ated using

Oi,j(t) 5 Os(t) 1 random vector i1(j21)N, (9)

where, as for (6), the random vector realizations are
obtained from a multivariate normal distribution hav-
ing the error statistics of the observations. Note that
in a real situation, the exact observational error sta-
tistics are unknown. Our assumption that these sta-
tistics are known allows us to generate perturbed sets
of observations, O i,j , having the same multivariate
distribution as the simulated observations, O s .

The forecast-error covariance statistics are to be
determined from an ensemble of first-guess fields. To
do this, we require that the spread among the ensemble
members be representative of the difference between
the ensemble mean and the true state. Such represen-
tative ensembles can, at least in theory, be used to
determine forecast-error statistics for the purposes of
data assimilation. However, special care must be taken
to maintain the representativeness of the ensembles
as the assimilation cycles proceed.

To show one potential problem, suppose we have
an N-member ensemble of first-guess fields. Com-
puting covariances from the ensemble, one might de-
termine weights for data assimilation. Now one would
like to estimate the analysis error distribution that
results from using these weights. To test the quality
of the weights, we need an independent ensemble of
first-guess fields and an independent ensemble of per-
turbed observations with statistics representative of
the actual first-guess and observation errors. If we
assimilate these observations into this ensemble of
first-guess fields, we obtain an ensemble of analyses.
The differences between these analyses will be rep-
resentative of the analysis error distribution. Thus, we
need two ensembles of first-guess fields, one to com-
pute the weights and another to obtain a representative
ensemble of analysis errors. If the same ensemble was
to be used for both purposes, then the estimation of
the gain (i.e., weights) and the test of its quality would
be based on exactly the same information. Such a
dependent test would likely give an underestimate of
the uncertainty in the analysis; that is, the spread in
the ensemble of analyses would be too small and, in
particular, it would be smaller than the difference be-
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FIG. 2. A setup with a pair of ensemble Kalman filters. Data are
assimilated into each ensemble using the covariances computed from
the other ensemble.

tween the ensemble mean and the truth. This will be
demonstrated experimentally in section 3.

If the weights could be obtained from an ensemble
of infinite size, they would of course be optimal. In that
case, an independent ensemble would not be needed to
confirm this and a single infinite ensemble could ‘‘sim-
ply’’ be used. This corresponds to the situation with the
conventional Kalman filter where the gain matrix is not
at all degraded by sampling error.

Our actual configuration is displayed in Fig. 2. Here
we have a pair of N-member ensembles. The covariances
computed from each ensemble are used to assimilate
data into the other ensemble. In this way, each of the
two ensemble Kalman filters uses different ensembles
of first-guess fields for the estimation of the weights and
the estimation of the analysis error.

f. Data assimilation algorithm

For assimilating data we use an algorithm that is very
similar to the one used by Evensen (1994). We just list
the main equations and draw attention to characteristic
properties of the algorithm. The basic equation for the
analysis at time t is

), i 5 1, . . . , N,a f fC 5 C 1 K (O 2 HCi,j i,j j9 i,j i,j

(10)

where the superscript a indicates analyses and all quan-
tities apply at time t. Here, j9 represents the ensemble
that is complementary to ensemble j, that is, j9 5 2 for

j 5 1 and j9 5 1 for j 5 2. The statistics for the as-
similation of ensemble j are thus computed from the
complementary ensemble j9. The Kalman gain Kj cal-
culated from ensemble j at time t is given by

Kj 5 HT[ HT 1 R]21,f fP HPj j (11)

where R is the observation error covariance matrix,
is the 12-h forecast-error covariance matrix of en-fPj

semble j, and again all quantities apply at time t.
First of all, we note that the Kalman gain Kj at time

t is the same for all N members of ensemble j9. As
pointed out by Evensen (1994) and Houtekamer et al.
(1996a), this permits an important computational econ-
omy to be realized as compared to the cost of doing N
independent analyses. Furthermore, for each point of
the horizontal (Gaussian) analysis grid, the analysis is
performed independently for each vertical column of
three analysis points. This allows for an analysis al-
gorithm that is completely parallel. Exploiting these two
points, the analysis part of the experimental Canadian
ensemble forecast system (Houtekamer and Lefaivre
1997) is now running conveniently on a powerful work-
station.

Unlike what should theoretically be done for a Kal-
man filter but similar to what is done in traditional sta-
tistical interpolation, we perform a data selection. For
each vertical column of analysis points, all the data
within a given horizontal distance, rmax, and only that
data, is used. We shall see that this is, in fact, a con-
venient way to eliminate observations that are only
weakly correlated with the analysis point. A standard
result from statistical theory states that if two normal
distributions have correlation r, an estimate of r basedr̂
on N pairs has variance

1 1
2 2 2 2 2(r 2 r̂) 5 (1 2 r ) ø (1 2 r̂ ) (12)

N N

(Gandin 1965, 34–35; Stuart and Ord 1987, 330). It
follows that the accurate estimation of these weak cor-
relations would, in any case, require thousands of en-
semble members. Furthermore, the use of a cutoff ra-
dius, rmax, greatly reduces the order of the matrices that
we have to deal with, rendering the matrix inversion in
(11) feasible. In fact, rather than computing an explicit
inverse, (11) is solved using a Cholesky decomposition
where only a single decomposition needs to be done for
each column of analysis points.

As in Evensen (1994), we do not need to compute or
store the full matrix . In fact, for the term HT off fP Pj j

(11), the relevant matrix elements are computed using
N1f f f f fT TP H 5 (C 2 C )[H(C 2 C )] ,Oj i, j j i, j jN 2 1 i51

(13)

where
N1f fC 5 C . (14)Oj i, jN i51
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TABLE 1. The rms analysis error (106 m2 s21) after the first analysis
for several configurations described in the text. For each configura-
tion, the spread in each of the two ensembles of the pair is shown.
All experiments were performed with rmax 5 208.

Configuration N Ensemble 1 Ensemble 2

EnsKF
EnsKF
EnsKF
EnsKF
OI

16
32
64

128
128

0.846
0.751
0.727
0.705
0.692

0.793
0.761
0.728
0.712
0.694

For the term HT of (11), the required elements offHPj

the global matrix HT were computed asfHPj

N1f f f f fT THP H 5 H(C 2 C )[H(C 2 C )] .Oj i, j j i, j jN 2 1 i51

(15)

Although ostensibly of order the total number of ob-
servations, the global matrix HT is actually sparse,fHPj

due to the use of a cutoff radius. Since each computed
element of this matrix is likely required for the analysis
at many grid columns, this sparse matrix was precom-
puted and stored. For the analysis at a particular grid
column, we retrieve the block of relevant elements of
the global matrix HT. This block matrix has no neg-fHPj

ative eigenvalues because it could have been calculated
directly from the ensemble of first-guess fields using an
operator H that interpolates only to the selected local
observations. Its rank will be less than or equal to the
minimum of N and the number of such observations.
So, as soon as the number N exceeds the number of
selected local observations, HT (and HT) have fullf fHP Pj j

rank. In this way we avoid, or in the case of our smallest
ensembles alleviate, a potential rank problem with the
ensemble Kalman filter. Evensen and van Leeuwen
(1996) have presented a different approach for dealing
with the rank problem that occurs in the global solution
of (11) if there are considerably fewer ensemble mem-
bers than observations.

Equation (13) evaluates the covariances between fore-
cast values at analysis points and at observation points,
while (15) evaluates the covariances between forecast
values at observation points. To evaluate these, we re-
quire only the forward interpolation operator H for each
type of observation being used. For the u and y wind
components, we define H as the horizontal derivative of
streamfunction evaluated in spectral space, while for the
satellite thicknesses H involves taking the appropriate
vertical differences.

Note that the data assimilation algorithm does not use
any correlation model. Nor does it require the use of
adjoint operators. In fact, one just needs to specify where
the analysis grid points are and how to interpolate a
model state to the observed quantities. This makes the
analysis code almost completely independent of the
forecast model.

Finally, we note that the covariances of the analysis
error can be computed from the ensemble of analyzed
states (Evensen 1994). Our current algorithm does not
make use of these covariances. The integration of the
2N-analyzed states with the nonlinear forecast model
closes the assimilation loop.

3. Results

To evaluate the performance of the ensemble Kalman
filters, we performed data assimilation cycles extending
over a 30-day period. The initial time for these cycles

(t0) is denoted 0000 UTC of day 1 and the final time
is 0000 UTC of day 31.

We first examine the root-mean-square (rms) analysis
error for streamfunction after the first analysis (i.e., at
0000 UTC of day 1) for several different configurations.
This is presented in Table 1. Each of the configurations
denoted EnsKF corresponds to a pair of ensemble Kal-
man filters, each having N members, configured as in
Fig. 2. It can be seen that the rms analysis error de-
creases as N increases, as expected. In addition as N
increases, resulting in reduced sampling error, the dif-
ference between the rms analysis error in the two en-
sembles of each pair also decreases. The configuration
denoted OI (optimum interpolation) corresponds to a
pair of ensembles where each ensemble member is ob-
tained using statistical (i.e., optimum) interpolation.
Each of these OI analyses was performed using the same
forecast-error statistics that were used to specify the
random perturbation fields in (7) and (8), as discussed
in section 2c and the appendix. It follows that these OI
analyses are, in fact, using the optimum statistics and
should yield optimum analyses, that is, with minimum
possible error. The results in the table indicate that this
is indeed the case, with the rms error for this configu-
ration yielding an asymptotic value for the ensemble
Kalman filter analyses.

Results for six 30-day experiments are presented in
Fig. 3. Two measures of error are shown in each panel:
the rms difference between the ensemble mean and the
true state and the rms spread in the ensemble. Of the
two measures, the ensemble spread is seen to behave in
a more stable fashion than the more erratic error in the
ensemble mean. This is due to the fact that the error in
the ensemble mean is much more susceptible to the
sampling error associated with the single realization of
(6), the generation of the simulated observations, than
is the ensemble spread, which is the product of an en-
semble of realizations of (9).

The left-hand panels of Fig. 3 show the performance
of the filter when only a single ensemble (with 16, 32,
and 128 members) is used. Each corresponding right-
hand panel shows the performance obtained with a pair
of ensemble Kalman filters, configured as in Fig. 2 and
with the same total number of ensemble members. The
results exhibited in each of these right-hand panels are
calculated from the first ensemble of the pair only. (Cor-
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FIG. 3. Forecast and analysis error every 12 h during 30-day assimilation cycles. The solid line
is for the rms spread in the ensemble. The dashed line gives the rms error of the ensemble mean.
The left-hand panels are for the setup that uses a single ensemble. The right-hand panels are for
the first ensemble of a pair configured as in Fig. 2. The upper, middle, and lower panels are for
configurations having a total of 16, 32, and 128 members, respectively. In all cases rmax 5 208.
Note the difference in scale for the rms error between the upper panels and the other panels.

responding results calculated from the second ensemble
of two of the pairs will be exhibited in Fig. 4 to permit
an impression of the degree of similarity between the
two ensembles.)

In the case of the pair of ensemble Kalman filters,
one could also combine the two ensembles together and
then calculate the ensemble mean error and the ensemble

spread from this larger ensemble. The effect of this,
when averaged over the 30-day assimilation period, was
found to be a reduction in the ensemble mean error (by
approximately 25% for the pair with N 5 8, 17% for
the pair with N 5 16, and 5% for the pair with N 5
64) and an increase in the ensemble spread by similar
percentages in the three cases. It is important to note
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FIG. 4. Forecast and analysis error every 12 h during 30-day assimilation cycles using the setup
with a pair of ensemble Kalman filters. The upper panels are with initial conditions modified as
described in the text, while the lower panels are with the standard initial conditions. All results
are for the second ensemble of the pair. The left-hand panels are for N 5 16, while the right-
hand panels are for N 5 64. The plotting convention and value of rmax are as in Fig. 3.

that such a combined ensemble does not retain its rep-
resentativeness properties. We note that, due to the sam-
pling error associated with (6), caution should be ex-
ercised in judging the relative merits of the ensemble
mean in the right- versus left-hand panels. To obtain
stronger conclusions, we might have used multiple re-
alizations of (6), as in Houtekamer and Derome (1995).

Looking first at the upper left-hand panel of Fig. 3,
it can be seen that while the spread between the ensem-
ble members decreases initially and then remains at a
fairly low level, this in no way reflects the error in the
ensemble mean. The latter increases, slowly at first, and
then dramatically. By way of contrast, the upper right-
hand panel shows the performance when a pair of en-
semble Kalman filters, configured as in Fig. 2 and with
the same total number of ensemble members (i.e., 16),
is used. While the error in the ensemble mean initially
grows more quickly than in the left-hand panel, the
spread in the ensemble now grows as well and reflects,
albeit by underestimation, the error in the ensemble
mean.

The very substantial overall decrease in error that

occurs with both a single or a pair of ensembles upon
doubling the ensemble sizes can be seen by examining
the two middle panels. (Note the difference in scale for
the rms error between the upper and middle panels.)
With regard to the representativeness of the ensemble
in this case, while the ensemble spread consistently un-
derestimates the true error in the left-hand panel, the
ensemble spread much more nearly represents the mean
error when a pair of filters is used (right-hand panel).
An exception to the general decrease in error from the
upper to the middle panels is exhibited in the case of a
single ensemble by the ensemble spread, which can be
seen to increase slightly in conjunction with the dou-
bling in the ensemble size. This undesirable behavior
is consistent with the discussion in section 2e about
underestimation of the spread in the analyses in the case
of a single ensemble. It is clear from that discussion
that increasing the ensemble size alleviates the under-
estimation of the ensemble spread.

The effect of further quadrupling the number of en-
semble members is shown in the bottom two panels. In
the case of a single ensemble Kalman filter (left-hand
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FIG. 5. Performance of the ensemble Kalman filters evaluated at
0000 UTC day 31 as a function of the cutoff radius rmax for different
values of N.

panel), this results in an approximately 20% decrease
in the ensemble mean error in conjunction with a further
small increase in the ensemble spread. The result is a
fairly good agreement between the two error estimates,
with only a lingering tendency for the ensemble spread
to underestimate the error in the ensemble mean. In
contrast, when a pair of filters is used (right-hand panel),
both error estimates decrease substantially and there is
no evidence that the ensemble spread underestimates
the ensemble mean error.

In summary, Fig. 3 demonstrates how the configu-
ration of Fig. 2 permits ensemble representativeness to
be maintained with much smaller ensembles than those
required when using a single ensemble. Therefore, we
adopt the configuration of Fig. 2 for all further exper-
iments.

To examine the sensitivity of our results to the initial
conditions, two of the cycles of Fig. 3 were repeated
with substantially modified ensembles of initial first-
guess fields. To generate these modified ensembles, we
quadrupled all error covariances on the right-hand side
of (4), which results in a doubling of the initial rms
error, and used different realizations of the random fields
in (7) and (8) than had been used before. The results
for the two cycles are presented in the upper panels of
Fig. 4 and can be compared to the two standard cycles
in the lower panels. (Note that we present results for
the second ensemble of each pair. Comparing each of
the lower panels with the appropriate panel of Fig. 3
allows an impression of the similarities and differences
between the two ensembles of a pair.)

An examination of Fig. 4 shows that both for the
configurations with N 5 16 and N 5 64, the rms error
of the cycle with modified initial background fields
drops to the error level of the corresponding standard
cycle within about 10 days. However, the effect of the
modified initial conditions on the behavior in the latter
part of the 30-day period is rather different: the two
ensembles with N 5 16 (left-hand panels) exhibit rather
different behavior right up until day 31, while the two
ensembles with N 5 64 (right-hand panels) behave sim-
ilarly for the last 14 or so days. This difference in be-
havior was confirmed by extending the integrations for
a further 30-day period (not shown). These results in-
dicate that ensemble size plays an important role in
determining the degree of asymptotic stability of the
ensemble Kalman filter.

We wished to examine the effect of rmax, the cutoff
radius used for data selection, on filter performance. To
do this, a series of 30-day data assimilation cycles was
performed for a range of values of rmax for several dif-
ferent values of N. The results are summarized in Fig.
5 in terms of the rms spread in the first ensemble of
analyses of each pair at the end of each assimilation
cycle, that is, at 0000 UTC day 31. (The corresponding
results for the second ensemble of each pair are very
similar and are not shown.)

First of all, Fig. 5 confirms the benefits of larger

ensemble sizes, with the greatest impact of doubling the
ensemble size occurring for N small. In addition, the
figure indicates that (i) for each value of N there is an
optimal value of rmax and (ii) this value increases as N
increases. To investigate this behavior, we examine
global correlations calculated from the ensembles of
background fields valid at 0000 UTC day 31.

To illustrate, we show in Fig. 6a the 50-kPa global
correlation field with respect to a point off the west coast
of North America. These correlations were calculated
from the first ensemble of the pair with N 5 32 and
rmax 5 208. It can be seen that the correlation maximum
tends to be pear shaped with a pronounced extension
toward the northwest. Large negative values are evident
to the east-northeast and southwest. Note also the many
centers with correlations exceeding 60.25 scattered
around the globe, and as far away as the eastern Med-
iterranean and the coast of Antarctica. An indication of
the accuracy of these correlation features can be ob-
tained by comparing this field with the corresponding
field calculated from the second ensemble of the pair,
shown in Fig. 6b. It can be seen that whereas the features
in the eastern part of the North Pacific are confirmed
by the second ensemble, this is not the case for the
correlations at larger distances.

The corresponding global correlation fields, calcu-
lated from the pair of ensembles with N 5 128 and rmax

5 358, are shown in Figs. 6c and 6d. These two fields
confirm many of the main features noted in Figs. 6a and
6b. In addition, it can be seen that there is now much
better agreement between the two correlation fields of
the pair and a marked reduction in the correlations at
large distances.

Comparisons such as these permit the behavior noted
in Fig. 5 to be explained in terms of (12). If N is small,
the accuracy with which covariance fields can be com-
puted from the ensemble is relatively poor. As N in-
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FIG. 7. The solid curve in each panel shows the mean isotropic correlation computed over the entire sphere
for the ensembles of first-guess fields valid at 0000 UTC day 31. The dotted curve is the square root of the
corresponding mean squared correlations. The dashed–dotted line indicates the noise level for the zero correlation
estimates, i.e., 1/N 0.5. The dashed curve shows the agreement between the two ensembles of the pair, i.e., the
square root of the mean product of corresponding correlations computed from each ensemble. In (a) N 5 32 and
rmax 5 208. In (b) N 5 128 and rmax 5 208.

creases, not only does accuracy improve in general, but
the distance over which it becomes possible to accu-
rately compute covariances also increases. Now it is
advantageous to utilize all the data for which accurate
forecast-error covariances can be computed but detri-
mental to use data for which forecast-error covariances
are inaccurate. Since the distance between two points
gives a rough measure of the accuracy with which the
covariance between them can be computed, there is a
value of rmax that is approximately optimal for a given
value of N.

To quantify the above observations somewhat more,
we have taken a very large number of randomly chosen
pairs of points, (l, k), on the sphere and, using both
ensembles of a pair together, computed correlations, rl,k.
Sorting these by great-circle distance and averaging
these in distance bins yields mean isotropic correlations,
r(r). The solid curve in Fig. 7a shows how these mean
correlations fall off with distance for the case N 5 32
and rmax 5 208. It can be seen that the mean correlations
become zero, or even slightly negative, beyond a dis-
tance of about 208. This suggests that traditional statis-
tical interpolation schemes, applied here, could not
make any use of observations beyond this distance.
However, it may be that for certain points significant,
possibly nonisotropic, correlations extend to much far-
ther distances. The pair of ensemble Kalman filters
could then exploit observations at distances beyond 208.
To quantify this, we took the same pairs of points as
above but we now squared each of the correlations to
obtain . Sorting these squared correlations by great-2rl,k

circle distance and averaging in distance bins as before,
we then took the square root for each bin to obtain

. This is plotted as the dotted line. We see that2r (r)Ï
values exceeding 0.2 are found even out to distances of

508. Unfortunately, as we shall now argue, these cor-
relations are not very significant in the present case.

Setting N 5 32 and r 5 0 in (12), we obtain an rms
error for the estimated correlation of 1/ N ø 0.18, asÏ
indicated by the dashed–dotted line. The dotted curve
asymptotes to this noise level rather than to zero. Fi-
nally, the dashed line in Fig. 7a shows the agreement
between the two ensembles of the pair. It was obtained
by calculating the product of corresponding correlations
computed from each ensemble, computing mean values
for each distance bin, and then taking the square root.
Now at large distances, we expect the two estimates to
be independent values near zero; therefore, the agree-
ment should asymptote to zero at large distance, as is
observed. Where the agreement between the two sets
becomes smaller than the noise level, we do not expect
our correlations to be of much use for the purposes of
data assimilation. In this way we would roughly estimate
an optimal value of rmax 5 208 for N 5 32 from Fig.
7a. In Fig. 7b we show the corresponding curves for
the case with N 5 128 and rmax 5 208. Due to the
fourfold increase in the size of the ensembles, the noise
level is reduced by a factor of 2 and the estimates of
the correlations are now relatively significant for dis-
tances of up to rmax 5 408. These estimates are in agree-
ment with the results shown in Fig. 5. As the ensemble
size becomes bigger, the ensemble Kalman filters can
benefit from a larger cutoff radius rmax.

An overall impression of the nonhomogeneous nature
of the statistics produced by the ensemble Kalman filters
can be obtained from Fig. 8. This figure shows the global
rms forecast-error field from the first ensemble of the
pair with N 5 128 and rmax 5 358. (Corresponding val-
ues from the second ensemble of the pair were generally
within 10% of these values and are not shown.) It can
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FIG. 8. The 50-kPa rms forecast-error field (106 m2 s21) at 0000 UTC day 31 computed from
one ensemble of the pair with N 5 128, rmax 5 358. The contours are at 0.3, 0.6, 0.9, and 1.2.
The intensity of the shading increases as the magnitude of the error increases.

be seen that the forecast-error magnitude exhibits con-
siderable inhomogeneity. This inhomogeneity is con-
sistent with the observation network of Fig. 1, with
relatively large errors occurring over most of the
Southern Hemisphere oceans and over the North Pacific
and Atlantic Oceans. However, it is clear that the ob-
servation network is not the only determining factor and
that the dynamics is playing an important role as well.
For example, the maxima in the Northern Hemisphere
occur in the eastern North Pacific and Atlantic Oceans,
evidence of advection by the prevailing westerlies [as
in Fig. 5 of Daley (1992b), which shows the error due
to a data void in the case of a constant advecting ve-
locity].

To convey an impression of the nonhomogeneous na-
ture of the horizontal correlations, we present in Fig. 9
two further examples of 50-kPa global correlations com-
puted from ensemble 1 of the pair with N 5 128 and
rmax 5 358. The correlations in Fig. 9a are computed
with respect to a point off the east coast of North Amer-
ica and those in Fig. 9b are with respect to a point in
the vicinity of Lake Superior. Both points are at the
same latitude as the base point for Fig. 6. The corre-
lations in Fig. 9a exhibit a highly anisotropic structure,
like those in Fig. 6, while the correlation structure in
Fig. 9b is much more isotropic. It seems unlikely that
a simple correlation model based on a small number of
free parameters could faithfully represent these highly
anisotropic correlation structures.

The vertical structures of the correlations computed
from the ensembles are also of interest. The synoptic
situation, and vertical structure, at the three points
whose horizontal correlations we have examined differ
at 0000 UTC on day 31. The two points off the coast
of North America are located in baroclinic zones in
regions where the profiles slope westward with height,
while the structure near Lake Superior is much more
vertical. Figure 10 shows the correlations at each of the

three points in a vertical plane oriented in the zonal
direction. In each case the correlations are computed
with respect to the central grid point, for which the
correlation is therefore 100%. Indeed it can be seen from
the figure that the correlations with respect to the points
off the east and west coasts of North America (Fig. 10a
and 10c, respectively) exhibit a clear westward tilt with
height, while the correlation with respect to the point
near Lake Superior (Fig. 10b) is almost vertical.

4. Summary and concluding discussion

One of the most serious approximations in current
NWP practice is that the statistics used for assimilating
data are largely homogeneous, isotropic, and indepen-
dent of the flow. This shortcoming, essentially what
distinguishes 3D from 4D data assimilation, has led to
an intense effort to develop 4D data assimilation tech-
niques over the past decade. Attention has focused on
two techniques: the Kalman filter (e.g., Cohn and Parrish
1991) and the 4D variational algorithm (e.g., Courtier
et al. 1994). Due largely to the enormous computational
burden associated with the Kalman filter, the cheaper
4D variational approach has benefited from more fo-
cused development and now seems closer to practical
reality.

Recently, Evensen (1994) has suggested that using
the statistics provided by an ensemble of perturbed
short-range forecasts may lead to an alternative 4D data
assimilation system. The cycling of covariance infor-
mation from one assimilation cycle to the next, a big
advantage of a Kalman filter over the 4D variational
approach, is performed using an ensemble of, say, 6-h
integrations with the nonlinear forecast model. The pur-
pose of the present study has been to examine this tech-
nique, termed an ensemble Kalman filter, in an idealized
environment.

Using a three-level, quasigeostrophic, T21 model and
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FIG. 9. As in Fig. 6c except (a) shows the global correlation field for ensemble 1 with respect
to a point off the east coast of North America. (b) As in (a) except with respect to a point in the
vicinity of Lake Superior.

simulated observations, experiments have been per-
formed based on a perfect-model assumption. It was
found that the naive approach of using the forecast-error
covariances computed from an ensemble of short-range
forecasts to calculate weights for the assimilation of data
using this same ensemble as background fields, gave
rise to an inbreeding problem. In order to avoid this
problem and maintain a representative spread between
the ensemble members, we have employed a technique
that uses a pair of ensemble Kalman filters, configured
as shown in Fig. 2. Even with this technique, our small-
est ensembles exhibit some underestimation of the error
(Fig. 3). To address this further, we might use three (or
more) coupled ensembles. However, for a fixed total
number of ensemble members, the resulting smaller en-
sembles would likely incur larger ensemble mean errors.
Alternatively, for each ensemble member, one might use
a gain matrix computed using all of the other ensemble
members. This would mean accepting the cost of com-
puting many gain matrices.

In a series of 30-day data assimilation experiments
with ensembles of different sizes, it was found that, the
rms analysis error decreased as the size of the ensembles
increased, as expected, and ensembles having of the
order of 100 members are sufficient to accurately de-
scribe local anisotropic, baroclinic correlation struc-
tures. The estimation of small correlations, associated
with remote observations, is much more difficult and
may require very large ensembles, as expected from
(12), a standard result from statistical theory.

To deal with these small correlations at large dis-
tances, a cutoff radius beyond which observations were
not used was implemented. It was found that the optimal
value of the cutoff radius increased as the number of
available ensemble members increased. Arguing heu-
ristically, the ensemble Kalman filter is computationally
more efficient than the usual Kalman filter at the expense
of not precisely estimating correlations and, from (12),
especially the small correlations at large distances.
Therefore, as the number of ensemble members increas-
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FIG. 10. The vertical correlations with respect to three points lo-
cated at 50 kPa on the same latitude circle. In all cases, the vertical
plane is oriented in the zonal direction and the correlations are com-
puted from the first ensemble of the pair with N 5 128 and rmax 5
358. In each case, the longitudinal gridpoint index is indicated along
the abscissa. The contour and shading convention is the same as in
Figs. 6 and 9. The central points for the three panels are located (a)
off the east coast, (b) near Lake Superior, and (c) off the west coast.

es, correlations at larger and larger distances can be
accurately estimated and so it becomes advantageous to
increase the cutoff radius. Thus, given a certain ensem-
ble size, an appropriate cutoff radius can be specified.
One should keep in mind that as observations become
very remote from the point being analyzed, their po-
tential positive impact can be expected to be rather
small.

A complementary argument in favor of a cutoff radius
follows from the fact that, given an N-member ensem-
ble, one can deduce a nonzero forecast error in only N

2 1 directions. It follows that the observations can only
produce a correction in these N 2 1 directions. If the
number of observations is much larger than N 2 1, this
results in a big loss of information; the background can
only be corrected in a limited number of directions and
consequently the analyses can be expected to diverge
from the real state (filter divergence). This rank problem
is greatly reduced if a cutoff radius is used to arrive at
a large number of small problems, each of which in-
dividually has no rank problem.

As is usually done in the 3D and 4D variational ap-
proaches, forward interpolation operators from the mod-
el variable to the observations were employed in this
study to enable the ensemble Kalman filter to make use
of nonconventional observations. This implies that some
of the work currently being done toward the assimilation
of nonconventional data using variational analysis meth-
ods could be used for an ensemble Kalman filter. It
should be noted that the ensemble Kalman filter does
not require the development of the tangent linear model
or its adjoint, since it uses the complete nonlinear model
to transport the covariances.

The perfect-model assumption must be dropped if this
technique is to be successful in an operational setting.
We note that the ensemble Kalman filter can easily ac-
count for the portion of the model error of known origin,
as shown in Houtekamer et al. (1996a) and Houtekamer
and Lefaivre (1997) where different versions of the fore-
cast model (for instance, using different convection
schemes) were used for different members of the en-
semble. It is likely that the remaining portion of the
model error will have to be parameterized. The values
of the parameters might be estimated from the actual
innovations (i.e., differences between the observations
and the first-guess values) using the maximum-likeli-
hood method (Dee 1995; Maybeck 1982) or some re-
lated adaptive technique (e.g., Blanchet et al. 1997). We
intend to examine this problem in a subsequent study.
Until model error is properly accounted for, the use-
fulness of the ensemble Kalman filter for atmospheric
data assimilation cannot really be evaluated. One might
also want to estimate the error statistics of the obser-
vations from the innovations. However, it may be dif-
ficult to estimate the covariances of model and obser-
vational error simultaneously (e.g., Daley 1992a; May-
beck 1982).

Several operational centers are already doing medi-
um-range ensemble forecasting. Implementation of an
ensemble Kalman filter would, of course, provide an
ensemble of initial conditions for these forecasts. With
regard to the computational feasibility of the ensemble
Kalman filter, we note that, for example, nine 10-day
ensemble forecasts are being run with a T63 model ev-
ery day (Houtekamer and Lefaivre 1997) at the Cana-
dian Meteorological Centre (CMC). This corresponds
to 90 days of integration. For an equivalent cost, we
could run 90 independent analysis cycles. Thus if, as
indicated by a naive examination of (12), the accuracy
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with which correlations can be computed depends only
on the ensemble size, then an ensemble Kalman filter
is likely already feasible on the current CMC computers.
As pointed out by Evensen (1994), the ensemble Kal-
man filter approach is embarrassingly parallel.

Our current methodology would become prohibitive-
ly expensive if the data were very dense with many
analysis points having hundreds of observations lying
within the specified cutoff radius. To deal with this, it
may be necessary to resort to traditional approaches like
superobservation formation (e.g., Lorenc 1981) or a
more restrictive data-selection algorithm, although the
latter can be an important source of noise and imbalance
(da Silva et al. 1995). Alternatively, one could solve
each local analysis problem using a variational ap-
proach. This would involve solving a number of vari-
ational problems for each grid point or volume (as many
as there are ensemble members). It has been suggested
that it may be possible to improve the preconditioning
as we go to successive ensemble members (P. Courtier
1996, personal communication).

The ensemble Kalman filter approach could also be
used for data assimilation at high resolution with a re-
gional or mesoscale model. For observations taken at
high density, the proper specification of observation-
error statistics will likely continue to be a difficult prob-
lem. In the case of high-density independent observa-
tions and as atmospheric behavior becomes high di-
mensional (i.e., increasingly unconstrained by simple
balance conditions and exhibiting more complicated
structure in phase space), larger ensembles may be re-
quired in order to produce proper high-dimensional fore-
cast-error covariances.
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APPENDIX

Generation of 3D Fields Having a Prescribed
Covariance Structure

We give an approximate method for generating re-
alizations of random fields having, on average, a pre-
scribed covariance structure and zero mean. The ap-
proximation consists of prescribing the correlation
structure only if the horizontal correlation exceeds a
certain minimum value, rmin (usually taken to be 0.1, to
limit the cost of the algorithm). Since Houtekamer et
al. (1996a,b) have discussed the generation of 2D fields

using the same principles (Epstein 1969; Kendall and
Stuart 1979), only a brief description is given here.

First we prescribe a separable 3D covariance structure
by specifying (i) a horizontal correlation function, and
(ii) a 3 3 3 vertical covariance matrix. We now generate
three independent 2D random fields, each of which will
be projected onto an eigenvector of the vertical co-
variance matrix. Each of these fields is defined on the
64 3 32 Gaussian grid and is generated as follows.

The points of the horizontal grid are assigned numbers
1, 2, 3, . . . , NG. Since we have no prior information
for the first grid point, we assign it a random number
drawn from a standard normal distribution. For subse-
quent grid points i, we do the following in the order i
5 2, . . . , NG.

1) Determine the previously processed points at which,
according to the specified horizontal correlation
function, the correlation with point i exceeds rmin.

2) Using Eqs. (27.17) and (27.61) of Kendall and Stuart
(1979), determine the mean and standard deviation
of the conditional distribution at point i given the
values at the points identified in step 1.

3) Draw a random number from a normal distribution
having this mean and standard deviation. This num-
ber is the value at point i which we seek.

Projecting these three random fields onto the eigen-
vectors of the vertical covariance matrix yields a single
3D field. Repeating the above procedure using different
random numbers yields an ensemble of 3D fields, which
has the desired statistical properties.
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