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ABSTRACT

A rational approach is used to identify efficient schemes for data assimilation in nonlinear ocean–atmosphere
models. The conditional mean, a minimum of several cost functionals, is chosen for an optimal estimate. After
stating the present goals and describing some of the existing schemes, the constraints and issues particular to
ocean–atmosphere data assimilation are emphasized. An approximation to the optimal criterion satisfying the
goals and addressing the issues is obtained using heuristic characteristics of geophysical measurements and
models. This leads to the notion of an evolving error subspace, of variable size, that spans and tracks the scales
and processes where the dominant errors occur. The concept of error subspace statistical estimation (ESSE) is
defined. In the present minimum error variance approach, the suboptimal criterion is based on a continued and
energetically optimal reduction of the dimension of error covariance matrices. The evolving error subspace is
characterized by error singular vectors and values, or in other words, the error principal components and
coefficients.

Schemes for filtering and smoothing via ESSE are derived. The data–forecast melding minimizes variance in
the error subspace. Nonlinear Monte Carlo forecasts integrate the error subspace in time. The smoothing is
based on a statistical approximation approach. Comparisons with existing filtering and smoothing procedures
are made. The theoretical and practical advantages of ESSE are discussed. The concepts introduced by the
subspace approach are as useful as the practical benefits. The formalism forms a theoretical basis for the
intercomparison of reduced dimension assimilation methods and for the validation of specific assumptions for
tailored applications. The subspace approach is useful for a wide range of purposes, including nonlinear field
and error forecasting, predictability and stability studies, objective analyses, data-driven simulations, model
improvements, adaptive sampling, and parameter estimation.

1. Introduction

Data assimilation (DA) refers to the estimation of
oceanic–atmospheric fields by melding sensor data with
a model of the dynamics under study. Most DA schemes
are rooted in statistical estimation theory: the state of a
system is estimated by combining all knowledge of the
system, like measurements and theoretical laws or em-
pirical principles, in accord with their respective statis-
tical uncertainty. The present challenge is that the state
of the atmosphere and ocean system is complex, evolv-
ing on multiple time and space scales (Charnock 1981;
Charney and Flierl 1981). Direct observations can be
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difficult and costly to acquire on a sustained basis, es-
pecially in oceanography. The large breadth of scales
and variables also leads to costly and challenging nu-
merical simulations. Future advances in coupled ocean–
atmosphere estimation will thus require efficient assim-
ilation schemes. In Part I of this two-part paper, the
main goal is to develop the basis of a comprehensive,
portable, and versatile four-dimensional DA scheme for
the estimation and simulation of realistic geophysical
fields. The adjective realistic emphasizes that the
scheme should capture the time and space scales of the
real processes of interest. It implies the use of real ocean
data, as well as appropriate theoretical models and nu-
merical resources. The primary focus is on the physics;
acoustical, biological, and chemical phenomena will be
investigated later. The implementation presented is com-
patible with the Harvard Ocean Prediction System
(HOPS; e.g., Lozano et al. 1996; Robinson 1996b) and
the future of this work involves ocean–atmospheric
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data-driven estimations. In Part II (Lermusiaux 1999a)
of this paper, identical twin experiments based on Mid-
dle Atlantic Bight shelfbreak front simulations are em-
ployed to assess and exemplify the capabilities of the
present DA scheme.

A description of the goals and uses of DA, with a
review of most methods, is given in Robinson et al.
(1998a, and references therein). The issue is that, with
most existing approaches, the combination of our prac-
tical, accuracy, and realism goals is difficult to satisfy
(sections 3, 4). In fact, several directions have been
taken so as to determine feasible schemes for realistic
studies. Examples of such attempts include simpler
physics models to integrate errors (e.g., Dee et al. 1985;
Dee 1990; Daley 1992b), variance-only error models
(e.g., Daley 1991, 1992b), steady-state error models
(e.g., Fukumori et al. 1993), and reduced dimension or
coarse-grid Kalman filters (KF; e.g., Fukumori and Ma-
lanotte-Rizzoli 1995). Other reductions deal with the
explicit computation of non-null elements of linearized
transfer matrices (e.g., Parrish and Cohn 1985; Jiang
and Ghil 1993), banded approximations (e.g., Parrish
and Cohn 1985), extended filters (e.g., Evensen 1993),
ensemble and Monte Carlo methods (e.g., Evensen
1994a,b; Miller et al. 1994), and possibly using the op-
timal and breed perturbations for assimilation (Ehren-
dorfer and Errico 1995; Toth and Kalnay 1993). It is
important to realize that several of these attempts are
based on incompatible hypotheses. Briefly, the coarse-
grid KFs imply global-scale forecast errors while the
variance-only and banded approximations assume local
errors. Pure Monte Carlo methods acknowledge the im-
portance of nonlinear terms, extended schemes neglect
their effects locally in time, and linearized methods ne-
glect them at all times. The forward integration of error
fields using simpler physics models assumes that the
dominant predictability error is never correlated to the
complex physics. Steady-state error models are some-
what limited to fixed data arrays and statistically steady
dynamics. For each attempt, the list of arguments for
and against is long. Even if most a priori reduced meth-
ods have been successful data interpolators, they have
logically led to controversies.

If one accepts that, in general, relatively little is
known about dynamical and observational error fields,
it is rational to limit the a priori assumptions. For the
present comprehensive aims, the conditional mean, a
minimum of several cost functionals or estimation cri-
teria, is chosen for the optimal estimate. An approxi-
mation to the estimation criterion is obtained using heu-
ristic characteristics of geophysical measurements and
models. The resulting suboptimal approach is based on
an objective, evolving truncation of the number and
dimension of the parameters that characterize the con-
ditional probability or error space. The ideal error (prob-
ability) subspace spans and tracks the scales and pro-
cesses where the dominant errors (low probabilities) oc-
cur. The notion of dominant is naturally defined by the

error measure used in the chosen optimal criterion: to
each estimation criterion corresponds an error subspace
definition. For the present minimum error variance ap-
proach, the logical definition yields an evolving sub-
space, of variable size, characterized by error singular
vectors and values, or, similarly, the error empirical or-
thogonal functions (EOFs) and coefficients. Data assim-
ilation via error subspace statistical estimation (ESSE)
combines data and dynamics in accord with their re-
spective dominant uncertainties. Once successfully ap-
plied, ESSE can rationally validate specific a priori error
truncations for future tailored applications. Organizing
the error space as a function of relative importance in
fact defines a theoretical basis for quantitative inter-
comparison of today’s numerous reduced dimension
methods. A first issue of course is the meaning and
validity of the truncation of geophysical error spaces
(section 5 and Part II). Another is that it is easy to define
the concept of an evolving subspace, but it is harder to
determine mathematical systems that describe and track
its evolution. Most of the schemes for filtering and
smoothing via ESSE (derived next) have variations. Fo-
cusing on the dominant errors fosters dynamical model
testing and corrections. The error subspace also helps
to identify areas and variables for which observations
are most needed. ESSE provides a feasible quantitative
approach to both dynamical model improvements and
adequate sampling. Historically, these have been chal-
lenging issues. The accurate specification and tracking
of the dominant errors hence appears of paramount im-
portance from a fundamental point of view.

The text is organized as follows. Selected definitions
and generalities are stated in section 2. Section 3 deals
with the focus and specific objectives of the paper. Sec-
tion 4 develops the main issues in realistic and com-
prehensive data assimilation today: the efficient reduc-
tion of error models and the powerful use of all infor-
mation present in the few observations available. Sec-
tion 5 addresses the meaning of the variations of
variability and error subspaces. The correlations in geo-
physical systems are emphasized and the ESSE criteria
introduced. Sections 6 and 7 derive schemes for filtering
and smoothing via ESSE, respectively. These filtering
and smoothing algorithms with nonlinear systems are
succinctly compared with existing ‘‘suboptimal’’ pro-
cedures. Section 8 consists of the summary and con-
clusions. Appendix A describes most of the notation
and assumptions. Appendix B addresses important spe-
cifics and variations of the ESSE schemes presented.

2. Definitions and generalities

The dynamics and sensor data are described by math-
ematical models. The dynamical model is an approxi-
mation of the basic laws to the phenomena and scales
of interest. It defines the time–space evolution of the
state variables and, in continuous form (appendix A),
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dc 5 f(c, t) dt. (1a)

Dynamical variability (true or model) refers to the sta-
tistics of the difference between the dynamical system
evolution (true or model) and a reference mean state.
The model (1a) usually considers both the variability
and mean state. The measurement model1 is a directed
relation linking the state variables to the observations
(appendix A):

dk 5 Ckck. (1b)

The relation (1b) may comprise changes of variables
(e.g., diagnostic relations or correlations), forward in-
terpolations, or time–space filters. The data vectors dk

can be sensor, feature modeled, or structured data (Loz-
ano et al. 1996). For simplicity, (1b) is assumed locally
linear; integrating the nonlinear dynamics (1a) is often
more critical. In ocean and atmosphere estimations, the
determination of efficient measurement models is im-
portant. Depending on the sensor and state variables,
they can be simple and straightforward, as a link be-
tween the heat equation and temperature data, or com-
plex and indefinite, as a link between coupled physical–
biological equations and remotely sensed data (e.g.,
ocean color, surface height, or temperature). By nature,
(1b) is a well-posed mapping, from a large state space
to a usually much smaller data space; but its inverse is
not mathematically defined by (1b). For the inverse to
be well posed, an additional data–dynamics melding
criterion is required. The dynamical constraints enhance
the observations and vice versa; this dual feedback is
essential.

Since the dynamical (1a) and measurement models
(1b) are approximations, statistical estimation theory
formulates stochastic hypotheses for their respective im-
perfections or errors. This defines the statistics of the
true models (2a)–(2b),

t tdc 5 f(c , t)dt 1 dw, (2a)
td 5 C c 1 v . (2b)k k k k

The definitions and hypotheses employed here allow
parameter estimations and time-correlated model errors
(appendix A). All nonzero mean phenomena are as-
sumed included into (1a)–(1b). Once the truth is sto-
chastically described, the estimation or melding crite-
rion determines the respective influence of the dynamics
and observations on the state estimate. A DA system
consists of three components: a dynamical model, a
measurement model with sensor data, and an estimation
criterion. The data assimilation problem is to determine
the best possible field estimate that is in accord with
the dynamical and measurement models, within their

1 From among the terms used in the literature, ‘‘measurement mod-
el’’ was preferred. Observation model, measurement relation, or func-
tional are also used (Gelb 1974; Catlin 1989; Daley 1991; Bennett
1992).

respective uncertainties. By ‘‘best’’ it is meant ‘‘in clos-
est statistical accord with the truth.’’ The notion of close
accord is defined mathematically by the estimation cri-
terion. Within the criterion, all constraints are weak a
priori, but to ease computations some may be assumed
strong, depending on the relative estimated accuracy of
each constraint. For instance, the nonlinear dynamical
model can be considered either as a strong or weak
constraint (e.g., Reid 1968; Sasaki 1970; Daley 1991;
Bennett 1992; Wunsch 1996). Finally, it must be re-
membered that the central notion of an optimal estimate
is a function of the melding criterion and associated
statistical hypotheses. The ultimate arbiter consists of
using the optimal estimate for ocean prediction.

3. Focus and specific objectives

A comprehensive assimilation system is suited to
most nonlinear oceanic–atmospheric phenomena and
most data types and coverage. Even though weather and
ocean modeling differ (dynamics, data and models avail-
able, constraints), the approach chosen is general. The
main restriction is a focus on the synoptic/mesoscale
circulation and processes. The assimilation period is left
arbitrary; it could be days to years. It is only assumed
that the observations are time–space adequate with re-
gard to the predictability limits of the phenomena of
interest. This notion of adequate is subtle since even for
known predictability limits and validated models (1a)–
(1b), data sufficiency is still a function of the assimi-
lation scheme. The better the scheme, the fewer the
necessary data (e.g., Lorenc et al. 1991; Todling and
Ghil 1994). The application considered in Part II mainly
involves simulated temperature and salinity data for the
control of shelfbreak front phenomena.

As far as specific objectives, the scheme should ad-
dress model nonlinearities, estimate the uncertainty of
the forecast with sufficient information on a posteriori
errors, be suitable for assimilation in real time as well
as for parallel computations, and allow adaptive filtering
and parameter estimation. Most of the existing optimal
schemes (section 4) cannot yet satisfy our practical ob-
jectives. The information, accuracy, and realistic goals
may reduce the success of today’s operational methods
like the optimal interpolation (OI), commonly used in
weather forecasting (Bengtsson et al. 1981; Ghil 1989;
Lorenc et al. 1991) and in real-time, at-sea ocean pre-
diction (Robinson et al. 1996a,b). One would like to
improve the existing nowcast/forecast capabilities and
hopefully increase general understanding; data assimi-
lation should feed back to fundamental science.

4. Constraints and issues

The assimilation problem of section 2 is a nonlinear
statistical estimation problem. Existing nonlinear
schemes have first been analyzed with regard to our
goals. In this text, it is simply our intention to focus on
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the essentials of nonlinear schemes and issues, and pro-
vide references for more complete discussions. Within
estimation theory, Bayesian estimation and maximum
likelihood estimation are the common approaches (e.g.,
Jazwinski 1970; Gelb 1974; Lorenc 1986; Boguslavskij
1988). In control theory, the DA problem is seen as a
deterministic optimization issue, and for quadratic cost
functions it amounts to weighted least squares esti-
mation (Le Dimet and Talagrand 1986; Tarantola 1987;
Sundqvist 1993). Statistical assumptions can be implic-
itly associated with all approaches (Robinson et al.
1998a). The discussion to follow involves Bayesian
ideas.

The Bayesian conditional mean is the optimal esti-
mator with respect to several cost functionals for ar-
bitrary statistics. In this study, it is chosen as the optimal
estimate. For nonlinear systems, it depends on all mo-
ments of the conditional density function, hence, on an
infinite number of parameters. Solving for the condi-
tional probability density governed by the Fokker–
Planck or Kushner’s equation (Jazwinski 1970) is today
an informative guide with simple systems (Miller et al.
1994; Miller et al. 1998). In real ocean–atmosphere non-
linear estimation, the aim is to approximate the quan-
tities of primary interest, the state, and its uncertainty.
Taylor expansions and local linear extensions yield the
common approximate schemes: the linearized, extend-
ed, higher-order and iterated Kalman filters/smoothers
(KF/KS) and associated simplifications (e.g., Boguslav-
skij 1988). They provide an estimate of the uncertainty,
but their truncated expansion may diverge (Evensen
1993, 1994a,b) and require frequent reinitialization.
Most of the control and weighted least squares methods
were derived for linear systems but can be iterated lo-
cally to solve nonlinear generalized inverse problems
(e.g., Bennett et al. 1996; Bennett et al. 1997). The
representer method considers model errors and mini-
mizes the cost function in the data space but can be as
costly as the estimation schemes if a posteriori state
error covariance estimates are required. Direct global
minimizations (e.g., Robinson et al. 1998a) are alter-
natives but a physically realizable solution is not as-
sured. To limit expensive model integrations, a good
first guess is required. In fact, the convergence of the
iterated weighted least squares schemes is not yet proven
(Evensen and van Leeuwen 1996). Smoothing prior to
the minimization appears necessary (section 7).

The main advantages of all the above methods are
the update and dynamical forecast of the error covari-
ance. Even with linear models, forecast errors can differ
considerably from the ones currently prescribed in OI
(Parrish and Cohn 1985; Cohn and Parrish 1991; Miller
and Cane 1989; Todling and Ghil 1990; Daley 1992a–
c). Nonetheless, this error forecast and update is very
expensive. For nonlinear systems, the required dimen-
sion is infinite. For discrete linear systems with n de-
grees of freedom, one needs O(n2) numbers to represent
the error covariance, with n of O(105–106) or more.

Even if the real-time aim is relaxed, today’s parallel
computers cannot manage such sizes. Since most
schemes are only optimal for linear models, several
sometimes conflicting hypotheses have been made to
derive practical/operational reduced schemes (e.g., Par-
rish and Cohn 1985; Lorenc et al. 1991; Toth and Kalnay
1993; Todling and Cohn 1994), hence leading to con-
troversies.

There are two constraints that a DA system needs to
address. First, the dimension of the full error model
associated with (2a)–(2b) is too large. Since less is
known about errors than about dynamics, a careful re-
duction is necessary. The a priori hypotheses should be
limited. With experience, for specific regions and pro-
cesses, and particular data properties, some of today’s
hypotheses (e.g., Todling and Cohn 1994; appendix B)
may be validated for use as a priori information. Even
though the data coverage, type, and quality have in-
creased in the past decades, the second constraint is the
limited data sets. This concern is of special relevance
in oceanography (Robinson et al. 1998a). To optimize
the assimilation, it is very important to utilize at once
all information contained in the few observations avail-
able. In summary, the issues are (a) how to reduce the
size of the error model while explaining as accurately
as possible the error structure and amplitude (many de-
grees of freedom, limited resources) and (b) how to
optimize the extraction of reliable information from ob-
servations limited both in type and coverage.

5. Error subspace statistical estimation

Estimation criteria that address the objectives and
questions raised in sections 3–4 are now identified. The
approach is dynamic, reflecting basic properties of oce-
anic–atmospheric systems. Based on essential charac-
teristics of geophysical measurements and models, the
first property argues that efficient bases to describe, re-
spectively, the dynamics, the variations of variability,
and the errors, exist and are meaningful (section 5a).
Section 5a is detailed since confusions between these
evolving bases lead to controversies. The second prop-
erty relates to the correlations between geophysical
fields (section 5b). These facts are then used to deter-
mine the optimal representation of the error and a cri-
terion for data–dynamics melding, leading to the ESSE
concept (section 5c).

a. Efficient basis for describing variations of
variability and error subspace

Even though it still needs to be rigorously proven that
many observed geophysical phenomena can be asso-
ciated with phase space attractors of low, finite dimen-
sion (West and Mackey 1991; Osborne and Pastorello
1993), statistical data analysis at least infers that most
geophysical phenomena are colored random processes,
for example, red in time and space. Nonetheless, some
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field observations (e.g., satellite imagery) exemplify
geophysical features (Monin 1974; Robinson 1989) at
most energetic scales.2 These structures occur intermit-
tently, with strong similarities between occurrences.
Several form anisotropic, nonhomogeneous, multiscale
but coherent dynamical fields. Hence, most observed
geophysical phenomena develop structures at many
scales and have colored spectra. At the dynamical mod-
eling end, many driven-dissipative systems as well as
nonlinear conservative systems have been shown to pos-
sess ‘‘attractors’’ of finite dimension (e.g., Bergé et al.
1988; Osborne and Pastorello 1993). The existence of
a global attractor for the Navier–Stokes equations has
been proven in two dimensions (Foias and Teman 1977)
and in three dimensions for remaining smooth fields
(Foias and Teman 1987), with the dimension of the at-
tractor being a function of the Reynolds number. As can
also be deduced from Kolmogorov’s physical principles
(Kolmogorov 1941), the dynamical systems approach
thus implies that the number of degrees of freedom nec-
essary to describe most synoptic/mesoscale-to-large-
scale turbulent geophysical flows is limited (Teman
1991).

Equation (1a) is of high dimension more for numer-
ical accuracy than for physical variability dimension-
ality. The above-mentioned observations’s/models’s
dual properties imply that the dominant geophysical var-
iability consists of dynamical patterns and structures,
with, in general, a colored spectrum that can be effi-
ciently described at each instant by a limited number of
functions or modes. The time–space physical nature of
these functions evolves with the system’s position in the
phase space and local structure of the attractor, if it exists
(e.g., Anderson 1996). In practice, the ideal choice of
functions is a concern; it defines the evolving dynamics
subspace. One aim is to reduce the number of functions
to a minimum while still describing most of the vari-
ability of interest. Common techniques are dynamical
normal modes or singular vectors, empirical modes or
EOFs (Lorenz 1965; Davis 1977b; Weare and Nasstrom
1982; Wallace et al. 1992; von Storch and Frankignoul
1998), principal oscillation and interaction patterns
(POPs and PIPs) (Hasselmann 1988; von Storch et al.
1988; Penland 1989; Schnur et al. 1993), and radial
functions and wavelets (e.g., Gamage and Blumen
1993).

The leap from the above reduction of variability to
an evolving efficient reduction of the error model (sec-
tion 4) is now made in three successive steps. The model
errors and data available are first assumed null; that is,
dw 5 0 and dk 5 vk 5 0 for k . 0 (appendix A). The
dynamics of the true and model systems then only differ
because of the predictability error. The uncertainties are

2 In the present study, the term energy can also refer to a pseu-
doenergy or field squared amplitude.

a subset of the local variations of variability, which have
structural and spectral properties analogous to those of
the dynamics subspace. If model errors and data are
nonexistent, the dominant uncertainties can be described
by a finite set of state-space vectors and the additional
error variance explained by each new vector decays rap-
idly (e.g., hyperbolic, exponential, or power decay).

Observations are now considered. The data type and
coverage, and their evolutions, influence the estimate’s
uncertainty but the dominant errors are still variations
of geophysical variability. Only the nature and physical
location of the dominant uncertainty depends on the
phenomena and scales that are (or are not) controlled
by observations. For instance, if energetic variations of
variability are controlled at a given time by high quality
sensors, they are not dominant errors at that time. Less
energetic variations not controlled by measurements will
be. The data properties thus do not alter the conclusion
of the former paragraph. It is now argued that model
errors do not affect this conclusion either. Using the
conditional mean for the prediction and subtractingtĉ
it from (2a), a forecast error has two components, the
predictability and model errors,

,t t t tdc 2 dĉ 5 [f(c , t) 2 f̂(c , t)] dt 1 dw (3)

where f̂ is the expected value of f (appendix A). For
meaningful modeling, the ratio of model to predict-
ability errors should not be much larger than one. If at
any given time model errors have amplitudes similar to
predictability errors, they represent energetic physical
processes not captured by the deterministic model (1a).
When model errors are important, they are thus local
variations of variability and the previous structured,
power decay property applies. Model error covariances
Q(t) can thus be assumed to have a limited number of
dominant modes.3 Combining the three conclusions, a
time-evolving, limited dimension subspace contains
most of the error. It is influenced by dynamics, data and
model errors.

b. Correlations in geophysical systems

The limited datasets issue is addressed by the mul-
tiscale, multivariate correlations between geophysical
field variations. For instance, dynamical and statistical
studies show that a tracer transect is related to the ref-
erence velocity in an ocean basin (Wunsch 1988); the
type and strength of local precipitation informs us about
remote weather; an El Niño event can lead to abnormal
conditions at other times/places; the surface temperature
in the Gulf Stream at a given time implies some of the
deeper water properties; the upwelling/downwelling
variations along a coast relate to the coastal distribution

3 Relations between the dominant eigenvectors of Q(t) and domi-
nant stochastic optimals are discussed in Lermusiaux (1997).
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of nutrients; each fish species has optimum water prop-
erties; the sea color correlates with phytoplankton con-
centration; etc. These examples appear simple but in
reality correlation issues are subtle due to the multiscale,
multivariate, inhomogeneous, anisotropic, or nonsta-
tionary properties (e.g., McWilliams et al. 1986; Lorenc
1986, 1992; Daley 1991). In summary, 3D multivariate
DA, in accord with the phenomena and time–space
scales considered, is necessary. The expression 3D mul-
tivariate DA indicates here that each datum instanta-
neously influences all state variables and scales that mat-
ter. This impact must be in accord with the evolving
dynamics. For instance, surface altimeter fields are not
always at once linked to subsurface properties (e.g.,
Martel and Wunsch 1993; Fukumori et al. 1993).

c. ESSE

The conditional mean was chosen for optimal esti-
mate. For all statistics, minimizing the expectation of a
convex measure of the estimate’s uncertainty leads to
that optimum (appendix B, section d). Approximate def-
initions of uncertainty and measures thereof lead to ap-
proximate estimates. Here, both notions are determined
using sections 5a and 5b.

The estimate’s uncertainty can be represented by an
error covariance, a common convex statistical measure
of error fields.4 The first conclusion (section 5a) supports
its truncation to a most energetic error subspace while
the second (section 5b) implies that the melding crite-
rion should be 3D multivariate. A reduced-rank ap-
proximation of the error covariance P at time tk is thus
optimal for a given rank pk if it explains the maximum
variance and structure of the multivariate Pk that is pos-
sible. For the structured, power-decay property (section
5a) there is a relatively small number pk for which the
optimal reduction explains most of Pk. Denoting for
convenience this time-variant pk by p, the associated
reduction is called the principal error covariance . ThepPk

difference between Pk and , or complementary errorpPk

covariance ,cPk

8 Pk 2 ,c pP Pk k (4)

should have a minimal norm. An orthonormal decom-
position of , , with variance Pk ∈ Rp3p andp TP E P Ek k k k

structure Ek ∈ Rn3p, hence satisfies

c TP and E , with rank(E ) 5 p min \P 5 P 2 E P E \ .k k k k k k k k5 6)
P ,Ek k

(5)

In the sense of any unitarily invariant norm (e.g., the

4 In this text, the term covariance relates to a matrix quantity. The
covariances are dimensional but all eigendecompositions or SVDs
are made on nondimensional fields so that the ordering of eigen- or
singular values is unit independent. To simplify notations, the nor-
malization is presented in appendix B, section a.

two-norm \ \2 and Frobenius norm \ \F), the opti-c cP Pk k

mum in (5) is the dominant rank-p singular value de-
composition of Pk (Horn and Johnson 1985, 1991). The
matrix Pk is the ordered diagonal of dominant-p singular
values and the columns of Ek are the associated singular
vectors. Since Pk is positive semidefinite, is alsoTE P Ek k k

its rank-p eigendecomposition. The columns of Ek form
a basis for the 3D multivariate error subspace; Pk is the
error subspace covariance. At a given time, tk, and for
a given p, these matrices characterize the error subspace
(ES). They answer the first issue raised in section 4.

With the ES theoretically defined by (5) at all tk, only
the error measure in this ES still needs to be chosen.
Several exist (e.g., Horn and Johnson 1985), but the
most logical is the Euclidean one. Combining the cri-
terion (5) with the Euclidean minimum error variance
approach leads to the present notion of ESSE. Data and
dynamics are melded such that the a posteriori ES var-
iance is minimized. The estimation criteria are

pĉ min J 5 tr[P (1)] using [d ] (6a)k k k k5 6)
ĉk

for objective analysis (OA) via ESSE at tk;

pĉ min J 5 tr[P (1)] using [d , . . . , d ] , (6b)k k k 0 k5 6)
ĉk

for filtering via ESSE at tk; and

pĉ min J 5 tr[P (1)] using [d , . . . , d ] , (6c)k /N k k 0 N5 6)
ĉk/N

for smoothing via ESSE at tk within the data interval
[t0, tN]; where each of (6a)–(6c) are subject to the dy-
namical and measurement model constraints (2a)–(2b).
To distinguish between a priori and a posteriori quan-
tities, the symbols (2) and (1) are employed (see ap-
pendix A for more on notation). Except for the ignored
small errors, criteria (6a)–(6c) follow the Bayesian min-
imum error variance nonlinear estimation. They lead to
efficient, 3D multivariate analyses since the meldings
occur within the ES. The second question raised in sec-
tion 4 is answered. The criteria (6a)–(6c) also relate to
the efficient concept of ‘‘minimax assimilation’’: the
maximum errors, here in the Euclidean sense, are min-
imized. The general goal of ESSE is to determine the
considered ocean–atmosphere state evolution by mini-
mizing the dominant errors, in accord with the full dy-
namical and measurement models, and their respective
uncertainties. Of course, the criteria (6a)–(6c) are only
theoretical. In practice, efficient schemes for finding (6a)
and tracking (6b)–(6c) the ES have to be determined
(sections 6, 7).

Objective analysis via ESSE (6a) or ‘‘fixed-time
ESSE’’ emphasizes the general applicability of the ap-
proach. In fact, Anderson (1996) has shown that for the
Lorenz model (Lorenz 1963) the projection of classical
OA error correlation onto the local attractor sheet is the
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TABLE 1. Filtering via ESSE at tk : Continuous–discrete problem statement.

Equation

Dynamical model:

Measurement model:

t tdc 5 f(c , t) dt 1 dw, with ĉ 5 C ,0 0

td 5 C c 1 v .k k k k

(2a)

(2b)

Error subpace:
p pTP , E with P 5 E P E and rank(E ) 5 p min \P 2 P \ .k k k k k k k k k5 6)

P ,Ek k

(5)

ES melding criterion:
pĉ min J 5 tr[P (1)] using [d , . . . , d ] .k k k 0 k5 6)

ĉk

(6b)

FIG. 1. The five main components of the present ESSE system.

most effective selection of initial conditions for ensem-
ble forecasts. This conclusion has also been exemplified
in primitive-equation (PE) modeling (Lermusiaux
1997). Since the ES is a subset of the local variations
of variability, (6a) is the most efficient analysis for given
resources and in the Euclidean framework. In Part II of
this study, the focus is on filtering via ESSE (6b). The
problem statement is given in Table 1.

Section 6 outlines filtering via ESSE schemes using
a Monte Carlo approach; dynamical systems for adap-
tive ESSE are also derived in Lermusiaux (1997). The
smoothing via ESSE problem statement is as in Table
1, but with criterion (6c) replacing (6b). For linear mod-
els (2a), this corresponds to the generalized inverse
problem restricted to the dominant errors. Such smooth-
ing schemes with a posteriori error estimates are ob-
tained in section 7. The five main components of the
present ESSE system (initialization, field and ES non-
linear forecasts, minimum variance within the ES, and
smoothing) are illustrated in Fig. 1.

Some general properties are now discussed. First, in
(6a)–(6c) the data only correct the most erroneous parts
of the forecast. The accurate portion of the forecast is
corrected by dynamical adjustments and interpolations.
Second, the ES in (5) is time dependent. The reduction
to the principal error covariance is dynamic. The ES
tracks the scales and processes where the dominant er-

rors occur. The time rate of change of the ES is a func-
tion of the (i) initial uncertainty conditions; (ii) evolving
model errors; and (iii) data type, quality, and coverage;
and of the nonlinear, interactive evolution of these three
components. All these factors influence the nature of
the ES (e.g., multiscale, anisotropic, homogeneous, or
not). In fact, the successes of the optimal perturbations
(OP) to determine initial conditions for ensemble fore-
casting (e.g., Mureau et al. 1993; Toth and Kalnay 1993;
Molteni and Palmer 1993; Molteni et al. 1996) can be
improved by quantitatively taking into account data
quality and model errors. The OP spectrum and struc-
tures, which only consider the predictability error,
should be modified accordingly, especially in ocean-
ography. ESSE provides a theoretical framework to do
so. Third, the error and dynamics subspaces in general
differ. Fourth, the statistical estimation of the ES (sec-
tions 6, 7) yields the notion of error EOFs. In fact, there
are several quantitative definitions for the ES, each as-
sociated with slightly modified criteria (6a)–(6c): for
example, singular or normal error modes; extended,
complex, or frequency error EOFs; error POPs and PIPs;
and synoptic and wavelet-based ES. If the maximum
norm had been chosen in (5), a maximum measure
would have been logical in (6a)–(6c). These particular
formulations are not discussed further. Priority is given
to the central concept, common to all representations.
Fifth, the ideal ES dimension p (e.g., appendix B, sec-
tion b) evolves in time, in accord with the dynamics,
model errors, and available data. It is only for statisti-
cally stationary data, dynamics, and model errors that
p should stay constant. In all schemes of sections 6 and
7, the size of the ES is thus time dependent.

6. Filtering via ESSE schemes

A recursive scheme is now derived for filtering in the
ES (5) corresponding to the models (2a)–(2b). One
needs to track the ES evolution, which is not trivial.
The two-step root of the algorithm consists of a fore-
cast–data melding when data are available (section 6a),
followed by the dynamical state and ES forecasts to the
next assimilation time (section 6b). It is assumed that
an estimate of the conditional mean state and associated
ES have been integrated from t0 to tk using (1)–(2)
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TABLE 2. Eigendecomposition of the minimum error variance linear update (index k omitted).

Equation

Dynamical state update: ĉ(1) 5 ĉ(2) 1 K[d 2 Cĉ(2)] (8)

T T 21˜ ˜ ˜ ˜Optimal gain: K 5 U L(2)C [CL(2)C 1 R] , with C 8 CU (12)2 2

T T T 21˜ ˜ ˜ ˜ ˜Error eigenvalue update: HL(1)H 5 L(1) 5 L(2) 2 L(2)C [CL(2)C 1 R] CL(2) (14)

Error eigenvector update: U 5 U H (16)1 2

and (6b) for [d0, . . . , dk21]. Hence, , Ek(2), andĉ (2)k

Pk(2) are available. Specifics and variations of the al-
gorithm are discussed in appendix B.

a. ES melding or ES analysis scheme

As in most existing schemes, the data–forecast meld-
ing is chosen linear a priori. This causes a departure
from the strict Bayesian approach (e.g., Jazwinski
1970), which would solve (6a)–(6c) without making this
simplification. Nonetheless, the melding weights are de-
termined using criterion (6b) in the nonlinearly evolved
ES (5). To simplify notations, the index k is omitted.
The minimum error covariance melding is first decom-
posed exactly in terms of error eigenvalues and eigen-
vectors [section 6a(1)]. Its ES truncation is given in
Lermusiaux (1997). In section 6a(2), the sample or em-
pirical ES melding is derived.

1) EIGENDECOMPOSITION OF THE MINIMUM ERROR

VARIANCE LINEAR UPDATE

Since linear melding is enforced, determining the op-
timum of

t T 21 tmin [ĉ(2) 2 c ] P (2)[ĉ(2) 2 c ]
tĉ

t T 21 t1 (d 2 Cc ) R (d 2 Cc ) (7)

is equivalent to minimizing the trace of P(1) (e.g., Gelb
1974). Taking the derivative of (7) with respect to c t

yields the melded estimate

ĉ(1) 5 ĉ(2) 1 K[d 2 Cĉ(2)] (8)

and updated error covariance

P(1) 5 P(2) 2 KCP(2), (9)

where K is the Kalman gain

K 5 P(2)CT[CP(2)CT 1 R]21. (10)

Note that (8) contains the data update of all boundary
variables and external forcings since they are assumed
to be part of (1a)–(2a). Introducing the eigendecom-
positions of the a priori and a posteriori error covari-
ances (see appendix A for notation),

TP(2) 5 U L(2)U ,2 2

TP(1) 5 U L(1)U , (11)1 1

with U2 5 5 5 5 I, into (8)–T T T TU U U U U U U2 2 2 1 1 1 1

(10), the Kalman gain and error covariance update are
exactly rewritten, respectively, as

T T 21˜ ˜ ˜K 5 U L(2)C [CL(2)C 1 R] , (12)2

T T˜U L(1)U 5 U {L(2) 2 L(2)C1 1 2

T 21 T˜ ˜ ˜3 [CL(2)C 1 R] CL(2)}U2

T˜8 U L(1)U ,2 2 (13)

where C̃ 8 CU2. The eigendecomposition of the non-
negative definite yieldsL̃(1)

T T 21˜ ˜ ˜ ˜ ˜L(1) 5 L(2) 2 L(2)C [CL(2)C 1 R] CL(2)
T5 HL(1)H , (14)

where L(1) is diagonal and the columns of H ∈ Rn3n

are a set of orthonormal eigenvectors for . Hence,L̃(1)

5 .T T TP(1) 5 U L(1)U U HL(1)H U1 1 2 2 (15)

The a posteriori diagonal matrix of error eigenvalues
L(1) is given by (14) and the a posteriori error eigen-
vectors by

U1 5 U2H. (16)

The a posteriori error covariance derives from (15). For
linear melding, the state (8), (12) and error eigenupdates
(14), (16) are the minimum error variance estimates (Ta-
ble 2).

2) MINIMUM SAMPLE ES VARIANCE LINEAR

UPDATE

In this section, a sample ES forecast described by E2

and P(2) is assumed available (section 5b). The data-
forecast melding within the sample ES is outlined, with
updates of the fields and ES covariance. For the details,
we refer to (Lermusiaux 1997).

(i) Dynamical state update

The field update can be derived either by truncation
of (8) and (12) to the sample ES or by minimization
analogous to (7), but within the ES. One gets

pĉ(1) 5 ĉ(2) 1 K [d 2 Cĉ(2)], (17)
p p pT T 21K 5 P (2)C [CP (2)C 1 R] ,

T Tp p p p21˜ ˜ ˜ ˜5 E P(2)C [C P(2)C 1 R] 8 E K , (18)2 2
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where 8 CE2. For adequate a priori sampling, thatpC̃
is, 5 converges to P(2), (17)–(18)p TP (2) E P(2)E2 2

converge to (8) and (12) at the infinite sample limit.

(ii) Sample ES update

The derivation of the ES covariance update requires
care since the present ES forecast (section 5b) is ob-
tained from an ensemble forecast. As discussed in (Ev-
ensen 1997b; Lermusiaux 1997; Burgers et al. 1998),
the original ensemble update algorithm (e.g., Evensen
1994a) underestimates a posteriori errors. The two ES
algorithms outlined next give a correct error estimate at
the infinite ensemble limit. The scheme A directly es-
timates P(2) and E1. The scheme B updates the SVD
of the ensemble spread.

Scheme A: Update of the sample ES covariance. An
ensemble of q unbiased dynamical states is denoted by

, j 5 1, . . . , q. The associated a priori and ajĉ (2)
posteriori error sample matrices, M(2) and M(1) ∈
Rn3q, are5

jM(2) 8 [ĉ (2) 2 ĉ(2)], (19a)
jM(1) 8 [ĉ (1) 2 ĉ(1)]. (19b)

These expressions are matrices whose column j consists
of the ensemble member j minus the mean estimates

and , respectively. The update of the sampleĉ(2) ĉ(1)
error covariance, 8 MMT/q, is now obtained. De-sP
noting by d j a set of q data vectors perturbed with noise
of zero mean and covariance R, the updates of the en-
semble (e.g., Burgers et al. 1998) and conditional mean
estimate are, respectively,

sj j j jĉ (1) 5 ĉ (2) 1 K [d 2 Cĉ (2)], (20a)
sĉ(1) 5 ĉ(2) 1 K [d 2 Cĉ(2)], (20b)

where the gain has to be optimized. Subtracting (20b)sK
from (20a) and using (19a)–(19b),

s sM(1) 5 (I 2 K C)M(2) 1 K .V (21)

The columns of 5 [v j] 5 [d j 2 d] ∈ Rm3q are re-V
alizations of the random processes v. The update of the
sample error covariance derives from (21)

Ts s s s s s sTP (1) 5 (I 2 K C)P (2)(I 2 K C) 1 K R K
T Ts s s s s s T1 (I 2 K C)V K 1 K V (I 2 K C) , (22)

where 8 5 and Vs 8
Ts T q j jR (1/q)VV E {v v } (1/q)M(2)

5 E q{[ 2 }. For the gain mini-T sT j jV ĉ (2) ĉ(2)]v K
mizing the trace of 5 CT( CT 1s s s sP (1), K P (2) CP (2)

one obtainss 21R ) ,

5 For coherence with other works (e.g., Burgers et al. 1998), (19a,b)
differ from the derivation of Lermusiaux (1997) which used true error
sample matrices. The present scheme (A) still leads to the same results
since the variance of the error incurred for using an estimate of the
truth in (19a)–(19b) instead of the truth itself is of O(1/q) (e.g., Bendat
and Piersol 1986), which is the order of the truncated terms.

Ts s s s s sP (1) 5 (I 2 K C)P (2) 1 (I 2 K C)V K
Ts s s T1 K V (I 2 K C) . (23)

By hypotheses (appendix A), Vs → 0 for q → `. Ne-
glecting the associated symmetric sum in (23) yields an
estimate of P(1) of standard deviation error decay of
O(1/ q),Ï

s s sP (1) 5 (I 2 K C)P (2). (24)

The sample ES update derives from the dominant rank-p
reduction of (19)–(24). It is efficiently estimated based
on the SVD of M(2) and unknown M(1), respectively,

TSVD [M(2)] 5 E S(2)V , (25a)p 2 2

TSVD [M(1)] 5 E S(1)V , (25b)p 1 1

where the operator SVDp( · ) selects the dominant
rank-p SVD. After melding, the p dominant left singular
vectors, columns of E1, form the ordered basis for the
ES of dimension p # q. The corresponding singular
values yield the diagonals Pk(2) and Pk(1),

1
2P(2) 5 S (2), (26a)

q

1
2P(1) 5 S (1). (26b)

q

Performing computations similar to (21)–(24), but start-
ing from (25)–(26), leads to the optimal gain (18) and
to the equations for the ES update. Using the orthog-
onality of singular vectors, these are

p p p pT˜ ˜ ˜P(1) 5 E P (1)E 5 (I 2 K C )P(2)2 2

T5 HP(1)H , (27)

E 5 E H. (28)1 2

The columns of H in (27) are ordered orthonormal ei-
genvectors of , projection of onto the col-pP̃(1) P (1)
umns of E2. The corresponding eigenvalues form the
diagonal P(1) and ∈ Rp3p is the identity matrix. WithpI
(18) and (24)–(25), the columns of E2 and E1 in (28)
span the same space. Table 3 summarizes the sample
ES scheme. Algorithmic and computing issues are dis-
cussed in appendix B, section e.

In this scheme A, the ensemble update (20a) is not
carried out. It was only utilized to derive the ES co-
variance update. Only one melding (17) is necessary.
The number p of significant error EOFs or singular vec-
tors is smaller than the ensemble size q, which reduces
computations in Table 3 (appendix B, section c). Of
course, for efficient ensemble forecasts, q should not be
much larger than p (i.e., at most, an order of magnitude
larger).

Scheme B: Update of the SVD of the ensemble spread.
A disadvantage of (27)–(28) is that the information con-
tained in the right singular vectors of (25a) is lost. Once
E1, P(1), and are computed, an adequate en-ĉ(1)
semble still has to be constructed [section 6b(2)]. Hence,
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TABLE 3. Minimum sample ES variance linear update (index k omitted).

Equation

Dynamical state update:

Sample ES optimal gain:

Sample ES covariance update:

pĉ(1) 5 ĉ(2) 1 K [d 2 Cĉ(2)] (17)
T Tp p p p p21˜ ˜ ˜ ˜K 5 E P(2)C [C P(2)C 1 R] 8 E K , (18)2 2

1p T 2˜with C 8 CE , SVD [M(2)] 5 E S(2)V and P(2) 5 S (2)2 p 2 2 q

p p pT ˜ ˜ ˜HP(1)H 5 P(1) 5 (I 2 K C )P(2) (27)

E 5 E H (28)1 2

TABLE 4. SVD of the ensemble spread linear update (index k omitted).

Equation

Dynamical state update: (Same as Table 3) (17)

Sample ES optimal gain: (Same as Table 3) (18)

Ensemble spread SVD update:

Ensemble update:

p p p pT ˜ ˜ ˜FS(1)G 5 SVD ((I 2 K C )S(2) 1 K V V ), (33a)p 2

E 5 E F, (33b)1 2

V 5 V G (33c)1 2

j jTĉ (1) 5 ĉ(1) 1 E S(1)(V ) (29b)1 1

the complete rank-p SVD update is now sought. Using
(25a)–(25b) to reduce (19a)–(19b), rewritten for clarity
in a vector form [with (A) j denoting the column j of A],
one has

j T jĉ (2) 5 ĉ(2) 1 E S(2)(V ) , (29a)2 2

j T jĉ (1) 5 ĉ(1) 1 E S(1)(V ) . (29b)1 1

Deriving such an update (29b) based on the original
ensemble algorithm (e.g., Evensen 1994a), Lermusiaux
(1997) showed that a posteriori errors were underesti-
mated; that is, that the terms in (21) and thussK V

in (22) were missing in the original ensemble
Ts s sK R K

algorithm. The approach of Lermusiaux (1997) is now
utilized but based on the modified ensemble update
(20a)–(20b). This reduces the analysis of Burgers et al.
(1998) to its significant subspace. The direct derivation
evaluates the SVD of (21),

s sTE S(1)V 5 SVD [(I 2 K C)M(2) 1 K V ].1 1 p (30)

To reduce computations, the ensembles in the rhs of
(30) can be truncated a priori to their significant rank-p
SVDs. These are denoted by (25a) for the ensemble of
states and by SVDp( ) 5 p ∈ Rp3p for the perturbedV V
data. With these rank-p approximations, using (25b) and
the optimal gain (18), (21) reduces to, at O(1/ p) inÏ
standard deviation,

p p pT TE S(1)V 5 (I 2 K C)E S(2)V 1 K V . (31)1 1 2 2

Inserting 5 at the right of the second term inpTV V I2 2

the rhs of (31) gives, with (18),
p pT ˜ ˜E S(1)V 5 E [(I 2 K C )S(2)1 1 2

p p T˜1 K V V ]V . (32)2 2

In (32), computing the SVD of the term in bracket,
already of rank p, leads to

p p p pT ˜ ˜ ˜FS(1)G 8 SVD [(I 2 K C )S(2) 1 K V V ], (33a)p 2

E 5 E F, (33b)1 2

V 5 V G. (33c)1 2

With (17)–(18), (33a)–(33c) update the complete rank-p
SVD (29b), as summarized in Table 4. The advantage
of (30) or (33a)–(33c) over (27)–(28) is the right sin-
gular vector update. The a posteriori states [(29b)] are
physically balanced in the sense of the estimation cri-
terion (section 2). If one uses Table 3, techniques to
create an ensemble of a posteriori states from (27)–(28)
are needed [section 6b(2)]. On the other hand, scheme
A is an efficient procedure to compute the a posteriori
ES covariance (27)–(28). It is in fact straightforward to
show that the a posteriori rank-p sample error covariance
obtained from (29b) and (33a)–(33c) is, at O(1/ p) inÏ
standard deviation, identical to that obtained in Table
3. In practice, the simulation requirements dictate the
adequate scheme from Table 3 or 4. In both cases, one
expects the size p of the ES to be time variant and
algorithms for evolving p are discussed next in section
6b.

b. Dynamical state and error subspace forecast

The quantities , and Pk(1) obtained inĉ (1) E (1),k k

(section 6a) are now known. The goal is to issue their
forecast to the next data time tk11. For large nonlinear
models, we expect that for adequate sampling of the
initial error conditions, an ensemble forecast is effi-



JULY 1999 1395L E R M U S I A U X A N D R O B I N S O N

cient to estimate the evolution of the state and its un-
certainty. Monte Carlo forecasting is, thus, the ap-
proach followed. Several alternatives are discussed in
appendix B, section c.

1) DYNAMICAL STATE FORECAST

The conditional mean of (2a), (appendix A),tĉ
evolves according to

5 f̂(c t, t) dt.tdĉ (34)

The nonlinear central forecast to tk11, , is ob-cfĉ (2)k11

tained from

with .dĉ 5 f(ĉ, t) dt, ĉ 5 ĉ (1)k k (35)

Statistically, it is the first-order estimate of the condi-
tional mean (Jazwinski 1970). It is also the classictĉ k11

deterministic forecast (1a). With the ensemble ES fore-
cast approach [section 6b(2)], each member evolves dur-
ing Dtk11 as in (2a),

with 5 (1).j jj jdĉ 5 f(ĉ , t) dt 1 dw, ĉ ĉk k (36a)

The corresponding ensemble mean at tk11 estimates
with a standard deviation of O(1/Ïq):tĉk11

8 E q{ }.jemĉ (2) ĉ (2)k11 k11 (36b)

Other estimates are the forecast of minimum data misfits
(section 7c) or the most probable forecast (maximum
likelihood). They are further discussed in appendix B,
section d. In section 6b(2), the algorithm simply denotes
the chosen conditional mean estimate as .ĉ (2)k11

2) ERROR SUBSPACE FORECAST

Using (2)–(3), the error covariance of , P, evolvestĉ
during Dtk11 according to

t T t t T tdP /dt 5 E{c f (c , t)} 2 ĉ f̂ (c , t)
T Tt t t t1 E{f(c , t)c } 2 f̂(c , t)ĉ 1 Q. (37)

Here, the forecast of the principal covariance of (37),
, is estimated by an ensemble of stochastic evo-pP (2)k11

lutions to tk11 of states initially sampling the a posteriori
ES structure and amplitude Pk(1). The threeE (1)k

local steps involved are described next.

(i) Create an ensemble whose covariance from
tends to pĉ (1) P (1)k k

The a posteriori ensemble is defined by
j jĉ (1) 5 ĉ (1) 1 E (1)p (1), j 5 1, . . . , q, (38)k k k k

where the coefficients ∈ Rp have to be deter-jp (1)k

mined. The simplest choice is

5 .j 1/2 jp (1) P (1)uk k (39a)

The vectors u j ∈ Rp are q realizations of a random vector
u of zero mean and covariance I p. For q 5 qk(1) →

` in (38)–(39a), the sample covariance with respect to
tends by construction toward . Constraintspĉ (1) P (1)k k

can be added to (39a) so that all realizations arejĉ (1)k

physically acceptable,
j 1/2 jp (1) 5 P (1)u ,k k

with dynamical/data constraints. (39b)

One may wonder why (39b) should be used since the
states are in accord with the data and dynamics,jĉ (1)k

and their dominant error covariances. One argument is
that only dominant covariances are considered in (39a),
but not higher moments. The signs of the u j are free in
(39a). Because of the orthogonality condition, some
combinations of singular vectors can also lead to un-
realistic variability, even if the true error subspace is
spanned. Finally, some of the randomly generated u j

(e.g., Gaussian) can have values quite far from their
statistical mean and variance. Hence, constraining the
combinations (39a) is useful to reject the few states of
possibly too unrealistic or unlikely physics. A simple
constraint is to force the vectors to have datajĉ (1)k

residuals in strong accord with the measurement model
errors. Rejecting members that have residuals of hori-
zontal-averaged variance smaller than a factor of the
local observation error variance has been implemented.
Such residual constraints are limited to data regions.
Other restrictions can be applied globally, for example,
a water column in static equilibrium, weak geostrophic
balance, or other considerations (e.g., Mureau et al.
1993). A third option for the in (38) is to directlyjp (1)k

use scheme B. From (29b), the combination coefficients
are then

5 ,j T jp (1) S(1)(V )k 1 (39c)

where the rhs is obtained from (32) or (33a), (33c). The
three linear combinations (39a)–(39c) have been utilized
in Lermusiaux (1997) and in several regions of the
world’s oceans (section 8) for weeks of simulations. For
the lack of sufficient time–space data coverage, real data
cases for which an approach has always been found to
be better than the others have not yet been determined.
However, using (39b) instead of (39a) is advantageous
since it involves little extra cost compared to that of
running a very unlikely simulation in (36a).

An important advantage of (38)–(39) is that the size
of the a posteriori ensemble qk(1) is easily made larger
than that of the a priori one, qk(2). Since qk(1) 5
qk11(2), this is carried out as a function of the con-
vergence of the ES forecast to tk11 (appendix B, section
b). Note that increasing the size of the ensemble using
(38)–(39) does not extend the base spanning the ES at
tk [in our two-step recursive assumption, is as-E (1)k

sumed adequate]. However, for nonlinear models, each
new integration of (36a) during Dtk11 increases the size
of the ES forecast to tk11, the significance of which
grows with the duration of integration. The nonlinear-
ities lead to an evolving ES (section 5c). This fact is
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TABLE 5. Nonlinear dynamical state and ES ensemble forecast.

Equation

Conditional mean estimates:

Central forecast:

Ensemble mean:

cfĉ (2) z dĉ 5 f(ĉ, t) dt, with ĉ 5 ĉ (1) (35)k11 k k

jem qĉ (2) 8 E {ĉ (2)} | (38240) (36b)k11 k11

ES initial conditions: j jĉ (1) 5 ĉ (1) 1 E (1)p (1), j 5 1, . . . , q, (38)k k k k

with either
j 1/2 jp (1) 5 P (1)u , (39a)k k

j 1/2 jp (1) 5 P (1)u , with dynamical/data constraints, or (39b)k k

j T jp (1) 5 S(1)(V ) , with (32) or (33a)2(33c), (39c)k 1

pwhere u is of zero mean and covariance I

Ensemble forecast: j j j j jĉ (2) | dĉ 5 f (ĉ , t) dt 1 dw, with ĉ 5 ĉ (1), j 5 1, . . . , q, (40)k11 k k

T T n3rwhere E{dw(t)dw (t)} 8 Q(t) dt 8 B(t)B (t) dt and B(t) ∈ R

ES forecast: jM (2) 5 3ĉ (2) 2 ĉ (2)4, j 5 1, . . . , q,k11 k11 k11

1
2decomposed into P (2) 8 S (2) and E (2) of rank p # q, wherek11 k11 k11q

TS (2), E (2) SVD (M (2)) 5 E (2)S (2)V (2) (41)5 ) 6k11 k11 p k11 k11 k11 k11

and the operator SVD (·) selects the rank-p SVDp

illustrated in Part II. Stochastic model errors in (36a)
also excite growing modes of variability and thus favor
the ES evolution. With linear models, the size of the ES
is only modified by this stochastic forcing. If model
errors are null, to evolve the ES one must then add new
columns to E .k

(ii) Integrate each ensemble member from tk11

using the sample path (2a)

Renumbering (36a), an ensemble of stochastic fore-
casts are evolved during Dtk11,

j j j jdĉ 5 f(ĉ , t)dt 1 dw, with ĉ 5 ĉ (1),k k

j 5 1, . . . , q, (40)

where dw(t) is a vector Brownian motion process, rep-
resenting a priori model errors. Its covariance over dt
is E{dw(t)dwT(t)} 8 Q(t)dt 8 B(t)BT(t)dt, where B(t)
∈ Rn3r. The ES concept argues that restricting B(t) to
a few r K n columns corresponding to the rank-r ei-
gendecomposition of Q(t) is efficient. Several authors
have implicitly used this fact (e.g., Dee at al. 1985;
Phillips 1986; Cohn and Parrish 1991; Daley 1991;
Cohn 1993; Jiang and Ghil 1993). Stochastic modeling
of the dominant model errors B(t) is becoming an area
of active research. Their specification is discussed in
Lermusiaux (1997).

(iii) Compute the forecast of the ES structure and
amplitude at tk11

Once is chosen [section 6b(1)], the matrixĉ (2)k11

of sample error forecasts, Mk11(2) 5 [ 2jĉ (2)k11

] ∈ Rn3q, is evaluated. The sample estimatesĉ (2)k11

Pk11(2) and Ek11(2) of rank p # q are then most
efficiently obtained from the rank-p SVD of Mk11(2),

S (2), E (2) SVD [M (2)]5 )k11 k11 p k11

T5 E (2)S (2)V (2) , (41)6k11 k11 k11

with Pk11(2) 8 . Table 5 summarizes the2(1/q)S (2)k11

steps (i–iii). Among the conditional mean estimates (ap-
pendix B, section d), only the central and ensemble
mean forecasts are stated.

The basis of the present ESSE filtering scheme con-
sists of Tables 3 and 5. A flow schematic of the algo-
rithm is shown in Fig. 2. As in Fig. 1, each operation
consists of several subcomputations and options, with
corresponding equations (e.g., appendix B). For in-
stance, the ES initialization and the adoptive error sub-
space learning are challenging (Lermusiaux 1997; Ler-
musiaux et al. 1998, manuscript submitted to Quart. J.
Roy. Meteor. Soc.).

7. Smoothing via ESSE schemes
The improvement of the filtering solution (sec-ĉ (1)k

tion 6) based on future data leads to a smoothing so-



JULY 1999 1397L E R M U S I A U X A N D R O B I N S O N

F
IG

.
2.

E
S

S
E

fl
ow

di
ag

ra
m

.



1398 VOLUME 127M O N T H L Y W E A T H E R R E V I E W

lution . The present smoothing criterion was definedĉk/N

by (6c). The data interval [t0, tN] is fixed: fixed-interval
smoothing is considered. The complete problem state-
ment is as in Table 1, but with (6b) replaced by (6c).
The issues in nonlinear smoothing are that a forward
integration of (2a) is rarely invertible and that running
nonlinear geophysical models backward in time can be
difficult. In fact, most nonlinear smoothers are based on
some of sort of localized (and iterated) approximation
(Jazwinski 1970). The present approach falls into that
category. However, the philosophy somewhat differs
from that of some schemes previously utilized in geo-
physical studies: it is argued that i) for the lack of data,
an accurate filtering solution (section 6) is an essential
prerequisite to the smoothing; ii) the linearization, if
any, should be local enough; and iii) in real-time
smoothing, a few iterations of approximate schemes can
be very valuable (section 7c). With this in mind, smooth-
ing via statistical approximation is developed in section
7a. Its ESSE version is outlined in section 7b. A dis-
cussion, with additional approximate ESSE algorithms,
is presented in section 7c. Specifics are provided in
appendix B.

a. Smoothing via statistical approximation

The approach consists of nonlinear filtering until tN

(sections 4–6), followed by the update of the conditional
mean and error covariance, backward in time, based on
future data. This later component is now outlined. It is
recursive as was the filtering. The derivation presumes
that the smoothing estimates and Pk11/N have beenĉk11/N

obtained. The unknowns are and Pk/N. A statisticalĉk/N

approximation (e.g., Gelb 1974; Austin and Leondes
1981) to the forward integration of (2a) between data
times tk and tk11 is first derived, assuming that istc k11

perfectly known. The approximation is written in a
backward form. Based on the smoothing conditions at
tk11, it is used to compute and Pk/N. The resultingĉk/N

smoothing is shown to include a few classic schemes
as particular cases. Its truncation to a significant sub-
space is outlined in section 7b.

The present statistical approximation is chosen to be
locally linear. This implies that Dtk11 is small enough
and that the statistical linearization is made around the
data-corrected filtering solution, characterized by the
initial conditions and Pk(1), and forecasts,ĉ (1)k

and Pk11(2). We seek a linear relation thatĉ (2)k11

estimates how to correct based on its forecastĉ (1)k

error. Assuming for now that is known, this relationtc k11

is of the form

5 1 Lk[ 2 ].tĉ ĉ (1) c ĉ (2)k k k11 k11 (42)

Within the present minimum error variance approach,
the unknown matrix Lk should be such that (42) mini-
mizes the error variance of , hence,ĉk

t t TL min tr[P ] 8 tr[E{(ĉ 2 c )(ĉ 2 c ) }],k k k k k k5 ) Lk

using (42) . (43)6
Subtracting from both sides of (42) and forming Pk

tc k

in (43) leads to
t t T TP 5 P (1) 1 E{[ĉ (1) 2 c ][c 2 ĉ (2)] }Lk k k k k11 k11 k

t t T1 L E{[c 2 ĉ (2)][ĉ (1) 2 c ] }k k11 k11 k k

T1 L P (2)L ,k k11 k (44)

where Pk11(2) is the error covariance forecast carried
out from Pk(1) based on (1a)–(2a). Inserting (44) into
(43) and taking the derivative with respect to Lk yields

t t T 21L 5 E{[c 2 ĉ (1)][c 2 ĉ (2)] }P (2),k k k k11 k11 k11

(45)

which is a minimum since Pk11(2) is positive semi-
definite. The optimum (45) and relation (42) define the
statistical backward linearization sought. It is now em-
ployed to compute the smoothing conditions at tk. The
best available unbiased estimate of is , oftc ĉk11 k11/N

error covariance Pk11/N. Using it in (42) gives the
smoothing estimate

5 1 Lk[ 2 ],ĉ ĉ (1) ĉ ĉ (2)k/N k k11/N k11 (46)

with 5 . The error covariance associatedĉ ĉ (1)N/N N

with (46) is derived as follows. Subtracting fromtc k

(46) and rearranging the terms gives
t(ĉ 2 c ) 2 L ĉk /N k k k11/N

t5 [ĉ (1) 2 c ] 2 L ĉ (2). (47)k k k k11

Multiplying (47) by its transpose and taking expecta-
tions leads to

T TP 1 L E{ĉ ĉ }Lk /N k k11/N k11/N k

T5 P (1) 1 L E{ĉ (2)ĉ (2)}, (48)k k k11 k11

since the cross-terms, E{( 2 } andt Tĉ (1) c )ĉ (2)k k k11

E{( 2 ) }, are null. The first of these is nullt Tĉ c ĉk/N k k11/N

because it involves unbiased error fields multiplied by
the expected state . To see that the second isTĉ (2)k11

also null, one can replace using the linear relationĉk11/N

(46), use the previous argument for , and invokeTĉ (2)k11

the orthogonality principle (Davis 1977a), which states
that the error 2 is orthogonal to functions oftĉ ck/N k

already used measurements, hence to and .ĉ ĉ (1)k/N k

For similar reasons, the relation E{ } 5 Pk11
Tt tc ck11 k11

1 E{ } holds for all estimates . Using itĉ ĉ ĉk11 k11 k11

for and into (48) yields the error co-ĉ ĉ (2)k11/N k11

variance of ,ĉk/N

Pk/N 5 Pk(1) 1 Lk(Pk11/N 2 Pk11(2)) ,TLk (49)

with PN/N 5 PN(1). The complete scheme is stated in
Table 6. In passing, if in (46) had been perfect,ĉk11/N
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TABLE 6. Smoothing via statistical linearization.

Equation

Filtering estimate
(forward in time):

Forecast: Eqs. (34) and (37), with ˆĉ 5 C and P 5 P0 0 0 0

Update: Table 2 during [t , t ]0 N

Smoothing estimate
(backward in time):

Smoothing gain:

Smoothing error covariance
(backward in time):

ĉ 5 ĉ (1) 1 L [ĉ 2 ĉ (2)], with ĉ 5 ĉ (1) (46)k/N k k k11/N k11 N/N N

t t T 21L 5 E [ĉ 2 ĉ (1)][ĉ 2 ĉ (2)] P (2) (45)5 6k k k k11 k11 k11

TP 5 P (1) 1 L [P 2 P (2)]L (49)k/N k k k11/N k11 k

(49) would have been equal to (44). One can verify that
(44) does not contain the positive-definite term involv-
ing Pk11/N. In simple words, LkPk11/N in (49) is theTLk

error cost incurred for using (46) instead of (42).
Some of the classic smoothing algorithms are sim-

plifcations of Table 6. The extended Kalman smoother
(EKS) is first considered. In the EKS, the nonlinear
integrations (34) and (37) are reduced using Taylor se-
ries expansions. Successive relinearizations about the
last available estimate of the conditional mean are car-
ried out. The resulting state estimate is the central fore-
cast (35). To obtain a covariance estimate, the evolution
of the perturbation ( 2 is linearized about (35),tc ĉ)
leading to

df(c, t)
t td(c 2 ĉ) 5 (c 2 ĉ)dt 1 dw, (50))dc

c5ĉ (t)

with initial conditions [ 2 ]. Integrating (50)tc ĉ (1)k k

over Dtk11 and denoting by F(tk11, tk) the corresponding
state transition matrix, one has

t tc 2 ĉ (2) 5 F(t , t )[c 2 ĉ (1)] 1 w ,k11 k11 k11 k k k k11

(51)

where wk11 accounts for the integrated effects of dw
over Dtk11 in (50). Inserting this simplification (51) into
(45) yields

Lk . Pk(1)FT(tk11, tk) (2),21Pk11 (52)

which, with (46) and (49), defines the Rauch–Tung–
Striebel EKS (e.g., Jazwinski 1970). The linearized KS
is also based on (52), but without the relinearizations.
If (1a)–(2a) were linear models, F in (52) would simply
be the transition matrix of (1a). The statistical approx-
imation (45) hence encompasses several truncations of
lower order. In (45), all nonlinearities are kept in com-
puting the expectations; derivatives do not need to exist.
In fact, truncating the models (1a)–(2a) prior to com-
puting these expectations, as was done in (50)–(52) us-
ing Taylor series, has been shown to be less accurate in
several filtering cases (e.g., Austin and Leondes 1981;
Uchino et al. 1993). In passing, expansions of higher
order than (50)–(52) would still replace the global sta-
tistical properties of (37) and (45) by local derivatives.

b. ESSE and smoothing via statistical approximation

The smoothing scheme in Table 6 is now reduced to
its significant components. The recursive derivation pre-
sumes that the smoothing estimates , Ek11/N andĉk11/N

Pk11/N defining have been obtained based on (6c).pP ,k11/N

The unknowns are , Ek/N, and Pk/N. Starting fromĉk/N

the nonlinear filtering ESSE scheme run forward until
tN (section 6), a Monte Carlo sample estimate of Lk in
(45) is, at O(1/ q) in standard deviation,Ï

†1 1
T TL 5 M (1)M (2) M (2)M (2) , (53)k k k11 k11 k111 2q q

where Mk(1) and Mk11(2) are defined as in section 6.
The † logically denotes the Moore–Penrose generalized
inverse. Note that in (53), q 5 qk(1) 5 qk11(2) so that
all multiplications are feasible. Truncating the sample
matrices in (53) to their dominant SVD,

TSVD [M (2)] 5 E (2)S (2)V (2), (54a)p k11 k11 k11 k11

TSVD [M (1)] 5 E (1)S (1)V (1), (54b)p k k k k

and using the orthogonality properties of the singular
vectors yields the estimate

p T 21 TL 5 E (1)S (1)V (1)V (2)S (2)E (2). (55)k k k k k11 k11 k11

The smoothing ESSE gain is thus defined bypLk

SVDp[Mk(1)]SVDp[Mk11(2)]†. The covariance asso-
ciated with (46) and (55) can be derived similarly to
(47)–(49); one obtains

5 (1) 1 [ 2 (2)] .
Tp p p p p pP P L P P Lk/N k k k11/N k11 k (56)

For Gk 8 Sk(1) Vk11(2) and uk11 8T 21V (1) S (2)k k11

Ek11/N, (56) becomesTE (2)k11

TE P Ek /N k /N k /N

5 E (1){(P (1)k k

T T T1 G [u P u 2 P (2)]G }E (1),k k11 k11/N k11 k11 k k

(57)

where Pk 8 , ∀k. Hence, the smoothing update2(1/q )Sk k

of the ES characteristics consist of
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TABLE 7. ESSE smoothing via statistical linearization.

Equation

Filtering estimate: Tables 3 and 5 during [t , t ]0 N

Smoothing estimate
(backward in time):

pĉ 5 ĉ (1) 1 L (ĉ 2 ĉ (2)), with ĉ 5 ĉ (1) (46)k/N k k k11/N k11 N/N N

Smoothing gain: p T T 21L 5 E (1)G E (2) and G 5 S (1)V (1)V (2)S (2) (55)k k k k11 k k k k11 k11

Smoothing error covariance
(backward in time):

T T TH P H 5 P (1) 1 G [u P u 2 P (2)]G , (58a)k k/N k k k k11 k11/N k11 k11 k

TE 5 E (1)H , with u 8 E (2)E . (58b)k/N k k k11 k11 k11/N

TH P H 5 P (1)k k /N k k

T T1 G [u P u 2 P (2)]G , (58a)k k11 k11/N k11 k11 k

E 5 E (1)H . (58b)k /N k k

The a posteriori covariance can then be obtained from
5 Ek/NPk/N . The sequential scheme is summa-p TP Ek/N k/N

rized by Table 7. In cases with strong nonlinearities or
long intervals without data, Table 7 can be iterated.
Once is known, a new nonlinear ESSE filtering up1ĉ 0/N

to tN can be carried out, followed by the statistical
smoothing up to and so on. Such iterations are2ĉ 0/N

discussed for the EKS in Jazwinski (1970); similar equa-
tions apply here.

c. Discussion

An essential property of Tables 6–7 is that the four-
dimensional statistics of the dynamical variability, mod-
el errors, and data available enter the cost function (6c).
Another is that the statistical smoothing is made on the
nonlinear filtering ESSE estimate, which is already a
state evolution corrected by data. In fact, this contrasts
with the ensemble smoother (Evensen 1997a) or iterated
representer methods (e.g., Bennett et al. 1996, 1997).
Evensen and van Leeuwen (1996) showed that the en-
semble Kalman filter was superior to the ensemble rep-
resenter smoother. An explanation for this unexpected
issue is that in the linear representer approach, the first
guess is the pure (without data assimilation) determin-
istic forecast up to tN. Predictability errors, as well as
numerical and analytical model deficiencies can then
dominate before reaching tN. Driving the pure forecast
back to the true ocean evolution by quadratic minimi-
zation is therefore numerically difficult. This issue could
be solved by modifying the original representer equa-
tions, 5 1 R̃klbl (Robinson et al. 1998a), intofĉ ĉk k

˜ĉ 5 ĉ (1) 1 R (1)b (1), k 5 0, . . . , N,k /N k kl l (59)

where R̃kl(1) 8 [ , . . . , ] ∈ Rn3m are a pos-1 mr (1) r (1)kl kl

teriori representers and b l(1) ∈ Rm their coefficients.
Equations for R̃kl(1) and b l(1) can be derived from the
linearization of Tables 6–7. Other advantages of Table
7 include the efficient reduction to the dominant errors;
the orthogonality properties of the SVD leading to sim-

plified, efficient computations; and the evaluation of the
a posteriori error covariances (58a)–(58b). Table 7 has
been successfully utilized for PE process studies in the
Levantine Basin, whose first results are partially de-
scribed in Lermusiaux (1997).

In real-time smoothing with very large multivariate
states, approximate approaches can be very useful
benchmarks, as the OI scheme continues to be in fil-
tering studies (e.g., Lermusiaux 1999b). For instance,
one may impose a priori the form of the smoothing gains
or simply best-fit the dynamics to the data. In the latter
case, for an ensemble (40) of nonlinear forecasts during
Dtk11, a first approach is to set to the initial con-ĉk/N

ditions of the forecast that minimizes the forecast–data
misfits:

jĉ min \d 2 C ĉ (2)\ . (60a)k /N k11 k11 k115 6)
j

This smoothing is a shooting method toward future data.
It is local, 5 , but it can be iterated. Takingĉ ĉk/N k/k11

the data errors into account, one obtains the cost func-
tion

j Tĉ min (d 2 C ĉ (2)) Rk /N k11 k11 k11 k115 )
j

j3 (d 2 C ĉ (2)) . (60b)k11 k11 k11 6
Examples of such smoothing are given in Lermusiaux
(1997). A few gradient descents in an adjoint approach
(Sundqvist 1993; Rabier et al. 1996) extend (60b) to the
whole interval [t0, tN], with an additional term for the
model parameters (e.g., initial and boundary condi-
tions). Deriving simple nonlinear subspace methods for
iterative adjoint strategies is valuable. Miller and Cor-
nuelle (1999) have successfully utilized such a reduced-
state inverse method for initialization. Assuming perfect
dynamics and a diagonal data error covariance matrix,
the authors employed an ensemble of large-scale hori-
zontal structure functions to adjust the initial conditions
to the future data.

8. Summary and conclusions
Utilizing basic properties and heuristic characteristics

of geophysical measurements and models, a nonlinear
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assimilation approach has been outlined. The concept
of an evolving error subspace (ES), of variable size, that
spans and tracks the scales and processes where the
dominant errors occur was defined. The word ‘‘domi-
nant’’ is naturally specified by the error measure used
in the chosen optimal estimation criterion. Truncating
this criterion to its evolving ES defines the error sub-
space statistical estimation approach (ESSE). The gen-
eral goal of ESSE is to determine the considered ocean–
atmosphere state evolution by minimizing the dominant
errors, in accord with the full dynamical and measure-
ment model constraints, and their respective uncertain-
ties. This rational approach, satisfying realistic and prac-
tical goals while addressing geophysical issues, leads to
efficient estimation schemes. For the minimum error
variance criterion, the ES is characterized by time-var-
iant principal error vectors and values. In general, the
size and span of the ES evolve in time. The meaning
and validity of the dominant truncation of the error space
was addressed, with a focus on synoptic/mesoscale to
large-scale geophysical applications. The ES was inter-
compared to variations of variability subspaces and its
properties were discussed. In Part II of this study, prim-
itive-equation simulations of Middle Atlantic Bight
shelfbreak front evolutions are employed to assess and
exemplify the capabilities of an ESSE system. The ap-
proach has also been used in real-time forecasting for
North Atlantic Treaty Organization (NATO) operations
in the Strait of Sicily and in the simulation and study
of the spreading of the Levantine intermediate water
(Lermusiaux 1997). Other real-time simulations were
carried out in the Ionian Sea and Gulf of Cadiz (Rob-
inson et al. 1998b).

In this first part, filtering and smoothing schemes for
nonlinear assimilation via ESSE are derived (Figs. 1,
2). The time integration of the ES is based on Monte
Carlo ensemble forecasts. The a posteriori members
sample the current ES and are forecast using the full
nonlinear stochastic model. The melding criterion min-
imizes variance in the ES and is much less costly than
classical analyses involving full covariances. The sta-
tistical smoothing keeps all nonlinearities in computing
expectations and is carried out from the nonlinear fil-
tering solution, which is already corrected by data. For
given computer resources, the representation of errors
is energetically optimal. The dynamical forecast is cor-
rected by data where the forecast errors are most en-
ergetic. The assimilation is multivariate and three-di-
mensional in physical space. The model nonlinearities
and model errors are accounted for, and their effects on
forecast errors explicitly considered. The SVD facili-
tates the analysis of the evolving error covariance. The
scheme is well suited to parallel computers. The for-
malism, while conceptually simple, can be complex in
its details. Determining mathematical systems that de-
scribe and track the dominant errors is challenging. Sev-
eral specific components and variations of the present
schemes are provided in appendix B. Dynamical sys-

tems for tracking and learning the ES (Brockett 1991)
are derived in Lermusiaux (1997).

The concepts introduced by the subspace approach
are as useful as the practical benefits. The ESSE for-
malism defines a theoretical basis for rational intercom-
parison of other reduced dimension methods. As dis-
cussed in the text, these methods have led to numerous
controversies and, in fact, several of their respective
assumptions were simply shown to be incompatible. By
definition, the present approach can rationally validate
specific a priori error hypotheses for tailored applica-
tions. In accord with the evolution of the deterministic
dynamics, model errors, and data available, ESSE may,
for instance, lead to different simplified assimilation
schemes for weather or ocean forecasting. In dynamical
modeling, specific interests lead to verified a priori dy-
namical assumptions; similarly, in assimilation there are
a priori error assumptions to verify. The focus on the
dominant errors also fosters the testing and correction
of existing dynamical models (e.g., coding mistakes are
often associated with a large error growth). It equally
implies future observations that span the dominant fore-
cast errors or a search for data optimals (Lermusiaux
1997). ESSE in fact provides a feasible quantitative ap-
proach to both dynamical model improvements and ad-
equate field sampling. Finally, aside from the assimi-
lation framework, the present scheme has other appli-
cations. Turning off the assimilation in Fig. 2, one can
study the impact of the dominant stochastic model er-
rors. This is a new research area and ESSE can validate
specific stochastic models for use in simulations. With-
out model errors and assimilation, the statistical esti-
mation of the variations of variability and stability sub-
spaces is considered. Predictability and stability prop-
erties (e.g., Farrell and Ioannou 1996a,b) can thus also
be decomposed and analyzed. Fixing the estimation time
yields an objective analysis scheme. In general, the
range of applications includes nonlinear field and error
forecasting, data-driven simulations, model improve-
ments, adaptive sampling, and parameter estimation.
The accurate tracking and specification of the dominant
errors hence appears of paramount importance, even
from a fundamental point of view.
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APPENDIX A

Generic Assumptions: Stochastic Dynamical and
Measurement Models

In the present notation, the convention is that of con-
tinuous/discrete estimation. The dynamical state vector
is denoted by c ∈ Rn and its dynamics is continuous.
The observations are made at discrete times tk, with k
5 0, . . . , N, and contained in dk ∈ Rm. The time lag
in between observations is Dtk 5 tk 2 tk21. The values
of the state vector at data times are denoted by ck. The
sample path of the true ocean state, c t, is described by
the deterministic evolution, dc 5 f(c, t)dt, forced by
random processes dw ∈ Rn:

dc t 5 f(c t, t) dt 1 dw. (A1)

The Itô stochastic differential Eq. (A1) represents the
evolution of the true phenomena and scales of interest.
The measurement model is also assumed to be a sto-
chastic extension of its deterministic version, here cho-
sen to be linear, dk 5 Ckck, which leads to

dk 5 Ck 1 vk,tc k (A2)

where vk ∈ Rm are the random processes. The Wiener
processes dw(t) statistically represent the effect of mod-
el errors over dt and vk represents the measurement noise
and measurement model errors at tk. Classic assump-
tions are made (e.g., Jazwinski 1970; Daley 1991). The
forcings dw(t) and vk have zero mean and respective
covariance Q(t)dt and Rk, with E{dw(t 1 d)dwT(t)} 5
0 ∀d ± 0; E{vk } 5 0 for k ± j; and E{dw(t) } 5T Tv vj k

0 ∀k. In passing, the probability densities of the random
forcings are not formally required to be Gaussian. Fol-
lowing Jazwinski (1970), for a given functional g, the
notations E{g} and ĝ refer to the statistical mean. For
an ensemble of size q, the sample mean operator is
written E q{·}. The conditional mean state of is de-tc k

noted by ; an estimate of this mean state is denotedtĉ k

by . At a given time tk, the white random processesĉk

dw(tk) are uncorrelated to the error, ( 2 ). Thetĉ ck k

state error covariance at tk is defined by Pk 8 E{( 2ĉk

)( 2 )T} ∈ Rn3n. To refer to quantities beforet tc ĉ ck k k

and after assimilation, the adjectives a priori and a pos-
teriori are used, respectively. In mathematical terms, a
(2) and a (1) distinguish the two. For the singular
vectors in section 6, the (2) and (1) are simplified to
subscripts. A smoothing estimate at tk is denoted by

(e.g., Gelb 1974; Catlin 1989): the index k/N in-ĉk/N

dicates that all observations made up to tN are used.
State vector augmentation is used in (A1) to describe

time-correlated random forcings of the deterministic
model. For example, random walks, ramps, or expo-
nentially time-correlated random processes are consid-
ered as dynamics such that the enlarged system (A1) is

only excited by unbiased white noise (Gelb 1974). Ex-
ternal forcings are assumed part of c t in (A1) since they
may evolve with time and feedback between external
forcings and internal dynamics exist. Similarly, the
boundary conditions, which are nonlinear relations be-
tween internal and boundary state variables, have an
evolution equation. They are here part of (A1). Finally,
parameter estimation is included in (A1) by adding a
stochastic evolution equation for each parameter to be
estimated. The products of parameters and original state
variables then introduce new nonlinearities. To limit the
size of the augmented c t the parameters can be ex-
panded into (local) unknown coefficients functionals
(parameter EOFs) instead of gridpoint discretized fields.

APPENDIX B

Specifics and Variations of the ESSE Schemes

a. Normalization in multivariate ES

In most cases, ocean and atmosphere models are mul-
tivariate. For the ES estimation not to be sensitive to
field units, a normalization is needed (Preisendorfer
1988). Field nondimensionalization is not adequate. For
instance, salinity in psu and temperature in Celsius have
similar orders of magnitude but, relative to temperature
variations, small errors in salinity can lead to large errors
in velocities. It is not the fields but their errors that need
to be comparable. Each sample error field is thus divided
by its volume and sample-averaged error variance. De-
tails are in Lermusiaux (1997). The normalization is
necessary in the SVDs and multivariate ES convergence
criterion (appendix B, section b). For the minimum ES
variance update (Table 3), the error singular vectors are
redimensionalized prior to computations.

b. Quantitative ES divergence/convergence criteria

When the dominant error eigendecomposition for any
given time is quasi-insensitive to new information, the
principal covariance (5) has converged and the melding
(6b) can be performed. Within the ensemble scheme
chosen (Table 5), the new information is the value added
by new forecasts. Monte Carlo integrations can thus be
stopped when the dominant SVD of error samples (41)
stablizes. Let us assume that r $ 1 new forecasts have
been carried out in a parallel batch (Fig. 2), and that
the rank-p SVD of the ‘‘previous’’ error sample matrix,

SVDp(M) 5 ESVT ∈ Rn3p, (B1)

and rank-p̃ SVD of the matrix formed of the previous
and r new Mr error samples,

r T n3p̃˜ ˜ ˜SVD ([M | M ]) 5 ESV ∈ R ,p̃ (B2)

are available, where Ẽ ∈ Rn3p̃, ∈ Rp̃3p̃, and ṼT ∈S̃
Rp̃3p̃, with p̃ $ p. The associated principal error co-
variances are, respectively, 5 EPET, where P 5pP
(1/q)S2; and 5 , where 5 , with q̃p̃ T 2˜ ˜ ˜ ˜ ˜P EPE P (1/q)S
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5 q 1 r . q. In accord with sections 4 and 5c, the
goal is to compute the similarity between the amplitude
and structure of these two covariances. One would like
to find out how close ∈ Rn3p is to ∈ Rn3p̃.1/2 1/2˜ ˜EP EP
For coherence with the variance measures (6a)–(6c), a
logical similarity coefficient r is

k k
p p̃1/2 T 1/2 1/2˜ ˜s (P E EP ) s (P P )O Oi i

i51 i51r 5 5 , (B3)p̃ p̃
p̃ p̃s (P ) s (P )O Oi i

i51 i51

where k 5 min(p̃, p) and si( · ) selects the singular value
number i. If $ tr(P), the coefficient r # 1. The˜tr(P)
equality holds when 5 and one stops the inte-p̃ pP P
grations when r . 1. There are variations of (B3). One
can also ensure that the variance and structure of each
of the new r forecast can be sufficiently explained by
EP1/2. There are then r coefficients r of form analogous
to (B3) to evaluate. Other criteria consist of increasing
the ensemble size until the new members yield insig-
nificant reductions in the a posteriori data residuals or
insignificant changes in (17).ĉ(1)

c. Error subspace forecast variations

For an efficient account of nonlinear effects, the en-
semble method (Table 5) was preferred to integrate the
dominant errors. Several alternate error forecasts are
discussed next.

Iterative error breeding in between DA times gen-
eralizes the breeding of perturbations of Toth and Kal-
nay (1993). This new breeding (Fig. 2) uses the error
ensemble forecast to time tk11 (Table 5) for iterative
improvements of the error initial condition at time tk.
Once the error ensemble forecast , is made, the simplest
approach is to rescale the ES forecast coefficients,

in (41), to their initial norm, hence imposing,P (2)k11

5 [tr /tr ] and set,11 , , ,P (1) P (1) P (2) P (2)k k k11 k11

5 . This was used to test simulations,11 ,E (1) E (2)k k11

in Part II. If the dynamics and model error statistics are
locally steady, convergence to the local, steady-state
principal component approximation of (37) is possible.
For more realistic cases, the iterated and,11P (1)k

can be obtained from an approximate inversion,11E (1)k

of (40)–(41). Breeding can be also combined with shoot-
ing. One may shoot for an initial ES that leads to

in best accord with the measurements at tk11ĉ (1)k11

(Fig. 2). This smoothing technique for determining op-
timal initial error conditions does not require an adjoint
model.

A tangent linear model (TLM) and its adjoint can be
used to search for the dominant right and left singular
error vectors, embracing the classic search for optimal
perturbations (e.g., Farrell and Moore 1992; Sundqvist
1993; Errico et al. 1993; Moore and Farrell 1994; Eh-
rendorfer and Errico 1995; Molteni et al. 1996). Since
TLM forecasts are commonly shown to be similar to

nonlinear forecasts for a limited duration, TLMs should
perhaps only be used to derive local adjoint models. In
a search for singular vectors, the nonlinear model would
then be run forward and the linear adjoint backward for
approximate back integrations. In fact, by nonlinear in-
teractions, the fastest growing singular vectors of the
TLMs interact/modify the basic state the most and the
fastest. The duration for which a linearly estimated sin-
gular vector is reliable decreases proportionally with the
vector’s growth rate. Utilizing TLMs in forward com-
putations for DA thus requires care.

The filtering algorithms described by Tables 3–5 are
only based on Monte Carlo nonlinear error forecasts
so as to satisfy our goals (section 3). It is related to but
differs from the strict ensemble scheme (Evensen
1994a,b, 1997b; van Leeuwen and Evensen 1996). Its
theoretical and practical advantages are now discussed.
First, the ES approach brings a framework for validating
the ensemble scheme. It permits the quantitative as-
sessment of added value by new forecasts (appendix B,
section b). For a given criterion, for example, r 5 98%
in (B3), the size of the ES is allowed to evolve with
the dynamics and data available (2a)–(2b). In light of
the intermittent and burst ocean processes, and of the
often eclectic and variable data coverage, this property
is important. Second, the central processing unit (CPU)
requirements are reduced. For p 5 q, the ensemble and
ESSE melding lead to the same a posteriori estimates,
but in ESSE only one melding is necessary. For p , q,
the present melding occurs in the significant subspace
of the sample errors, further reducing computations at
least by a factor q/p (Part II). Third, organizing errors
according to their variance allows physical analyses of
their dominant components. Such analyses can lead to
adequate simplifications of DA schemes. If the errors
are of numerical nature, they are usually distinguishable
in the dominant ES structures. Algorithms and codes
can be fixed; ESSE can be used for model verification.
The main advantage of the present statistical smoothing
(Tables 6, 7) is the use of the nonlinear filtering evo-
lution as the starting point in the smoothing. The classic
ensemble smoother (e.g., Evensen and van Leeuwen
1996) starts from a pure forecast, which increases the
potential of divergence. Finally, the present schemes
open the doors toward DA based on subspace trackers
(Lermusiaux 1997).

In real-time and management operations, it might not
be necessary to forecast the ES continuously. A sta-
tionary, historical, or climatological ES could suffice in
specific conditions. If the dynamics and data statistics
(2a)–(2b) are stationary, all possible dominant error vec-
tors for the region studied can be evaluated in advance
and stored, just as one can store the classic vertical EOFs
of a region. Only the principal error values are then
forecast. From experience, principal error value models
could be derived. For instance, one may assume ex-
ponential growth in between each assimilation. Another
practical method is to forecast the ES for a central as-
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similation time and to use it at other times for the time
ramping of observations. Analytical ES can also be de-
fined and projected onto the most dominant variability
subspace of a given ocean state by a priori ensemble
runs.

d. Criterion for ‘‘best’’ forecast selection

Even when the probability density forecast associated
with (2a)–(2b) is available, the question of what should
be the estimate of the geophysical state is still primor-
dial, especially in practice (e.g., Robinson et al. 1989).
Each sensible choice corresponds to a criterion defining
the ‘‘best’’ or optimal forecast. Several such criteria are
discussed next. The simple theoretical concepts pre-
sented are linked to the current schemes and illustrated
with Gulf Stream scenarios.

A good estimate should obviously have small ex-
pected forecast errors. The state that is closest to the
truth (2a)–(2b), in the sense of any convex loss function
or measure6 of the expected error, is the conditional
mean (34). Here its logical statistical estimate is the
ensemble mean given by (36b). It approximatesemĉ (2)k11

the conditional mean with a standard deviation error
decay of O(1/ q). However, may be ‘‘tooemĉ (2)Ï k11

smooth’’ or very unlikely, even though it tends to be
the closest to the truth (2a) in the convex-measure sense.
Considering the meandering Gulf Stream with several
rings, (34) would smooth out certain scales and reduce
physical gradients as a function of the predictability
limits of the considered processes. A practical solution
is to set the best forecast to the ensemble member

that is the closest to the ensemble mean. Thisjĉ (2)k11

combines the properties of likehood, that is, the avail-
able physical properties (2a) of the dynamics, with that
of the ‘‘best guess’’ in the expected convex measure
sense. For example, instead of smoothing out the me-
andering front and averaging uncertain rings, this cri-
terion would select the forecast whose frontal axis is
the closest to the mean one and that is in the process
of shedding rings. All realistic gradients and other phys-
ical properties are then maintained.

Other options considered here are (Fig. 2) the central
forecast (35), most probable forecast, and forecast of
minimum data misfits. The nonlinear central forecast

is the classic deterministic forecast. It is thecfĉ (2)k11

first-order estimate of the conditional mean. In Part II,
which has no model errors, is found slightlycfĉ (2)k11

superior to in the rms data misfit sense. Theemĉ (2)k11

central and ensemble mean forecasts are found close in
the convex measure sense, but the central forecast con-
tains more ‘‘realistic’’ features and, hence, is more like-

6 For simplicity, the class of loss functions defined in Jazwinski
(1970, 146–150) is here referred to as convex measures. This ter-
minology is, in fact, a subclass, since the measure does not need to
be convex.

ly. These properties are as those of the member closest
to the ensemble mean promoted above. In several other
primitive equation simulations (e.g., Lermusiaux 1997),
the central and ensemble mean forecasts had comparable
data misfits but the central forecast was qualitatively
better. Of course, this depends on the ensemble size and
may vary with the simulation considered. For example,
Evensen and van Leeuwen (1996) have reached other
conclusions in quasigeostrophic simulations. The most
probable forecast can also be estimated from the en-
semble. A probability density (histogram) is first com-
puted for each of the n state variables (i.e., elements of
c). The range of values taken by the q members is
divided into a given number of intervals and the mem-
bers assigned to their respective interval, forming the
histogram. For each variable, the most probable value
is the center of the tallest segment or bar. The most
probable forecast is defined by these values or,mpĉ (2)k11

to ensure that (2a) is satisfied, by the ensemble member
of minimum averaged rms difference withjĉ (2)k11

these values. Selecting as the best forecast ismpĉ (2)k11

motivated by the non-Gaussian nature of the probabil-
ities of the nonlinear model (2a). In fact, if isemĉ (2)k11

found to be quite different than , an option ismpĉ (2)k11

to choose as the best forecast and to reducempĉ (2)k11

the ensemble to the subset of members of probability
density locally convex around . With the out-mpĉ (2)k11

liers removed, minimum error variance can then be ap-
plied for local conditional mean estimation. If the subset
is not selected, should be updated from thempĉ (2)k11

conditional probability given the data, using Bayes the-
orem (e.g., Jazwinski 1970). A practical issue that we
found is that the differences between the most probable
and central forecasts were sometimes dominated by nu-
merics (e.g., Shapiro filter). Finally, at analysis time,
the forecast of minimum data misfits can be chosen
among the stochastic ensemble. This is, in a sense, an
adjoint approach in the data domain: instead of neglect-
ing model errors, the more frequent small data errors
are neglected. However, as for , one may needmpĉ (2)k11

to subsample the ensemble. In addition, it is only the
best forecast within the data domain, not over the whole
modeling domain.

e. Algorithmic issues

The matrix 8 CE2 is evaluated so that E2P(2)ETpC̃
is never formed. The ES covariance mapped onto the
data space, , is not always invertible but the

Tp p˜ ˜C P(2)C
positive-definite R should guarantee the feasibility of
the inversion in (18). For stability, a truncated SVD
inverse can be used (e.g., Bennett 1992). Sequential
processing of observations (Parrish and Cohn 1985; Cho
et al. 1996) is adequate in Table 3 since (17)–(18) yield
minimum variance in the ES. It is employed: data are
assimilated one after the other, with, if necessary, a Cho-
leski predecomposition of R. In Table 3, the sparse ma-
trices 5 CE2 are evaluated via pointers. Only non-pC̃
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null elements are retained. The size of the ES evolves
in function of (B3). When r is larger than a threshold,
iterations are stopped. Parallel computing is used, de-
pending on availability. The cost of the ESSE system
shown in Fig. 2 is often driven by the ensemble size.
In terms of the number of forecasts made, this cost is
of order q. The OI is then of order 1 and the full co-
variance scheme of order n. The representer method
rescaled to filtering is of order 2m/2 5 m, where m is
the total number of scalar observations made during the
assimilation period. Typical numbers for a 10-day pe-
riod and three assimilations of 50 CTDs on 20 levels
are n 5 3.105, q 5 300, and m 5 6000. Assuming that
a 1-day forecast is issued in 30 min and that 30 CPUs
are available, the 10-day period ESSE takes 50 h. The
full covariance scheme takes almost 6 yr, an iteration
of the representer method of almost 42 days. Additional
computational aspects are discussed in Part II and in
Lermusiaux (1997).
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