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ABSTRACT

Identical twin experiments are utilized to assess and exemplify the capabilities of error subspace statistical
estimation (ESSE). The experiments consists of nonlinear, primitive equation–based, idealized Middle Atlantic
Bight shelfbreak front simulations. Qualitative and quantitative comparisons with an optimal interpolation (OI)
scheme are made. Essential components of ESSE are illustrated. The evolution of the error subspace, in agreement
with the initial conditions, dynamics, and data properties, is analyzed. The three-dimensional multivariate min-
imum variance melding in the error subspace is compared to the OI melding. Several advantages and properties
of ESSE are discussed and evaluated. The continuous singular value decomposition of the nonlinearly evolving
variations of variability and the possibilities of ESSE for dominant process analysis are illustrated and emphasized.

1. Introduction

In the present study, the error subspace statistical es-
timation (ESSE) and optimal interpolation (OI) schemes
are comparatively applied to Middle Atlantic Bight
shelfbreak front simulations. To assess the ESSE ca-
pabilities, the ideal perfect model situation is chosen.
The benchmarks employed are identical twin experi-
ments. The OI scheme used is the standard operational
method of the Harvard Ocean Prediction System
(HOPS; e.g., Lozano et al. 1996; Robinson et al. 1996),
optimized to the shelfbreak front situation. The ESSE
filtering scheme utilized in these comparative experi-
ments is described in the first part of this study. Both
the OI and ESSE methods improve the forecast, which
exemplifies the need for data assimilation, even in the
ideal perfect model situation. After several assimila-
tions, the OI is shown to retrieve 75% of the patterns
of the simulated true ocean (section 6). ESSE, in accord
with the error subspace convergence criterion employed
(Lermusiaux and Robinson 1999, hereafter Part I)
achieves a 95% retrieval. Other ESSE improvements, like
the tracking of the error subspace nonlinear evolution
and the dominant error forecast, are also exemplified.
Considering costs, OI is cheaper than ESSE by a factor
approximately equal to the size of the error subspace (ES)
divided by the number of central processing units (CPUs)
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used in parallel. In the present application, this factor is
of the order of 20. As was argued in Part I, ESSE can
be employed to refine the a priori assumptions made in
other reduced schemes, in this case OI. The preexercise
investigation of the ESSE error vectors and weights could
yield refinements of the OI weights and, hence, lead to
a more robust and efficient assimilation system for sub-
sequent rapid and sustained assessments in very large
regions of complex dynamics.

The text is organized as follows. Section 2 summa-
rizes the physical background. Section 3 discusses the
numerical and physical parameters of the dynamical
model. Section 4 describes the 39-day twin experiments
utilized in this study. Section 5 deals with the OI and
ESSE respective parameters. The comparative assimi-
lations are analyzed in section 6. The ES nonlinear evo-
lution is exemplified and the cost of ESSE is compared
to that of several other data assimilation (DA) methods.
The conclusions, with several of the ESSE advantages
and properties, are given in section 7.

2. GFD background

The geophysical fluid dynamics (GFD) experiments
used in this study to evaluate the ESSE concept and test
the corresponding schemes (Part I) are idealized shelf-
break front simulations. The basic state of the idealized
tilted fronts are created using a feature model (Sloan
1996) of observed Middle Atlantic Bight (MAB) shelf-
break front properties in a summer situation (e.g., Gar-
vine et al. 1988). For the review and extensive simu-
lations of the phenomena occurring in the MAB, we
refer to Beardsley and Boicourt (1981) and Sloan
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FIG. 1. Initial conditions of the tracer fields of the central run. (a) and (b) North–south cross
sections along 71.158W in the T and S fields. (c) and (d) The surface horizontal map for the same
fields. Note the across-shelf asymmetry (tilted density front, stablizing tilted steep topographic
slope, and surface temperature stratification). For dynamical evolutions, a geostrophically balanced
perturbation and a random white noise in space are added to each basic field.

(1996). The common dominant feature in the MAB con-
sists of a temperature and salinity front, separating the
shelf and deep ocean water masses. This front is often
located above the shelf break. In the present feature
model, the front separates the cold fresh shelf water
(8.58C # T # 15.58C) to the north and the warm salty
slope water to the south (138C # T # 228C). The ge-
ometry is simplified to a periodic channel, over a zonally
uniform slopping topography. Since the focus is on the
shelfbreak region, the shelf and deep slope regions are
idealized to flat bottom boundaries (Fig. 1). The linear
tilt in topography is in the opposite direction of the titled
front and has a stabilizing effect (Sloan 1996). For rep-
resenting summer conditions, the surface is exponen-
tially stratified, down to 30 m. The basic state is in
thermal wind balance, with the main flow east–west and
zero flow at the bottom. It is a steady-state solution of
the primitive equations (PE).

To create dynamical evolutions, two types of small
perturbations are added initially to the basic steady state:
one is in geostrophic balance, the other is a random
white noise in space. For each PE field, the perturbation
amplitude relative to the associated background field
varies between 1% and 5%. Cross sections and surface
horizontal maps of temperature and salinity in one such
initial field are shown in Fig. 1. All scales are perturbed.
An ensemble of initial conditions (IC) yields a varied
spectrum of nonlinear dynamical evolutions. The spe-
cifics of each evolution are a function of the location
and shape of the dominant instabilities that the pertur-
bation has initiated. Projecting the ensemble of pertur-
bations onto the initial optimal perturbations (OP) as-
sociated to a given time interval (e.g., Farrell and Moore
1992; Palmer 1993; Farrell and Ioannou 1996a,b), the
amplitudes along each OP grow within that interval in
proportion to the corresponding OP singular values. For
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TABLE 1. Central run parameters.

Numerical parameters Centroid lat and long
Domain extension
Grid resolution
Grid size

Time step
State vector size

398N, 718W
100 km (x), 112.5 km (y)
2.5 km, both in x and y
41 (x), 46 (y), 19 (hybrid levels, one flat at 0.5 m,

all others sigma)
450 s, for all state variables
145, 222

Physical parameters Shapiro filter
Boundary condition
Vertical mixing

F , F : 8-1-1; F , F : 8-1-1; F : 2-3-1u y T s v t

East–west cyclic, north–south channel walls
Ay 5 0.5 cm2 s21; 5 50 cm2 s21cvctAy

Ky 5 0 cm2 s21, 5 50 cm2 s21cvctK y

Drag coefficient Cd 5 2.51023

some specific realizations, slowly growing OP can dom-
inate the variability for a certain time if the initial per-
turbations projected strongly on these OP structures. On
ensemble average, as the OP spectrum establishes itself,
the nonlinear transfers of energy between growing per-
turbations and the basic initial state also modify the total
field evolutions. Hence, the transfer matrix of the con-
tinued linear approximation of the nonlinear system
evolves in time. The OP structures and spectrum are
thus time dependent.

For data assimilation, an important feature of the pre-
sent simulation is the across-shelf asymmetry charac-
terized by the tilted density front, the stabilizing tilted
steep topographic slope (0.16%), and the surface tem-
perature stratification (Fig. 1). Preferred directions and
locations exist and correlations among variations of var-
iability (Part I) are thus expected to be inhomogeneous,
anisotropic, and nonuniform.

3. Dynamical model, numerical and physical
parameters

The HOPS nonlinear rigid-lid PE model, in the
f -plane configuration, is used for dynamical forecast
and the HOPS system for peripherals (Robinson et al.
1996). For confidence, several simulations of different
physical (missing parameterizations, frontal width) and
numerical parameters (domain sizes, horizontal and ver-
tical grid resolutions, meridional extent) were tested
with ESSE assimilation. All were successful. The pa-
rameters of the simulation discussed in this presentation
are summarized in Table 1. They are similar to those of
the example briefly discussed in Robinson et al. (1998).

The bottom depth linearly increases from 123.75 m
on the shelf to 232.5 m in the deepest southern region
(Fig. 1). The horizontal resolution of 2.5 km is chosen
so as to resolve the large submesoscales. The levels are
distributed vertically for optimum representation of the
surface stratification, tilted front, and topography (Fig.
2). The total number of grid points is 41 3 46 3 19 5
35 834. The PE state vector c comprises the temperature
(T), salinity (S), internal velocity , and barotropic(û, ŷ)
transport streamfunction (c) fields. For high waven-

umber filtering and mixing, a Shapiro filter (Shapiro
1970, 1971; Lermusiaux 1997) of order 8 is applied
once every time step to the internal velocity and tracer
fields (8–1–1). The time rate of change of barotropic
vorticity is filtered with a Shapiro filter 2–3–1 (order 2,
3 times every time step). The associated effective dif-
fusivities and viscosities (Lermusiaux 1997) are ade-
quate for the MAB front (Sloan 1996). The boundary
conditions are cyclic in the zonal direction. On the chan-
nel walls, the condition is ‘‘no slip’’ for velocities, ‘‘no
flux’’ on tracers and constant barotropic vorticity. There
is no surface forcing. The bottom stress is set to Cd|u|u,
where u is the total horizontal velocity and Cd 5 2.5
3 1023 is the drag coefficient.

A thorough discussion on the numbers relevant to the
shelfbreak front dynamics is given in Sloan (1996). For
the assimilation, the essential nondimensional numbers
are the internal Rossby radius of deformation, Rd 5
(1/ f )[g(Dr/r)D]1/2, and the Rossby number, Ro 5 U/fL
(e.g., Pedlosky 1987), where f is the Coriolis frequency,
g the gravity, Dr/r a characteristic density difference
ratio over the vertical scale of motion D, and U a char-
acteristic horizontal velocity over the horizontal scale
of motion L. Because of the summer temperature strat-
ification, the perturbed feature model (Figs. 1a,b) has
two dominant horizontal scales Rd of local quasigeos-
trophic adjustment. One is associated with the main
shelfbreak front, below the stratification. The other cor-
responds to the portion of this front that penetrates the
bottom 10 m of the prescribed stratified layer. At these
depths, the T stratification is not yet strong enough to
dominate but is important enough to locally modify the
orientation, strength, and extent of the front (Figs. 1a,b).
One can assign a Dr/r and a D to each of these vertically
limited features. In numerical values, the corresponding
‘‘frontal Rd’’ is about 5 8 km, while the ‘‘surfaceFRd

stratification Rd’’ is about 5 4 km. The horizontalSRd

grid resolution chosen is thus adequate (Sloan 1996).
These numbers indicate that the scales of the eddies or
waves formed in the bottom 10 m of the surface strat-
ification and ultimately trapped in the surface should be
smaller than the scales of the internal frontal variability.
Of course, as the fields evolve, multiscale interactions
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FIG. 2. Tracer grid resolution and tracer data subsampling. (a) Hor-
izontal grid; the resolution is 2.5 km, with, respectively, 41 and 46
grid points in the zonal and meridional directions (1886 points per
level). (b) Vertical hybrid-level grid; The first level is flat at 0.5 m,
all others are sigma levels. Large dots (a) and circles (b) indicate the
location of the four grid points tracer data subsampling, corresponding
to a resolution of 10 km. The simulated data are equivalent to 100
(aircraft deployed) conductivity–temperature–depth [(A)CTD] casts,
dropped every 3 days over the global domain with a low horizontal
resolution.

occur throughout the water column. The Rossby number
Ro measures the magnitude of the nonlinear terms rel-
ative to the Coriolis force. For the most energetic scales,
its initial value is around Ro . 0.05 while after 30 days,
Ro . 0.15 2 0.40. The nonlinearities play an increasing
role with time.

4. Identical twin experiment

For this first assessment of ESSE, an identical twin
experiment is employed (Fig. 3). A numerical model
simulation during a certain time interval is chosen to
be the ‘‘true ocean’’ or control run. A subsampled da-
taset is then extracted from this simulation. Starting
from ICs sufficiently independent from the simulated
true ones, a second simulation is evolved, using the same
dynamical model as for the simulated truth. This defines
the ‘‘estimated ocean,’’ in which the subsampled data
is assimilated. For each assimilation scheme utilized,
such an estimated evolution is carried out, as if one was
making real ocean observations in the true ocean. The
purpose of such experiments is to analyze, in ideal exact
dynamical model conditions, the quality of the true
ocean retrieval as a function of the DA schemes used.

As described in Fig. 3a, the true ocean is a 39-day
PE model run starting from the initial conditions tc0

shown in Fig. 1. ‘‘Tracer data’’ are subsampled from
the true ocean every 3 days and every four grid points,
from day 18 to day 36 (Fig. 3a). The horizontal sub-
sampling (Fig. 2) corresponds to a resolution of 10 km,
larger than both local Rossby radii of deformation. The
simulated data are equivalent to 100 (A)CTD casts,
dropped every 3 days over the global domain with low
horizontal resolution. The estimated ocean or forecast
initial conditions are obtained by perturbing all truefĉ0

IC state variables with both geostrophic and random
white noise, 5 1 . From these ICs, the PEf ftĉ c n0 0 0

model issues a forecast at day 18, as illustrated by Fig.
3a. The subsampled tracer profiles are then assimilated
every 3 days, up to day 36. From day 18 onward, the
two assimilation methods compared yield their own es-
timated ocean; they have their own forecast and melded
fields. No noise is added to the simulated data: vk 5 0
(Part I). This choice is justified since for both the OI
and ESSE, if the data noise characteristics are correct
in the estimation criterion, the assimilation will succeed.
For ultimate verification, a forecast is issued for day 39
and compared with the truth. In this text, only the ex-
periment of Fig. 3 is discussed in detail. Other successful
comparisons carried out involved simulated current
data, and local instead of global assimilations.

It is important to assess the need for the assimilation
of both temperature and salinity data. In the present
MAB simulations, the tracers are usually strongly cor-
related spatially. With ESSE, observing one tracer can
suffice; the evolving, complex multivariate ES covari-
ances allow the correction of one tracer from the ob-
servation of the other. On average, assimilating both

tracers instead of one via ESSE only improved the rms
error by 5%. If, in advance, one knew the adequate error
covariances, the same could be achieved with OI. How-
ever, for the variability of the tilted front, simple water
mass models or classic OI cross-correlation functions
have difficulties in giving accurate estimations of salin-
ity from temperature. It is only to eliminate this OI issue
that CTD, instead of expendable bathythermograph
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FIG. 3. Identical twin experiment. (a) The experiment history. A 39-day PE model forecast
simulates the true ocean evolution, from which tracer data are subsampled every 3 days and
assimilated into the estimated ocean forecasts, that is, another simulation using the same model
but starting from different initial conditions. (b) The OI/ESSE comparative assimilations on day
18. The squared numbers, 1 to 4, correspond to the panels of Fig. 4.

(XBT), casts are assimilated in the following compar-
isons. One objective of this work is, in fact, to show
that, if the use of ESSE is too expensive on a sustained
basis, the prestudy of the ESSE weights can refine the
water-mass models employed in the OI schemes.

5. HOPS OI/ESSE parameters

The OI scheme employed is discussed in the appen-
dix. It is that of the operational HOPS methodologies.
The ESSE filtering scheme was described in the Part I
of this study. The parameters specific to the present
comparisons are now described.

For both methods, data are assimilated at observation
times only. In the Harvard OI scheme, g(t 2 tk) is thus
chosen equal to a numerical Dirac function (see appen-
dix). Since the true ocean is simulated, the OI handicaps

were reduced by optimizing the OI parameters. The OI
involves first an objective analysis (OA) of the sensor
data, in two stages (Fig. A1, appendix): the synoptic/
mesoscales are computed after the mapping of a large-
scale, background field. For the present OA of tracer
fields, the along-/across-shelf advection and mixing
properties yield anisotropic correlation length scales. In
the first-stage large-scale OA, the zonal and meridional
decay scales employed are, respectively, 5 40 kmxl2

and 5 25 km. The corresponding large-scale zeroyl2

crossings are 5 80 km and 5 50 km. In the secondyxl l1 1

stage, the mesoscale decay scales are 5 7 km andxl2

5 5 km, with zero crossings ( , ) estimated to 27y yxl l l2 1 1

km (Sloan 1996). The depths of the 21 flat OA levels
for tracer and dynamic height analyses are nonuniformly
distributed, as a function of the stratification and tilted
front. The internal velocities obtained from the OA dy-
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namic height (appendix) are adequate for assimilation.
However, after 18 days, all OA barotropic transport
streamfunctions c obtained assuming a uniform, flat ref-
erence level were not accurate enough to be assimilated.
In the present OI, only the analyzed tracers and internal
velocities are thus blended with the forecast. The bar-
otropic transport c is affected by the data after the as-
similation, via dynamical adjustments to the melded
tracers and internal velocities. A more sophisticated OI
involves primitive equation balancing of the OA trans-
port prior to the assimilation (e.g., Lermusiaux 1997).

For the ESSE, the filtering scheme of Part I, Tables
3 and 5, is employed. The notation in this paper is as
in Part I (see Part 1, appendix A). For example, the
symbols (2) and (1) distinguish a priori and a posteriori
quantities. The stochastic model errors are set to zero
(dw 5 0). The a posteriori ensemble initial conditions
are created using Eq. (39c) (Part I). The singular value
decomposition (SVD) of the ensemble spread is updated
and the analysis of Burgers et al. (1998) reduced to its
significant subspace. Here, the size of the ensemble
evolves with time, in accord with data and dynamics,
as dictated by the similarity coefficient [Part I, Eq. (B3)].
If during the assimilation this coefficient r requires an
a posteriori ensemble size pk(1) larger than the a priori
one pk(2), Eq. (39a) of Part I is used for the additional
ICs. Note that in the present simulations, employing Part
I, Eq. (39a), for all members also led to successful as-
similations. In the data–dynamics melding (Part I, Table
3), the measurement errors are assumed to be uncor-
related, time invariant, and constant in the vertical with

5 0.028C2 and 5 0.0012 (the diagonal elementsT Sr rii ii

of R; see Part I). In passing, since the data are not
perturbed (section 4), these small values are only used
for comparisons with the OA (requirements of the OA
code) and for solving Eq. (18) (Part I) based on a
Moore–Penrose inversion (e.g., Bennett 1992). Within
the possible forecasts (Part I, appendix B, section d),
the central forecast is preferred. For the presentc fĉ (2)k11

simulation, the tests performed have shown that this option
yields a posteriori estimates closer to the truth than the
filtered, too-smooth, ensemble mean option. Overall, the
central forecast option yields smaller rms error and larg-
er pattern correlation coefficients by about 2%–5%.

6. HOPS OI/ESSE comparisons

The ESSE and OI are now compared using the twin
experiment of section 4. The schematic of the assimi-
lations occurring at day 18 is shown in Fig. 3b. The
ocean forecast is the same for both the OI and ESSE.fĉ18

The tracer data d18 is subsampled from the true ocean
and melded with the forecast, via the OI or ESSE
scheme. The schemes have their own error models,
hence, their own melding weights and melded fields,

and . Beyond day 18, the ESSE and OI es-OI ESSEĉ ĉ18 18

timates have separate evolutions; for example, their
forecasts for day 21 to day 39 differ. Similar compar-

ative diagrams apply to the subsequent assimilations
illustrated in Fig. 3a. In passing, because of the large
dimensions of the multivariate state space, the 2D il-
lustrations hereafter focus more on the portions of the
state space that are, at a given time, most active dy-
namically or important for the assimilation, rather than
on comparative Eulerian time evolutions (e.g., surface
field time evolution).

a. Day 18

1) PRIMITIVE EQUATION FIELDS

The level-5 (10–20 m) estimate of the ocean tem-
perature forecast for day 18 is shown in Fig. 4a. Figure
4b shows the corresponding simulated true ocean T field
from which the day-18 data were subsampled. Looking
first at Figs. 4a,b, there are several energetic scales of
variability, from submesoscale to mesoscale shelfbreak
wave patterns and eddies. Note also that the shape and
nature of the features that develop on the cold and warm
sides of the front in general differ. For example, as seen
in Figs. 4a and 4b, most of the surface eddies on day
18 are on the warm side. The ESSE organization of the
ensemble of such simulations allows the study of the
dominant statistics of these evolving features. For in-
stance, the cold submesoscale to mesoscale eddies in
the slope water develop at all times, but they first adjust
around day 5 to day 15 by a combination of frontal
instabilities, meridionally sheared advection, and dif-
fusion. When an extrusion of surface slope water is large
enough (L $ ), its northern extremity is advectedFRd

eastward by the main flow faster than its base. By miss-
ing and sheared advection, the extremity ultimately re-
captures the next undulation of the warm slope water,
enclosing a cold shelf-water eddy. These eddies are
strictly trapped into the stratified 30 m and are mainly
in thermal wind balance.

The OI retrieval of the true T is shown by Fig. 4c,
the ESSE retrieval by Fig. 4d. The differences between
Figs. 4c and 4a, and Figs. 4d and 4a, show the impacts
of these DA methods, respectively. Considering Fig. 4d,
the low forecast temperature variability in the western
part of the front (Fig. 4a, west of 718W) is appropriately
increased. The 70.98W cold surface baroclinic-subme-
soscale eddy (Fig. 4a) is displaced to the west and re-
shaped, toward the true cold eddy (C2 in Fig. 4b). The
easternmost intrusion (I2 in Fig. 4b) of cold shelf water
(12.68C # T # 13.68C) is well estimated, but the sub-
sequent intrusion downstream is overestimated (Fig.
4d). The position and variable tightness of the front
(13.68C # T # 15.58C) are accurately corrected. In the
eastern- and westernmost portions of the cyclic domain,
the forecast front (Fig. 4a) was too wide, while in the
center of the domain, its tight portion was misinclined.
The rms error and pattern correlation coefficient confirm
these qualitative arguments as will be shown later.

Considering Fig. 4c, the anisotropic OI scheme has
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FIG. 4. HOPS OI/ESSE comparisons at day 18. The temperature fields on level 5 (10–20 m)
are shown overlaid with the level-5 velocity vectors (scale arrow is 0.20 m s21). (a) Forecast for
day 18, common to both the OI and ESSE estimates; (b) simulated true ocean at day 18; (c) a
posteriori OI field; and (d) a posteriori ESSE field.

improved the T forecast. The dominant scales of the OI
wave packets agree with the true ocean. At observation
points, the forecast tracers are replaced by their OA
values (appendix). Yet, by definition, the OI weights
interpolate the observations with spatially uniform
scales, in this case as ellipsoidal structures. For instance,
the double-lobe cold intrusion into the slope water (I1,
I2 in Fig. 4b) is almost estimated as a uniform cold pool
by OI. The southernmost part of this true intrusion is a
cold eddy (C1 in Fig. 4b, at 38.78N–71.48W), which has
a surface radius of 3.5–4 km smaller than the 10 km
subsampling. Even though the corresponding ESSE
eddy (Fig. 4d) is more accurate than the OI eddy (Fig.
4c), neither is a good estimate. The OI front is too wide
at several locations and its position is not as good as
the ESSE one. The OI weights do not address the non-
homogeneous, anisotropic, and nonuniform properties
of the variations of frontal wave packets and cold eddies
trapped in the surface (Fig. 4b). These properties are

realization and time dependent. In the phase space, they
are defined by the local shape of the variations of var-
iability (Part I). Specifying a priori an OI scheme coping
with such properties is difficult. In ESSE, the weights
are naturally flow dependent. In fact, prestudies via
ESSE could be employed to refine the classic opera-
tional schemes to application-specific, but flow-depen-
dent, error models.

Figure 5 gives the same T panels as in Fig. 4 except
that level 7 is considered. This level (20–35 m) is at
the base of the stratification and is the depth at which
the frontal wave packets of scales L $ interact withFRd

(amplify/inhibit) the surface-trapped eddies and oscil-
lations of scales . For instance, the interaction be-SRd

tween the bottom of the cold eddy (C1 in Fig. 5b) and
the shelf water intrusion (I1 in Fig. 5b) is relatively well
captured by ESSE even though it is at the limit of the
observation array. The OI renders this interaction as the
base of a dipole cold eddy (Fig. 5c). North of the front,
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FIG. 5. As for Fig. 4 but for level 7, located at the base of the surface stratification (20–35 m).

the slight upwellings (T # 118C) of deeper shelf water,
parallel to bursts of slope water (T ; 12.58C) into the
shelf, are also better interpolated by ESSE (Fig. 5d) than
by OI (Fig. 5c).

In conclusion, the OI improves the forecast features
but some of the true physical characteristics and param-
eter ranges are modified (e.g., front position, eddy ori-
entations, frontal width, and wave packet variability).
ESSE conserves the statistics of the tracer and flow field
variabilities while only correcting the most erroneous
components of the forecast. An essential component of
the ESSE scheme is thus its flow-dependent time-evolv-
ing multivariate error decomposition and error update
(Part I). It is exemplified next.

2) PRIMITIVE EQUATION ERROR SUBSPACE

The model is exact in this experiment (Fig. 3) and
the day-18 error forecast is a pure predictability limit
error (model error covariance Q 5 0, measurement error
covariance R 5 0; see Part I, appendix A). At day 18,
the a priori ES is the nonlinear extension of the day-18
optimal perturbation dominant spectrum. After that day,

the stationary observation arrays reorder and modify
this spectrum.

As explained in Part I (appendix B, section a), the
forecast sample error fields are normalized by their vol-
ume and sample-averaged variance. For each PE variable,
these norms h were for the day-18 forecast: hT 5 0.298C,
hS 5 0.086 psu, h û 5 1.04 cm s21, 5 1.06 cm s21,h ŷ

and hc 5 0.0168 Sv, respectively. These averaged
variability amplitudes are characteristic of MAB shelf-
break front phenomena (Sloan 1996). As exemplified
next, the normalization is numerically necessary but is
also very useful physically. It determines the relative
importance of variables in the error vectors. Figure 6a
shows the history of the ES similarity coefficient r (Part
I; appendix B, section b) during the parallel batches of
perturbed forecasts for day 18. The chosen criterion
limit of 97% was attained after 200 forecasts. Figure 6b
shows the associated error covariance eigenvalue spec-
trum and Fig. 6c the cumulative spectrum. During the
39-day period, features and patterns of multiple scales
unfold, grow, and dissipate, but the ES size using that
same 97% convergence criterion remains within 190–
250 forecasts. As the number of active scales increases,
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FIG. 6. (a) The values of the similarity coefficient r for the day-18 ES forecast,
k

1/2 T 1/2˜ ˜s (P (2)E (2)E (2)P (2))O i 18 18 18 18
i51

r 5 ,p̃
p̃s (P (2))O i 18

i51

as a function of its evaluation number (Part I; appendix B, section b). The pairs beside the asterisks
denote the respective size of the current and previous ES estimates; for the ensemble sizes 200
(current) and 160 (previous), r was 97.12%, higher than the 97% limit chosen. Parallel iterations
were thus stopped. (b) The eigenvalue spectrum of the day-18 energy-normalized PE error co-
variance forecast; the spectrum contains predictability errors only. (c) The cumulative (0–1) nor-
malized spectrum associated with (b). Utilizing 20 of the 200 error eigenvectors already explains
70% of the variance; using 100 of the 200 vectors explains 93% of the variance.

the number of energetic future scenarios tends to de-
crease, hence keeping a quasi-constant ES size. One
reason for this is that the data array is statistically sta-
tionary: the same CTD pattern is assimilated every 3
days (section 4 and Fig. 2). The data force the ES di-
mension toward stationarity. Another consists of the
evolution toward a quasi-turbulent regime, most likely
associated with multiscale-attracting behaviors (Part I).
As more scales become active, more of the dominant
variability is locally constrained to specific directions
of the state space. The ES then exploits this organized
memory character of the nonlinear variability.

Figures 7 illustrates the first a priori error eigenvector
that interestingly is associated with submesoscale to me-
soscale eddy fields and baroclinic frontal oscillations
trapped into the 30-m surface stratification (Figs. 7a and
1a), and to bottom-trapped frontal wave patterns (Fig.
7b). The middepth fields of smaller nondimensional am-

plitudes are not shown; by day 18, the corresponding
scales ( ) are not as developed. This first vector ex-FRd

plains 24% of the total error variance (Fig. 6c). The
characteristic anisotropic length scales are 5–10 km (pe-
riods of 30–60 km). The multivariate character of the
error patterns is exemplified. As in most dominant ei-
genvectors, the normalized T and S fields are strongly
coupled, with common spatial phase and similar am-
plitudes. They could compensate and keep the density
field unperturbed. The surface and bottom fields (Figs.ŷ
7a and 7b), the bottom û field (Fig. 7b), and c field
(Fig. 7a) indicate that the total velocity contribution of
the bottom-trapped patterns is larger than that of the
surface patterns, in proportion to the vertical extent of
the two processes. Figure 8 shows the vertical depen-
dence of the temperature component of this first error
vector. The amplitude decreases by a factor of 3 below
the stratification (e.g., level 12), and progressively in-
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FIG. 7. Normalized multivariate first eigenvector of the day-18 PE error covariance
ESSE forecast. (a) The surface level and (b) the bottom level. The nondimensional fields
shown are as indicated below each plot.
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FIG. 8. Normalized temperature component of the first eigenvector of the day-18 PE
error covariance ESSE forecast. The levels shown are as indicated below each plot.

creases again in the bottom 40 m. It also exemplifies a
common property of the dominant eigenvectors: the
most energetic variations of variability are located along
the tilted front (Sloan 1996). Figures 7 and 8 demon-
strate that the dominant error variance is not always
within the largest scales considered. The regions and
phenomena of highest uncertainty are here determined
by the evolving dynamics and data (Part I; Tables 3 and
5, with dw 5 0). In the present study, a coarse grid
scheme (e.g., Fukumori and Malanotte-Rizzoli 1995)
would not resolve the first error eigenvector on day 18.

The second a priori error eigenvector, which accounts
for 7% of the total error variance, is shown in Fig. 9.
This vector is located along the tilted front and is quasi-
barotropic: the shapes vary with depth, but the scales,
sign, and amplitude of the perturbations are quasi-uni-

form in the vertical, for all four PE volume variables.
The scales, 10 km in the eastern region to 20 km in the
center and western regions (periods of 60–120 km), are
larger than in the first vector (Figs. 7, 8). The second
vector explains mesoscale instabilities growing on the
main tilted front, with scales related to . For com-FRd

parisons, the levels are as in Fig. 8. The coupling T field
on level 7 indicates that surface perturbations can be
forced at the bottom of the stratification by energetic
patterns of scales $ occurring below (levels 10–19).FRd

The third vector accounts for 6% of the total variance.
It explains interactions between the largest mesoscale
(35-km scale, 200-km period) at the surface and me-
soscale (10-km scale) wave patterns below. These in-
teractions are not local. The hypothesis of banded error
covariance (e.g., Parrish and Cohn 1985) is not valid
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FIG. 9. As for Fig. 8 but for the second error eigenvector.

on day 18 of the present study. The other dominant
eigenvectors (e.g., vector 4 accounts for 4% of the error
variance, vector 5 for 3.4%) describe similar multivar-
iate error patterns but with different combinations of
scales, phases, locations, and magnitudes. The vectors
50–100 are mainly submesoscale to mesoscale and most
of the last 100 vectors are submesoscale fields, several
of which interact with lower amplitude mesoscale pat-
terns. The 25 dominant vectors account for 74% of the
variance, the 50 dominant for 84%, and 100 dominant
for 93% (Fig. 6). The hypotheses of Part I are thus
adequate in this experiment.

Figure 10 illustrates the a posteriori reorganization of
the ES at day 18 [the columns of E18(1)]. The nor-
malized temperature component of the first a posteriori
error vector is shown in Fig. 10a, the second in Fig.
10b, both at levels 1, 7, 12, and 19. Comparing Fig. 10

with Figs. 8 and 9, the assimilation of the CTD array
(Fig. 2) has modified the error structure and amplitude
within the ES. The dominant patterns are now in the
submesoscale to mesoscale fields (Fig. 10). The first
temperature component (Fig. 10a) corresponds to sub-
mesoscale to mesoscale oscillations of the surface front
and to submesoscale shelfbreak front patterns. The sec-
ond component (Fig. 10b) explains a submesoscale eddy
field within the surface stratification, again with shelf-
break front patterns below. These vectors, columns of
E18(1), are combined next using (38) and (39c) of Part
I to determine the a posteriori ensemble of fields used
as ICs in the error forecast to day 21 (section 5).

Figure 11 is utilized to evaluate the ESSE error es-
timates with respect to the actual errors on day 18. For
conciseness, temperature is the only variable shown, but
the following facts apply to all PE variables. Figure 11a
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FIG. 10. ESSE estimate for the a posteriori PE error covariance for day 18, pP (1);18

the normalized T component of (a) the first and (b) the second eigenvector estimate.
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FIG. 11. Real temperature error fields for the ESSE estimates on day 18. The real
errors at levels 1, 7, 12 and 19, (a) before and (b) after ESSE assimilation.
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shows the real a priori error fields, at levels 1, 7, 12,
and 19. These fields are differences between the true
ocean and forecast temperature states on day 18 (e.g.,
Figs. 4a,b and 5a,b). Structure-wise, the similarity with
the dominant eigenvectors of the forecast ES on day 18
(Figs. 8, 9) is striking, at all depths. The ESSE error
variance forecast [diagonal of not shown] equal-pP (2),18

ly agrees with the amplitudes of the real errors of the
forecast (Fig. 11a). The differences between the true
ocean and ESSE-melded states on day 18 (e.g., Figs.
4b–d and 5b–d), that is, the real a posteriori temperature
error fields, are shown in Fig. 11b. The scales and fea-
tures are very analogous to these of the dominant ei-
genvectors of the a posteriori ES on day 18 (e.g., Fig.
10). The amplitudes of the real a posteriori error fields
(Fig. 11b) are also in accord with that of the ESSE a
posteriori error variance estimate [diagonal of pP (1),18

not shown]. Comparable verifications against the real
errors have been carried out for all variables and sub-
sequent data times, from day 18 to day 39. All led to
positive results. This property is an important advantage
of the ESSE approach since several of the other DA
methods do not provide such error measures so readily.

b. Day 18 to day 39

From day 18 to day 39, several perturbations of dif-
ferent scales develop and nonlinearly interact together
and with the basic state. The local Rossby number in-
creases (section 3) and the flow tends to a turbulent
state. Such phenomena were analyzed in detail by Sloan
(1996). Via ESSE, the nonlinear evolution of the grow-
ing/decaying wave patterns and scales is continuously
organized according to variance. The smallest 5–10-km
scales ( ) that had grown first, trapped in the surfaceSRd

stratification and near the bottom slope (e.g., Figs. 7,
8), progressively interact with the main frontal wave
patterns ( ) of the largest (10–50 km) scales but withFRd

a slower growth rate. Plumes of warm slope water into
the colder shelf and their counterpart plumes of shelf
water unfold and grow, to ultimately dissipate by mix-
ing. A simple mechanism by which shelf water eddies
form into the surface slope water was given in section
6a(1). Similarly, below the stratification, patches of
slope water detach, sometimes sliding upward toward
the shelf. Selected results concerning this day 18 to day
39 evolution of the ESSE and OI estimates are now
discussed.

1) FORECAST AND MELDED PE FIELDS FOR DAY 33

Since the start of the experiment, five OI/ESSE as-
similations have occurred (Fig. 3). Focusing on the lo-
cations at which new scales of variability have unfolded
most during days 18 to 33, middepth levels are illus-
trated [the evolution on the levels of Figs. 4 and 5 is
considered in section 6b(3)]. Figure 12a shows the level-
12 temperature (50–90 m, Fig. 2b) of the simulated true

ocean on day 33. Below the stratification, frontal wave
patterns of 40–70-km periods have grown. These mid-
depth patterns were not present on day 18; their length
scale is of O ( ). Within the 100-km cyclic domain,FRd

there are three main intrusions of slope water into the
shelf region (T ; 108C), separated by two shelf water
extrusions. A subsurface lens of slope water is detaching
east of 718W (Fig. 12a). Similar phenomena have been
observed in the real ocean (e.g., Sloan 1996). Note that
on day 33, most of the subsurface lenses are warm,
developing in the cold side, which is another example
of the frontal variability asymmetries of the present fea-
ture model [sections 2 and 6a(1)]. On the cold side,
parcels that appear to be detached are often just me-
anders of the front, with a sheared vortex-tubelike struc-
ture. Figure 12b gives the OI forecast for day 33, issued
after five OI assimilations from day 18 to day 30 (Fig.
3). Figure 12c shows the same, but for the ESSE. As
will be confirmed by rms errors and pattern correlation
coefficient (PCC) measures [section 6b(4)], the ESSE
forecast is better than the OI one. Figures 12d and 12e
show the T field on day 33 after OI and ESSE assim-
ilation, respectively. The differences between these pan-
els and the corresponding forecast panels (Figs. 12b,c)
show the assimilation effects. Note again the strong cor-
relation between the true ocean and ESSE fields: the
three slope water intrusions with a detaching warm wa-
ter lens around 39.158N–70.98W (L1 in Fig. 12a), and
the tightness and meandering position of the front are
better estimated by ESSE in Figs. 12c and 12e than by
OI in Figs. 12b and 12d.

2) ERROR SUBSPACE FORECAST FOR DAY 33

Figure 13 illustrates the dominant vectors of the ES
forecast for day 33, which was used in the ESSE meld-
ing (Figs. 12c,e). Comparisons with Figs. 7–9 exemplify
the nonlinear evolution of the ES. The dominant ES
forecasts for day 18 and day 33 are quite different.
Surface stratification and middepth levels, where the
most changes have occurred, are shown. The bottom
components on level 19 are similar to those of Figs. 7–
9, but with more scales. The first error vector forecast
for day 33 (Fig. 13a) accounts for uncertainties at the
extremity of the main slope water intrusion, and hence
to an eventual slope water detachment (Fig. 12). The
second vector (Fig. 13b) is a perturbation of the merid-
ionally elongated slope water intrusion at the edges of
the cyclic domain. Several dominant error vectors al-
ways have a signature along these edges since the data
resolution is lower there (12.5 km). The third vector
(Fig. 13b) explains wave patterns and oscillations along
the now-meandering shelfbreak front; these patterns are
similar to those of the first vector for day 18 (Figs. 7
and 8). Yet they have distinct locations and vertical
structures since they are associated with the nonlinearly
evolved basic state of day 33 (Fig. 12), which is different
than that of day 18 (Figs. 4 and 5). The statistics of
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FIG. 12. HOPS OI/ESSE comparisons on day 33. The temperature fields (8C) on level
12 (50–90 m) are shown overlaid with the level-12 velocity vectors (scale arrow is 0.20
m s21). (a) The simulated true ocean on day 33; (b) and (c) the a priori OI and ESSE
fields on day 33, respectively. (d) and (e) For that same day, the a posteriori OI and
ESSE fields, respectively.

dominant error vectors is nonstationary. Finally, the
fourth vector in Fig. 13d (de)couples the second and
third vectors.

3) FIELD FORECAST FOR DAY 39

After the seventh assimilation on day 36, the OI and
ESSE scheme issue a forecast for day 39. They are
compared in Figs. 14–17. To verify the OI and ESSE
total velocity forecasts, Fig. 14 shows the barotropic
transport streamfunction c overlaid with the surface ve-
locity vectors. The ESSE (Fig. 14c) immediately cor-
rects total velocities in accord with the multivariate ES

forecast and CTD-forecast residual profiles. The present
OI (Fig. 14b) assimilates velocities assumed in geo-
strophic balance with the analyzed tracers and waits for
the PE to dynamically adjust its fields (section 5). As
was argued in Part I, section 5b, the multivariate ESSE
assimilation, in agreement with the evolving dynamics,
yields a better velocity forecast, at all scales. Figures
15–17, respectively, compare the temperature forecast,
at the surface (Fig. 15), at the base of the stratification
(Fig. 16), and at middepth within the front (Fig. 17). In
contrast with Figs. 4 and 5, the simulated true ocean is
now quasi-turbulent (Figs. 15a, 16a, 17a). The surface
eddies and submesoscale to mesoscale patterns (Fig.
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FIG. 13. Error subspace forecast for day 33. Panels (a)–(d), correspond to eigenvector numbers 1–4, respectively. For each vector, the
normalized error forecast fields shown are c, T on level 7 (20–35 m), on level 12, and T on level 12 (50–90 m).ŷ

15), the intense plumes and filaments with internal up-
welling at the base of the stratification (Fig. 16), the
collapsing by nonlinear mixing of the day-33 slope wa-
ter intrusion (Fig. 12a) into a tight quasi-zonal shelf-
break front, and the slope water patches are all better
forecast by ESSE (Figs. 15c, 16c, and 17c) than by OI
(Figs. 15b, 16b, and 17b).

4) PATTERN CORRELATION COEFFICIENT AND

ROOT-MEAN-SQUARE-ERROR EVOLUTIONS

Ordering the field values of a variable into a vector
c, the dimension of which varies with the spatial ex-
tension of the field (e.g. surface, cross section or vol-
ume field), the field PCC and rmse are, respectively,
defined by
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FIG. 14. HOPS OI/ESSE forecast comparisons at day 39. The barotropic transport streamfunction
fields (Sv) are shown overlaid with the surface velocity vectors (scale arrow is 0.20 m s21). (a)
The simulated true ocean at day 39; (b) the OI forecast; and (c) the ESSE forecast for that same
day. Lat 398N and long 718W indicated.

t b T b(c 2 c ) (ĉ 2 c )k kPCC 8 , (1)
t b b\c 2 c \ \ĉ 2 c \k 2 k 2

t T t trmse 8 Ï(c 2 ĉ ) (c 2 ĉ ) 8 \c 2 ĉ \ , (2)k k k k k k 2

where c b denotes a background or climatological field
vector, the true ocean field vector, its estimate,tc ĉk k

and \ · \2 the vector ,2 norm. In the present experiment,
the PCC and rmse for all PE fields should tend toward
their ideal values, respectively, one and zero, if the as-
similation of the subsampled tracer array suffices to con-
trol the predictability errors. Figures 18a and 18b com-
pare the 39-day evolution of the PCC and rmse of the
ESSE and a posteriori OI estimates for the zonal velocity
volume field u. The background in (1) was set to the
basic initial state zonal velocity. On day 18, the forecast
and true ocean have a PCC for u only equal to 43%
(Fig. 18a). On that day, the first array of CTD casts
(Figs. 2, 3) is assimilated and the OI/ESSE curves start

to differ. For the ESSE, both the forecast and after-
melding values are given (jagged curve). Up to day 36,
only the OI-melded values are shown. At day 39, both
the OI and ESSE values are forecasts. From day 27
onward, the PCC for the melded ESSE u stays between
93% and 96%. This is close to the 97% limit chosen
for the ES similarity coefficient r (Part I; appendix B,
section b). The ESSE forecasts for these dates all have
a PCC higher than 90%, except for day 33 (83%). The
ESSE final forecast on day 39 has a PCC of 95%. From
day 27 onward, the PCC for the melded OI u stays
between 70% and 82%. The OI forecast on day 39 has
a PCC of 70%. Similar comments can be made for the
rmse curves. On average during the simulation, the
melded ESSE u is measured by the PCC and rmse to
be 40% better than the OI u. With the rmse measure,
the ESSE forecast for day 39 is 54% better than the OI
one; with the PCC measure, it is 34% better. For both
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FIG. 15. HOPS OI/ESSE forecast comparisons at day 39. As for Fig. 14 but for the surface
temperature fields (8C). (a) The simulated true ocean at day 39; (b) the OI forecast; and (c) the
ESSE forecast.

the OI and ESSE, whether the subsequent PCC and rmse
increase or decrease depends on the state. Even though
the four realizations between day 27 and day 36 of the
melded ESSE and OI PCCs fluctuate around 95% and
75%, respectively, a longer integration is needed to
show that, within some range, the PCCs have in fact
stabilized.

c. Timings

The cost of ESSE is now briefly compared to that of
other methods, using a benchmark of a 3-day forecast
with one assimilation (Table 2). The size of the dynam-
ical and measurement models employed in the present
study, the associated assimilation parameters, and the
elapsed time for the main computations involved are
first stated. The state and data vector sizes are repre-
sentative of a realistic at-sea experiment. With one
UNIX Sparc 20 CPU, one forecast took 20 min, one
melding 20 min, and the SVD of an error sample matrix

of 210 members 30 min. The HOPS OI took 40 min all
together. The dominant orders of the numerical floating
point operations involved in the Kalman filter (KF),
direct Monte Carlo or ensemble Kalman filter (EnKF),
present ESSE, HOPS OI, Kalman smoother (KS), rep-
resenters, and adjoint methods (e.g., Robinson et al.,
1998) are given. Elapsed times are then computed for
each scheme.

For all methods, the cost driver in a state forecast is
approximately of O (ns), where n is the state vector size
and s the number of time steps. For the present ESSE
(Part I, section 6), the number of floating point opera-
tions decomposes into (a) the ensemble forecasts, q 3
O (ns); (b) rank-p SVD, O (npq); (c) state melding [Part
I, Eqs. (17), (18)], O (2npm 1 m3/6); and (d) ES update
[Part I; Eqs. (27), (28)], O (mp2 1 p3 1 np2). The term
m3/6 accounts for the Choleski predecomposition of R
since sequential processing of observations is used (Part
I; appendix B, section e). For the EnKF (Evensen and
van Leeuwen 1996), one obtains similarly (a) the en-
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FIG. 16. HOPS OI/ESSE forecast comparisons at day 39. As for Fig. 14 but for the temperature
fields (8C) on level 7 (20–35 m). (a) The simulated true ocean at day 39; (b) the OI forecast; and
(c) the ESSE forecast.

semble forecast, q 3 O (ns); (b) ensemble gain, O (2nqm
1 m3 1 nm2); and (c) q back-substitutions [Part I, Eq.
(20a)], O (nmq). In the EnKF, the computation of the a
posteriori ES covariance, carried out in ESSE, is not
counted since it is not evaluated. In all terms above, n
is commonly several orders of magnitude larger than p,
q, and m ; while p # q, q and m can be of similar
magnitudes. The leading order is thus often that of the
terms containing n. The error forecast hence commonly
dominates and its is the only cost considered in the other
schemes of Table 2. For example, assuming that an ad-
joint method (or any other gradient descents) converges
in ni iterations, its dominant order is ni 3 O (ns).

The timing comparisons are divided into two bench-
mark groups. The first employs a single workstation,
with four CPUs; it represents a common at-sea situation
of one Harvard workstation assigned to ocean field es-
timation. The second states the elapsed time for the
CPUs that were actually used in this study: they con-
sisted of a parallel network of 15 slower CPUs. The

adjoint method was assumed to require ni 5 200 iter-
ations. In passing, the four filters can be adjusted to the
three smoothers by multiplying their cost by 2. The
classic full covariance methods (e.g., KF, KS) take more
than a year for the 3-day benchmark. They cannot be
used. The ESSE and EnKF methods require from 12.5
h to a bit more than a day. They can be used in real-
time operations (e.g., Lermusiaux 1997). For this ex-
periment, the adjoint method and direct representer tech-
niques are more expensive: they need 2.8–19 days for
the chosen benchmark. This confirms that the repre-
senters are most advantageous when the total number
of measurements is low (smaller than the size of the
ES) and when an a posteriori error estimate is not re-
quired (Robinson et al. 1998). Assuming one does not
need an a posteriori error estimate, the cost of the rep-
resenter method can be reduced by employing a pre-
conditioned iteration technique (e.g., Bennett et al.
1996). Another direction that could resolve both the cost
and a posteriori error issues is to combine the ES ideas
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FIG. 17. HOPS OI/ESSE forecast comparisons at day 39. As for Fig. 14 but for the temperature
fields (8C) on level 12 (50–90 m). (a) The simulated true ocean at day 39; (b) the OI forecast;
and (c) the ESSE forecast.

with the representer approach. This was suggested in
the smoothing techniques developed in Part I of this
study.

7. Conclusions

ESSE was applied to an identical twin experiment for
evaluating its capabilities in an ideal perfect model sit-
uation. The 39-day nonlinear evolution of the simulated
true ocean, from a state in quasi-stationary thermal wind
balance to a state in a quasi-turbulent regime was well
captured. Truncating the error covariances to their con-
verged most ‘‘energetic’’ low-dimension subspace did
not lead to field divergence. The improvements over the
OI scheme were demonstrated, both qualitatively and
quantitatively.

The essential components of the present scheme, the
flow-dependent, time-evolving ES and the multivariate
minimum error variance assimilation in that subspace,
were exemplified. In this study, the subspace where the

most energetic multiscale errors occurred was success-
fully tracked and organized. The SVD of the normalized
dominant error covariance estimate was shown to fa-
cilitate the physical understanding and study of the dom-
inant errors. For instance, the a priori and a posteriori
dominant ES estimates were compared and the data in-
fluence on the dominant error covariance was analyzed.
The ESSE error covariance estimates were validated
against the real errors. The cost of ESSE was contrasted
with that of common DA methods. It was shown suitable
for real-time applications at sea with today’s computers.

In general, depending on the ocean problem of in-
terest, the present approach can quantitatively validate
other reduced methods, that is, determine the state-space
location of the dominant errors in specific conditions.
Analyzing the results of ESSE simulations is also useful
to refine the a priori assumptions made in approximate
schemes, in this case the OI. Utilizing ESSE in obser-
vation system simulation experiments is promising.
Such preexercise investigation of the dominant errors
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FIG. 18. Comparative evolution of the pattern correlation coefficient (a) and root-
mean-square error (b) of the OI and ESSE zonal velocity u estimates. For the OI,
after melding values are shown by stars and linked with solid lines. For the ESSE,
both forecast and after-melding values are shown by squares and linked with dash–
dotted lines. With the PCC measure, the a posteriori ESSE estimates for u are 18%–
69% better than the OI ones, with a 38% average improvement over the 39-day
period. With the rms measure, the a posteriori ESSE estimates for u are 31%–55%
better than the OI ones, with a 44% average improvement.

can tailor the OI weights to a specific situation. Com-
bining OI and ESSE can yield efficient assimilation sys-
tems for rapid and sustained assessments of very large,
complex ocean regions.

Several properties specific to the MAB simulation are
exemplified. For instance, the statistics of dominant er-
ror vectors are observed to be nonstationary. These vec-
tors are modified in harmony with the evolution of the
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TABLE 2. Timings (elapsed time, I /O included).

Dynamical and
measurement models
(3-day forecast, one as-
sim.)

● State vector size
● Data vector size
● Number of time steps
● Ensemble size
● ES size
● Horizontal gpts
● Vertical levels
● Sparc 20 elapsed time

Forecast
Melding
Error sample SVD

n 5 145 222 (ngpts 5 35 834)
m 5 2800 (100 CTD, 4 gpts subsampling)
s 5 576
q 5 210
p 5 100 to 210
lh 5 1886
ly 5 19

20 min HOPS OA 30 min
20 min HOPS blending 10 min
30 min

Floating point ops. ● KF
● EnKF
● ESSE
● HOPS Ol
● KS
● Representers
● Adjoint methods

2n 3 O (ns)
q 3 O (ns) 1 (2nqm 1 m3 1 nm2) 1 (nm)q
q 3 O (ns) 1 (npq) 1 (2npm 1 m3/6) 1 (mp2 1 p3 1 np2)
1 3 O (ns) 1 ly (lh(m /ly)2) 1 n
4n 3 O (ns)
(2m 1 3) 3 O (ns)
ni 3 O (ns)

One Harvard group
parallel workstation
4 CPU, Sparc 20

● KF
● EnKF
● ESSE ( p 5 210)
● HOPS Ol
● KS
● Representers
● Adjoint method

2n 3 20 3 1/4 5 2.5 yr
210 3 20 3 1/4 1 400 1 267 5 1.2 days
210 3 20 3 1/4 1 30 1 20 5 18.3 h
20 1 30 1 10 5 1 h
4n 3 20 3 1/4 5 5 yr
(2m 1 3) 3 20 3 1/4 5 19.4 days
200 iter. 3 20 5 2.8 days

Actual experiment
15 CPU, all Sparc 10

● KF
● EnKF
● ESSE ( p 5 210)
● HOPS Ol
● KS
● Representers
● Adjoint method

2n 3 50 3 1/15 5 1.4 yr
14 3 50 1 400 1 267 5 22.8 h
14 3 50 1 30 1 20 5 12.5 h
50 1 30 1 10 5 1.5 h
4n 3 50 3 1/15 5 2.8 yr
(2m 1 3) 3 50 3 1/15 5 13 days
200 iter. 3 50 5 7 days

nonlinear dynamics and measurements. They can be an-
isotropic and/or inhomogeneous, barotropic and/or bar-
oclinic. In general, these properties vary with the initial
conditions, internal dynamics, and data type and cov-
erage. Finally, the formation of surface shelf water ed-
dies, the subsurface lenses of slope water, the asym-
metries in the frontal variability, and the dominant sur-
face–bottom coupling mechanism in the present MAB
simulation are analyzed via ESSE. This demonstrates
that ESSE is a powerful tool, capable of continuously
organizing the multivariate 3D variabilities in accord
with their relative variance.
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APPENDIX

HOPS Optimal Interpolation (OI)

The data–forecast melding step of the HOPS OI (e.g.,
Lozano et al. 1996) consists of a two-scale objective
analysis (OA) of the observations, followed by a blend-
ing of the forecast and OA fields. For simplicity, the
index k is omitted.

a. Objective analysis (OA)

The HOPS OA utilizes the Gauss–Markov or mini-
mum error variance criterion to map observations to
horizontal grids (e.g., Bretherton 1976; Carter and Rob-
inson 1987; Robinson 1996). Denoting by x the vector
of model gridpoint locations, by X the vector of mea-
surement locations, and by c the background or first-
guess unbiased estimate of the state vector (obtained
using climatology, feature models, statistics, etc.), the
OA estimate of a univariate and statistically uniform
field using a notation similar to that of Bennett (1992),
is defined by,
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FIG. A1. HOPS optimal interpolation scheme. (a) The two-scale
objective analysis and (b) the blending of the forecast with the ob-
jectively analyzed observations.

,OA 21ĉ 5 c 1 COR(x, X)[COR(X, X) 1 R] [d 2 d]
(A1a)

and its error correlation matrix is
OA 21P 5 COR(x, x) 2 COR(x, X)[COR(X, X) 1 R]

3 COR(X, x). (A1b)

The classic KF background error covariance P(2) has
been compacted into the background error correlation
matrices at data–data points, COR(X, X), and at grid–
data points, COR(x, X). The vector d is the data vector,
the matrix R its associated error correlation matrix at
X, and d the background field at X. For horizontal OAs
(A1a)–(A1b), the error fields are assumed to have zero
vertical correlations.

In the HOPS OA, all horizontal error correlation ma-
trices in (A1a)–(A1b) are defined from a scalable cor-
relation function. In the present study, for xi and X j

denoting the horizontal locations of a grid and data
point, respectively, the elements i, j of COR(x, X) are

22 2(1/2)r2COR(x , X ) 5 (1 2 r )e , (A2)i j 1

where
2 T 22r 5 (x 2 X ) L (x 2 X ), (A3a)1 i j 1 i j

2
Dt

2 T 22r 5 (x 2 X ) L (x 2 X ) 1 . (A3b)2 i j 2 i j 1 2t

The matrix L1 5 diag( , ) ∈ R 2 contains the zonalyxl l1 1

and meridional zero crossing length scales and L2 5
diag( , ), the zonal and meridional decorrelation orx yl l2 2

e-folding decay scales. The scalar t is the decorrelation
timescale and Dt the interval between the time of the
observation and of the estimate. The data error corre-
lation matrix at data points is chosen diagonal, with
uniform nondimensional variance e 2, hence R 5 e 2I.

The OA is computed in two stages (Fig. A1). In the
first stage, the largest dynamical scales are gridded at
each level, using estimated large-scale e-folding spatial
decays, zero crossings, and time decay. The background
field for this first step is the data horizontal average. In
the second stage, the dominant dynamics of interest
(e.g., mesoscale) is gridded using its estimated space–
time decays, the background being the first-stage OA.
The main assumption made in this two-scale OA is that
the errors in the largest (first-stage) and most energetic
(second-stage) dynamical scales are statistically inde-
pendent. In practice, this can smoothly meld different
data types (e.g., synoptic observations and climatology).
The quasigeostrophic streamfunction cQG (dynamic
height), obtained by integration of the hydrostatic equa-
tion up and down from a chosen flat level of reference
zref,

z

c (x, y, z) 5 2 rg dz , (A4)QG E
zref

is evaluated for each T, S profile and objectively ana-

lyzed in two stages prior to assimilation. In (A4), g is
gravity, the pressure is scaled to a streamfunction via
cQG 5 fr0p, and r is the density obtained from the
equation of state. The internal mode velocities and bar-
otropic transport streamfunction are then computed as-
suming geostrophic balance and a rigid lid (Lermusiaux
1997).

b. Blending

The blending of the forecast with the OA-gridded
field (Fig. A1) is defined by

.OAĉ(1) 5 Lĉ 1 (I 2 L)ĉ(2) (A5)
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The diagonal matrix L ∈ R n3n contains the blending
coefficients,

OA OAe 2 emax i
l 5 g(t 2 t ), (A6)i kOA OA1 2e 2 emax min

where is the OA field error variance at grid pointOAe i

i, and and are, respectively, the maximum andOA OAe emax min

minimum error variance of the OA field. The OA field
weights are set to one at data points where is min-OAe i

imum and to zero where is maximum. For reducingOAe i

the assimilation shock, the same OA fields can be suc-
cessively assimilated at times surrounding the obser-
vation time. The function g(t 2 tk) (e.g., a negatively
skewed Gaussian centered on tk) then empirically re-
duces the weight of the OA fields as a function of the
lag t 2 tk. Equations (A1)–(A6) define the HOPS OI
scheme.
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