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Abstract—In this paper, we consider a hybrid framework com-
bining compressive spectrum sensing with geo-location database
to find the spectrum holes in cognitive radio. In the hybrid frame-
work, a geo-location database algorithm is proposed to be stored
locally at secondary users (SUs) to remove the extra transmission
link to a centralized remote geo-location database. Specifically,
by utilizing the output of geo-location database algorithm, a
data-assisted non-iteratively reweighted least squares (DNRLS)
based compressive spectrum sensing algorithm is proposed to
improve detection performance under sub-Nyquist sampling rates
for wideband spectrum sensing, and to reduce the computational
complexity during signal recovery. In addition, an efficient
method for the calculation of maximum allowable equivalent
isotropic radiated power in TV white space (TVWS) is also
designed to further relax SUs. The convergence and complexity
of the proposed DNRLS algorithm are analyzed theoretically.
Furthermore, the proposed framework is tested on real-time
signals and data after having been validated by simulated signals
and data in TVWS.

Index Terms—Compressive spectrum sensing, geo-location
database, wideband spectrum sensing, TV white space.

I. INTRODUCTION

W ITH the rapid development of wireless communica-

tions, the scarcity of spectrum resources becomes

an urgent problem. However, as reported by the Federal

Communications Commission (FCC) and the UK Office of

Communications (Ofcom), a large percentage of spectrum

resources are underutilized [1], [2]. Cognitive radio (CR) is a

new intelligent wireless communication technology proposed

to solve the inefficiency of the fixed spectrum assignment

policy [3]. Furthermore, it is noted that spectrum used to be

allocated to analog TV signals has been cleaned and opened

to access due to the digital-switch-over. To implement CR

in TV white space (TVWS) successfully, there are mainly

two goals to be achieved: 1) protect incumbent licensed users

from harmful interference; 2) utilize the available spectrum

efficiently [4].

In order to avoid any harmful interference to primary

services in TVWS, secondary users (SUs), also named as

white space devices (WSDs), should have the knowledge of

spectrum occupancy. Two approaches have been proposed to

make SUs aware of the spectrum occupancy. One approach is

geo-location database which is a centralized database to output

the maximum allowable equivalent isotropic radiated power
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(EIRP) for each vacant TVWS channel for a specific location

and time [1]. So far, several geo-location database providers

such as Spectrum Bridge, Nominet, Google etc. [5] have been

approved by Ofcom. Geo-location database typically calcu-

lates the interference generated in wireless communication

systems through theoretical propagation models rather than ac-

tual measurements, which may result in inaccurate results for

spectrum occupancy [6]. Furthermore, geo-location database

approach can only protect the registered users. However,

some SUs may not be registered, which may pose significant

challenges to a geo-location database. For example, Public

Making and Special Events (PMSE) devices such as wireless

microphone operate mostly on an unlicensed basis, without

any record in TVWS [7]. Therefore, the approach to protect

unregistered applications is spectrum sensing. Spectrum sens-

ing requires SUs to have the capability to detect spectrum

holes that are not occupied by primary users (PUs). This

approach provides instant channel occupancy information, but

it may cause interference to some reserved channels which

would be determined as vacant by sensing only. Therefore, a

geo-location database can be utilized to improve the accuracy

of spectrum sensing.

So far, some work has been researched on the combina-

tion of spectrum sensing and geo-location database. Wang et

al. [8] proposed a hybrid framework combining spectrum

sensing with geo-location database was proposed, in which

the utilization of spatial-temporal spectrum hole is maxi-

mized. Wang and Gao et al. [9] proposed to combine the

advantages of spectrum sensing and geo-location database,

in which different spectrum sensing modules are performed

based on the output of geo-location database. Qin et al. [10]

proposed a compressive spectrum sensing algorithm to im-

prove the sensing performance by utilizing the information

provided by geo-location database. Furthermore, Ribeiro et

al. [7] implemented a hybrid framework into an experimental

platform by combining wireless microphone sensors with a

web-based geo-location database access for PMSE. However,

all the existing frameworks required that SUs should build a

direct link to the remote geo-location database. This direct

link causes increasing loads in CR networks and transmission

errors between the SUs and remote geo-location database.

Recently, wideband spectrum sensing has attracted much

attention. As required by the Nyquist sampling theory, a

simple approach to wideband spectrum sensing is to directly

acquire the wideband signal by a high-speed analog-to-digital

converter (ADC). For example, Quan et al. [11] proposed
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a multi-band joint detection algorithm to sense PUs over

wideband spectrum by using a high-speed ADC for signal

acquisition. Furthermore, Tian and Giannakis [12] proposed

a wavelet-based wideband spectrum sensing algorithm by

implementing a high-speed ADC. However, the high-speed

ADC is particularly challenging for power-limited devices

such as smart phones, slave WSDs or even battery-free devices

in a wireless power transfer model [13]. Lately, Landau [14]

demonstrated that sampling rate should be no less than the

measure of occupied part of the spectrum for the stable

reconstruction of multiband signals. Furthermore, the spectrum

exhibits a sparse property in the frequency domain as its

low utilization in practice [1], [2]. Compressive sensing (CS)

was proposed recently to reduce the sampling rate under sub-

Nyquist rate by utilizing this sparse property of spectrum [15].

CS was firstly applied to spectrum sensing by Tian and

Giannakis [16], where fewer compressed measurements are

required on the basis of Nyquist sampling theory. Subse-

quently, the CS based wideband spectrum sensing has attracted

much attention [17]–[19]. Wang et al. [17] proposed a two-

step CS scheme for minimizing the sampling rates when the

sparsity level is changing. In this approach, the actual sparsity

level is estimated firstly and the number of compressed mea-

surements to be sampled are then adjusted before sampling.

In addition, Sun et al. [18] proposed to adjust the number

of compressed measurements adaptively without sparsity es-

timation by acquiring compressed samples step by step in

continuous sensing slots. Signal acquisition is terminated once

the number of collected samples were enough for successful

spectral recovery. In addition, Qin et al. [19] proposed a

denoised l1 minimization based spectrum sensing algorithm

for the machine-to-machine (M2M) communication network.

However, for the implementation of compressive spectrum

sensing, innovative technologies are required to continuous-

time signal acquisition. Mishali and Eldar [20] proposed a

modulated wideband converter model to provides the robust-

ness against the noise and model mismatches. Tropp et al. [21]

proposed an analog-to-information converter (AIC) sampler to

make the analog CS implementable. The AIC sampler has

attracted much attention for practical implementation and it

has been adopted as the measurement matrix in [17].

Many of the aforementioned compressive spectrum sensing

algorithms utilize l1 minimization. However, as pointed out

in [22], large coefficients are penalized more heavily than

smaller coefficients in l1 minimization, which may lead to

performance degeneration. In order to rectify a key difference

between l0 and l1 minimization and balance the penalty

on large coefficients and smaller coefficients of the sparse

signal, Candes et al. [22] proposed an iteratively reweighted

l1 minimization algorithm by introducing weight for each bin

of the signal to be recovered. Another approach to recover

a sparse signal with fewer measurements is to replace the l1
norm with lp norm. In order to solve the lp norm problem,

an iteratively reweighted least squares (IRLS) algorithm was

proposed to perform sparse signal reconstruction [23]–[28].

So far, recovering compressed samples by utilizing prior

information has been studied in [29]–[32]. Oscar et al. [29]

proposed the prior information assisted sparse signal ap-

proximation algorithms: weighted basis pursuit denoising and

weighted match pursuit. In addition, two partial support in-

formation assisted CS algorithms were proposed respectively

in [30] and [31], in which the weighted l1 minimization

approach with fixed weights on the known support is utilized

to find the sparse solution for CS problems. Furthermore,

Miosso et al. [32] proposed an IRLS based CS recovery

algorithm utilizing the prior information, in which the weights

are updated in each iteration of the IRLS algorithm. The

different iterative approaches for weight setting in IRLS were

compared in [33]. However, the iterative weight updating

approach in IRLS introduces extra computational complexities

for signal recovery.

Motivated by the challenges identified above, the main

contributions of this paper are listed as follows:

1) A hybrid framework combining compressive spectrum

sensing with geo-location database is proposed in which

a geo-location database algorithm is implemented at SUs

locally to provide prior information for the compressive

spectrum sensing.

2) In the proposed framework, a data-assisted non-

iteratively reweighted least squares (DNRLS) based

compressive spectrum sensing algorithm with lower

computational complexity and lower necessary sub-

Nyquist sampling rate is proposed. In the proposed

DNRLS, the data generated by the locally stored geo-

location database algorithm at SUs is utilized to replace

the iterative process of weights updating in IRLS al-

gorithm. Convergence and computational complexity of

the proposed DNRLS are analysed.

3) In addition, an efficient approach for calculating the

maximum allowable EIRP is proposed to further im-

prove the accuracy and efficiency of the geo-location

database algorithm stored at SUs.

4) Furthermore, based on the recent work on the trail within

the Ofcom TVWS pilot [34], the proposed framework

and algorithms are tested on real-time signals and data

recorded by the CRFS RFeye node [35] and the regulator

qualified geo-location database from Nominet [36] after

having been validated by the simulated signals and data.

The rest of this paper is organized as follows. Section II

describes the system models for compressive spectrum sensing

and geo-location database. Section III presents the proposed

hybrid framework with the DNRLS based compressive spec-

trum sensing algorithm and the Wilkinsons method based geo-

location database calculation algorithm. The numerical analy-

ses for the proposed algorithms are illustrated in section IV.

The conclusions are drawn in section V.

II. SYSTEM MODEL

In this section, models are introduced for both compressive

spectrum sensing and geo-location database.

A. Compressive spectrum sensing model

The compressive spectrum sensing model contains four

components: sparse representations of received signals, com-

pressed measurements collection, signal recovery and spec-
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trum sensing decision making. In this model, the received sig-

nal at a SU is r (t) = h (t)∗s (t)+n (t), where s (t) ∈ CN×1 is

the sum of multiple primary signals in the spectrum of interest.

In addition, h (t) is the channel gain between the transmitters

and receivers, and n (t) ∼ CN (0, σ2IN ) refers to Additive

White Gaussian Noise (AWGN) with zero mean and variance

σ2.

Representations of the received signal r (t) in the frequency

domain can be expressed as

rf = hfsf + nf , (1)

where rf , hf , sf and nf are the discrete Fourier transforms

(DFT) of r (t), h (t), s (t) and n (t). The transmitted signal sf
exploits a sparse property in frequency domain as spectrum is

normally underutilized in practice. This sparse property makes

it possible to reduce sampling rates by implementing CS at

SUs.

When CS is applied at a SU, the collected compressed

measurements can be expressed as

x = ΦF−1rf = Θrf = Θ(hfsf + nf ) , (2)

where Φ ∈ CP×N (P ≤ N) is a measurement matrix. It is

utilized to collect the compressed measurements, x ∈ CP×1,

with P/N ≤ 1 being the compression ratio. The measurement

matrix can be a matrix which contains a single spike in each

row. The case P/N = 1 corresponds to Φ = IN . In addition,

Θ = ΦF−1, where F−1 is inverse DFT matrix which is used

as the sparsifying matrix.

In practical settings, structured random matrices are often

employed for improved implementation affordability. In this

paper, we take AIC sampler from [21] to realize the sub-

Nyquist sampling. The AIC sampler contains three compo-

nents: a high-rate pseudonoise sequence, a low-pass anti-

alising filter and a low speed ADC. We let (ε0, ε1, · · · , εN−1)
be the chipping sequences, and demodulation matrix cor-

responds to a N × N diagonal matrix, where D =
diag {ε0, · · · , εN−1}. Action of the accumulate-and-dump

sampler is given by matrix H of size P × N whose pth

row has P/N consecutive unit entries starting in column

pN/P +1 for each p = 0, 1, ..., P −1. In summary, the matrix

Θ = H ·D · F−1 describes the overall action of the hardware

system on signal rf . This structure alleviates the burden on

the ADC, at the expense of slightly degraded recovery perfor-

mance compared with those fully random Gaussian sampler.

As shown in [37], there are three conditions for Θ: 1) each

column of Θ is normalized, 2) each row has approximately

equal norm, and 3) the rows of Θ are orthogonal. These three

conditions can be fulfilled by random matrices such as the

AIC sampler.

After the compressed measurements are collected at sub-

Nyquist sampling rates by the AIC sampler, the original

signals should be reconstructed before making decision on

spectrum occupancy. Signal recovery can be formulated as a

convex optimization problem and solved by l1 minimization

as
min ‖ŝf‖1
subject to ‖Θ · hf ŝf − x‖22 ≤ η,

(3)

where η is the error bound related to the noise level.

A non-convex variant of the l1 minimization can produce

exact reconstruction with fewer measurements [23]. Specifi-

cally, the l1 norm is replaced by the lp norm, where 0 ≤ p ≤ 1.

Therefore, (3) can be expressed as

min ‖ŝf‖p
subject to ‖Θ · hf ŝf − x‖22 ≤ η.

(4)

When the recovered signal ŝf is obtained by solving the

above optimization problem, energy detection is performed to

determine the spectrum occupancy by comparing the energy

of recovered signal with a predefined threshold defined as

follows [38]:

λd = σ2

(

1 +
Q−1 (Pf )
√

N/2

)

. (5)

In (5), σ2 is the noise variance, and Pf refers to the target

probability of false alarm of spectrum sensing, and N is

the number of samples used for decision making in energy

detection. In practice, the noise variance is “a prior” and

needs to be estimated before making decision on spectrum

occupancy. Threshold learning [39], [40] is typically used in

conjunction with noise estimation [41] in order to make the

CR system be really cognitive. After noise level is estimated,

the energy density of each considered channel should be

compared with the threshold. If greater than the threshold, the

corresponding channel is determined as occupied by PUs, and

SUs are forbidden to access it. Otherwise, the corresponding

channel is determined as vacant, and the SUs can access it to

transmit the unlicensed signals.

B. Geo-location database model

For geo-location databases a power control model is cur-

rently used to calculate the maximum allowable EIRP in [42].

A two-ray path loss model is used to measure the power atten-

uation. However, there are two main problems for this model.

Firstly, the digital terrestrial television (DTT) receivers can not

be located precisely. This infers that the path loss between SUs

and DTT receivers can not be calculated accurately. Secondly,

different environmental scenarios that would lead to different

tolerance levels for DTT receivers, are not considered in the

power control model. For example, the power attenuation in

urban areas is much higher than open areas. As a result, the

maximum allowable EIRP of a specific SU in open areas is

greater than that in urban areas.

To solve these problems, the location probability model

introduces the concept of location uncertainty, which classifies

the location relationship between SUs and DTT receivers into

four different scenarios. In addition, transmission environment

can be classified as open, suburban and urban areas. Both the

location relationship and transmission environment between

SUs and DTT receivers would influence the power attenuation.

DTT location probability is defined as the probability with

which a DTT receiver could operate accurately at a specific

location; i.e., the probability with which the average received

wanted signal level is appropriately greater than a minimum

required value. DTT location probability is used to limit the
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maximum allowable EIRP PIB and it can be expressed in

linear domain as follows [43]:

q1 = Pr

{

Ps ≥ Ps,min +
∑K

k=1
rU,kPU,k

}

, (6)

q2 =

Pr
{

Ps ≥ Ps,min +
∑K

k=1 rU,kPU,k + r (∆f,ms)GPIB

} ,

(7)

where Ps is the average received power of wanted DTT signal

and Ps(dBm) is modeled as a Gaussian random variable with

mean ms and standard deviation σs. In addition, Ps,min is DTT

receiver’s reference sensitivity level. The parameter PU,k refers

to received power of the kth unwanted DTT signals, and K is

the total number of received unwanted DTT signals. Parameter

rU,k is the protection ratio of the received wanted DTT power

and received kth unwanted DTT power at the point where

DTT receiver fails. The difference ∆f = fWSD−fDTT, where

fWSD is the frequency in which a WSD device operates and

fDTT is the DTT carrier frequency. G is defined as the power

attenuation factor coupling gain. The DTT receiver’s location

probability in the absence of interference from WSDs is

labelled as q1, and q2 is the DTT receiver’s location probability

when considering the additional interference caused by WSDs.

When the interference from WSDs is considered, it results in

a reduction in location probability ∆q = q1 − q2. To identify

the maximum allowable EIRP PIB in (7), ∆q is maximized

by assigning a maximal allowable value ∆qT to ∆q.

We can express (6) in decibel domain as follows [44]:

q1 = Pr
{

Ps ≥ Ps,min +
∑K

k=1 rU,kPU,k

}

= Pr {Ps ≥ Ps,min + V }

= Pr
{

1 ≥ Ps,min

Ps
+ V

Ps

}

= Pr {1 ≥ A+B}

= Pr {1 ≥ X} ,

(8)

where V(dBm) is modeled as a Gaussian random variable with

mean mV and standard deviation σV . Furthermore, A(dB)

and B(dB) can be modeled as Gaussian random variables. In

addition, X(dB) can be modeled as a Gaussian random variable

with mean mX and standard deviation σX . As a result, (8) can

be given by

q1 = Pr
{

0 ≥ X(dB)

}

= 1
2erfc

(

mX√
2σX

)

. (9)

Similarly, q2 can be expressed in decibel domain as follows:

q2 =

Pr
{

Ps ≥ Ps,min +
∑K

k=1 rU,kPU,k + r (∆f,ms)GPIB

}

= Pr {Ps ≥ Ps,min + V + r (∆f,ms)GPIB}

= Pr
{

1 ≥ Ps,min

Ps
+ V+r(∆f,ms)GPIB

Ps

}

= Pr
{

1 ≥ A+ V+C
Ps

}

= Pr
{

1 ≥ A+ D
Ps

}

= Pr {1 ≥ A+ E}

= Pr {1 ≥ Y } ,
(10)

where C(dBm) is a Gaussian random variable with mean mC

and standard deviation σC . V and C are two uncorrelated log-

normal random variables, and then D(dBm) can be modeled

as a Gaussian random variable with mean mD and standard

deviation σD. Furthermore, as D and PS are both log-normal

random variables, E(dB) is also Gaussian variable with mE =

mD − mS and σE =
√

σ2
D + σ2

S . Eventually, as A and E

are both log-normal random variables, Y(dB) can be modeled

as a Gaussian random variable with mean mY and standard

deviation σY . Furthermore, (10) can be expressed as

q2 = Pr
{

0 ≥ Y(dB)

}

= 1
2erfc

(

mY√
2σY

)

. (11)

Once q2 is obtained, the corresponding PIB can be cal-

culated for each channel to indicate the maximum allowable

EIRP as the output of the geo-location database.

III. THE PROPOSED HYBRID FRAMEWORK COMBINING

COMPRESSIVE SPECTRUM SENSING WITH GEO-LOCATION

DATABASE

In the wideband spectrum sensing scenario, as shown in

Fig. 1 (a), multiple PUs exist in the multiband spectrum of

interest and each SU should be capable to detect the active PUs

accurately and efficiently. The traditional hybrid frameworks

with geo-location database and spectrum sensing proposed

in [7]–[9] require a direct link to the remote geo-location

database as shown in Fig. 1 (b). Dynamic changes of the

spectrum would not be reflected unless it is registered and

updated in the centralized geo-location database. This process

introduces several information exchanges such as the two-way

transmissions between the SU and the geo-location database.

In addition, each transmission link introduces potential errors

as well as energy consumption.

In order to reduce the necessary sampling rates at SUs

and alleviate both the network load and the inevitable trans-

mission errors between geo-location database and SUs, we

propose a hybrid framework compressive spectrum sensing

with geo-location database algorithm as shown in Fig. 1 (c).

In the proposed hybrid framework, a geo-location database

calculation algorithm is stored at SUs locally. Meanwhile,

the DTT transmitter location information is maintained at the

corresponding SU, which is used for the geo-location database

calculation algorithm. The maximum allowable EIRP PIB of

each channel obtained from geo-location database algorithm

is fused with the historical PIB and utilized as the prior

information for the compressive spectrum sensing. As a result,

the necessary sampling rates for exact signal recovery and

computational complexities are reduced at SUs. In addition,

in order to further relax the SU, a Wilkinson’s method [45]

based DTT location probability is proposed to calculate the

maximum allowable EIRP PIB of each channel efficiently and

locally.

A. The proposed data-assisted non-iteratively reweighted least

squares based compressive spectrum sensing

Before introducing the proposed DNRLS based compressive

spectrum sensing algorithm, we firstly introduce the IRLS

algorithm. When IRLS algorithm is utilized to solve (4), the
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Sub-Nyquist sampling

Signal 
recovery

Decision  
making

Remote geo-
location database

Locally stored

(b) Existing hybrid framework

(c) The proposed  hybrid framework

Secondary user (SU)

Nyquist sampling

Direct link

SU

Wideband spectrum

PU 2
Wideband spectrum

PU N

Wideband spectrum

PU 1

(a) Multiple primary users (PUs) with wideband spectrum

Geo-
location 
database 

calculation 
algorithm

Fig. 1: (a). Scenario of wideband spectrum sensing with

multiple primary users (PUs); (b). the existing hybrid frame-

work with a direct link to remote database and conventional

spectrum sensing at Nyquist rate; and (c). the proposed hy-

brid framework with the locally stored geo-location database

calculation algorithm and the data-assisted non-iteratively

reweighted least squares (DNRLS) based compressive spec-

trum sensing.

optimization problem can be formulated in Lagrangian form

as follows:

min ‖Θ · hf ŝf − x‖22 + λW · ŝ2f , (12)

where W is a diagonal matrix W =
diag {w1, . . . , wn, . . . , wN} which is updated in each

iteration. In the lth (l = 0, 1, . . . , L) iteration of IRLS

algorithm, the weights are calculated with the recovered

signal ŝ
(l−1)
f n in the (l − 1)th iteration as

w(l)
n =

(

(

ŝ
(l−1)
f n

)2

+ ε(l)
)1− p

2

. (13)

In (13), ε(l) is updated in each iteration, and it is a positive

value to make sure that a zero-valued component in s̄f does

not strictly prohibit a non-zero estimate in the next iteration

of weights update. In addition, the solution of (12) at the lth
iteration can be expressed as

ŝ
(l)
f n = arg min ‖Θ · hf ŝf − x‖22 + λW (l) · ŝ2f (14)

= W (l)ΘT
(

hfΘW (l)ΘT + λIP

)−1

x,

where the initial value for the weights wn in W is 1, and

then W (0) = IN . As a result, ŝ
(0)
f n = ΘT(hf + λIP )

−1
x. It

is noted that (12) is a non-convex optimization problem when

p < 1, and as such, the solution to (12) can be local minima.

It has been shown that the computed local minimizers of (12)

are global minimizer when solved by IRLS [23]–[25].

Definition 1: The restricted isometry property (RIP) guaran-

tees the stable and robust recovery by solving the optimization

problem (4). We say that a matrix Θ satisfies the property

P
(

a, K̃, p
)

if it satisfies

δaK̃ + a
2

p
−1δ(a+1)K̃ < a

2

p
−1 − 1, (15)

where a > 1, and K̃ is sparsity level of the spectrum of

interest.

Theorem 1 [27]: Let 0 < p ≤ 1. If a P ×N matrix satisfies

P
(

a, K̃, p
)

, then

‖ŝf − sf‖
p

2 ≤ C1η + C2

∥

∥

∥sf − sf,K̃

∥

∥

∥

p

p

K̃
2

p
−1

, (16)

where

C1 = 2p
1 + a(

p
2
−1)(p

2 − 1
)− p

2

(

1− δ(a+1)K̃

)
p
2

− (1 + δaK̃)
p
2 a(

p
2
−1)

, and

C2 =
2
(

p
2−p

)
p
2

a(1−
p
2 )






1 +

(

(

p
2 − 1

)− p
2 + a(

p
2
−1)
)

(1 + δaK̃)
p
2

(

1− δ(a+1)K̃

)
p
2

− (1 + δaK̃)
p
2 a(

p
2
−1)






.

In the traditional IRLS based compressive sensing in (12),

the key challenge is to find the optimal set of weights W
in an iterative process for a better estimate of the original

signals. It should be noted the iterations generate more com-

putational complexities during signal recovery process. When

part of the maximum allowable EIRP is available in advance,

the iterative process can be removed without degrading the

recovery performance heavily. In this paper, we propose a

DNRLS based compressive spectrum sensing algorithm. In

the proposed algorithm, a geo-location database algorithm

is implemented at SUs locally to provide data for weights

calculation. This is achieved by a non-iterative method so that

SUs would not need any additional link to a centralized geo-

location database. The proposed calculation yields the weights

as

wn =
(

|γ̄n|
2
+ ε
)1− p

2

, (17)

where ε is a positive value same as ε(l) in (13), and γ̄ =
{γ̄1, . . . γ̄n, . . . γ̄N} is constructed by the channel historical

data and the output of geo-location database algorithm. The

construction of γ̄ in detail is introduced in the following.

In the (t+ 1)th sensing period, the maximum allowable

EIRP PIB (t+ 1) is calculated for the current period by the

proposed Wilkinson’s method based DTT location probabil-

ity calculation algorithm introduced in section III-B. Subse-

quently, the PIB (t+ 1) is mapped to γ (t+ 1). Furthermore,

the averaged γ̄ (t+ 1) is calculated as

γ̄ (t+ 1) = (γ̄ (t) + γ (t+ 1))/2, (18)

where γ̄ (t) is the historical data for the weights construction

at the tth sensing period, where t = {0, 1, . . . , T}. Herein

T is the window size for SUs to fuse the current allowable

maximum PIB with the historical data. At a SU, only the γ̄ (t)
is stored locally after the tth sensing period. If there is any

new unregistered user showing up in the spectrum of interest

in tth period, the related DTT transmitter information used for

geo-location database calculation algorithm is updated locally.

This makes the proposed weights calculation robust to the new

unregistered users. Meanwhile, the geo-location database at

other SUs would not be influenced. In the (t+ 1)th period, the

γ (t+ 1) provided by the local geo-location database would

be updated accordingly by considering the unregistered users.
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After γ̄ (t+ 1) for the current sensing period is obtained to

calculate the weights, a more accurate spectrum estimation can

be obtained by solving the following non-iterative problem

ŝf = arg min ‖Θ · hf ŝf − x‖22 + λW̃ · ŝ2f (19)

= W̃ΘT
(

hf ŝfW̃ΘT + λIP

)−1

x.

In (19), W̃ = diag (w1, . . . , wn, . . . , wN ) is a diagonal matrix

in which wn is calculated by (17) to replace the iterative update

process in (13). In the proposed DNRLS based compressive

spectrum sensing algorithm, the accuracy of γ̄ would influence

the recovery performance.

1) Convergence: If there is no unregistered user in the

spectrum of interest, which means the values of γ used to

construct the weights are accurate, the recovery performance

of DNRLS is very good. When the unregistered users show

up in the spectrum of interest at the 1st sensing period, the

γ̄ (1) becomes inaccurate on the corresponding bins as the

output of the local geo-location database algorithm γ (1) for

the 1st period is inaccurate. As a result, the signal recovery and

detection performance would be degraded accordingly. In the

tth period after the unregistered user shows up in the spectrum

of interest, γ (t) is fused with the historical data γ̄ (t− 1)
of the (t− 1)th period. The accuracy of weights γ̄ (T ) are

dependent on the window size T for the weights fusion at

SUs. The weights fusion process is shown as follows:

γ̄ (1) = γ̄(0)+γ(1)
2 , (1st period)

γ̄ (2) = γ̄(1)+γ(2)
2 , (2nd period)

...

γ̄ (T ) = γ̄(T−1)+γ(T )
2 , (Tth period)

(20)

where γ̄ (0) is the historical data for weights construction

before unregistered user showing up, and γ (1) is the output of

the locally implemented geo-location database algorithm for

the period when unregistered users show up in the spectrum

of interest. As γ (2) = · · · = γ (T ) = γ, which represents

the real spectrum status with consideration of the unregistered

users in the spectrum of interest, γ̄ (T ) can be expressed as

γ̄ (T ) =
γ̄ (0)

2T
+

γ (1)

2T
+

1
2 ×

(

1−
(

1
2

)T−1
)

× γ

1− 1
2

(21)

=
γ̄ (0)

2T
+

γ (1)

2T
+

(

1−

(

1

2

)T−1
)

× γ.

It is noted that γ̄ (T ) would converge fast to γ after

unregistered users show up in the spectrum of interest. In

addition, part of channels in TVWS are fixed and utilized

by DTV signals, and some of the channels are reserved for

other purposes. As result, at least the weights for those fixed

channels in γ̄ (0) and γ (1) are accurate. This characteristic

provides a guarantee that the recovery performance would

not be degraded heavily when unregistered users show up in

the spectrum of interest. With increasing window size T , the

influence of inaccurate parts in γ̄ (0) and γ (1) degrades. The

influence of the window size T is shown in the numerical

analyses part of Section IV.

2) Complexity: The computational complexity reduction of

the proposed DNRLS based compressive spectrum sensing

comes from following three parts. Firstly,in the traditional

IRLS algorithm, the inverse of
(

hfΘW (l)ΘT + λIP
)

takes

O
(

P 3
)

and it is required in each iteration. In large size com-

pressive sensing problem, solving a problem with complexity

O
(

P 3
)

L times is unacceptable. As summarized in Algo-

rithm 1, the proposed DNRLS based compressive sensing

algorithm solves the signal recovery problem in a non-iterative

approach. Therefore, the computational complexity is 1/L of

the traditional IRLS based compressive spectrum sensing in

which L iterations are required to get an accurate estimation

of the spectrum. The second reason of complexity reduction is

that the proposed DNRLS algorithm can achieve exact signal

recovery with fewer measurements. In the proposed DNRLS

algorithm, the minimal number of measurements P for exact

recovery is reduced to P̃
(

P̃ < P
)

. It leads to a large compu-

tational complexity reduction as the complexity of solving the

inverse of
(

hfΘW (l)ΘT + λIP
)

is O
(

P̃ 3
)

. The performance

analyses are further shown in numerical analyses. Thirdly, the

computational complexity reduction comes from the calcula-

tion of PIB in the proposed hybrid framework. Specifically, to

minimize the necessary computational complexity at SUs, the

Wilkilson’s method is utilized to calculate the PIB for each

TVWS channel. The details of the Wilkilson’s method based

DTT location probability calculation algorithm are introduced

in section III-B.

B. The proposed Wilkinson’s method based DTT location

probability calculation algorithm

At a SU, the calculation of maximum allowable EIRP

PIB of each channel in TVWS should be efficient and

accurate. Monte Carlo method and Schwartz-Yeh’s method

are the two algorithms approved by regulators to calculate

the maximum allowable EIRP PIB . Schwartz-Yeh’s method

is an approximate algorithm in which infinite loops are used

to calculate the mean and standard deviation of log-normal

distribution variables such as variables A, B and E in (8)

and (10) [46]. However, the large computational complexity

and low efficiency of the Schwartz-Yeh’s method are difficult

to overcome at power-limited SUs. In this paper, we propose

to use Wilkinson’s method to calculate q1, q2 and PIB in a

much more efficient way.

1) Wilkinson’s method: Assuming Ik (k = 1, 2, . . . ,K)
is a log-normal random variable, then Mk = 10log10Ik
can be modeled as a Gaussian random variable and M =
10log10

(

∑K
k=1 10

Mk
10

)

. It is assumed that eΛ1 + eΛ2 + · · ·+

eΛK = eZ = 10M , Z = ρM , and ρ = 1
10 ln 10 = 0.2302, the

mean and standard deviation of parameter M could be calcu-

lated by introducing two parameters µ1 and µ2 as follows:

µ1 = E

(

mZ +
1

2
σ2
Z

)

=
∑K

i=1
E

(

mΛi
+

1

2
σ2
Λi

)

, (22)
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Algorithm 1 Data-assisted non-iteratively reweighted least

squares based compressive spectrum sensing

1: Input: p, λ, Θ, x, ε, γ̄ (t).
2: Calculate PIB (t+ 1) by the proposed Wilkinson’s

method based DTT location probability model introduced

in section III-B.

3: Map PIB (t+ 1) to γ (t+ 1).
4: Calculate γ̄ (t+ 1) by (18).

5: Perform signal recovery by (19) to get ŝf .

6: Make decision on spectrum occupancy by compare ŝf
with the threshold λd defined in (5).

µ2 = E
(

2mZ + 2σ2
Z

)

(23)

=
∑K

i=1
E
(

2mΛi
+ 2σ2

Λi

)

+ 2
∑K−1

i=1

∑K

j=i+1
E
(

mΛi
+mΛj

)

× E

[

1

2

(

σ2
Λi

+ σ2
Λj

+ 2rijσΛi
σΛj

)

]

,

where mΛi
and σΛi

are the mean and standard deviation of

Λi, and rij are the correlation coefficients of Λi and Λj .

Consequently, the mean and standard deviation of M can be

calculated as

σM =
1

ρ

(

2 lnµ1 −
1

2
lnµ2

)

, (24)

σM =
1

ρ
(lnµ2 − 2 lnµ1)

1

2 . (25)

2) Maximum allowable equivalent isotropic radiated power

calculation: Based on the Wilkinson’s method explained

above, q1 and q2 can be calculated accordingly. Taking the

calculation of q1 as an example, as shown in (8),
Ps,min

Ps
+ V

Ps
=

A + B ≤ 1. 10log10 (A+B) ≤ 0, which is equivalent to

X(dB) = 10log10

(

10
AdB
10 + 10

BdB
10

)

≤ 0. It can be fitted

into the precondition of Wilkinson’s method to get 10
AdB
10 +

10
BdB
10 = 10XdB = eΛ1 + eΛ2 . Therefore, Λ1 = ρ × A(dB)

and Λ2 = ρ×B(dB). The relevant correlation coefficient of A
and B can be given as

rA,B =
cov

(

A(dB), B(dB)

)

√

var
(

A(dB)

)

var
(

B(dB)

)

=
σS

√

σ2
S + σ2

V

, (26)

where σS and σV can be calculated based on the DTT trans-

mitter information used for geo-location database calculation

algorithm. Based on (22) and (23), µ1 and µ2 can be obtained.

Consequently, mX and σX can be calculated according to (24)

and (25).

Similarly, q2 can be calculated by Wilkinson’s method by

the following procedure:

1) Input mS , σS , mV , σV , mC and σC as shown in (10),

which can be calculated based on the DTT transmitter

information used for geo-location database calculation

algorithm;

2) Calculate mD and σD by Wilkinson’s method based on

mV , σV , mC and σC ;

3) Calculate mA, σA, mE and σE by Wilkinson’s method

based on mS , σS , mD and σD;

4) Calculate mY and σY by Wilkinson’s method based on

mA, σA, mE and σE ;

5) Calculate q2 by (11) based on mA, σA, mE and σE .

The procedure of calculating PIB with the Wilkinson’s

method is shown as Fig. 2 and summarized as follows. Firstly,

input the mean and standard derivation of the received power

of wanted DTT signal, i.e., Ps and the minimum required

power of wanted DTT signal, i.e., V , which can be obtained

from the DTT transmitter information used for geo-location

database calculation algorithm. As defined in IEEE 802.22

standard, the maximum allowable EIRP that can be utilized in

TV frequency band is 4 watts [47]. Therefore, the predefined

maximum allowable value (4 watts) is assigned to PIB for

each TVWS channel. In addition, q1 and q2 are calculated by

the Wilkinson’s method as aforementioned. Consequently, the

corresponding PIB is updated until q2 ≤ q1 −∆qT .

IV. NUMERICAL ANALYSES

The analyses of the proposed stand-alone hybrid framework

on the simulated signals and data are presented in this section.

Furthermore, the proposed hybrid framework is tested on

the real-time signals collected by RFeye node and the data

obtained from the geo-location database provided by Nominet.

A. Numerical analyses on simulated signals and data

In the simulations, orthogonal frequency-division multiplex-

ing (OFDM) signals are simulated as PUs, which is used by

the DVB-T signals in TVWS from 470MHz to 790MHz in

the UK [2]. There are a total of 40 channels in TVWS with

a bandwidth of 8MHz for each channel. It is assumed that

each PU is independent and only locates at one channel. The

transmission channel for signals is modeled as an AWGN

channel. In addition, the signal-to-noise ratio (SNR) is defined

as the ration of received signal power to the noise power in

each TVWS channel. The target Pf is set to be 0.01.

The comparison of the proposed and traditional methods

for calculating maximum allowable EIRP are presented firstly.

Since Monte Carlo simulation is based on no assumption

and approximation, its results can be considered precise as

long as the number of trials is large enough. With 10,000

points, Monte Carlo simulation shows a relatively stable

performance. By taking the results obtained by Monte Carlo

simulation as a benchmark, the accuracy of the Schwartz-Yeh’s

method and Wilkinson’s method can be measured by error

rate ∆Q (·) /Q(MonteCarlo) (·), where Q(MonteCarlo) (·) refers

to values calculated by Monte Carlo simulation and ∆Q (·)
refers to the absolute difference of parameters’ values between

Schwartz-Yeh’s method or Wilkinson’s method and the Monte

Carlo simulation. More specifically, ∆Q (q1) =
∣

∣

∣q
S,W
1 − qM1

∣

∣

∣,

∆Q (q2) =
∣

∣

∣q
S,W
2 − qM2

∣

∣

∣ and ∆Q (PIB) =
∣

∣

∣P
S,W
IB − PM

IB

∣

∣

∣,

where qS,W1 , qS,W2 and PS,W
IB refer to the corresponding val-

ues calculated by the Schwartz-Yeh’s method or Wilkinson’s
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Parameters initialization

Assign the maximum pre-defined value to PIB

Calculate the location probability of q1 and q2

2 1 Tq q q> − ∆ Decrease  PIB

Output  PIB

Fig. 2: The procedure of calculating maximum allowable PIB

by the Wilkinson’s method.

method respectively, and qM1 , qM2 and PM
IB refer to the cor-

responding values calculated by Monte Carlo simulation. The

error rates of q1, q2 and PIB calculated by the Schwartz-Yeh’s

method and Wilkinson’s method are shown in Table I. We

can see that the proposed Wilkinson’s method outperforms the

Schwartz-Yeh’s method in terms of the calculation accuracy.

Similarly as the error rate calculation, running time of

Monte Carlo simulation with 10,000 points is chosen as a

benchmark when measuring the running time for the calcu-

lation of q1, q2 and qIB . Table II shows the running time

comparison of the Schwartz-Yeh’s and Wilkinson’s methods.

We can see that the Wilkinson’s method reduces the running

time significantly in comparison with the Schwartz-Yeh’s

method. Therefore, the proposed Wilkinson’s method is very

suitable for SUs with limited power to obtain the q1, q2 and

PIB efficiently.

After validating the accuracy and efficiency, a national grid

reference (NGR) based geo-location database is built with the

proposed Wilkinson’s method. By utilizing the DTT transmit-

ter location information for geo-location database calculation

algorithm, PIB can be calculated by the proposed Wilkinson’s

method based DTT location probability model for any specific

location. We choose an NGR number of SP515065 in Oxford

as a test location. The maximum allowable EIRP calculated by

the power control and the proposed location probability model

are shown in Table III.

As shown in Table III, there are 11 available channels at

SP515065 in total. In the proposed location probability model,

the transmission environment is classified into three situations:

open, suburban and urban. Coupling gain in different situations

is treated differently, leading to different interference toleration

levels of DTT receivers. It is obvious that the power attenu-

ation in open areas is much lower than suburban and urban

areas. As a result, the actual maximum allowable EIRP PIB

in open areas is smaller than the other two situations at a

certain NGR location. Taking channel 51 as an example, the

PIB is 0.0002 watts in power control model. However, the

spectrum of interest could be utilized more effectively if the

transmission environment is classified, which is 0.3981 watts

in open areas, 1.2589 watts in suburban areas and 4.0000 watts

in urban areas.

TABLE I: Error rates comparison.
q1 q2 PIB

Schwartz-Yeh’s method 31.25% 4.76% 7.87%

Wilkinson’s method 9.36% 1.31% 1.54%

TABLE II: Running time comparison.
q1 q2 PIB

Schwartz-Yeh’s method 15966.04% 153278.65% 75462.57%

Wilkinson’s method 99.06% 98.89% 99.47%

TABLE III: Comparison of actual maximum allowable EIRP

PIB in Oxford.
Actual Maximum Allowable EIRP PIB (Watt)

The latest release of Ofcom TV white
space model by Wilkinson’s method

Available
Channel

Open Suburban Urban
Power

control model

22 0 4.0000 4.0000 4.0000

25 0 4.0000 4.0000 4.0000

28 0 4.0000 4.0000 4.0000

29 0.0025 4.0000 4.0000 4.0000

40 0 4.0000 4.0000 4.0000

43 0 4.0000 4.0000 4.0000

46 0 4.0000 4.0000 4.0000

49 0.0013 4.0000 4.0000 4.0000

51 0.3981 1.2589 4.0000 0.0002

54 0.0013 4.0000 4.0000 4.0000

58 0.0013 4.0000 4.0000 4.0000

Based on the obtained PIB from the local geo-location

database algorithm, the weights are constructed by fusing

the current PIB with historical data in the proposed DNRLS

based compressive spectrum sensing. Fig. 3 shows detection

performance of the sensing only approach and the proposed

hybrid framework with DNRLS algorithms implemented at

SUs, where p is set to be 0.1. It is observed that the detection

performance of the sensing only approach without CS imple-

mented at a SU is matched with the theoretical curve, which

is presented as a benchmark and can be expressed as

Pd = Q







λd

σ2 −
(

1 +
σ2

s

σ2

)

(

1 +
σ2
s

σ2

)/
√

N
2






, (27)

where λd is the threshold for energy detection as calculated

by (5) and Pd refers to detection probability of spectrum

sensing system.

Fig. 3 shows that detection performance of the sensing only

approach with IRLS is smaller than the theoretic curve due to

the signal recovery errors caused by the sub-Nyquist sampling

(20%). When the proposed hybrid framework with DNRLS is

performed, detection probability increases greatly which can

almost match with the theoretic curve. The reason for the large

performance improvement is that the data used to construct

the weights is the exact representation of the spectrum of

interest if there is no unregistered user. In addition, it is

noted that the sensing only approach with IRLS requires an

iterative process to update the weights. This iterative process

introduces a higher computational complexity. As a result,

the proposed DNRLS based compressive spectrum sensing

can achieve better detection performance with (L− 1)/L of



SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 9

SNR (dB)
-20 -15 -10 -5 0

P
d

0

0.2

0.4

0.6

0.8

1
Theory
Sensing only, No CS
Sensing only, IRLS
Hybrid framework, DNRLS

-10.2 -10 -9.8

0.24

0.26

0.28

Fig. 3: Detection performance on the simulated signals and

data under different SNR values, p = 0.1, compression

ratio=20%.

computational complexity reduced in comparison with the

sensing only approach with IRLS.

Fig. 4 shows detection probability of the sensing only

approach with IRLS and the proposed hybrid framework with

DNRLS with varying compression ratios. In this scenario, the

spectrum occupancy ratio is assumed to be 12.5%, p is 0.1

and the SNR value is -5dB. It is noted that there is a big

difference on the necessary number of measurements between

the proposed hybrid framework and the sensing only approach

to achieve the same detection probability. Specifically, as

shown in Fig. 4, the proposed hybrid framework with DNRLS

can achieve 90% detection probability when the compression

ratio is no higher than 7%. However, the sensing only approach

requires the compression ratio to be about 20% in order

to achieve the same performance. As a result, the sampling

rates can be reduced by 13% without degrading the detection

performance.

The detection performance of the proposed hybrid frame-

work with DNRLS is shown in Fig. 5 with different spectrum

occupancy ratios in TVWS and different p values for lp. In

this scenario, SNR is set to be -5dB and the positions of these

active PUs are set to be random. In compressive spectrum

sensing, increasing spectrum occupancy in spectrum of interest

refers to higher sparsity levels of the signal to be recovered.

We can see that the detection performance becomes improved

with decreasing value of p and fixed sparsity level. Meanwhile,

the detection performance is degraded slightly with increasing

sparsity level increases when the value for p is fixed. As a

result, more compressed measurements should be collected

at SUs to avoid performance degradation when sparsity level

increases.

Fig. 6 shows the detection probability of the proposed

hybrid framework with DNRLS under different window sizes

T with new unregistered users showing up in the spectrum of

interest. In this scenario, the spectrum occupancy is 12.5%, p
is 0.1 and compression ratio is 10%. With unregistered users

in TVWS, only half of the weights for the channels with active

Compression ratio
10-1 100

P
d

0

0.2

0.4

0.6

0.8

1

Sensing only, IRLS
Hybrid framework, DNRLS

7% 20%

Fig. 4: Detection performance on the simulated signals and

data under different compression ratios, p = 0.1, SNR=-5dB.
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Fig. 5: Detection performance on the simulated signals and

data under different sparsity levels and p values, compression

ratio=10%, SNR=-5dB.

PUs are exact. We can see that the detection performance is

degraded from 98% to 85% in the first sensing period after a

new unregistered user shows up in TVWS. However, after one

sensing period passed, which refers to T = 2, the detection

performance is improved to about 95%. This improvement

benefits from the weights are constructed by fusing the output

of the geo-location database algorithm with the historical

data. The geo-location database algorithm utilizes the self-

maintained geo-location database at SU locally which contains

the new unregistered users’ information. Furthermore, the de-

tection performance converges to 98% after four updates of the

weights. With increasing window size T , the improvement on

detection performance becomes slower after the first updating

on the weights. However, if the unregistered user shows up

again in the same position of TVWS, detection probability of

the proposed hybrid framework with DNRLS falls between

85% and 95%, which is dependent on the window size T . If

T is large enough, the detection probability would get close

to 95%.
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Fig. 6: Detection performance on the simulated signals and

data under different window sizes T with unregistered users

existing, compression ratio=10%, p = 0.1, SNR=-5dB.

B. Numerical analyses on real-time signals and data

After the proposed DNRLS compressive spectrum sensing

algorithm is validated by the simulated signals and data, the

proposed framework is tested on real-time signals collected

by the CRFS RFeye node and the real data provided by the

geo-location database from Nominet qualified by Ofcom. The

RFeye node is scalable and cost-effective which can provide

real-time 24/7 monitoring of the radio spectrum. It is capable

of sweeping spectrum from 10MHz to 6GHz, and capture

signals of all types, including transient transmission such as

pulsing or short-burst signals. It is located at Queen Mary

University of London (51.523021◦N 0.041592◦W), and the

antenna height is about 15 meters above ground.

Some pilots in TVWS have been undertaken in the UK

as launched by the Ofcom. In part the trails run at QMUL,

an unregistered user is transmitted in TVWS channel 27

(518MHz to 526MHz). In this case, the historical data and

PIB from the geo-location database would not be exact for

the channel 27 as it is the first time for the unregistered user

showing up in TVWS. As a result, the output of the geo-

location database would still allow a high EIRP in channel

27. The simulation results for the case with unregistered users

under different window sizes T are shown in Fig. 7. We can

see that the detection performance would be degraded once the

unregistered user shows up in TVWS. This is caused by the

inexact weights constructed by the inaccurate PIB in channel

27. Similarly as Fig. 6, the detection performance is increased

largely after window size T is increased to 2. With increasing

window size, the detection performance of the proposed hybrid

framework with DNRLS converges efficiently.

Based on the fast convergence performance shown in Fig. 6

and Fig. 7, we can reason out the practicability of our

proposed hybrid framework is reasonable. The implementation

of compressive spectrum sensing with a geo-location database

algorithm can improve the energy efficiency at SUs by reduc-

ing its computational complexities. Therefore, such an energy

efficient algorithm could be applied to multiple scenarios with

Window size T
1 2 3 4 5

P
d

0.9

0.92

0.94

0.96

0.98

1

Unregistered user existing, updating weight
Unregistered user existing, initial weight
Unregistered user not existing

Fig. 7: Detection performance on the real-time signals under

different window sizes T with unregistered users existing,

compression ratio=10%, p = 0.1.

power-limited WSDs in a M2M communication network.

V. CONCLUSIONS

A stand-alone hybrid framework combining compressive

spectrum sensing and geo-location database was designed for

wideband spectrum in this paper. In particular, a data-assisted

non-iteratively reweighted least squares (DNRLS) based com-

pressive spectrum sensing algorithm was proposed to reduce

the sampling rates to under sub-Nyquist rate and lower the

computational complexities by exploiting the data provided by

the geo-location database algorithm stored at secondary users

(SUs) locally. Furthermore, based on the recent trail within

the Ofcom TV white space pilot, the proposed framework

was tested on the real-time signals and data after having been

validated by the simulated signals and data in TVWS. The

numerical results showed that the computational complexities

of signal recovery process were reduced by (L− 1)/L in

terms of number of iterations, and the detection performance

was improved by implementing the proposed DNRLS algo-

rithm in comparison with traditional algorithms. This makes it

possible to apply the proposed framework to energy-constraint

terminals, such as Machine-to-Machine (M2M) sensors.

The proposed hybrid framework can also provide benefits

to relax the requirement on sparsity level estimation in com-

pressive spectrum sensing. More specifically, the compression

ratio at SUs is difficult to determine in existing compressive

sensing algorithms, as the sparsity level is unknown before

the compressive spectrum sensing is performed. In our pro-

posed hybrid framework, the data from geo-location database

calculation algorithm can be used to provide an estimation of

the sparsity level. As a result, the lowest compression ratio

guaranteing exact recovery can be determined by the well-

known relationship between necessary measurements and the

sparsity level.

Besides on the aforementioned advantages, the proposed

framework also has disadvantages. In the implementation of a
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locally stored geo-location database algorithm, extra compu-

tational complexities would be introduced at SUs even though

an efficient geo-location database algorithm has been proposed

in this paper. It is noted from our live spectrum monitoring

system that the spectrum may not change in a period of time,

which means the output of geo-location database algorithm

may not change frequently. Therefore, how often should the

geo-location database algorithm be called at SUs is an issue

to be analyzed with respect to the variations of spectrum.

This could be achieved by further theoretical analysis with

more experiments on the real-time spectrum data in the future.

With these further improvements and more experiments, the

proposed hybrid framework can be extended to much wider

bands by including spectrum activities in cellular, industrial,

scientific and medical (ISM) frequency bands.
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