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ABSTRACT:

Data

 

augmentation

 

is

 

a

 

well

 

known

 

technique

 

that

 

is

 

frequently

 

used

 

in

 

machine

 

learning

 

tasks

 

to

 

increase

 

the

 

number

 

of

 

training

 

instances

 

and

 

hence

 

decrease

 

model

 

over-fitting.

 

In

 

this

 

paper

 

we

 

propose

 

a

 

data

 

augmentation

 

technique

 

that

 

can

 

further

 

boost

 

the

 

performance

 

of

 

satellite

 

image

 

super

 

resolution

 

tasks.

 

A

 

super-resolution

 

convolutional

 

neural

 

network

 

(SRCNN)

 

was

 

adopted

 

as

 

a

 

state-of-the-art

 

deep

 

learning

 

model

 

to

 

test

 

the

 

proposed

 

data

 

augmentation

 

technique.

 

Different

 

augmentation

 

techniques

 

were

 

studied

 

to

 

investigate

 

their

 

relative

 

importance

 

and

 

accuracy

 

gains.

 

We

 

categorized

 

the

 

augmentation

 

methods

 

into

 

instance

 

based

 

and

 

channel

 

based

 

augmentation

 

methods.

 

The

 

former

 

refers

 

to

 

the

 

standard

 

approach

 

of

 

creating

 

new

 

data

 

instances

 

through

 

ap-

 

plying

 

image

 

transformations

 

to

 

the

 

original

 

images

 

such

 

as

 

adding

 

artificial

 

noise,

 

rotations

 

and

 

translations

 

to

 

training

 

samples,

 

while

 

in

 

the

 

latter

 

we

 

fuse

 

auxiliary

 

channels

 

(or

 

custom

 

bands)

 

with

 

each

 

training

 

instance,

 

which

 

helps

 

the

 

model

 

learn

 

useful

 

representations.

 

Fusing

 

auxiliary

 

derived

 

channels

 

to

 

a

 

satellite

 

image

 

RGB

 

combination

 

can

 

be

 

seen

 

as

 

a

 

spectral-spatial

 

fusion

 

process

 

as

 

we

 

explain

 

later.

 

Several

 

experiments

 

were

 

carried

 

out

 

to

 

evaluate

 

the

 

efficacy

 

of

 

the

 

proposed

 

fusion-based

 

augmentation

 

method

 

compared

 

with

 

traditional

 

data

 

augmentation

 

techniques

 

such

 

as

 

rotation,

 

flip

 

and

 

noisy

 

training

 

inputs.

 

The

 

reconstruc-

 

tion

 

quality

 

of

 

the

 

high

 

resolution

 

output

 

was

 

quantitatively

 

evaluated

 

using

 

Peak-Signal-To-Noise-Ratio

 

(PSNR)

 

and

 

qualitatively

 

through

 

visualisation

 

of

 

test

 

samples

 

before

 

and

 

after

 

super-resolving.

1. INTRODUCTION

Massive advances have been witnessed in Remote Sensing tech-

nologies recently. Whether improving sensors or processing

techniques, these advances are reflected in terms of the 5Vs

of big data (Yang et al., 2016a), i.e.: volume, velocity, vari-

ety, veracity and value. The spatial, spectral and temporal res-

olutions of Remote Sensing data, are core contributors to the

volume factor. Moreover, very high spatial resolution (VHR)

datasets are increasingly emerging as superior solution com-

ponents that cover the needs of various geospatial and remote

sensing applications (Romero et al., 2016). For example, sub-

meter spatial resolution has been reached by recently launched

satellites such as WorldView-4 (SIC, 2017). Nevertheless, VHR

datasets are still expensive and only low to mid resolution data-

sets such as Landsat and Sentinel (AWS, 2016, AWS, 2017) are

open for free use and download. For this reason, there is a cur-

rent need for enhancing the freely available, lower resolution

datasets.

In line with progress in sensor accuracy, data processing tech-

niques are continually being developed and refined. Due to its

ability to form useful hierarchical representations of complex

data, deep learning has made significant contributions to the

field of image processing (Huang et al., 2015). Deep learn-

ing algorithms have been used in several remote sensing ap-

plications such as classification (Liu et al., 2017) (Kussul et al.,

2017), feature selection and extraction (Zhang , Wang, 2015)

and super-resolution (SR) (Liebel , Körner, 2016). It is a perfect

match to big data (Schmitt , Zhu, 2016) and it has shown high

performance levels in classical computer vision problems such

as SR (Dong et al., 2016). From a methodological perspect-

ive, SR using deep learning techniques can be achieved either

using multi-frame or single-image approaches. The former re-

lies on building a model which is capable of learning how to

enhance spatial resolution through learning features from mul-

tiple scenes from different perspectives/angles of the same spot.

With reference to satellite image super resolution, the multi-

frame method could be interpreted as super-resolving the over-

lapping areas between scenes e.g. scenes 127,057 and 127,058

(see figure 1). The aforementioned method can exploit useful

new information from the different perspectives and sub-pixel

shifting of the same spot that could be used to form the high

resolution output image (Bevilacqua, 2014). The single-image

approach, on the other hand, relies on recovering a high resol-

ution image from a single lower resolution image (Dong et al.,

2016). The original high-resolution image corresponds to the

target and a synthesized version is generated to represent the

lower resolution source by a down-sampling process applied to

the target, followed by an up-sampling of the target image using

the same down-sampling factor.

Unlike trivial image interpolation processes (e.g. bicubic or bi-

linear filtering) which rely mainly on magnifying the existing

details of the input image, SR targets the prediction of details

that were missing from the input low resolution image (Bevilac-

qua, 2014).

In this study we focus on single satellite image super resolution

using a deep learning approach. Building training datasets for

deep learning algorithms is a problematic process that can affect

the performance and speed of classification or regression values
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(Castelluccio et al., 2015, Gardner Daniel, 2017), and satellite

images are no exception. It is usually difficult to build data-

sets of the scale required by deep learning. Data augmentation

is frequently reported to mitigate the problem of data scarcity

in many domains (Ding et al., 2016). The technique also re-

duces over-fitting, which can occur when applying the model to

closely related data instances (Wang , Perez, 2017) and over-

complex models. However, unfortunately not much work has

been reported in the domain of satellite image super-resolution

with data augmentation techniques1.

Figure 1. The overlapping areas between scenes.

In (Pouliot et al., 2018), the authors tested satellite image su-

per resolution using deep and shallow convolutional neural net-

works to demonstrate the effects of tuning the training model

depth on the accuracy. The authors used SRCNN methods to

super resolve Landsat-8 and Landsat-5 images using Sentinel-2

data as a target/label. Although the authors explained the im-

portance of data augmentation techniques, they stated clearly

that no data augmentation approaches were used except for

Landsat-5 data to cover the lack of training samples. In (Liebel

, Körner, 2016), SR was applied on Sentinel-2 (AWS, 2017)

13 spectral bands without mentioning any usage of data aug-

mentation techniques. The same applies to (Wang et al.,

2018), where super-resolution convolutional neural networks

(SRCNNs) were applied to super-resolving aerial images. Both

papers reported relatively high levels of accuracy. In this paper,

we demonstrate how to apply channel and instance augment-

ation/fusion techniques to super-resolution problems in order

to achieve higher accuracy. Inspired by (Cirean et al., 2012)

and (Ahn et al., 2015) data augmentation approaches for clas-

sification and restoration problems and (Pohl , Van Genderen,

2016) data fusion approaches, we formed a spatial-spectral fu-

sion at feature level which can boost satellite image super res-

olution accuracy. We also compare the performance of the pro-

posed fusion technique against standard instance augmentation

approaches encapsulated by rotated, flipped and noisy inputs.

1Searching Scopus and Google Scholar databases for papers published

from 2012-2018 with the phrase ”satellite image” AND ”augmentation”

AND ”super-resolution” OR ”super resolution” returned only 32 results

and majority of them mentioned data augmentation as a technique to in-

crease the number of training samples.

This study aims to answer the following questions:

1. Does data fusion via channel augmentation boost accuracy

of satellite image super resolution?

2. What are the most useful artificial bands to be fused with

input training samples?

3. Does traditional instance augmentation based on mirror

flips, rotation, and noise, add value to the model?

4. What type of noise is most useful for instance augmenta-

tion for satellite image SR?

Section 2 provides a detailed description of the methodology,

including the convolutional neural network, dataset, data aug-

mentation techniques and experimental design adopted. Section

5 summarizes the main results obtained and section 6 provides

several conclusions and guidelines for future work.

2. DATA AUGMENTATION METHODS

2.1 Data Augmentation

Data augmentation aims at enlarging the dataset in order to

address gaps in data representation and to minimize the prob-

lem of over-fitting. This leads to improved model performance

and prevents imbalanced learning. In case of the image clas-

sification domain, both satellite and conventional images have

benefited from several augmentation techniques (Ding et al.,

2016, Wang , Perez, 2017). In satellite image classification,

clipping, rotating, flipping, shifting and translating are the most

commonly used image transformations (Ding et al., 2016, Yang

et al., 2016b), whereas in the context of satellite image super-

resolution, materials weren’t available to form a strong opinion

on which augmentation techniques were more useful.

Moreover, we assume that the statistical properties of satel-

lite images are sufficiently different from generic photographs,

thus affecting the effectiveness of SR solutions, and justifying a

study that focuses on data augmentation techniques specifically

in the satellite image super resolution domain.

We categorize augmentation techniques in 2 main groups as fol-

lows:

• Instance-based augmentation This refers to all well-

known geometric, coloring, noise, deformation, trans-

lation, brightness and smoothing image transformations

which have been used in scene classification and conven-

tional image super resolution tasks to increase the number

of samples/instances in a dataset.

• Fusion-based augmentation This represents stacking ar-

tificial bands that might add supplementary beneficial ob-

servations (or perspectives) to the model that contribute

towards improving model accuracy. In other words, we

add a set of derived channels to be fused with input data

which increases the dimensionality of the data rather than

the number of training instances.

Since there are many types of kernels that can be applied to

images to derive meaningful features, in the next section we

focus on some of the most relevant to denoising, sharpening

and resolution enhancement, as we believe that such features

might be useful to the model. Although deep architectures tra-

ditionally aim to automate the feature extraction process, we
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prove quantitatively and qualitatively that fusing manually ex-

tracted features with training samples adds useful representa-

tions to the model which can boost super resolution accuracy.

The proposed added features include edge detection, unsharp

masking and contrast enhancement. We argue that adding such

features to the input will prevent the network from learning ir-

relevant kernels in addition to emphasizing the edge-focused

and sharpening features. At the same time, this can help in

boosting the overall model performance. A detailed description

of each channel and how it gets fused with the input layer is

explained in the following sections.

• Edge Detection

In general, any kind of convolutional neural network at-

tempts to find useful representations of data via edges,

corners, textures and many other features. At the begin-

ning of a neural network, kernels extract simple features

such as edges while the extraction becomes much more

complex and abstract when it goes deeper through the net-

work. Since edges are very important features in CNNs in

general and particularly in super resolution, it motivated

us to study the effect of fusing manually generated edge

features on super resolution accuracy.

In order to derive edge features form satellite images,

we converted an RGB combination to grayscale first and

hence we were able to create different types of edges fea-

tures. Edge kernels such as Sobel, Touzi and Gradient are

the most used ones in satellite image analysis applications.

However, a gradient-based approach was adopted based on

several experiments as we explain later in the results sec-

tion.

Gradient edge detection uses derivatives to detect large in-

tensity changes in an image (Katiyar , Arun, 2014) using

the magnitude and direction of vectors. Magnitude and

direction can be calculated through equations 1 and 2 re-

spectively.

‖▽I‖ =

√

(
δF

δx
)2 + (

δF

δy
)2 (1)

θ = tan− 1[
δF

δy
/
δF

δx
] (2)

where F refers to the image function

x and y are directions axis

In order to measure the effects of fusing the gradient edge

feature with SRCNN, it was necessary to inspect the out-

put feature maps of a training sample stacked with gradi-

ent features against the same training sample with only

RGB color combination to evaluate the resulting repres-

entations.

Fig. 2 shows a sentinel-2 training sample containing an

aircraft (A) and the results of convolving (A) with and

without fusing edge feature after 1 epoch during first layer

(9x9) of the SRCNN architecture. The convolution pro-

cess was followed by non-linear activation function Rec-

tified Linear Unit (Relu). The resulting feature map (C)

was strongly affected by fusing gradient edge features as

clearly seen from the number of activated neurons. We

hypothesised that fusing such features at an early stage of

training might assist the model by presenting useful rep-

resentations.

The edge detection derived channel was fused with the

RGB color combination to enforce the model to learn and

extract edge-focused features in addition to preserving de-

tails of complex image structures that could be benefi-

cial to construct the HR output. Quantitative results us-

ing Peak-Signal-to-Noise-Ratio metric show the gains of

fusing such features in the results section.

• Contrast Enhancement

From an image enhancement perspective, contrast en-

hancement is used to improve the disparity between the

objects in a scene and their background (Hall, 1979). We

assume that enhancing contrast can expose several hidden

but relevant image details, which can help in extracting

significant features for SR. Among contrast enhancement

methodologies, histogram equalisation is the most used al-

gorithm in remote sensing image manipulation (Fu et al.,

2015). Histogram equalisation aims to derive the intensity

mapping that will as best as possible equalise the image

histogram.

As depicted in Fig. 3, the fusion of a contrast enhanced

channel using histogram equalisation algorithm with the

RGB color combination helped in representing more de-

tails in (C) which were not so apparent in the original train-

ing sample (A).

• Unsharp Masking As a simple method of increasing de-

tails in an image, unsharp masking consists of adding a

mask to the original image (Maheshwari , Pati, 2014)

which is created by subtracting a blurred version of the

original image from the original one as follows. Let A

be the original image, B the blurred version, mask = B -

A. The created mask is then combined with the original

image to produce a sharpened version. We presume that

adding such channel will highlight the deblurring features

to be extracted during training. Following the same ap-

proach of visualising gradient edge feature, Fig. 4 shows

the difference between applying the same convolution pro-

cess on training sample (B) with manually added contrast

enhanced feature (C) and without adding in (A). Although

it shows less added value than the gradient edges feature

this might be justified as early layers in CNNs tend to fo-

cus on edges.

In the next section, we explain how datasets were created to

test the proposed augmentation methods on both Landsat-8 and

Sentinel-2 products.

3. DATASET

Creating a balanced training dataset for deep learning tasks is

an important prerequisite to having an unbiased model. In re-

mote sensing, hundreds of scenes are being captured and sent

to ground stations for publishing and ingestion. Starting from

late 2008, Landsat-8 (AWS, 2016) data became open for down-

load by all users free of charge and within a few hours of scene

capture. The 11-band spatial resolution is 30m for visible and

infrared bands and 15m for panchromatic data.

On the other hand, the European Union adopted an open data

policy for the Copernicus programme (Sentinel Online FAQ,

2018). Sentinel-2 data contains 13 bands with spatial resolu-

tion varying from 10, 20 to 60 meter bands which serves a wide

range of applications related to the Earth.
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Figure 2. Difference between convolution output of manually added gradient edge feature (C) and convolution output for same

training sample without adding gradient edge feature (B) while original training sample is (A).

Figure 3. Difference between convolution output of manually added contrast enhanced feature (C) and convolution output for same

training sample without adding contrast enhanced feature (A) while original training sample is (B).

Figure 4. Difference between convolution output of manually added unsharp mask feature (C) and convolution output for same

training sample without adding unsharp mask feature (A) while original training sample is (B).
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The study area consists of the western side of Malaysia which is

covered by paths 126, 127 and rows 57 and 58 as shown in Fig.

1 for landsat-8 Worldwide Reference System (WRS) Path/Row.

Regarding Sentinel-2, the same region was covered by granules

47NQE, 47NQD, 47NRE and 47NRD.

Given an image sample size of 64x64 pixels, 12k samples were

created from the selected scenes with a stride of 8 pixels. 8400

samples were allocated for training while 3600 were allocated

for validation. Training samples were divided into X and Y,

where Y consists of the original samples representing the high

resolution target, and X refers to the corresponding synthes-

ized low resolution version of the original samples, obtained by

downscaling and subsequent upscaling (with a corresponding

scaling factors).

4. EXPERIMENTAL DESIGN

This section explains the achieved experiments to evaluate the

efficacy of adding fusion-based data augmentation compared to

traditional data augmentation techniques. In addition, utilising

the flexibility of the SRCNN 9-1-5 architecture, we evaluate

using SRCNN in new domains such as denoising and dehazing

using synthesised noise and haze effects.

In order to evaluate the proposed augmentation methods on

Landsat-8 and Sentinel-2 datasets, a grayscale scene was cre-

ated to derive the unsharp mask, contrast enhanced, and gradi-

ent edge bands, in addition to bands 4 (red), 3 (green) and 2

(blue). The selected scene channels were then stacked prior

to cropping patches of size 64 × 64. The created patches

were cropped through a grid of vector polygons designed with

a stride of 8 pixels. The raw dataset of 12,000 samples

was divided into 70%, 20% and 10% portions to form non-

overlapping training, validation and test sets respectively for

both Landsat-8 and Sentinel-2 products. A set of experiments

were designed with the following core conditions:

Super-Resolution RGB with instance-based augmentation:

• Bands 4,3,2 in addition to instance augmentation including

(flipping, rotating, noise and smoothing).

Super-Resolution RGB with fusion-based augmentation:

• Bands 4,3,2 fused with gradient edge detected feature

• Bands 4,3,2 fused with unsharp masking feature

• Bands 4,3,2 fused with contrast enhanced feature

• Bands 4,3,2 in addition to near and shortwave infrared

bands

• Bands 4,3,2 fused with gradient edge detected, contrast en-

hanced and unsharp masking features

Moreover, additional augmentation methodologies were tested

in different domains such as denoising and dehazing as follows:

Denoising:

• Bands 4,3,2 with noise effects (salt-and-pepper).

Dehazing:

• Bands 4,3,2 with synthesised haze effects.

In the next section, we demonstrate how the results of SRCNN

are influenced by our proposed augmentation method compared

with traditional instance-based augmentation. Moreover, the

SRCNN was tested against denoising and dehazing tasks. As

an example of synthesised noise, salt-and-pepper effect was ad-

ded as augmented samples. In addition, to simulate the haze

effect, red, green and blue bands were split to modify the con-

trast of every channel separately. The effect of haze is obviously

noticed in blue bands and less in red and green bands as men-

tioned in (Qin et al., 2018). Although haze effects are usually

not following a uniform distribution especially that it depends

on atmospheric scattering models (Qin et al., 2018), this exper-

iment aimed to approach the haze problem from contrast deteri-

oration perspective. The assessment of image restoration can be

measured through Peak Signal to Noise Ratio (PSNR) metric.

PSNR can be denoted as:

PSNR = 10 · log
10

C2

MSE
(3)

where C2 refers to the maximum value a pixel can have.

MSE refers to the Mean Squared Error which can

be obtained using equation 4.

MSE =
1

n

n
∑

i=1

||Yi −Xi||
2

(4)

where Y represents the predicted high resolution output

X represents the ground truth sample.

5. RESULTS

Taking advantage of the flexibility of the SRCNN design,

various channels have been merged to test the effective-

ness of fusion-based augmentation methodologies compared to

instance-based ones. In addition, we introduce the SRCNN ar-

chitecture to new problems such as denoising and dehazing.2

The results are shown in table 1 and figures 7, 9 and 8, where

we can observe the following: (i) insignificant performance im-

provement when instance augmentation including flipping and

rotating have been applied to the RGB channels; (ii) it is note-

worthy that gradient edge detection provides the most useful

fused feature compared to contrast enhanced and unsharp mask

features; (iii) adding edge detection, contrast enhancement and

unsharp masking channels to the visual bands improved the per-

formance more than any other augmentation method we exper-

imented with SRCNN; (iv) RGB is improved to some extent by

instance augmentation and infrared channels, but more signi-

ficantly by the proposed channel augmentation. On the other

hand, figures 5 and 6 show the denoised and dehazed samples.

The proposed augmentation approaches to simulate noise and

haze effects didn’t work as expected and the results show spec-

tral distortions throughout test samples.

6. CONCLUSIONS

In this paper, we presented data augmentation methods that

help boost super resolution accuracy in the satellite image do-

main. The proposed data augmentation methodology integrates

2Due to unsatisfying results, only qualitative results for the denoising

and dehazing experiments are included.
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Figure 5. Example of denoise process where (a) represents the original sample, (b) represents the added salt-and-pepper noise and (c)

is the result.

Figure 6. Example of dehaze process where (a) represents the original sample, (b) represents the synthesised haze and (c) is the result.

Figure 7. Examples from test set results of the proposed fusion-based augmentation compared with ground truth samples.
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Figure 8. Comparison between the learning convergence of different channel augmentations added to RGB channels.

Figure 9. Comparison between RGB channels with and without instance augmentation learning convergence.

Table 1. A comparison between different augmentation

approaches testing results where CE refers to Contrast

Enhanced, UM Unsharp Mask and ED Edge Detection.

Training strategy Average PSNR in dB

RGB 44.768
RGB with instance augmentation 45.224

RGB fused with CE 45.254
RGB fused with UM 45.023
RGB fused with ED 45.605

RGB fused with (CE,UM,ED) 45.788
RGB + NIR + SWIR I + SWIR II 45.125

the power of SRCNN for learning nonlinear mappings between

low and high resolution images, with the flexibility to incor-

porate additional feature representations via fusing auxiliary in-

put channels with input data. A selection of artificial channels

was experimented with, that provided an alternative training

strategy, which contributed to the construction of more accurate

high resolution outputs. Following the rule of thumb of eval-

uating image structure similarity, the PSNR metric was used

to numerically assess the super resolved images by compar-

ing them against the original ground truth high resolution im-

ages. The experimental results showed the effectiveness of our

proposed fusion-based augmentation approach compared with

standard instance augmentation methods. However, limitations

were highlighted when augmentation was introduced to differ-

ent problem domains such as denoising and dehazing. Since it

is out of the scope of this paper, in future work we aim to ex-

plore the required changes to adapt the model for denoising and

dehazing problems.
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