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Abstract: With the rapid development of deep learning, pavement crack detection has started to shift
from traditional manual visual inspection to automated detection; however, automatic detection is
still a challenge due to many complex interference conditions on pavements. To solve the problem
of shadow interference in pavement crack detection, this paper proposes an improved shadow
generation network, named Texture Self-Supervised CycleGAN (CycleGAN-TSS), which can improve
the effect of generation and can be used to augment the band of shadowed images of pavement cracks.
We selected various images from three public datasets, namely Crack500, cracktree200, and CFD, to
create shadowed pavement-crack images and fed them into CycleGAN-TSS for training to inspect the
generation effect of the network. To verify the effect of the proposed method on crack segmentation
with shadow interference, the segmentation results of the augmented dataset were compared with
those of the original dataset, using the U-Net. The results show that the segmentation network
achieved a higher crack recognition accuracy after the augmented dataset was used for training.
Our method, which involves generating shadowed images to augment the dataset and putting them
into the training network, can effectively improve the anti-shadow interference ability of the crack
segmentation network. The research in this paper also provides a feasible method for improving
detection accuracy under other interference conditions in future pavement recognition work.

Keywords: CycleGANs; shadow interference; data augmentation; crack detection

1. Introduction

With the rapid development of highway transportation, the demand for pavement
maintenance is growing. Accurate and fast pavement inspection technology can provide
decision support for pavement maintenance management. However, the most widely
used pavement inspection method is still traditional manual inspection, which has obvious
disadvantages, such as strong subjectivity and low efficiency. With the development of
deep learning in recent years, certain traditional computer vision tasks have started to be
performed by deep learning, such as image classification [1–3], target detection [4–6], and
semantic segmentation [7–9]. In other fields, such as material design [10] and structure
design [11,12] tasks, deep learning has also shown great potential. In this context, auto-
mated pavement detection has also started to receive more attention [13]. Compared with
traditional detection algorithms, researchers [14] found that convolutional neural networks
exhibit better performance in pavement crack recognition. Ji A et al. [15] proposed an inte-
grated method for crack detection based on the convolutional neural network DeepLabv3+,
which proved to be effective and reliable in automatic asphalt pavement inspection. Peigen
Li et al. [16] proposed a crack segmentation U-Net network with edge detection output to
improve the accuracy of pavement crack detection.

In the pavement inspection task, cracks need to be accurately detected and segmented.
For pavement cracks in ideal conditions, traditional image-processing techniques such as
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edge detection and threshold segmentation can effectively segment cracks in images [17,18].
However, in real-world pavements, crack segmentation is often affected by different pave-
ment conditions, such as shadows and stains [19,20], with shadows representing the main
environmental interference factor in the pavement crack segmentation task. In the process of
automatic pavement detection, the network can misjudge and miss cracks due to the similarity
between the color features of shadows and structural features and the corresponding features
of cracks, thus making the detection of cracks under shadow interference problematic.

To address the interference of shadows in crack detection, there are two direct practical
approaches to shadow removal: removing the shadows that create interference in crack
images by using traditional image algorithms [21] and carrying out shadow removal by
using deep-learning methods [22]. For deep learning, the final training effect of the network
is largely related to the training dataset [23]. Therefore, the shadow-removal task for images
of pavement cracks is essentially identical to the crack detection segmentation task under
shadow interference, as both need to first distinguish shadows from cracks in the image.
The difference lies in the fact that, in the former method, the shadowed areas need to be
selected and restored to a shadow-free image. This additional task often requires a larger
corresponding dataset from the trainer. Thus, with the clear need for crack segmentation,
this paper adopts the latter, more straightforward approach, which was used to train our
network under shadow interference so that it was able to complete crack segmentation
under interference conditions.

As is well-known, deep learning is a data-driven method, and its training effect
requires a sufficient amount of relevant data as support. Moreover, because of the domain
sensitivity of deep learning, the datasets obtained in different situations or different periods
are not universal. In practical situations, it is a challenge to collect a sufficient number of
images with both cracks and shadows for network training due to the influence of weather
and lighting. To improve the detection effect of pavement cracks, data augmentation is the
best solution when there are not any sufficient image data.

To augment and generate more data from existing datasets, Nanni L et al. [24] proposed
a new data augmentation method to construct a new set by combining 14 traditional data
augmentation methods to generate new images in the dataset. However, traditional image
data augmentation methods, such as rotation, flipping, stretching, etc., often cannot process
specific semantic information in the image, and the augmented image data generated in
this way cannot provide the network with new semantic information for learning; it can
only improve the adaptability of the network to the location of image semantic information
and shape distortion. Various researchers [25] proposed that more effective data can be
generated from existing data through generative adversarial networks.

Goodfellow et al. [26] proposed the Generative Adversarial Network (GAN), which
was trained based on a mutual game between the generator and the discriminator, and
limited the iterative convergence of the network through the adversarial generation loss
to generate the target image from the noise space. Phillip Isola et al. [27] proposed the
Pix2Pix network, which used skip-connected U-Net as the generator and PatchGAN,
which was used to capture the regional feature information, as the discriminator. In this
way, the network could generate the desired image effect without destroying the basic
information of the original image. To use unpaired datasets for training, Zhu J Y et al. [28]
designed the Cycle-Constraint Adversarial Network (CycleGAN); similar to Pix2Pix, the
CycleGAN also uses the special U-Net with skip-connected as the generator and PatchGAN
as the discriminator. Since it was proposed, as a result of the fact that it can complete
the transformation task of two image domains without the need for paired datasets, the
network can complete many generation tasks that cannot obtain paired datasets [29,30]
and complete many semantic transformation tasks with its excellent image “translation”
ability [31,32]. Therefore, based on the CycleGAN, researchers [33,34] proposed CycleGANs
with additional information supervision to be applied to the target generation task, which
uses additional labels to strengthen the network’s generation of image-specific information.
However, to improve the effect of texture generation by adding supervision, manual labels
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are often needed. Making these labels makes training data more time-consuming and
laborious. Moreover, when the defect texture is strongly supervised by the labels, although
the ideal texture is generated, the diversity of the texture depends on the number of image
labels, and this creates a huge limitation for certain tasks when generating images and
augmenting the dataset.

Compared with generating the target image from the noise space, using the CycleGAN
to generate the semantic information of shadows requires less training and smaller datasets.
On the other hand, for paired datasets in the pavement image generation task, it is difficult
to obtain the same pavement images, both with and without shadows. Therefore, to
complete the pavement image generation task studied in this paper, it is the best choice
to adopt and transform CycleGAN for shadow generation. In order to make CycleGAN
coordinate the shadow texture generation task and avoid the problems caused by enhanced
supervision, based on the original CycleGAN, this paper proposes an additional self-
supervised CycleGAN (CycleGAN-TSS). By adding a texture self-supervised structure
to constrain the generation of shadows, the network achieves a better generation effect
under self-supervision. According to the structural characteristics of the network, it is
named the texture self-supervised CycleGAN (CycleGAN-TSS) network. We used this new
generative network to augment the data and verify the practical effect of augmenting the
image dataset.

The following are the main contributions of this paper:

• A CycleGAN for texture self-supervised for texture generation was established. This
is able to generate shadow textures in a self-supervised manner, which enables the
network model to output images with shadow textures and binary images with
shadow information in a more stable manner;

• In this study, we conducted experiments on the crack500, cracktree200, and CFD
datasets to verify the shadow-generation effect of the CycleGAN-TSS network by
visual comparison and demonstrated the stability of the network for image shadow
information generation on unpaired datasets and small datasets;

• It is demonstrated that the proposed shadow data augmentation method can be used
to improve the anti-interference capability of pavement crack detection under the
influence of shadows.

The rest of the paper is organized as follows. Section 2 describes the research method-
ology in detail. Section 3 describes the experimental procedure and the results. Finally, the
paper is summarized in Section 4.

2. Methodology

This section first introduces the production method of the image dataset. Then it details
the improvements to the original CycleGAN, i.e., the designed texture self-supervised
CycleGAN (CycleGAN-TSS) network structure, which adds a new lateral shadow texture
self-supervised loss function and adjusts the balance of multiple loss functions to derive
the overall loss function.

2.1. Data Sources and Data Processing

The data required for training included two types of sample data: pavement crack
images with shadows and pavement crack images without shadows. These two types
of sample data were mainly sourced from the public pavement crack image datasets
CRACK500 [35,36], CFD [37], and CrackTree200 [19]. The CRACK500 dataset contains
about 500 original images of size 3264 × 2448 and a total of 3364 images after clipping,
the CFD dataset contains 155 original images, and the CrackTree200 dataset contains 206
original images. The statistics of the number of images selected from the above three
datasets are shown in Table 1. The image is selected to add shadow information, and
the processed image is fed into CycleGAN-TSS for training. In addition to the need for
shadowed-image augmentation, the CRACK500 dataset also selects various additional
images to verify the actual crack-segmentation effect of U-Net after the augmentation.
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Table 1. Selection of dataset and number of synthetic images.

Dataset Original Images Selected Images Composite Shadow Images

CRACK500 3364 780 80
CFD 155 126 80

cracktree200 206 206 80

The pavement images with obvious cracks were selected from the three datasets for
augmentation, and these image data were cropped and resized. Finally, the size of all
images was unified to 256 × 256. To obtain the shadowed-pavement-crack-image data with
the same image style as the original dataset, we randomly added shadow masks to the
original image to generate images. By randomly cropping some areas of the shadow image,
the shadow mask of the pavement image was added to the original pavement image to
form the shadow mask of the image, as shown in Figure 1. In this way, we obtained three
synthetic shadowed-image datasets.
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Figure 1. Illustration of making shadowed images.

2.2. Network Structure

As shown in Figure 2, the proposed CycleGAN-TSS for generating images of pavement
cracks with shadows, similar to the original CycleGAN, also comes with two generators
that convert between different image domains, as well as discriminators for each of the two
image domains. Different from the original network, the CycleGAN-TSS comes with the
generation of binary maps with shadow information when the two generators generate
images. In this special-generation task with cracks and shadows, these pairwise binary
maps in the network play a role in strengthening the supervision of shadow generation.
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losses in the network structure.

2.3. Loss Function

The network structure of CycleGAN-TSS proposed in this paper mainly contains two
kinds of data distributions: unshadowed crack images X~Pdata (x) and shadowed crack
images Y~Pdata (y). For the shadow texture image, it can be generally considered as the
difference between the image semantic information in the Y domain and the image semantic
information in the X domain; therefore, we can express the shadow semantic information
M as follows:

Y = X + M. (1)

This is interpreted as the Y-domain image semantics being equivalent to the sum of
X-domain image semantics and shadow semantics. However, this relationship is not a
simple additive relationship on image processing, and it needs a more realistic simulation
effect of shadow covering the pavement. Therefore, we needed to train the generative
network model by using deep learning to accomplish the task of adding shadow semantic
information to X-domain images. Normally, CycleGAN can accomplish the transformation
of semantic information to achieve the generation of image local effects, but in this particular
pavement-crack-image shadow-generation task, the original CycleGAN suffers from two
main problems:

• The semantic information of images with shadows and images without shadows is
asymmetric. The image generation in this task requires more generation of semantic
information rather than conversion of semantic information. If the original CycleGAN
is used to complete this work, it can lead to color loss and structural damage to crack
information in the image;

• When the original CycleGAN performs the generation task, the training images are
unpaired. As a result of the lack of constraints on the recognition of shadow informa-
tion, under the interference of the original crack color information, the authenticity of
the generated shadow information is poor, and the image information will also be lost.

As shown in Figure 3, in the case of a small dataset, the original CycleGAN often
suffers from the loss of crack color information (shown in (a)) or the loss of basic image
information generation (shown in (b)) at the early stage of training. Moreover, it also suffers
from overfitting caused by the small dataset (shown in (c)) and the loss of crack structure
information generation (shown in (d)) during the training process.
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The goal of the shadow-generation network is to give the mappings learned from
the training samples X and Y, which include the mappings from X to Y for the shadow
image generator G and from Y to X for the shadow-free image generator F. In addition, the
network includes two discriminators, DX and DY, which are mainly used to distinguish
the authenticity of X and Y with their corresponding generated images. In this study,
since the adopted dataset is a non-paired pavement dataset, our shadow mask information
could not be generated from the original X domain and Y domain images, so we improved
Equation (1) and separated our shadow information image from the generated image. The
shadow semantic information M is expressed as follows:

M = Ŷ− X = Y− X̂ (2)

where Ŷ and X̂ are the corresponding forgery image domains of Y and X generated by the
two generators G and F, respectively.

According to the task requirements, as shown in Figure 4, we output the difference
information between the input image and the generated image of the generator. Then
we performed simple thresholding and normalization to obtain the shadow texture and
display the shadow position and shape information in the form of a binary image.
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The CycleGAN in this paper mainly includes the following losses: adversarial loss,
cycle consistent loss, identity loss, and the proposed texture self-supervised loss.
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2.3.1. Adversarial Loss

The generative adversarial loss in CycleGAN adopts the same strategy as GAN, i.e.,
the mutual game between the generator and the discriminator is used for training. The
generator tries to produce images that are more similar to the target domain image and
tries to confuse the discriminator, which aims to classify the real picture more precisely
from the generated one. Thus, the adversarial loss function is expressed as follows:

LGAN(G, DY, X, Y) = Ey∼Pdate(y)[log DY(y)]
+Ex∼Pdate(x)[log(1− DY(G(x)))] ,

(3)

LGAN(F, DX , Y, X) = Ex∼Pdate(x)[log DX(x)]
+Ey∼Pdate(y)[log(1− DX(F(y)))] ,

(4)

where LGAN(G, DY, X, Y) is the adversarial loss of generator G and discriminator DY, and
similarly, the adversarial loss of generator F and discriminator DX is LGAN(F, DX , Y, X).
These two pairs of losses constitute the adversarial loss of CycleGAN.

2.3.2. Cycle Consistent Loss

Cycle consistent loss is an important loss of CycleGAN and also the main structure of
its network. It ensures that the unpaired dataset has a relatively stable effect in training.
The idea of circular consistency loss lies in the “translation” of images. When we carry out
image semantic conversion, not only do we need to ensure that the two image domains
can be transformed into each other, but also the converted forged domain image can be
converted back to the original image domain through the corresponding generator, which is
also the reason why it is named cycle consistent loss. The specific form of loss is as follows:

Lcyc(G, F) = Ex∼Pdate(x)[‖F(G(x))− x‖1]

+Ey∼Pdate(y)[‖G(F(y))− y‖1] .
(5)

where Lcyc(G, F) is the cycle consistent loss, F(G(X)) is the reconstructed images from
G(X) by generator F, and, similarly, G( F(y)) is the reconstructed images from F(y) by
generator G.

2.3.3. Identity Loss

Identity loss is a loss function proposed in CycleGAN. Its function is to ensure the
consistency of the color composition of the output image and the input image. To retain the
color information of the input pavement image, this loss needs to be added to the task to
reduce the color information loss of the generated image. This loss is expressed as follows:

Lidentity(G, F) = Ey∼Pdate(y)[‖G(y)− y‖1]

+Ex∼Pdate(x)[‖F(x)− x‖1].
(6)

where Lidentity(G, F) is the identity loss, the image in the target domain of the generator
is input into the generator, and the input image and the output image are compared to
constrain and make it close to the identity map. In the formula, x is the target image of
generator F, and y is the target image of generator G.

2.3.4. Texture Self-Supervised Loss

Although CycleGAN can be used for generating unpaired images, it still has certain
limitations in the case of special tasks. For the shadow-generation task of the pavement
crack image in this paper, when using CycleGAN to solve the mapping relationship in the
image domain, because the image information is not symmetrical, the shadow generation
task is closer to semantic generation than the semantic transformation task. However,
CycleGAN lacks corresponding constraints on the shadow-generation task in the unpaired
image domain, which often leads to the destruction of image color and structure. In this
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case, it is usually improved by adding supervision. However, compared with adding labels
to constrain the shape and position of generated information, the proposed method uses
self-supervision of image-generated information, which can effectively reduce the task
complexity caused by label production and make the loss setting more reasonable.

To achieve a better generation effect, this paper adds a new loss corresponding to the
task based on the original CycleGAN loss function, which is shown as follows:

Ltss(G, F) = Ex∼Pdate(x),y∼Pdate(y)[‖M(x)−M(y)‖1], (7)

where M(x) and M(y) are binary images of shadow information output from generator G
and generator F, respectively. This texture self-supervised loss, which is extracted from the
cycle structure, constricts the generation and elimination of shadows by the two generators
so that the generator can generate or eliminate shadow information more effectively.

Since this loss function takes effect during the mutual transformation of the two image
domains, it makes one generator gradually converge in the process of solving the image
mapping relationship, and the other generator must also converge in the same direction.
This relationship is mutual. Thus, this set of losses makes the generator converge quickly.
To adapt to other losses, it is necessary to set the weight of each loss according to the task
requirements in order to optimize the overall training effect of the network.

2.3.5. Overall Loss Function

According to the constraint effect of each loss, this paper sets different weight parame-
ters for the above losses to balance the network training effect. The overall loss function is
expressed as follows:

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X)
+λ1Lcyc(G, F)
+λ2Lidentity(G, F)
+λ3Ltss(G, F).

(8)

The optimization objective of the network is as follows:

G∗, F∗ = arg min
G,F

max
DX ,DY

L(G, F, DX , DY). (9)

Through continuous training, find the best generation G and F and the most discrimi-
native DX and DY, which is the goal to optimize the network.

On the basis of the actual adjustment, we found that the training results had a certain
difference when setting different weights, finally, the weight parameters in this paper were
set as λ1 = 10, λ2 = λ3 = 5, according to the training results. With this weight adjustment,
the network was able to complete the shadow-generation task well.

3. Experiment

To verify the effect of the proposed texture self-supervised CycleGAN (CycleGAN-TSS)
in the pavement shadow generation task, we collated and manually created a small num-
ber of corresponding shadow image datasets to study the shadow-generation effect of
the network under the training of small datasets and compare the generation effect of
the original CycleGAN under the same situation. Finally, to study the effect of dataset
expansion on crack recognition, we used the shadow pavement crack image generated by
the network to expand the pavement image dataset. The crack-segmentation effect of the
U-Net model on shadow pavement pictures before and after dataset expansion was studied
to determine the improvement of segmentation accuracy by crack-dataset expansion under
shadow interference.
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3.1. Experimental Environment and Data Sources

The experiments were conducted on a PC equipped with an Intel(R) Core i9-10900k
CPU and an NVIDIA 3090, 24G GPU. Software environment: Windows 10, CUDA 11.1,
CUDNN-v8.0.4, TensorFlow-GPU2.4, and Python 3.8.

Given the lack of image datasets with pavement shadows and cracks, to verify the
stability of the shadow generation of the proposed CycleGAN-TSS in the case of pavement
images with cracks, in this study, a pavement-crack-image dataset with the shadow was
constructed by using three public datasets, namely CRACK500, CFD, and CrackTree200, as
the main data sources. The specific production method of shadowed images is described
in Section 2.1. Eighty shadow images were selected from each public dataset for model
training, respectively.

As regards the dataset used to train U-Net and verify the augmentation effect, the pave-
ment images with shadows were all generated by CycleGAN-TSS on the CRACK500 dataset.

3.2. Shadow Generation Network Training and Results

Following the training method of the original CycleGAN, we set the batch size of
the network image input to 4, used the Adam optimizer with β1 = 0.5 and β2 = 0.99 for
parameter update, and set the initial learning rate to 2 × 10−4. As shown in Table 2, the
corresponding training images of the three datasets were fed into the network.

Table 2. Training set inputs for generating networks.

Dataset Original Image Composite Image

CRACK500 80 80
CFD 80 46

cracktree200 80 80

For ease of illustration, the original information of the pavement crack image was
understood as the basic content information of the image, and the shadow information
generated by the generative network was understood as the texture information. In
CycleGAN-TSS, texture information was also output as shadow binary images for attention.

Figure 5 shows the images with shadow texture information generated by the forward
mapping of the proposed generative network on the original image, and the shadow texture
information in the binary image corresponds to the shape and position information of the
shadow of the generated image. We found that the proposed model gradually generates
the pavement shadow images closer to the real images, with the number of training
epochs reaching 50. It can also be seen from the binary images that, with the progress of
training epochs, the position and shape information of shadows were more similar to the
distribution of the real shadowed images of the pavement surface. However, as the number
of training epochs is 70, the effect of generated shadow images is not better than that of 50.
Therefore, we can confirm that the model generation effect reached convergence when the
training times reached 50 epochs.

To further verify the effectiveness of CycleGAN-TSS, the original CycleGAN and
CycleGAN-TSS were trained on small unpaired datasets with the same training parameters
and the same number of training epochs. By comparing the shadow-generation effects of
the two networks, it was intuitively shown that CycleGAN-TSS can produce a better result
on the target task.
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different training epochs.

As shown in Figure 6, it was found through comparison that, when the shadowed
image was generated with cracks, the original CycleGAN confused the color information
of shadows and cracks during training, thus leading to color and structural damage in
the generated picture. With the deepening of the training degree, the original CycleGAN
also produced a certain training effect. However, when the generator and discriminator
gradually converged, the problems of image noise and crack color loss were not solved,
especially when the crack-interference information in the image was more complex. By
comparing the image-generation results of CycleGAN-TSS with the image-generation effect
of the original CycleGAN, the following conclusions can easily be drawn:

• With the same training conditions, compared with the original CycleGAN, CycleGAN-
TSS has a faster convergence speed. The reason is that it adds a self-supervised
mechanism to introduce the prior condition of image-generation effect convergence
into the network, i.e., the texture generation cycle consistent condition. In other words,
the shadow texture information generated and removed by the shadow-generation
network should be consistent at least in position and shape;

• In terms of the final image-generation effect, CycleGAN-TSS produces less image
noise outside the shadow texture region of the generated image. The reason is that
the texture changes of the two processes of shadow generation and shadow removal
are constrained by a self-supervised loss, which limits the changes of the image to the
same region for both shadow generation and shadow removal. Combined with the
participation of adversarial loss, the discriminator restricts the authenticity of shadow
generation, which enables it to achieve a better shadow-generation effect, while also
preserving more complete content information of non-shadow regions.

For semantic-generation tasks, especially those similar to shadow-generation tasks,
such tasks themselves pay more attention to the position and shape information of the
generated semantics, thus causing, the new CycleGAN with a texture self-supervised loss
function to have better generation effects in such tasks.

In Figure 7a,b show the shadow-generation effects of two datasets, namely Crack-
Tree200 and CFD, trained with CycleGAN-TSS, respectively. Similar to the CRACK500
dataset, these two datasets used only 80 synthetic images of pavement cracks with shadows
for training, and the task of shadow generation was also completed well in the case of this
small dataset.

In general, CycleGAN-TSS applied to the task of generating shadows from pavement
crack images can produce better results than the original CycleGAN. Therefore, we applied
the network to the augmentation task of shadow images in an attempt to improve the
accuracy of the pavement crack segmentation task in the case of shadow interference. As
a result of the experimental setup of the segmentation task in this paper, the CRACK500
dataset with the most sufficient image data was selected for shadow image augmentation,
and the augmented dataset was fed into the U-Net network for training to study the
accuracy improvement brought about by our proposed image data augmentation method.
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3.3. Segmentation Network Validation Results

To study the influence of the augmentation of the pavement crack dataset with shad-
ows on the anti-shadow interference effect of the segmentation network, we conducted
crack segmentation and recognition experiments on the original pavement image dataset
and the corresponding image dataset with shadows generated by CycleGAN-TSS to analyze
the actual effect of the pavement shadow image augmentation.

In this study, four datasets were assigned to the training task: T1—a training dataset
containing 500 original images and a test set containing 200 original images; T2—a training
dataset containing 500 original images and a test set containing 200 images with a 1:1
mixture of original and shadowed images; T3—a training dataset containing 350 original
images and 150 shadowed images and a test set containing 200 images with a 1:1 mixture
of original and shadowed images; T4—a training dataset with 350 original images and 150
shadowed images and a test set with 200 original images, as shown in Table 3.
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Table 3. Composition of the four datasets for training and testing.

Dataset
Train Set Test Set

Original Image Augmented Image Original Image Augmented Image

T1 500 0 200 0
T2 500 0 100 100
T3 350 150 100 100
T4 350 150 200 0

To reduce the interference of other factors, the 500 original images used for training
and 350 original images in the mixture set were the same, and the remaining 150 original
images from the 500 were sent to CycleGAN-TSS to generate 150 pavement images with
shadows in the mixture set. The mixed image test set was also generated using this strategy.

The above datasets were fed into U-Net for training, whereby the T1 and T2 datasets
had the same training set and we trained it only once; the same is true for the T3 and T4
datasets. The Acc and Loss evaluation metrics used for training and MIoU changes during
the training process are shown in Figure 8. According to Figure 8, it can be seen that the
model reached convergence when the number of training times was 200. The final model
obtained by training was used to segment the cracks of the test-set images, and the final
segmentation effect of the test set is displayed by the main evaluation index.
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Figure 9 shows that U-Net was able obtain good segmentation results in the crack
segmentation of shadow-free images under the training of the T1 dataset. Under the
training of the T2 dataset, the same segmentation network model as T1 was obtained,
but the segmentation accuracy was significantly reduced when the crack was segmented
under the test shadow condition. The segmentation results of T3 and T4 show that, when
the dataset with shadow image augmentation was involved in the training, the trained
model achieved good segmentation results for both crack detection with shadow and crack
detection without shadow.

The above illustrates that, when the dataset participating in training lacked shadow
images, the dataset sent to the network for training was unbalanced, thus making it difficult
for the network to detect and segment pavement crack images with shadows. However, if
we augmented the dataset by generating shadows from part of the original images through
CycleGAN-TSS, we were able to effectively improve the segmentation effect of the U-Net
network under the same training conditions.
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To evaluate the effect of the augmented shadow dataset more accurately, we introduced
the following general segmentation effect evaluation indicators: Acc (accuracy), Recall,
F1-score, and MIoU (Mean Intersection over Union).

To briefly explain the above evaluation metrics, we first defined the number of pixels
correctly classified as cracks as TP (true positive), the number of pixels incorrectly classified
as cracks as FP (false positive), and the number of pixels correctly classified as background
as TN (true negative). If the number of pixels misclassified as the background is FN (false
negative), then the above evaluation metric can be expressed as follows:

Acc = TP+TN
TP+FP+TN+FN ,

Recall = TP
TP+FN ,

F1 = 2 Precision×Recall
Precision+Recall ,

MIOU = TP
TP+FP+FN ,

(10)



Sustainability 2022, 14, 14304 14 of 16

where the precision is denoted as Precision = TP/(TP + FP); thus, our testing results on
these four datasets are shown in Table 4.

Table 4. Effect of crack segmentation in the test set with different training datasets.

Dataset Acc (%) Recall F1-Score MIoU

T1 98.25 78.46 77.39 63.12
T2 97.16 64.15 63.29 46.29
T3 98.16 77.11 76.18 61.53
T4 98.30 79.78 77.69 63.52

According to Table 4, it can be found that the model trained under the dataset of
the original image was able to achieve a better crack segmentation effect for the test set
of the pavement crack images without shadows. However, under this model, the three
main indicators, namely Recall, F1-score, and MIoU, were all reduced to different degrees
when segmenting the dataset with shadow images. It was observed that the training model
invested in part of the augmented dataset exhibited better segmentation accuracy for the
pavement crack images with shadows than the training model of the original image dataset.
Moreover, the model still exhibited good accuracy for the segmentation of the test set of
non-shadow images. In summary, we were able to draw the following conclusions:

• Shadows have a great influence on the segmentation of pavement cracks, mainly
because the structure and color information of cracks is easily confused with shadows;

• By augmenting the shadow dataset, the ability of the network to resist shadow interfer-
ence can be effectively improved, and the crack segmentation effect of the non-shadow
pavement images can be well maintained.

For the pavement-shadow-image augmentation task, the CycleGAN-TSS in this paper
exhibits a good performance and can stably generate shadow-interference images with
appropriate effects. Moreover, the generated pavement shadow images also improve the
anti-shadow interference ability of pavement crack segmentation.

4. Conclusions

In this paper, we proposed a new method for shadowed-pavement-image-data aug-
mentation and proposed a texture self-supervised structure based on CycleGAN to improve
the generation effect of shadow texture:

1. Texture self-supervised CycleGAN (CycleGAN-TSS) introduces the prior knowledge
of generator convergence, reduces the problem of poor generation effect caused by the
similarity between the semantic information of cracks and the semantic information
of shadows, and improves the stability of shadow images generated by the network;

2. In this study, we conducted experiments on three different datasets to verify the effect
of the generated network. Compared with the original CycleGAN, the improved
CycleGAN-TSS pays more attention to the shape and location information of the cycle
generation semantics, thus making our network better able to generate pavement
shadow images in the case of small datasets;

3. In summary, the proposed CycleGAN-TSS is more suitable for the data augmentation
of pavement shadow images in real-world conditions. We used the proposed method
to augment pavement shadow images and fed them into the crack segmentation net-
work U-Net for training. The results show that the augmented method can effectively
improve the recognition accuracy of crack detection under shadow interference.

Aside from improving the effect of automatic pavement detection in real-world con-
ditions, the method proposed in this paper can also be used to solve similar problems
and provide a possible path for solving pavement-detection tasks in complex situations in
the future. In addition, CycleGAN-TSS will also have a certain effect on other generation
tasks that weakly focus on color information. Therefore, we will continue to expand the
application of this network in other industrial dataset augmentation tasks.
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