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Data-augmentation for graph neural network learning of the
relaxed energies of unrelaxed structures
Jason Gibson 1,2✉, Ajinkya Hire 1,2✉ and Richard G. Hennig 1,2✉

Computational materials discovery has grown in utility over the past decade due to advances in computing power and crystal
structure prediction algorithms (CSPA). However, the computational cost of the ab initio calculations required by CSPA limits its
utility to small unit cells, reducing the compositional and structural space the algorithms can explore. Past studies have bypassed
unneeded ab initio calculations by utilizing machine learning to predict the stability of a material. Specifically, graph neural
networks trained on large datasets of relaxed structures display high fidelity in predicting formation energy. Unfortunately, the
geometries of structures produced by CSPA deviate from the relaxed state, which leads to poor predictions, hindering the model’s
ability to filter unstable material. To remedy this behavior, we propose a simple, physically motivated, computationally efficient
perturbation technique that augments training data, improving predictions on unrelaxed structures by 66%. Finally, we show how
this error reduction can accelerate CSPA.
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INTRODUCTION
The process of discovery of functional materials, which drives
innovation, has dramatically accelerated over the past decade,
partially as a product of growing crystal structure databases1–4

and improved computationally based CSPA5, such as genetic
algorithms (GA)6, basin hoping7, elemental substitution8, and
particle swarm techniques9. CSPA have played a prominent role in
successfully predicting the structure and establishing the stability
of high-pressure, high-temperature superconducting binary
hydrides10–12. Many recent studies have started looking for stable
ternary hydride superconductors. The addition of a third element
to the binary hydrides can potentially stabilize these materials at
much lower pressure13–15. Complex ternary and quaternary
materials systems are also promising candidates for hydrogen
storage applications16.
In particular, GAs have proven their utility to identify thermo-

dynamically stable phases efficiently; successfully identifying
previously unknown materials for applications such as Li-Ge
batteries17 and solar cells18. Unfortunately, finding thermodyna-
mically stable phases in ternary and quaternary systems is
notoriously difficult due in part to the computationally expensive
ab initio calculations required to relax and calculate the energies
of GA produced structures, accounting for 99% of the algorithm’s
computational cost19. This places restrictions on the size and the
composition of the unit cells, inhibiting the exploration of
complex material systems.
This computational cost can be reduced by bypassing many of

the costly ab initio calculations via a machine-learned filter or by
implementing a more computationally efficient machine-learned
surrogate potential to pre-relax structures20. Wu et al.21 fitted a
classical potential to the structures evaluated by density functional
theory (DFT). They used the potential to pre-relax the structures in
the GA and only evaluated the best structures with DFT. Jennings
et al.22 used a machine learning (ML) model to predict a structure’s
fitness directly and then only used DFT to evaluate structures that
improved the current population. These methods are still

somewhat hindered because many DFT evaluated structures are
required to train a ML model to an adequate fidelity. Further, the
models are specific to the materials’ space the GA is searching,
restricting their application to the given GA search.
Alternatively, there has been work to create universal ML

models that determine a material’s stability by predicting the
formation energy of structures containing elements across the
periodic table. Most notably, Xie et al.23 predicted formation
energy using a crystal graph convolutional neural network
(CGCNN) trained on the materials project (MP) database1. The
CGCNN represents a crystal structure as a multi-graph and builds
a graph convolutional neural network on top of the multi-graph.
This enables the model to learn the best features to represent
the structure as opposed to the typical handcrafted feature
approach24 and achieve a formation energy validation MAE of
39 meV/atom23. More recently, the MAE of formation energy
prediction of graph-based models continued to decrease to
21–39 meV/atom25–29.
However, Park et al.28 found that the model’s dependence on a

structure’s atomic coordinates hinders the model’s predictive
fidelity on structures that strongly deviate from their relaxed
states. Given that to obtain a structure in a relaxed state, a DFT
relaxation and hence energy calculation is needed, the reported
MAEs do not represent the model’s ability to accurately identify
unrelaxed structures that would relax to stable structures. On an
unseen test set of 311 stable ThCr2Si2-type compounds, the
CGCNN obtained a reasonable formation energy MAE on relaxed
structures of 56 meV/atom. However, the prediction MAE was
370meV/atom for the same test set on unrelaxed structures. This
high error led to a true-positive rate (TPR) of 0.48 when filtering
the unrelaxed compounds in the dataset28.
Noh et al.29 directly addressed the high formation energy

prediction MAE of unrelaxed structures by adding two forms of
regularization to the CGCNN in their CGCNN-HD approach.
Replacing the softplus activation function in the convolution
function with a hyperbolic tangent and adding dropout layers30
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between each fully connected layer, reduced the MAE of the
formation energy for a test set of unrelaxed Mg-Mn-O compounds
from 518meV/atom to 296meV/atom.
The significant errors for unrelaxed structures are due to the

limited sampling of the complex multi-dimensional configuration
space of the potential energy surface (PES), with the relaxed
structures only describing the minima of the surface. Since
unrelaxed structures are not located at these minima, predicting a
structure’s formation energy at an unrelaxed configuration is a
qualitatively different task31. To sample configurations near the
minima of the PES, Smith et al.32 applied a data augmentation
technique known as normal mode sampling to a large dataset of
molecular structures, resulting in a high fidelity neural network
potential. However, determining the normal modes requires
millions of phonon calculations which, while attainable for
molecular structures, is infeasible for crystal structures.
Recently, Honrao et al.33 showed that GA data could be used to

predict relaxed formation energies of unrelaxed structures to
high accuracy. This high accuracy was achieved by augmenting
the training dataset, setting the formation energy of every
structure within a basin of attraction to the minima of the
respective basin of attraction, essentially modeling the contin-
uous PES as a step function.
We propose leveraging these findings to improve formation

energy prediction of unrelaxed structures by augmenting our data
using a simple, physically motivated perturbation technique.
Figure 1 illustrates our augmentation approach, which perturbs
the atomic coordinates of a relaxed structure to generate
additional training points that describe the regions surrounding
the minima of the PES. We then map these perturbed structures to
the energy of the relaxed structure, which requires no additional
ab initio calculations. We utilize the CGCNN23 and CGCNN-HD29 to
analyze how the augmentation affects formation energy predic-
tions. We train these models on the MP database1 augmented by
perturbed structures. The resulting CGCNN models have similar
prediction errors as the original ones for relaxed structures. To
show the improvement in formation energy prediction, we apply
the models to a test set consisting of 623 unrelaxed Nb-Sr-H
hydride structures produced from a GA structure search. We find
that compared to training on only relaxed structures, training with
the augmented dataset, consisting of relaxed and perturbed
structures, reduced the formation energy prediction MAE from

251meV/atom to 86meV/atom for CGCNN and from 172meV/
atom to 82meV/atom for CGCNN-HD, as compared to the models
trained only on relaxed structure.

RESULTS
Model performance
Figure 2 shows the training, validation, and test (test-relaxed/test-
unrelaxed) RMSE for each training epoch of the respective models.
For interpretability, the trends are smoothed using an exponential
moving average with a smoothing weight of 0.95. The Pearson
correlation coefficients34, with a value of 1 for perfect correlation
and -1 for perfect anti-correlation, are computed between
smoothed RMSE trends of Test-Relaxed/Test-Unrelaxed, Test-
Relaxed/Validation, and Test-Unrelaxed/Validation.
The Pearson correlation coefficients show that the CGCNN and

CGCNN-HD trained on only relaxed structures (Fig. 2(a, b)) result in
anti-correlated trends between predictions on the relaxed and
unrelaxed structures of the test set. These findings demonstrate
that accurate predictions on relaxed structures do not lead to
accurate predictions on unrelaxed structures and provide insight
into the high prediction error for unrelaxed structure inputs
reported in the literature. Furthermore, the CGCNN and CGCNN-
HD trained on only relaxed structures display anti-correlated
trends between the Test-Unrelaxed set and the validation set. This
anti-correlation is detrimental to the model’s predictive perfor-
mance on unrelaxed structures because the validation error shows
that predictions are improving and training should continue, while
in actuality, unrelaxed structure predictions are getting worse.
Additionally, the anti-correlation leads to an inability to correctly
optimize a model’s hyperparameters.
Figure 2(c) and (d) illustrate the effectiveness of training with

the augmented dataset. Simply perturbing the atomic coordinates
of each relaxed structure and then training on both the relaxed
and perturbed structures dramatically improves the models’
predictive ability on unrelaxed structures. Both the CGCNN and
CGCNN-HD trained on the augmented dataset show a high
Pearson correlation between the RMSE of Test-Unrelaxed/Valida-
tion. While beyond the scope of this manuscript, it is worth noting
the test curves displayed in Fig. 2(c) shows the double decent
behavior described in et al.35.
Since the models trained on only relaxed structures, validation

RMSE was inversely correlated to the RMSE of Test-Unrelaxed; the
validation results provide no insight into the model’s predictive
abilities on unrelaxed structures. The model can extrapolate to
unrelaxed structures only when augmented structures are
included in the training dataset. Further, since the validation
dataset is also augmented when the training dataset is
augmented, perturbed structures that are representative of
unrelaxed structures are present in the validation dataset leading
to a correlation between the RMSE of Test-Unrelaxed/Validation.
Hence, the validation error provides information on the models’
accuracy on unrelaxed structure predictions, allowing correct
hyperparameter optimization.
Figure 3 compares the models’ formation energy predictions on

Test-Unrelaxed to the DFT-computed formation energies. The
CGCNN in Fig. 3(a) trained on only relaxed data tends to over
predict Ef for the higher energy hydrides, which leads to a
significant prediction MAE of 251 meV/atom. The added regular-
ization applied to the CGCNN-HD in Fig. 3(b) improves the
predictions on the higher energy hydrides. Still, the model tends
to over predict Ef leading to an MAE of 172 meV/atom when
training on relaxed.
Training with the augmented dataset substantially improves the

prediction MAEs for the CGCNN and CGCNN-HD, reducing the
prediction MAE to 86meV/atom and 82meV/atom, respectively.

Fig. 1 Data augmentation for learning the potential energy
surface (PES). The red line denotes a 2D representation of the
continuous PES of materials. The blue line illustrates the effective
PES, which describes the energy of a relaxed structure for a given
unrelaxed input structure. Data augmentation aims to improve the
machine learning of this effective PES by better sampling the
configuration space. The black circle indicates the relaxed structures
contained in the dataset, and the blue circles symbolize artificially
generated structures for the data augmentation.
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This reduction in error improves the models ability to correctly
identify low energy structures.
Interestingly, while the CGCNN-HD trained on augmented data

has the lowest testing MAE, the dense region of underpredicted
formation energies seen in Fig. 3(d) leads to a substantial number
of misidentified unstable structures, hindering the model’s ability
to filter unstable structures. This will be discussed further in the
proceeding section.
Owing to the large perturbations, some augmented structures

may have moved to neighbor basins of attraction. Intuitively this
would seem to yield substantial errors. However, as shown
previously, the prediction of unrelaxed structures improved
substantially. We suspect the error associated with perturbing a
structure to a neighboring basin of attraction is mitigated due to
the tendency of neighboring basins to cluster around similar
minima on the PES36. Still, the large perturbations likely introduce
some prediction error. A more sophisticated augmentation
method could likely reduce the number of structures perturbed
into neighboring basins and further improve predictions.
Interestingly, the models trained on the augmented data also

display improved predictions on Test-Relaxed (Supplementary
Fig. 1). However, this improvement seems specific to our test data
as predictions on the relaxed validation data were better when
the model was trained only on relaxed structures (Supplementary
Fig. 2). The CGCNN-HD trained on only relaxed structures
underpredicted the structures in Test-Relaxed likely because the
training data contains relatively few transition metal hydrides and
the bounded hyperbolic activation function, utilized in the
CGCNN-HD’s convolutional layers, has poor predictive power on
unseen domains37. This poor predictive power on unseen
domains is also the reason the CGCNN-HD models make poor

predictions on the high and low formation energy structures of
the MP data. Further, it is the reason the CGCNN-HD seems to
make better predictions on both Test-Relaxed and Test-Unrelaxed
for the model trained on the augmented dataset (Fig. 2(d)) when
compared to the training and validation set. This is confirmed
when using MAE instead of the RMSE as the learning curve’s loss
function (Supplementary Fig. 3).

Filtering unstable hydrides
To evaluate the models’ ability to filter energetically unfavorable
structures, we removed the MP database’s correction applied to
hydrogen-containing compounds and constructed a convex hull
using the five known competing phases of the Nb-Sr-H system.
Then, based on this constructed convex hull, we computed the
hull distance EDFTHull of all the structures in the test set, utilizing their
DFT-computed formation energy, and defined all structures with
EDFTHull< ¼ 0 as stable. As a result, ten structures in the test set met
the stability criteria.
To construct the receiver operating characteristic (ROC) curve,

shown in Fig. 4 the predicted formation energies were used to
compute hull distance (EML

Hull). To compute a range of true positives,
false positives, true negatives, and false negatives, we varied the
stability criteria (EML

Hull < ½�200;�199; :::; 699; 700�meV/atom) of
EML
Hull over a range of hull distances that ensure a completed ROC

curve. We defined a true positive as a stable structure predicted as
stable, a false positive as an unstable structure predicted as stable,
a true negative as an unstable structure predicted as unstable, and
a false negative as a stable structure predicted as unstable.
The ROC curve provides a graphical way to balance the models

accuracy and computational cost. To demonstrate this we assume

Fig. 2 Learning curves. a The CGCNN trained on relaxed data, b the CGCNN-HD trained on relaxed data, c the CGCNN trained on augmented
data, d the CGCNN-HD trained on augmented data on the relaxed (1st column) and augmented (2nd column) data. The faded curves show
the exact loss values, while the solid curves show the smoothed values. The red and green curves denote the loss on the training and
validation data, respectively. The orange and blue curves display the loss for the Test-Relaxed and Test-Unrelaxed test sets, respectively. Note
that the Test-Relaxed and Test-Unrelaxed datasets were not used in the training or validation of the model. The r values are the Pearson
correlation coefficients between the stated trends.
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our test data is randomly generated and consider two hypothe-
tical cases in which the models may be utilized. Case 1 emulates
a study where identifying all stable structures is desirable
(TPR= 1.0). Case 2 emulates a study where missing some stable
structures is acceptable (TPR= 0.7).
For case 1, the CGCNN trained on the augmented data

performed best, successfully identifying all stable structures at a
filtration criterion of EML

Hull < 39meV=atom while classifying 130
unstable structures as stable, yielding a 5-fold reduction in the
number of energy calculations needed to identify all stable
structures. For case 2, again, the CGCNN trained on the
augmented data performed best, obtaining a TPR of 0.7 while
only classifying 54 unstable structures as stable with a filtration
criterion of EML

Hull < 6meV=atom. The performance of all the models
is summarized in Table 1, models trained on only relaxed
structures required a higher EML

Hull and had substantially more FP
compared to models trained on the augmented dataset.
The naive approach of setting the stability criteria to be the

same for EML
Hull and EDFTHull, restricts the ability to select a balance of

accuracy and computational cost. For example, at stability criteria

of EML
Hull < 0, the CGCNN trained with the augmented dataset

obtained a TPR of 0.6, classifying 47 unstable structures as stable.
While this performance is acceptable, as shown previously, at
stability criteria of EML

Hull < 39meV=atom the model can correctly
identify all stable structures, which may be more desirable for a
given application.

DISCUSSION
We proposed a simple, physically motivated, computationally
efficient perturbation technique that augmented our data to
represent the PES better, dramatically improving unrelaxed
structure formation energy predictions. To augment our dataset,
we add a perturbed structure for every relaxed structure and map
it to the same energy as the relaxed structure. Thus, representing
an additional point for a given basin of attraction of the energy
landscape. Compared to training on only relaxed structures,
training with an augmented dataset consisting of one relaxed and
one perturbed structure for every relaxed structure, prediction
MAEs of the CGCNN and CGCNN-HD were reduced from 251meV/

Fig. 3 Comparison of target and predicted energies of the test set of unrelaxed structures. a The CGCNN trained on relaxed data, b the
CGCNN-HD trained on relaxed data, c the CGCNN trained on augmented data, d the CGCNN-HD trained on augmented data. The x-axis
denotes the DFT-computed formation energies, while the y-axis denotes the predicted formation energies of the Test-Unrelaxed set. The
values reported in the lower right are the coefficient of determination, R2, the MAE, and the RMSE.
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atom and 172meV/atom to 86meV/atom and 82meV/atom,
respectively. Further, we showed that formation energy predic-
tions for relaxed structures inputs were anti-correlated to
predictions for unrelaxed structures inputs when training on only
relaxed structures while training on the augmented data
correlated relaxed and unrelaxed predictions RMSE. Finally, we
utilize a ROC curve to show two cases where our method may be
useful in accelerating CSPA. While more advanced augmentation
techniques likely exist, this work showed the surprising effective-
ness of a relatively simple method of augmentations that
outperformed the current state of the art in formation energy
prediction of unrelaxed structures.

METHODS
Data augmentation
For training, we use two datasets derived from the MP database1

accessed on December 10, 2021. The 1st dataset, referred to as the
relaxed dataset, consists of 126 k relaxed structures from the MP

database, 20% of this data is held out for validation. The 2nd
dataset, referred to as the augmented dataset, consists of the
relaxed set and one perturbed structure for every relaxed
structure.
We augment the data by perturbing the coordinates, Ri of all

atoms, i, in each relaxed structures using a displacement vector

ΔRi ¼ ðMx
i ;M

y
i ;M

z
i Þ (1)

where each Cartesian component is obtained by multiplying a
direction vector, randomly sampled from a unit sphere with a
scalar value randomly sampled from the displacement distribu-
tion. The displacement distribution was determined by analyzing
the displacements of atoms during relaxation in three separate GA
structure searches. The distance was determined by first taking
the difference between the initial and final structure’s fractional
coordinates using the minimum image convention38. These
differences were then multiplied by the lattice vector matrix of
the relaxed structure to obtain the cartesian displacement vector
and the euclidean norm for this vector. Figure 5 shows the
resulting distribution of displacements, which was then fitted to a
Gaussian mixture model (GMM) as implemented in the open
python library scikit-learn39. The value of Mi was then selected by
randomly sampling the GMM. Information about the change in
lattice vectors and volume can be found in Supplementary Fig. 4.

Fig. 4 Receiver operating characteristic curve. Figure displays the
a CGCNN and b CGCNN-HD ability to classify stable structures when
applied to unrelaxed structures. The x-axis is the fraction of unstable
structures classified as stable. The y-axis is the fraction of stable
structures classified as stable. The aug subscript represents the
model was trained on the augmented data. The rel subscript
represents the model was trained on the relaxed data. The dashed-
black line represents a random classifier. The shaded regions signify
where a model is performing better. The area under curve (AUC) is
reported for all models.

Table 1. Models’ filtering performance.

Rel. Case 1 Case 2

Aug. TPR= 1.0 TPR= 0.7

Metric CGCNN CGCNN
HD

CGCNN CGCNN
HD

EML
Hull<

(meV/atom)
576 328 159 91

39 85 6 21

Number of
FP

491 442 110 130

130 320 54 89

Models’ stability criteria and the number of false positives for case 1 and
case 2. The upper right value correspond to the models trained on the
relaxed data while the numbers reported in the lower left correspond to
the models trained on the augmented data.

Fig. 5 Distribution sampled for perturbation. Distribution of the
displacement of atoms during structural relaxation in three separate
GA runs. The displacement is measured by the change in fractional
coordinates multiplied by the lattice vector matrix of the relaxed
structure.
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Training
The CGCNN and CGCNN-HD are trained on both the relaxed and
augmented data. The model’s architecture was determined by
performing a grid search on the CGCNN trained on the
augmented data. Supplementary Table 2 provides the range of
parameters considered in the grid search. The architecture that
minimized the validation error consists of 3-graph convolutional
layers followed by 6-hidden layers with 64 neurons each. This
architecture was then used for all models. Interestingly while past
works40 have found the CGCNN can scale up to 25 graph
convolutional layers we found that models with more than eight
hidden layers suffered from the vanishing gradient problem41

when training on the relaxed data while training on the
augmented data allowed for deeper models. we speculate the
models’ ability to scale with the number of graph convolutional
layers and not the number of hidden layers is a product of the
graph convolutional layers containing batch normalization. The
remaining model hyperparameters are set to the values reported
in ref. 23 for CGCNN and ref. 29 for the CGCNN-HD.

Test data
To provide test data for our models, we performed a GA search
over the ternary system formed by H2-Sr6NbH16-Nb6SrH16. We
used the Genetic Algorithm for Structure and Phase Prediction
(GASP) python package42,43 for performing the GA search. Our aim
with the search was to produce high hydrogens-containing
structures that might show superconductivity. We remove the
elemental hydrogen structures and partitioned this data into two
test sets consisting of the relaxed and unrelaxed hydrides, referred
to as Test-Relaxed and, Test-Unrelaxed respectively. Additionally.
since the MP database contains few hydride structures, this data
provides a challenging test case.
To relax and evaluate the energies of the candidate structures

generated by GASP, we use VASP44–47 with the projector
augmented wave method48 and the Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation for the exchange-
correlation functional49. We use a k-point density of 40 per
inverse Å with the Methfessel-Paxton scheme and a smearing of
100meV for the Brillouin zone integration, and a cutoff energy of
250 eV for the plane-wave basis set. The GA search was terminated
after 771 DFT relaxations. We recomputed all energies using the

VASP inputs generated by the MPRelaxset class of pymatgen to
ensure consistency between the training and test sets and
computed the formation energies50. Figure 6 shows the ternary
convex hull of the Nb-Sr-H system produced using the GA-
generated structure and the known competing phases from the
MP database. Noteworthy, our structure search found previously
unreported, thermodynamically stable ternary hydride, Sr2NbH9.
Preliminary analysis of Sr2NbH9 suggest that the band gap closes
at around 100 GPa.

DATA AVAILABILITY
Data will be made available upon reasonable requests.

CODE AVAILABILITY
Code for implementing the model on both cpus and gpus, training the models,
augmenting training data are available at https://github.com/JasonGibsonUfl/
Augmented_CGCNN.
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