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SUMMARY

We present a data augmentation scheme to perform Markov chain Monte Carlo inference for

models where data generation involves a rejection sampling algorithm. Our idea is a simple

scheme to instantiate the rejected proposals preceding each data point. The resulting joint prob-

ability over observed and rejected variables can be much simpler than the marginal distribution

over the observed variables, which often involves intractable integrals. We consider three prob-

lems: modelling flow-cytometry measurements subject to truncation; the Bayesian analysis of the

matrix Langevin distribution on the Stiefel manifold; and Bayesian inference for a nonparamet-

ric Gaussian process density model. The latter two are instances of doubly-intractable Markov

chain Monte Carlo problems, where evaluating the likelihood is intractable. Our experiments

demonstrate superior performance over state-of-the-art sampling algorithms for such problems.

Some key words: Bayesian inference; Density estimation; Gaussian process; Intractable likelihood; Markov chain

Monte Carlo; Matrix Langevin distribution; Rejection sampling; Truncation.

1. INTRODUCTION

Rejection sampling allows sampling from a probability density p(x) by constructing an upper

bound to p(x), and accepting or rejecting samples from a density proportional to the bound-

ing envelope. The envelope is usually much simpler than p(x), with the number of rejections

determined by how closely it matches the true density.

In typical applications, the probability density of interest is indexed by a parameter θ , and

we write it as p(x | θ). A Bayesian analysis places a prior on θ , and, given observations from

the likelihood p(x | θ), studies the posterior over θ . An intractable likelihood, often with a nor-

malization constant depending on θ , precludes straightforward Markov chain Monte Carlo infer-

ence over θ : calculating a Metropolis–Hastings acceptance probability involves evaluating the

ratio of two such likelihoods, and is itself intractable. This class of problems is called doubly-

intractable (Murray et al., 2006), and existing approaches require the ability to draw exact samples

from p(x | θ), or to obtain positive unbiased estimates of p(x | θ).

c© 2016 Biometrika Trust
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320 V. RAO, L. LIN AND D. B. DUNSON

We describe an approach that is applicable when p(x | θ) has an associated rejection sampling

algorithm. Our idea is to instantiate the rejected proposals preceding each observation, resulting

in an augmented state-space on which we run a Markov chain. Including the rejected proposals

can eliminate any intractable terms, and allows the application of standard techniques (Adams

et al., 2009). We show that, conditioned on the observations, it is straightforward to independently

sample the number and values of the rejected proposals: this just requires running the rejection

sampler to generate as many acceptances as there are observations, with all rejected proposals

kept. The ability to produce a conditionally independent draw of these variables is important when

posterior updates of some parameters are intractable while others are simple. In such a situation,

we introduce the rejected variables only when we need to carry out the intractable updates, after

which we discard them and carry out the simpler updates.

A particular application of our algorithm is parameter inference for probability distributions

truncated to sets like the positive orthant, the simplex, or the unit sphere. Such distributions

correspond to sampling proposals from the untruncated distribution and rejecting those outside

the domain of interest. We consider an application from flow cytometry where this representa-

tion is the actual data collection process. Truncated distributions also arise in applications like

measured time-to-infection (Goethals et al., 2009), where times larger than a year are truncated,

mortality data (Alai et al., 2013), annuity valuation for truncated lifetimes (Alai et al., 2013),

and stock price changes (Aban et al., 2006). One approach for such problems was proposed in

Liechty et al. (2009), through their algorithm samples from an approximation to the posterior

distribution of interest. Our algorithm provides a simple and general way to apply the machinery

of Bayesian inference to such problems.

2. REJECTION SAMPLING

Consider a probability density p(x | θ) = f (x, θ)/Z(θ) on some space X, with the parameter

θ taking values in �. We assume that the normalization constant Z(θ) is difficult to evaluate,

so that naı̈ve sampling from p(x | θ) is not easy. We also assume there exists a second, simpler

density q(x | θ) � f (x, θ)/M for all x and some positive M .

Rejection sampling generates samples distributed as p(· | θ) by first proposing samples from

q(· | θ). A draw y from q(· | θ) is accepted with probability f (y, θ)/{Mq(y | θ)}. Let there be r

rejected proposals preceding an accepted sample x , and denote them by Y = {y1, . . . , yr } where

r itself is a random variable. Write |Y| = r , so that the joint probability is

p(Y, x) =

⎡

⎣

|Y|
∏

i=1

q(yi | θ)

{

1 −
f (yi , θ)

Mq(yi | θ)

}

⎤

⎦ q(x | θ)

{

f (x, θ)

Mq(x | θ)

}

=
f (x, θ)

M

|Y|
∏

i=1

{

(q(yi | θ) −
f (yi , θ)

M

}

. (1)

This procedure recovers samples from p(x | θ), so that (1) has the correct marginal distri-

bution over x (Robert & Casella, 2005, p. 51). Later, we will need to sample the rejected

variables Y given an observation x drawn from p(· | θ). Simulating from p(Y | x, θ) involves

the two steps in Algorithm 1, which relies on Proposition 1 about p(Y | x, θ); see the

Appendix.
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Data augmentation based on rejection sampling 321

Algorithm 1. Algorithm to sample from p(Y | x, θ)

Input: A sample x , and the parameter value θ .

Output: The set of rejected proposals Y preceding x .

Sample yi independently from q(· | θ) until a point x̂ is accepted.

Discard x̂ , and treat the preceding rejected proposals as Y .

PROPOSITION 1. The set of rejected samplesY preceding an accepted sample x is independent

of x: p(Y | θ, x) = p(Y | θ).

3. BAYESIAN INFERENCE

3·1. Sampling by introducing rejected proposals

Given observations X = {x1, . . . , xn}, and a prior p(θ), Bayesian inference typically uses

Markov chain Monte Carlo simulation to sample from an intractable posterior p(θ | X). Split

θ as (θ1, θ2) so that the normalization constant factors as Z(θ) = Z1(θ1)Z2(θ2), with Z1 simple

to evaluate, and Z2 intractable. Updating θ1 with θ2 fixed is easy, and there are situations where

we can place a conjugate prior on θ1. Inference for θ2 is a doubly-intractable problem.

We assume that p(x | θ) has an associated rejection sampling algorithm with proposal density

q(x | θ) � f (x, θ)/M . For the i th observation xi , write the preceding set of rejected samples as

Yi = {yi1, . . . , yi |Yi |}. The joint density of all samples, both rejected and accepted, is

p(x1,Y1, . . . , xn,Yn) =

n
∏

i=1

f (xi , θ)

M

|Yi |
∏

j=1

{

q(yi j | θ) −
f (yi j , θ)

M

}

.

This involves no intractable terms, so standard techniques can be applied to update θ . To introduce

the rejected proposals Yi , we simply follow Algorithm 1: draw proposals from q(· | θ) until we

have n acceptances, with the i th batch of rejected proposals forming the set Yi .

The ability to produce conditionally independent draws of Y is important when, for instance,

there exists a conjugate prior p1(θ1) on θ1 for the likelihood p(x | θ1, θ2). Introducing the rejected

proposals Yi breaks this conjugacy, and the resulting complications in updating θ1 can slow down

mixing, especially when θ1 is high-dimensional. A much cleaner solution is to sample θ1 from

its conditional posterior p(θ1 | X, θ2), introducing the auxiliary variables only when needed to

update θ2. After updating θ2, they can be discarded. Algorithm 2 describes this.

Algorithm 2. An iteration of the Markov chain for posterior inference for θ = (θ1, θ2)

Input: The observations X , and the current parameter values (θ1, θ2).

Output: New parameter values (θ̃1, θ̃2).

Run Algorithm 1 |X | times, keeping all the rejected proposals Y = ∪
|X |
i=1Yi .

Update θ2 to θ̃2 with a Markov kernel having p(θ2 | X,Y, θ1) as stationary distribution.

Discard the rejected proposals Y .

Sample a new value of θ̃1 from the conditional p(θ1 | X, θ̃2).

3·2. Related work

One of the simplest and most widely applicable Markov chain Monte Carlo algorithms for

doubly-intractable distributions is the exchange sampler of Murray et al. (2006). Simplifying an
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322 V. RAO, L. LIN AND D. B. DUNSON

earlier idea by Møller et al. (2006), this algorithm effectively amounts to the following: given the

current parameter θcurr, propose a new parameter θnew according to some proposal distribution.

Additionally, generate a dataset of n pseudo-observations {x̂i } from p(x | θnew). The exchange

algorithm then proposes to exchange parameters associated with datasets. Murray et al. (2006)

show that all intractable terms cancel out in the resulting acceptance probability, and that the

resulting Markov chain has the correct stationary distribution.

While the exchange algorithm is applicable whenever one can sample from the likelihood

p(x | θ), it does not exploit the mechanism used to produce these samples. When the latter is

a rejection sampling algorithm, each pseudo-observation is preceded by a sequence of rejected

proposals. These are all discarded, and only the accepted proposals are used to evaluate the new

parameter θnew. By contrast our algorithm explicitly instantiates these rejected proposals, so that

they can be used to make good proposals. In our experiments, we use a Hamiltonian Monte Carlo

sampler on the augmented space and exploit gradient information to make nonlocal moves with a

high probability of acceptance. For reasonable acceptance probabilities under the exchange sam-

pler, one must make local updates to θ , or resort to complicated annealing schemes. Of course,

the exchange sampler is applicable when no efficient rejection sampling scheme exists, such as

when carrying out parameter inference for a Markov random field.

Another framework for doubly-intractable distributions is the pseudo-marginal approach

of Andrieu & Roberts (2009). The idea here is that even if we cannot exactly evaluate the accep-

tance probability, it is sufficient to use a positive, unbiased estimator: this will still result in a

Markov chain with the correct stationary distribution. In our case, instead of requiring an unbi-

ased estimate, we bound Z(θ) by choosing f (x, θ) � Mq(x). Additionally, like the exchange

sampler, the pseudo-marginal method provides a mechanism to evaluate a proposed θnew; mak-

ing good proposals (Dahlin et al., 2015) is less obvious. Other papers are Beskos et al. (2006),

based on a rejection sampling algorithm for diffusions, and Walker (2011).

Most closely related to our ideas is a sampler from Adams et al. (2009); see also § 7. Their

problem also involved inferences on the parameters governing the output of a rejection sam-

pling algorithm. Like us, they augment the state space to include the rejected proposals Y , and

like us, given these auxiliary variables, they use Hamiltonian Monte Carlo to efficiently update

parameters. However, rather than generating independent realizations of Y when needed, Adams

et al. (2009) outlined a set of Markov transition operators to perturb the current configuration

of Y , while maintaining the correct stationary distribution. With prespecified probabilities, they

proposed adding a new variable to Y , deleting a variable from Y and perturbing the value of an

existing element in Y . These local updates to Y can slow down Markov chain mixing, require

the user to specify a number of parameters, and also involve calculating Metropolis–Hastings

acceptance probabilities for each local step. Furthermore, the Markov nature of their updates

require them to maintain the rejected proposals at all times; this can break any conjugacy, and

complicate inference for other parameters.

4. CONVERGENCE PROPERTIES

Write the Markov transition density of our chain as k(θ̂ | θ), and the m-fold transition density

as km(θ̂ | θ). The Markov chain is uniformly ergodic if constants ρ < 1 and C exist such that for

all m and θ ,
∫

�
|p(θ̂ | X) − km(θ̂ | θ)|dθ̂ � Cρm . The term to the left is twice the total variation

distance between the desired posterior and the state of the Markov chain initialized at θ after

m iterations. Small values of ρ imply faster mixing. The following minorization condition is

sufficient for uniform ergodicity (Jones & Hobert, 2001): there exists a probability density h(θ̂)
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Data augmentation based on rejection sampling 323

and a δ > 0 such that for all θ, θ̂ ∈ �,

k(θ̂ | θ) � δh(θ̂). (2)

When this holds, the mixing rate ρ � 1 − δ, so that a large δ implies rapid mixing.

Our Markov transition density first introduces the rejected proposals Y , and then conditionally

updates θ . The set Yi preceding the i th observation takes values in the union space U ≡ ∪∞
r=0X

r .

The output of the rejection sampler, including the i th observation, lies in the product space U × X

with density given by equation (1), so that any (Y, x) ∈ U × X has probability

p(Y, x | θ) =
f (x, θ)

M
λ(dx)

|Y|
∏

i=1

{

q(yi | θ) −
f (yi , θ)

M

}

λ(dyi ). (3)

Here, λ is the measure with respect to which the densities f and q are defined, and it is easy to

see that equation (3) integrates to 1. From Bayes’ rule, the conditional density over Y is

p(Y | x, θ) =
Z(θ)

M

|Y|
∏

i=1

{

q(yi | θ) −
f (yi , θ)

M

}

λ(dyi ). (4)

The fact that the right-hand side does not depend on x is another proof of Proposition 1.

Equation (4) also motivates the use of our algorithm outside the context of rejection sampling:

we can view Y as convenient auxiliary variables that are independent of x , and whose density is

such that Z(θ) cancels when evaluating the joint density of (x,Y).

The density from equation (4) characterizes the data augmentation step of our sampling

algorithm. In practice, we need as many draws from this density as there are observations. The

next step involves updating θ given (Y, X, θ), and depends on the problem at hand. We simplify

matters by assuming that we can sample from p(θ |Y, X) independently of the old θ : this is the

classical data augmentation algorithm. We also assume that the functions f (·, θ) and q(· | θ) are

uniformly bounded from above and below by finite, positive quantities (B f , b f ) and (Bq , bq)

respectively, and that
∫

X
λ(dx) < ∞. It follows that there exist positive numbers r and R that

minimize 1 − f (x, θ)/{M Z(θ)} and Z(θ)/M . We can now state our result.

THEOREM 1. Assume that
∫

X
λ(dx) < ∞ and that positive bounds b f , B f , bq , Bq exist with

r and R as defined earlier. Further assume we can sample from the conditional p(θ |Y, X).

Then our data augmentation algorithm is uniformly ergodic with mixing rate ρ bounded above

by ρ = 1 − [b f /{B f (β + R−1)}]n , where β = bqr/Bq and n is the number of observations.

Despite our assumptions, our theorem has a number of useful implications. The ratio b f /B f

is a measure of how flat the function f is, and the closer it is to unity, the more efficient rejection

sampling for f can be. From our result, the smaller the ratio, the larger the bound on ρ, sug-

gesting slower mixing. This is consistent with more rejected proposals Y increasing the coupling

between successive θs in the Markov chain. On the other hand, a small bq/Bq suggests a proposal

distribution tailored to f , and our result shows that this implies faster mixing. The numbers r

and 1/R are measures of mismatch between the target and proposal density, with small values

giving better mixing. Finally, more observations n result in slower mixing. We suspect that this

last property holds for most exact samplers for doubly-intractable distributions, though we are

unaware of any such result.
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324 V. RAO, L. LIN AND D. B. DUNSON

Even without assuming we can sample from p(θ |Y, X), our ability to sample Y inde-

pendently means that the marginal chain over θ is Markovian. By contrast, existing

approaches (Adams et al., 2009; Walker, 2011) only produce dependent updates in the

complicated auxiliary space: they sample from p(Ŷ | θ,Y, X) by making local updates to Y .

Consequently, these chains are Markovian only in the complicated augmented space, and the

marginal processes over θ have long-term dependencies. Besides affecting mixing, this can also

complicate analysis.

5. FLOW CYTOMETRY DATA

We apply our algorithm to a dataset of flow cytometry measurements from patients subjected to

bone-marrow transplant (Brinkman et al., 2007). This graft-versus-host disease dataset has 6809

control and 9083 positive observations, corresponding to whether donor immune cells attack host

cells. Each observation consists of four biomarker measurements truncated between 0 and 1024,

though more complicated truncation rules are often used according to operator judgement (Lee &

Scott, 2012). We normalize and plot the first two dimensions, markers CD4 and CD8b, in Fig. 1.

Truncation complicates the clustering of observations into homogeneous groups, an important

step in the flow-cytometry pipeline called gating. Consequently, Lee & Scott (2012) propose

an expectation-maximization algorithm for truncated Gaussian mixture models, which must be

adapted if different mixture components or truncation rules are used.

We model the untruncated distribution for each group as a Dirichlet process mixture of Gaus-

sian kernels (Lo, 1984), with points outside the four-dimensional unit hypercube discarded to

form the normalized dataset. The Dirichlet process mixture model is a flexible nonparametric

prior over densities parameterized by a concentration parameter α and a base probability mea-

sure. We set α = 1, and for the base measure, which gives the distribution over cluster parameters,

we use a normal-inverse-Wishart distribution. Given the rejected variables, we can use standard

techniques to update a representation of the Dirichlet process. We follow the blocked-sampler

of Ishwaran & James (2001) based on the stick-breaking representation of the Dirichlet process,

using a truncation level of 50 clusters. This corresponds to updating θ , step 2 in Algorithm 2.

Having done this, we discard the old rejected samples, and produce a new set by drawing from a

50-component Gaussian mixture model, corresponding to step 1 in Algorithm 2.

Figure 1 shows the log mean posterior densities for the first two dimensions from 10 000

iterations. While the control group has three clear modes, these are much less pronounced in the

positive group. Directly modelling observations with a Gaussian mixture model obscured this

by forcing modes away from the edges. One can use components with bounded support in the

mixture model, such as a Dirichlet process mixture of Beta densities; however, these do not reflect

the underlying data generation process, and are unsuitable when different groups have different

truncation levels. By contrast, it is easy to extend our modelling ideas to allow groups to share

components, allowing better identification of disease predictors.

Our sampler took less than two minutes to run 1000 iterations, not much longer than a typical

Dirichlet process sampler for datasets of this size. The average number of augmented points was

3960 and 4608 for the two groups. We study our sampler more systematically in the next section,

but this application demonstrates the flexibility and simplicity of our main idea.

6. BAYESIAN INFERENCE FOR THE MATRIX LANGEVIN DISTRIBUTION

6·1. The matrix Langevin distribution on the Stiefel manifold

The Stiefel manifold Vp,d is the space of all d × p orthonormal matrices, that is, d × p

matrices X such that X T X = Ip, where Ip is the p × p identity matrix. When p = 1, this is the
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Fig. 1. Scatterplots of the first two dimensions for the control (left) and positive (right) group. Contours represent
log posterior-mean densities under a Dirichlet process mixture.

d − 1 hypersphere Sd−1, and when p = d, this is the space of all orthonormal matrices O(d).

Probability distributions on the Stiefel manifold play an important role in statistics, signal pro-

cessing and machine learning, with applications ranging from studies of orientations of orbits

of comets and asteroids to principal components analysis to the estimation of rotation matrices.

The simplest such distribution is the matrix Langevin distribution, an exponential-family distri-

bution whose density with respect to the invariant Haar volume measure (Edelman et al., 1998) is

pML(X | F) = etr(FT X)/Z(F). Here etr is the exponential-trace, and F is a d × p matrix. The

normalization constant Z(F) = 0 F1(d/2, FT F/4) is the hypergeometric function with matrix

arguments, evaluated at FT F/4 (Chikuse, 2003). Let F = Gκ H T be the singular value decom-

position of F , where G and H are d × p and p × p orthonormal matrices, and κ is a positive

diagonal matrix. We parameterize pML by (G, κ, H), and one can think of G and H as orienta-

tions, with κ controlling the concentration in directions determined by these orientations. Large

values of κ imply concentration along the associated directions, while setting κ to zero gives

the uniform distribution on the Stiefel manifold. It can be shown (Khatri & Mardia, 1977) that

0 F1(d/2, FT F/4) = 0 F1(d/2, κTκ/4), so that this depends only on κ . We write it as Z(κ). In our

Bayesian analysis, we place independent priors on κ, G and H . The last two lie on the Stiefel

manifolds Vp,d and Vp,p, and we place matrix Langevin priors pML(· | F0) and pML(· | F1) on

these: we will see below that these are conditionally conjugate. We place independent Gamma

priors on the diagonal elements of κ . However, the difficulty in evaluating the normalization

constant Z(κ) makes posterior inference for κ doubly intractable. Thus, in a 2006 University of

Iowa PhD thesis, Camano-Garcia keeps κ constant, while Hoff (2009a) uses a first-order Taylor

expansion of the intractable term to run an approximate sampling algorithm. Below, we show

how fully Bayesian inference can be carried out for this quantity as well.

6·2. A rejection sampling algorithm

We first describe a rejection sampling algorithm from Hoff (2009b) to sample from pML. For

simplicity, assume H is the identity matrix. In the general case, we simply rotate the resulting

draw by H , since if X ∼ pML(· | F), then X H ∼ pML(· | F H T). At a high level, the algorithm
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326 V. RAO, L. LIN AND D. B. DUNSON

sequentially proposes vectors from the matrix Langevin on the unit sphere: this is also called the

von Mises–Fisher distribution and is easy to simulate (Wood, 1994). The mean of the r th vector

is column r of G, G[:r ], projected onto the nullspace of the earlier vectors, Nr . This sampled

vector is then projected back onto Nr and normalized, and the process is repeated p times. Call

the resulting distribution pseq; for more details, see Algorithm 3 and Hoff (2009b).

Algorithm 3. Proposal pseq(· | G, κ) for the matrix Langevin distribution (Hoff, 2009b)

Input: Parameters G, κ; write G[:i] for column i of G, and κi for element (i, i) of κ .

Output: An output X ∈ Vp,d ; write X[:i] for column i of X .

Sample X[:1] ∼ pML(· | κ1G[:1]).

For r ∈ {2, · · · p}

Construct Nr , an orthogonal basis for the nullspace of {X[:1], · · · X[:r−1]}.

Sample z ∼ pML(· | κr N T
r G[:r ]).

Set X[:r ] = zT Nr/‖zT Nr‖.

Letting Ik(·) be the modified Bessel function of the first kind, pseq is a density on the Stiefel

manifold with

pseq(X | G, κ) =

{

p
∏

r=1

‖κr N T
r G[:r ]/2‖(d−r−1)/2

Ŵ(d−r+1
2

)I(d−r−1)/2(‖κr N T
r G[:r ]‖)

}

etr(κGT X).

Write D(X, κ, G) for the reciprocal of the term in braces. Since Ik(x)/xk is an increasing func-

tion of x , and ‖N T
r G[:r ]‖ � ‖G[:r ]‖ = 1, we have the following bound D(κ) for D(X, κ, G):

D(X, κ, G) �

p
∏

r=1

Ŵ(d−r+1
2

)I(d−r−1)/2(‖κr‖)

‖κr/2‖(d−r−1)/2
= D(κ).

This implies that etr(κGT X) � D(κ)pseq(X | G, κ), allowing the following rejection sampler:

sample X from pseq(·), and accept with probability D(X, κ, G)/D(κ). The accepted proposals

come from pML(· | G, κ), and for samples from pML(· | G, κ, H), post multiply these by H .

6·3. Posterior sampling

Given a set of n observations {X i }, and writing S =
∑n

i=1 X i , we have:

p(G, κ, H | X i }) ∝ etr(HκGTS)p(H)p(G)p(κ)/Z(κ)n.

At a high level, our approach is a Gibbs sampler that sequentially updates H, G and κ . The

pair of matrices (H, G) correspond to the tractable θ1 in Algorithm 2, while κ corresponds to θ2.

Updating the first two is straightforward, while the third requires our augmentation scheme.

1. Updating G and H : With a matrix Langevin prior on H , the posterior is

p(H | X i , κ, G) ∝ etr
{

(STGκ + F0)
T H

}

.

This is just the matrix Langevin distribution over rotation matrices, and one can sample

from this following § 6·2. From here onwards, we will rotate the observations by H , allow-

ing us to ignore this term. Redefining S as SH , the posterior over G is also matrix Langevin,

p(G | X i }, κ) ∝ etr
{

(Sκ + F1)
TG

}

.
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2. Updating κ: Here, we exploit the rejection sampler scheme of the previous section, and

instantiate the rejected proposals using Algorithm 1. From § 6·2, the joint probability is

p({X i ,Yi } | G, κ) =
etr

{

κGT

(

S +
∑|Yi |

j=1 Yi j

)}

D(κ)1+|Y|

n
∏

i=1

|Y|
∏

j=1

{

D(κ) − D(Yi j , G, κ)
}

D(Yi j , G, κ)
. (5)

All terms in (5) can be evaluated easily, allowing a simple Metropolis–Hastings algorithm in

this augmented space. In fact, we can calculate gradients to run a Hamiltonian Monte Carlo

algorithm (Neal, 2010) that makes significantly more efficient proposals than a random-walk

sampling algorithm. In particular, let N = n +
∑n

i=1 |Yi |, and S =
∑n

i=1(X i +
∑|Yi |

j=1 Yi j ). The

log joint probability L ≡ log{p({X i ,Yi })} is

L = trace(GTκS) +

n
∑

i=1

|Yi |
∑

j=1

[

log
{

D(κ) − D(Yi j , κ)
}

− log D(Yi j , κ)
]

− n log
{

D(κ).

In the Appendix, we give an expression for the gradient of this loglikelihood. We use this to

construct a Hamiltonian Monte Carlo sampler (Neal, 2010) for κ . Here, it suffices to note that a

proposal involves taking L leapfrog steps of size ǫ along the gradient, and accepting the resulting

state with probability proportional to the product of equation (5), and a simple Gaussian momen-

tum term. The acceptance probability depends on how well the ǫ-discretization approximates the

continuous dynamics of the system, and choosing a small ǫ and a large L can give global moves

with high acceptance probability. A large L however costs a large number of gradient evaluations.

We study this trade-off in § 6·5.

6·4. Vectorcardiogram dataset

The vectorcardiogram is a loop traced by the cardiac vector during a cycle of the heart beat.

The two directions of orientation of this loop in three dimensions form a point on the Stiefel

manifold. The dataset of Downs et al. (1971) includes 98 such recordings, and is displayed in

Fig. 2(a). We represent each observation with a pair of orthonormal vectors, with the cone of

lines to the right forming the first component. This empirical distribution possesses a single

mode, so that the matrix Langevin distribution seems a suitable model.

We place independent exponential priors with mean 10 and variance 100 on the scale param-

eter κ , and a uniform prior on the location parameter G. We restrict H to be the identity matrix.

Inferences were carried out using the Hamiltonian sampler to produce 10 000 samples, with a

burn-in period of 1000. For the leapfrog dynamics, we set a step size of 0·3, with the number of

steps equal to 5. We fix the mass parameter to the identity matrix. We implemented all algorithms

in R (R Development Core Team, 2016), building on the rstiefel package of Hoff (2009b). Sim-

ulations were run on an Intel Core 2 Duo 3 Ghz CPU. For comparison, we include the maximum

likelihood estimates of κ and G. For κ1 and κ2, these were 11·9 and 5·9, and we plot these in

Fig. 2(b) as circles.

The bold straight lines in Fig. 2(a) show the maximum likelihood estimates of the components

of G, with the small circles corresponding to 90% Bayesian credible regions estimated from the

Monte Carlo output. The dashed circles correspond to 90% predictive probability regions for

the Bayesian model. For these, we generated 50 points on V3,2 for each sample, with parameters

specified by that sample. The dashed circles contain 90% of these points across all samples.

Figure 2(b) shows the posterior over κ1 and κ2.
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Fig. 2. (a) Vector cardiogram dataset with inferences. Bold solid lines are max-
imum likelihood estimates of G, and solid circles contain 90% posterior mass.
Dashed circles are 90% predictive probability regions. (b) Posterior distribution

over κ1 and κ2, circles are maximum likelihood estimates.
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Fig. 3. Effective samples per second for (a) random walk and (b) Hamiltonian samplers. From
bottom to top at abscissa 0·5: (a) Metropolis–Hastings data-augmentation sampler and exchange

sampler, and (b) 1, 10, 5 and 3 leapfrog steps of the Hamiltonian sampler.

6·5. Comparison of exact samplers

To quantify sampler efficiency, we estimate the effective sample sizes produced per unit time.

This corrects for correlation between successive Markov chain samples by estimating the number

of independent samples produced; for this we used the rcoda package of Plummer et al. (2006).

Figure 3(a) shows the effective sample size per second for two Metropolis–Hastings samplers,

the exchange sampler and our latent variable sampler on the vectorcardiogram dataset. Both

perform a random walk in the κ-space, with the steps drawn for a normal distribution whose

variance increases along the horizontal axis. The figure shows that both samplers’ performance

peaks when the proposals have a variance between 1 and 1·5, with the exchange sampler per-

forming slightly better. However, the real advantage of our sampler is that introducing the latent

variables results in a joint distribution with no intractable terms, allowing the use of more sophis-

ticated sampling algorithms. Figure 3(b) studies the Hamiltonian Monte Carlo sampler described
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Fig. 4. Errors in the posterior mean for the vectorcardiogram dataset. Each panel is a different component of κ;
solid/dashed lines are the Hamiltonian/approximate sampler.

at the end of § 3·1. Here we vary the size of the leapfrog steps along the horizontal axis, with the

different curves corresponding to different numbers of such steps. This performs an order of mag-

nitude better than either of the previous algorithms, with performance peaking with 3 to 5 steps

of size 0·3 to 0·5, fairly typical values for this algorithm. This shows the advantage of exploiting

gradient information in exploring the parameter space.

6·6. Comparison with an approximate sampler

In this section, we consider an approximate sampler based on an asymptotic approximation to

Z(κ) = 0 F1(d/2, κTκ/4) for large values of (κ1, . . . , κn) (Khatri & Mardia, 1977):

Z(κ) ≃

{

2− 1
4 p(p+5)+ 1

2 pd

π
1
2 p

}

etr(κ)

p
∏

j=1

Ŵ

(

d − j + 1

2

)

⎡

⎣

⎧

⎨

⎩

p
∏

j=2

j−1
∏

i=1

(κi + κ j )
1
2

⎫

⎬

⎭

p
∏

i=1

κ
1
2 (d−p)

i

⎤

⎦

−1

.

We use this approximation in the acceptance probability of a Metropolis–Hastings algorithm; it

can similarly be used to construct a Hamiltonian sampler. For a more complicated but accurate

approximation, see Kume et al. (2013). In general however, using such approximate schemes

involves the ratio of two approximations, and can have very unpredictable performance.

On the vectorcardiogram dataset, the approximate sampler is about forty times faster than the

exact samplers. For larger datasets, this difference will be even greater, and the real question is

how accurate the approximation is. Our exact sampler allows us to study this: we consider the

Stiefel manifold Vd,3, with the three diagonal elements of κ set to 1, 5 and 10. With this setting

of κ , and a random G, we generate datasets with 50 observations, with d taking values 3, 4, 5, 8,

and 10. In each case, we estimate the posterior mean of κ by running the exchange sampler,

and treat this as the truth. We compare this with posterior means returned by our Hamiltonian

sampler, as well as the approximate sampler. Figure 4 shows these results. As expected, the two

exact samplers agree, and the Hamiltonian sampler has almost no error. For values of d around 5,

the estimated posterior mean for the approximate sampler is close to that of the exact samplers.

Smaller values lead to an approximate posterior mean that underestimates the actual posterior

mean, while in higher dimensions, the opposite occurs. Recalling that κ controls the concentra-

tion of the matrix Langevin distribution about its mode, this implies that in high dimensions, the

approximate sampler underestimates uncertainty in the distribution of future observations.
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7. THE GAUSSIAN PROCESS DENSITY SAMPLER

7·1. Nonparametric density modelling with a transformed Gaussian process

Our next application is the Gaussian process density sampler of Adams et al. (2009), a nonpara-

metric prior for probability densities induced by a logistic transformation of a random function

from a Gaussian process. Letting σ(·) denote the logistic function, the random density is

g(x) ∝ g0(x)σ { f (x)}, f ∼ GP,

with g0(·) a parametric base density and GP denoting a Gaussian process. The inequality

g0(x)σ { f (x)} � g0(x) allows a rejection sampling algorithm by making proposals from g0(·). At

a proposed location x∗, we sample the function value f (x∗) conditioning on all previous evalua-

tions, and accept the proposal with probability σ { f (x∗)}. Such a scheme involves no approxima-

tion error, and only requires evaluating the random function on a finite set of points. Algorithm 4

describes the steps involved in generating n observations.

Algorithm 4. Generate n new samples from the Gaussian process density sampler

Input: A base probability density g0(·).

Previous accepted and rejected proposals X̃ and Ỹ .

Gaussian process evaluations f X̃ and fỸ at these locations.

Output: n new samples X , with the associated rejected proposals Y .

Gaussian process evaluations fX and fY at these locations.

Repeat

Sample a proposal y from g0(·).

Sample fy , the Gaussian process evaluated at y, conditioning on fX , fY , f X̃ and fỸ .

With probability σ( fy)

Accept y and add it to X . Add fy to fX .

Else

Reject y and add it to Y . Add fy to fY .

Until n samples are accepted.

7·2. Posterior inference

Given observations X = {x1, . . . , xn}, we are interested in p(g | X), the posterior over the

underlying density. Since g is determined by the modulating function f , we focus on p( f | X).

While this quantity is doubly intractable, after augmenting the state space to include the pro-

posals Y from the rejection sampling algorithm, p( f | X,Y) has density
∏n

i=1 σ { f (xi )}
∏|Y|

i=1

[1 − σ { f (yi )}] with respect to the Gaussian process prior; see also Adams et al. (2009). In words,

the posterior over f evaluated at X ∪ Y is just the posterior from a Gaussian process classification

problem with a logistic link-function, and with the accepted and rejected proposals correspond-

ing to the two classes. Markov chain Monte Carlo methods such as Hamiltonian Monte Carlo

or elliptical slice sampling (Murray et al., 2010) are applicable in such a situation. Given f on

X ∪ Y , the Gaussian process can be evaluated anywhere else by conditionally sampling from a

multivariate normal.

Sampling the rejected proposals Y given X and f is straightforward using Algorithm 1: run

the rejection sampler until n accepts, and treat the rejected proposals generated along the way

as Y . In practice, we do not have access to the entire function f , only its values evaluated on X

and Yold , the locations of the previous thinned variables. However, just as under the generative

mechanism, we can retrospectively evaluate the function f where needed. After proposing from
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Fig. 5. Inferences for the Parkinson’s dataset: (a) posterior density for positive (solid) and
control (dashed) groups, (b) posterior distribution of the Gaussian process function for
positive group with observations. Both panels show the median with 80 percent credible

intervals.

g0(·), we sample the value of the function at this location conditioned on all previous evaluations,

and use this value to decide whether to accept or reject. We outline the inference algorithm in

Algorithm 5, noting that it is much simpler than that proposed in Adams et al. (2009). We also

refer to that paper for limitations of the exchange sampler in this problem.

Algorithm 5. A Markov chain iteration for inference in the Gaussian process density sampler

Input: Observations X with corresponding function evaluations f̃X .

Current rejected proposals Ỹ with corresponding function evaluations f̃Ỹ .

Output: New rejected proposals Y .

New Gaussian process evaluations fX and fY at X and Y .

New hyperparameters.

Run Algorithm 4 to produce |X | accepted samples, with X, Ỹ , f̃X and f̃Ỹ as inputs.

Replace Ỹ and fỸ with values returned by the previous step; call these Y and f̂Y .

Update f̃X and f̂Y using for example, hybrid Monte Carlo, to get fX and fY .

Update Gaussian process and base-distribution hyperparameters.

7·3. Experiments

Voice changes are a symptom and measure of the onset of Parkinson’s disease, and one attribute

is voice shimmer, a measure of variation in amplitude. We consider a dataset of such measure-

ments for subjects with and without the disease (Little et al., 2007), with 147 measurements with,

and 48 without the disease. We normalized these to vary from 0 to 5, and used the model of Adams

et al. (2009) as a prior on the underlying probability densities. We set g0(·) to a normal N (µ, σ 2),

with a normal-inverse-Gamma prior on (µ, σ ). The latter had its mean, inverse-scale, degrees-

of-freedom and variance set to 0,·1,1 and 10. The Gaussian process had a squared-exponential

kernel, with variance and length-scale of 1. For each case, we ran a Matlab implementation of our

data augmentation algorithm to produce 2000 posterior samples after a burn-in of 500 samples.

Figure 5(a) shows the resulting posterior over densities, corresponding to θ in Algorithm 2.

The control group is fairly Gaussian, while the disease group is skewed to the right. Figure 5(b)

focuses on the deviation from normality by plotting the posterior over the latent function f . We

see that to the right of 0·5, this deviation is larger than its prior mean of zero, implying larger

probability than under a Gaussian density. Figure 6 studies the distribution of the rejected propos-

als Y . Figure 6(a) shows the distribution of their locations: most of these occured near the origin.
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Fig. 6. Rejected proposals for the Parkinson’s dataset: (a) kernel density estimate of loca-
tions of rejected proposals, and (b) histogram of the number of rejected proposals for the

positive group.

Here, the disease density reverts to Gaussian or even sub-Gaussian density, with the intensity

function taking small values. Figure 6(b) is a histogram of the number of rejected proposals: this

is typically around 100 to 150, though the largest value we observed was 668. Since inference

on the latent function involves evaluating it at the accepted as well as rejected proposals, the

largest covariance matrix we had to deal with was about 600 × 600; typical values were around

100 × 100. Using the same set-up as § 6·5, it took a naı̈ve Matlab implementation 26 and 18

minutes to run 2500 iterations for the disease and control datasets. One can imagine computa-

tions becoming unwieldy for a large number of observations, or when there is large mismatch

between the true density and the base-measure g0(·). In such situations, one might have to choose

the Gaussian process covariance kernel more carefully, use one of many sparse approximation

techniques, or use other nonparametric priors like splines instead. In all these cases, we can use

our algorithm to recover the rejected proposals Y , and given these, posterior inference for f can

be carried out using standard techniques.

8. FUTURE WORK

Our algorithm, while exact, also provides a framework for faster, approximate algorithms.

A priori, the number of rejected proposals preceeding any observation is unbounded: one can

bound the computational cost of an iteration by limiting the maximum number of rejected pro-

posals. Similarly, one might share rejected proposals across observations. We leave the study

of such approximate sampling algorithms for future research. Also left open is a more careful

analysis of Markov mixing rates for the applications we considered. There are also a number

of applications that we have not described here: particularly relevant are rejection samplers for

diffusions (Beskos et al., 2006; Bladt & Sørensen, 2014).
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APPENDIX

Proofs

Proof of Proposition 1. Rejection sampling first proposes from q(x |θ), and then accepts with

probability f (x, θ)/{Mq(x |θ)}. Conceptually, one can first decide whether to accept or reject, and
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then conditionally sample the location. The marginal acceptance probability is Z(θ)/M , the area under

f (·, θ) divided by that under Mq(· | θ). An accepted sample x is distributed as the target distribution

f (x, θ)/Z(θ), while rejected samples are distributed as {Mq(x | θ) − f (x, θ)}/{M − Z(θ)}. This two-

component mixture is just the proposal q(x). While this mixture representation loses the computational

benefits of the original algorithm, it shows that the location of an accepted sample is independent of the

past, and consequently, that the number and locations of rejected samples preceding an accepted sample

is independent of the location of that sample. Thus, one can use the rejected samples preceding any other

accepted sample. �

Proof of Theorem 1. It follows from Bayes’ rule and the assumed bounds that for an observation X ,

p(θ | X,Y) � p(θ | X)
b f

B f

(

bqr

Bq

)|Y|

.

Let the number of observations |X | be n. Then,

k(θ̂ | θ) =

∫

Un

p(θ̂ |Y, X)p(Y | θ, X)dY

�

(

b f

B f

)n

p(θ̂ | X)

n
∏

i=1

∫

U

β |Yi | p(Yi | θ, X)dYi

=

(

b f

B f

)n

p(θ̂ | X)

n
∏

i=1

∫

U

β |Yi |
Z(θ)

M

|Yi |
∏

j=1

{

q(y j i | θ) −
f (y j i , θ)

M

}

λ(dy j i )

=

{

b f Z(θ)

B f M

}n

p(θ̂ | X)

n
∏

i=1

∞
∑

|Yi |=0

β |Yi |

|Yi |
∏

j=1

{

1 −
Z(θ)

M

}

= p(θ̂ | X)

{

b f Z(θ)

B f M

}n n
∏

i=1

1

1 − β
{

1 − Z(θ)/M
}

=
p(θ̂ | X)

δn
θ

, δθ =
B f

b f

[

M

Z(θ)
− β

{

M

Z(θ)
− 1

}]

=
B f

b f

{

M

Z(θ)
(1 − β) + β

}

� δ p(θ̂ | X), δ =

{

b f

B f

(

β + R−1
)

}n

.

Thus k(θ̂ | θ) satisfies equation (2), with δ = [b f {B f (β + R−1)}]n , and h(θ̂) = p(θ̂ | X). �

Gradient information

For n pairs {X i ,Yi }, with ñ = n +
∑n

i=1 |Yi |, and S =
∑n

i=1(X i +
∑|Yi |

j=1 Yi j ), we have

log [p({X i ,Yi }|κ)] = trace(κGT S) +

n
∑

i=1

|Yi |
∑

j=1

log

{

D(κ) − D(Yi j , κ)

D(Yi j , κ)

}

− ñ log D(κ).

Let D̃(Y, κ) =
∏p

r=1 ‖κr N T

r G[:r ]‖
−(d−r−1)/2 I(d−r−1)/2(‖κr N T

r G[:r ]‖), and D̃(κ) =
∏p

r=1 ‖κr‖
−(d−r−1)/2

I(d−r−1)/2(‖κr‖). Since d{x−m Im(x)}/dx = x−m Im+1(x),

dD̃(Y, κ)

dκ j

= N T

j G[: j] D̃(Y, κ)
I(d− j+1)/2

I(d− j−1)/2

(κ j N T

j G[: j]),
dD̃(κ)

dκ j

= D̃(κ)
I(d− j+1)/2

I(d− j−1)/2

(κ j ).
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Then, writing L = log p({X i ,Yi }|κ), and D̃′ for dD̃/dκk , we have

dL

dκk

= GT

[:k]S[:k] +

n
∑

i=1

|Yi |
∑

j=1

{

D̃′(κ) − D̃′(Yi j , κ)

D̃(κ) − D̃(Yi j , κ)
−

D̃′(Yi j , κ)

D̃(Yi j , κ)

}

− ñ
D̃′(κ)

D̃(κ)

= GT

[:k]S[:k] +

n
∑

i=1

|Yi |
∑

j=1

⎧

⎨

⎩

I(d−k+1)/2(κk )

I(d−k−1)/2(κk )
− N T

k G[:k]
I(d−k+1)/2(κk N T

k G[:k])

I(d−k−1)/2(κk N T
k G[:k])

1 − D̃(Yi j , κ)/D̃(κ)

⎫

⎬

⎭

− ñ
I(d−k+1)/2(κk)

I(d−k−1)/2(κk)
.
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