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1. Abstract

In this paper we explore ways to address the issue

of dataset bias in person re-identification by using data

augmentation to increase the variability of the available

datasets, and we introduce a novel data augmentation

method for re-identification based on changing the image

background. We show that use of data augmentation can

improve the cross-dataset generalisation of convolutional

network based re-identification systems, and that changing

the image background yields further improvements.

2. Introduction

Person re-identification models the problem of recognis-

ing a person as they move through a non-overlapping cam-

era network. In the most general case, the individual cam-

eras will have different hardware, poor image quality, non-

overlapping fields of view, will capture the person from dif-

ferent angles, with different pose, and with differing illumi-

nation. Due all these uncontrolled sources of variation, the

current state-of-the-art rank 1 re-identification performance

is around 30% [23] (or around 40% with fusion of multi-

ple systems [24]) on the challenging Viper dataset, meaning

there is still much scope for improvement in this area.

The standard method of evaluating a re-identification

system’s performance is to use a publicly available dataset

such as Viper [5], CAVIAR4REID [2], i-Lids [25],

3DPES [1], etc., which is split into disjoint training and test-

ing sets. The system’s parameters are learned on the train-

ing set and performance reported on the testing set. If cross-

validation is used, this procedure is repeated with different

splits and the average performance over all the testing-sets

reported. Although this procedure uses disjoint subsets of

the dataset for training and testing, a problem arises when

the dataset used is small and/or contains correlated data. In

this case, a form of over-fitting may occur where the sys-

tem’s parameters are overly tuned to the characteristics of

a specific dataset, and hence the system does not generalise

well to out-of-set examples. For instance, if the training

dataset uses a very small set of cameras, always in the same

Figure 1. Name That Dataset! Can you name the above re-

identification datasets? Answers shown in footnote1 below.

locations, the re-identification system may infer the camera

layout by recognising the scene backgrounds, which will

not extrapolate well to other datasets or camera layouts.

This problem is known as dataset bias, and has been re-

ported in many areas of the computer vision literature. The

root cause of dataset bias is that any finite dataset can only

capture a small fraction of the variation present in the real

visual world [21]. This problem can be exaggerated by cap-

ture bias, where the people building the dataset select im-

ages with a specific purpose in mind, thus further reducing

the variability of the data. The problem of dataset bias is

highlighted by the fact that some datasets are so visually

distinctive that experienced researchers may find it easy to

identify a specific dataset when presented with only a few

images from it (See Fig. 1 where we recreate the Name that

Dataset! game from [21] using re-identification datasets)1.

It has been suggested that dataset bias could be addressed

by collecting much larger datasets using the web as a source

of large numbers of labelled images [13]. However, de-

spite the creation of much larger datasets with millions of

images [16], further sources of dataset bias exist, such as:

capture bias, where humans prefer certain points of view

when making photographs of objects, label bias, where cer-

1Answers: 1.Viper 2.CAVIAR 3.i-Lids 4.ETHZ 5.CUHK 6.PRID
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tain categories of object are poorly defined, and negative

set bias, where the limited variety of objects in each dataset

leads to poor discriminative ability in classifiers [21].

Given the inherent existence of dataset bias, even in large

image collections, several approaches have been proposed

to reduce its influence. The main idea behind most such

methods is to combine multiple datasets while taking steps

to account for differences in their data distributions. The

method in [9] learns a set of weights, one for each individ-

ual dataset, and another set common to all datasets, to al-

low multiple training sets to be combined whilst encourag-

ing the resultant classifier to have good generalisation abil-

ity. A related method learns an image feature representation

that decomposes into two orthogonal subspaces, one com-

mon to all datasets and one for each individual dataset [20].

Recently, deep networks have been successfully applied to

many vision problems, including re-identification. It has

been proposed that the activations of the fully-connected

layers of a deep network trained on a large object recogni-

tion problem could be used as generic image features [14].

However, it has been found [19] that these features are also

susceptible to dataset bias, and that previous methods pro-

posed for addressing dataset bias [9], did not work well

when applied to deep-network based features. Finally, a

neural network training method has been proposed, where

the cost function encourages the network to solve the main

task, while penalising the learned feature representation

based on its ability to discriminate between datasets [4].

Dataset bias is starting to be recognised in the re-

identification literature: The cross-dataset generalisation of

a convolutional network based re-identification system was

tested in [8] and found to be below that obtained when train-

ing and testing disjoint subsets of the same dataset. Im-

proving generalisation may also become more important as

re-identification is applied in more challenging conditions

such as in the open-set scenario, where testing persons may

or may not be present in the gallery. This means verification

and identification must be carried out. In the open-set sce-

nario, the performance of current re-identification systems

was found to be insufficient for practical applications [12].

The issue of dataset bias may be a particular problem

for person re-identification, as collecting a new dataset typ-

ically requires a large amount of manual labour: images

of each person as seen in several cameras must be manu-

ally annotated. This can lead to small datasets (the largest

re-identification datasets contain only a few thousand peo-

ple [11]), or datasets without much variation in background,

illumination, pose, clothing, angle of view etc.

In this paper we propose to increase the cross-dataset

generalisation ability of re-identification systems, by em-

ploying data augmentation. The underlying idea of data

augmentation is to increase the variability of existing

datasets without the need to actually collect novel data.

Figure 2. Left: Siamese Network architecture. Right: Structure

and hyper-parameters of the convolutional networks (CNN).

Existing data are altered to better reflect the variability

that can be encountered in out-of-set samples, for exam-

ple, in speech-processing noise may be added to the train-

ing speech [7]. We propose to make better use of existing

datasets by increasing their variability using data augmenta-

tion tailored to the re-identification problem. Our proposal

will be tested using cross-dataset re-identification to evalu-

ate its impact on dataset bias.

The contributions of this paper are: a novel data augmen-

tation method based on changing the image background to

artificially increase training-set size, and an evaluation of

existing data augmentation methods in terms of their ability

to improve cross-dataset re-identification performance.

3. Re-Identification System

The re-identification experiments in this paper were per-

formed using a convolutional network [10], trained as part

of a Siamese network architecture [6], similar to the ap-

proach used in [23]. This choice is supported by the fact that

this architecture, as used by [23], provides one of the best

rank one re-identification accuracies in the literature. The

Siamese network architecture consists of two convolutional

networks with identical weights. Each convolutional net-

work, G(x), transforms its input image, x, to a feature vec-

tor, x̂. The Siamese network is trained using image pairs,

(xi, xj), of matched or mismatched images i.e., images be-

longing to the same or different persons. The embedding

cost, E(x̂i, x̂j), encourages the network to map pairs of

matched images to feature vectors that are close, as mea-

sured by Euclidean distance, and to separate the feature vec-

tors for pairs of mismatched images by at least a margin, m.

The embedding cost function is defined as follows:

E(x̂i, x̂j) =

{

1

2
‖x̂i − x̂j‖

2 x̂i = x̂j

1

2
[max(m− ‖x̂i − x̂j‖, 0)]

2 x̂i 6= x̂j

Once trained, the convolutional network, G(x), is used

to map unseen person images to feature vectors, which can

be compared using Euclidean distance to check if differ-

ent feature vectors are likely to describe the same or dif-



Figure 3. Top Row: Data Augmentation based on linear trans-

formations. Bottom Row: Original PRID450 image, the image’s

foreground mask, and versions with simulated backgrounds.

ferent persons. In all experiments a three layer convolu-

tional network was used, with Dropout [17] between the

final convolutional, and fully connected (FC) layers. Im-

ages were represented by the activations of the 128 neurons

in the FC layer. A fixed learning rate of 10−3, and SGD

optimisation for 500 epochs was used in all experiments.

A diagram of the Siamese network architecture is shown

in Fig. 2, which also illustrates the hyperparameters of the

convolutional network. The hyperparameters were decided

using a preliminary set of experiments on the Viper dataset,

and with these settings the system achieves ≈ 33% rank one

accuracy (see Table 1), showing that it is a good baseline on

which to validate our contributions.

4. Data Augmentation Methods

In this section we describe the specific data augmenta-

tion methods proposed (illustrated in Fig. 3). Each data

augmentation method tries to simulate a type of variability

present in real-world data, but which may not be well repre-

sented in the training set. By introducing these extra types

of variability during training it is hoped that the network

will learn to better generalise to out-of-dataset images, and

hence performance in cross-dataset testing will improve.

4.1. Linear Transformations

In a realistic re-identification scenario the person may

move with respect to the camera, their pose may change,

and they may be viewed from a variety of angles. Addi-

tionally, small translations may occur due to errors in the

person detection and extraction process, carried out prior to

re-identification. Due to the small number of training exam-

ples typically available per-person, the above transforma-

tions may not be well represented by each person’s training

images. We therefore augment the training set by introduc-

ing random transformations such as translation, mirroring,

and rotation. Transformations may be used individually or

combined together, and are applied each time a training im-

age is presented to the network during training.

Translation variability can be introduced by cropping the

training image using a window with 90% of the image’s

width and height, positioned uniformly at random without

overlapping the image edge. Horizontal mirroring can be

introduced using a Bernoulli random variable with p = 0.5
to indicate whether to perform mirroring. Small rotations

can be applied by sampling uniformly at random from ±5
degrees. Finally, an affine transformation combining scale,

rotation and shear can be used, where scale is uniformly

sampled from ±5% of image height, rotation uniformly

sampled from ±5 degrees, and shear uniformly sampled

from ±0.02.

The above data augmentation approaches are computa-

tionally inexpensive and have been used in several other

papers to improve the performance of convolutional net-

work based object recognition systems [22]. However these

methods have not previously been evaluated for their ability

to improve generalisation for cross-dataset re-identification.

4.2. Colour

The brightness of images captured under different il-

luminations is easy to standardise during pre-processing,

however when a person moves between different cameras,

or between areas with different illumination sources, the

colour of the illumination (white-balance) may vary. Accu-

rately compensating for changing illumination colour using

pre-processing is difficult. While many cameras attempt to

compensate by changing their white balance, it is often not

possible to completely correct for this effect, or to synchro-

nise the information with other cameras in the network, and

in any case the camera settings may be incorrect. Shifting

white-balance leads to a change in the measured colour val-

ues of a person as seen from different viewpoints and/or dif-

ferent cameras. We simulate this effect by randomly shift-

ing the hue of the training images by small amounts each

time they are presented to the network during training. We

convert the image to the HSV colour-space then modify the

hue channel by adding a value, sampled uniformly at ran-

dom from [−0.1, 0.1], to the hue value of all pixels. The

image is then converted back to RGB to allow other data

augmentation methods to be applied.

4.3. Background Substitution

A further way to significantly increase the variability of

the training data is by changing the image background while

leaving the foreground i.e., the person, unchanged. Modi-

fying the training images in this way should help the re-

identification system to learn to discriminate between the

different sources of image variability. The system should

learn to focus on the parts of the images belonging to the

subjects, and image features that are strongly related to



identity, while learning to ignore irrelevant sources of vari-

ability. To implement this idea the person must be accu-

rately segmented from the image background, which can

be accomplished using, for example, a deformable parts

model [3] to extract the positions of the body parts, or by us-

ing background subtraction if video is available [18]. Once

the person has been segmented from their original back-

ground, a simulated background can then be substituted

from a corpus of realistic background images.

5. Experiments

In this section we first demonstrate experimentally that

dataset bias exists. We then test the effectiveness of vari-

ous data augmentation methods for improving cross-dataset

generalisation performance.

5.1. Name that Dataset!

If dataset bias did not exist i.e., if all re-identification

datasets contained a fair random sampling of person im-

ages from the visual world, it would not be possible to train

a classifier to distinguish between images from different

datasets at levels significantly different from chance. Fol-

lowing the approach used in [21], where the authors train

a classifier to play Name that Dataset!, but translating it to

the re-identification scenario, we show that it is possible to

train a classifier to recover the parent dataset of a given im-

age, and hence we show that dataset bias may be an issue

affecting current re-identification datasets.

For this experiment, all images from the Viper, CAVIAR,

i-Lids, and 3DPES datasets were combined into a single

dataset. During testing and training the identity label of

each image was discarded, and images were instead labelled

with their parent dataset. The combined dataset was then

split into 80% for training and 20% for testing, taking care

to ensure there was no overlap between the persons or im-

ages included in the training and testing sets. To reduce

concerns with over-fitting, the same convolutional network

design and hyper-parameters were used as in all other exper-

iments. However, instead of using a Siamese architecture,

a standard feed-forward convolutional network architecture

was used, with a softmax classification layer for prediction.

The results of this experiment are shown as a confusion

matrix in Fig. 4, and the overall dataset identification ac-

curacy was 96.2%. Note there is very little energy in the

off-diagonal elements of the confusion matrix, showing that

the re-identification datasets are very distinctive as they are

not often confused by the classifier. These results indicate

that dataset bias may be a significant issue, as only roughly

25% classification accuracy would be expected if the clas-

sifier was operating at chance levels, as would happen if the

images from each dataset were fully unbiased samples from

the visual world.

Figure 4. Confusion Matrix for a classifier trained to predict the

parent dataset of a given re-identification image.

5.2. Cross­Dataset Generalisation

The existence of dataset bias, as demonstrated in Sec-

tion 5.1, means that a re-identification system trained using

only one dataset will likely not generalise well to differ-

ent datasets. We show this directly by performing a cross

dataset re-identification experiment. The Viper dataset was

randomly split into disjoint subsets of 50% for training

and 50% for testing. A re-identification system was then

trained using the training subset and achieved a 33% rank

one identification accuracy on the testing subset. Separate

re-identification systems were then trained using 100% of

the i-Lids, CAVIAR, and 3DPES datasets, and used to per-

form re-identification on the testing subset of viper. It can

be seen from the results in Table 1 that the cross-dataset

re-identification accuracies are significantly below the ac-

curacy of the within-dataset system. This difference in ac-

curacy is a symptom of dataset bias i.e., the features learned

on the i-Lids, CAVIAR and 3DPES datasets did not gener-

alise well to Viper.

Training Dataset Viper i-Lids CAVIAR 3DPES

Viper Rank 1 (%) 33 11 12 14

Table 1. Comparing within-dataset and cross-dataset rank 1 re-

identification system accuracies (%) tested on the Viper dataset.

To reduce the impact of dataset bias we propose to use

data augmentation to increase the diversity of the train-

ing samples. In this experiment we quantify the effect

of the various data augmentation methods on cross-dataset

re-identification performance using the Viper, CAVIAR, i-

Lids, and 3DPES datasets. All combinations of the differ-

ent data augmentation methods were tested, however we

only report a subset of the more interesting results due to

space constraints. During each experiment the network was

trained using all images from all persons in one dataset.

Each time an image was presented to the network it was ran-

domly augmented using one or more simultaneous data aug-

mentation methods. After training with a particular dataset,

the network was then used to perform re-identification on

all the remaining datasets except the one on which it had

been trained. For each combination of data augmentation



(a) (b)

Figure 5. Data augmentation results: (a) When data augmentation

methods are used alone. (b) Top five best performing combinations

of data augmentation methods. (Note - Best viewed in colour).

methods, the CMC curves were averaged over all training

and testing datasets, in order to allow the effect of the data

augmentation methods to be separated from the specifics

of their performance on particular datasets. Note that re-

identification testing was conducted using all persons in

each dataset (as opposed to 50% of persons as is usually the

case for within-dataset scenarios, when individual datasets

are split into training and testing sets). A summary of the

results is shown in Fig. 5.

To understand the individual contribution of each data

augmentation method, we compare performance with no

data augmentation to the cases where each data augmen-

tation method is used individually. The results, in Fig. 5(a),

show that cropping gives the largest individual improve-

ment in performance, followed by rotation and mirroring.

However, both colour and affine transformations decrease

performance compared to the baseline. This suggests that

these augmentations, when used alone, are not representa-

tive of transformations present in realistic data.

Next we investigate which combinations give the best

overall performance, as it may be the case that some meth-

ods are complimentary, or work better when used together.

The results, seen in Fig. 5(b), show that very similar results

are obtained by several different combinations. The highest

rank one performance is obtained using cropping and mir-

roring, while the highest rank 10 performance is obtained

using cropping, mirroring, and colour augmentation. The

question of which rank is most important to optimise will

be application dependent, however in this case all the top

combinations achieve similar performance across a wide

range of CMC values. We also note there is a large drop

in performance when mirroring and colour data augmenta-

tion are used without cropping, which shows the importance

of cropping for obtaining good performance improvements.

5.3. Background Substitution

As mentioned in Section 4.3 we can further increase the

diversity of the training data by varying the image back-

grounds to simulate a larger training-set where each person

is recorded in many different environments. This experi-

ment was only carried out using the PRID 450 [15] dataset,

as it includes annotation to allow segmentation of each per-

son from their background. A set of ten diverse empty street

scene images were collected from the web for use as a back-

ground image corpus. During training, each time a per-

son’s image was presented to the network, a background

image was randomly selected from the corpus, and a win-

dow within the image was then selected uniformly at ran-

dom without overlapping the edges. This background win-

dow was then substituted for the training image’s original

background using the foreground mask provided with the

PRID 450 dataset. See Fig. 3 for an illustration of images

with simulated backgrounds.

In this experiment we compare two data augmentation

scenarios: firstly, with cropping, mirroring, rotation, and

colour data augmentation enabled, and secondly, with back-

ground substitution also enabled. For each scenario the net-

work was trained using all the persons in the PRID 450

dataset, and then tested on the Viper, i-Lids, CAVIAR, and

3DPES datasets, and the CMC curve results averaged over

all the testing datasets. The results in Fig. 6(a) show that use

of background substitution gives an improvement in per-

formance over using only the standard data augmentation

methods. The rank one CMC, averaged over all the testing

datasets, increases from 40.25% to 44.75% when simulated

backgrounds are used compared to using only the standard

data augmentation methods.

In the second part of this experiment we investigate how

performance varies as the number of training images with

artificial backgrounds is varied. For each person, a fixed

number of training images with simulated backgrounds was

generated offline. The system was then trained using this

fixed set of images with simulated backgrounds, with crop-

ping, mirroring, rotation and colour data augmentation en-

abled. The trained system was then tested on all other

datasets and the average CMC curve calculated. The results

in Fig. 6(b) shows how the rank one CMC accuracy varies

as a function of the number of training images with simu-

lated backgrounds. It can be seen that performance quickly

improves with additional images, but starts to experience

diminishing returns when around 16 additional background

images per-person are used.

6. Conclusion

In this paper we have introduced a novel data augmen-

tation method for re-identification based on changing the

image background. We have shown that this can increase
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Figure 6. (a) Comparing performance with simulated background

and standard data augmentation, to standard data augmentation

alone. (b) Average rank-1 CMC as the number of PRID450 train-

ing images with simulated backgrounds is varied.

cross-dataset performance. We have also evaluated several

existing data augmentation methods for their ability to im-

prove cross-dataset re-identification. We find that geometric

transformations, such as cropping and mirroring can signif-

icantly increase cross-dataset performance. We recommend

that future work in this area should report cross-dataset re-

identification accuracy as this should give a better indication

of real world performance that within-dataset testing.
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