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Data Augmentation for Support Vector
Machines

Nicholas G. Polson∗and Steven L. Scott†

Abstract. This paper presents a latent variable representation of regularized
support vector machines (SVM’s) that enables EM, ECME or MCMC algorithms
to provide parameter estimates. We verify our representation by demonstrating
that minimizing the SVM optimality criterion together with the parameter reg-
ularization penalty is equivalent to finding the mode of a mean-variance mixture
of normals pseudo-posterior distribution. The latent variables in the mixture rep-
resentation lead to EM and ECME point estimates of SVM parameters, as well
as MCMC algorithms based on Gibbs sampling that can bring Bayesian tools for
Gaussian linear models to bear on SVM’s. We show how to implement SVM’s with
spike-and-slab priors and run them against data from a standard spam filtering
data set.

Keywords: MCMC, Bayesian inference, Regularization, Lasso, Lα-norm, EM,
MCMC, ECME.

1 Introduction

Support vector machines (SVM’s) are binary classifiers that are often used with ex-
tremely high dimensional covariates. SVM’s typically include a regularization penalty
on the vector of coefficients in order to manage the bias-variance trade-off inherent with
high dimensional data. In this paper, we develop a latent variable representation for
regularized SVM’s in which the coefficients have a complete data likelihood function
equivalent to weighted least squares regression. We then use the latent variables to
implement EM, ECME, and Gibbs sampling algorithms for obtaining estimates of SVM
coefficients. These algorithms replace the conventional convex optimization algorithm
for SVM’s, which is fast but unfamiliar to many statisticians, with what is essentially
a version of iteratively re-weighted least squares. By expressing the support vector op-
timality criterion as a variance-mean mixture of linear models with normal errors, the
latent variable representation brings all of conditionally linear model theory to SVM’s.
For example, it allows for the straightforward incorporation of random effects (Mallick
et al. 2005), lasso and bridge Lα-norm priors, or “spike and slab” priors (George and
McCulloch 1993, 1997; Ishwaran and Rao 2005).

The proposed methods inherit all the advantages and disadvantages of canonical data
augmentation algorithms including convenience, interpretability and computational sta-
bility. The EM algorithms are stable because successive iterations never decrease the
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2 Data Augmentation for Support Vector Machines

objective function. The Gibbs sampler is stable in the sense that it requires no tun-
ing, moves every iteration, and provides Rao-Blackwellised parameter estimates. The
primary disadvantage of data augmentation methods is speed. The EM algorithm ex-
hibits linear (i.e. slow) convergence near the mode, and one can often design MCMC
algorithms that mix more rapidly than Gibbs samplers.

We argue that on the massive data sets to which SVM’s are often applied there are
reasons to prefer data augmentation over methods traditionally regarded as faster. First,
Meng and van Dyk (1999) and Polson (1996) have shown that many data augmentation
algorithms can be modified to increase their mixing rate. Second, data augmentation
methods can be formulated in terms of complete data sufficient statistics, which is a
considerable advantage when working with large data sets, where most of the com-
putational expense comes from repeatedly iterating over the data. Methods based on
complete data sufficient statistics need only compute those statistics once per iteration,
at which point the entire parameter vector can be updated. This is of particular im-
portance in the posterior simulation problem, where scalar updates (such as those in
an element-by-element Metropolis Hastings algorithm) of a k−dimensional parameter
vector would require O(k) evaluations of the posterior distribution per iteration.

An additional benefit of our methods is that they provide further insight into the
role of the support vectors in SVM’s. The support vectors are observations whose co-
variate vectors lie very near the boundary of the decision surface. Hastie et al. (2009)
show, using geometric arguments, that these are the only vectors supporting the deci-
sion boundary. We provide a simple algebraic view of the same fact by showing that
the support vectors receive infinite weight in the iteratively re-weighted least squares
algorithm.

The rest of the article is structured as follows. Section 2 explains the latent variable
representation and the conditional distributions and moments needed for the EM and
related algorithms. Section 3 defines an EM algorithm that can be used to locate SVM
point estimates. We also describe how to use the marginal pseudo-likelihood to solve
the optimal amount of regularization. The Gibbs sampler for SVM’s is developed in
Section 4, which also introduces spike-and-slab priors for SVM’s. Section 5 illustrates
our methods on the spam filtering data set from Hastie et al. (2009). Finally, Section 6
concludes.

2 Support Vector Machines

Support vector machines describe a binary outcome yi ∈ {−1, 1} based on a vector of
predictors xi = (1, x1, . . . , xk−1). SVM’s often include kernel expansions of xi (e.g. a
spline basis expansion) prior to fitting the model. Our methods are agnostic to any
such kernel expansions, and we assume that xi already includes all desired expansion
terms. The Lα-norm regularized support vector classifier chooses a set of coefficients β
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to minimize the objective function

dα(β, ν) =
n∑

i=1

max
(
1− yixT

i β, 0
)

+ ν−α
k∑

j=1

|βj/σj |α (1)

where σj is the standard deviation of the j’th element of x and ν is a tuning parameter.
There is a geometric interpretation to equation (1). If a hyperplane in x can perfectly
separate the sets {i : yi = 1} and {i : yi = −1}, then the solution to equation (1) gives
the separating hyperplane farthest from any individual observation. Algebraically, if
βT xi ≥ 0 then one classifies observation i as 1. If βT xi < 0 then one classifies yi = −1.

The scaling variable σj is the standard deviation the j’th predictor variable, with
the exception of σ1 = 1 for the intercept term. There is ample precedent for the
choice of scaling variables. See Mitchell and Beauchamp (1988), George and McCulloch
(1997), Clyde and George (2004), Fan and Li (2001), Griffin and Brown (2005), and
Holmes and Held (2006). The second term in equation (1) is a regularization penalty
corresponding to a prior distribution p(β|ν, α). The lasso prior (Tibshirani 1996; Zhu
et al. 2004), corresponding to α = 1 is a popular choice because it tends to produce
posterior distributions where many of the β coefficients are exactly zero at the mode.

Minimizing equation (1) is equivalent to finding the mode of the pseudo-posterior
distribution p(β|ν, α, y) defined by

p(β|ν, α, y) ∝ exp (−dα(β, ν))
∝ Cα(ν)L(y|β)p(β|ν, α).

(2)

The factor of Cα(ν) is a pseudo-posterior normalization constant that is absent in the
classical analysis. The data dependent factor L(y|β) is a pseudo-likelihood

L(y|β) =
∏

i

Li(yi|β) = exp

{
−2

k∑

i=1

max
(
1− yixT

i β, 0
)
}

. (3)

In principle, one could work with an actual likelihood if each Li was replaced by the
normalized value L̃i = [Li(yi)]/[Li(yi) + Li(−yi)], but we work with Li instead of L̃i

because it leads to the traditional estimator for support vector machine coefficients. It is
also possible to learn (β, ν, α) jointly from the data by defining a joint pseudo-posterior
p(β, ν, α|y) ∝ p(β|ν, α, y)p(ν, α) for some initial prior regularization penalty p(ν, α) on
the amount of regularization. Sections 3.3 and 4 explore the necessary details.

The purpose of the next subsection is to show that a formula equivalent to equa-
tion (1) can be expressed as a mixture of normal distributions. Section 2.1 establishes
that fundamental result. Then Section 2.2 derives the conditional distributions used in
the MCMC and EM algorithms later in the paper.

2.1 Mixture Representation

Our main theoretical result expresses the pseudo-likelihood contribution Li(yi|β) as a
location-scale mixture of normals. The result allows us to pair observation yi with
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a latent variable λi in such a way that Li is the marginal from a joint distribution
Li(yi, λi|β) in which β appears as part of a quadratic form. This implies that Li(yi, λi|β)
is conjugate to a multivariate normal prior distribution. In effect, the augmented data
space allows the awkward SVM optimality criterion to be expressed as a conditionally
Gaussian linear model that is familiar to most Bayesian statisticians.

Theorem 1. The pseudo-likelihood contribution from observation yi can be expressed
as

Li(yi|β) = exp
{−2max

(
1− yixT

i β, 0
)}

=
∫ ∞

0

1√
2πλi

exp
(
−1

2
(1 + λi − yixT

i β)2

λi

)
dλi .

(4)

The proof relies on the integral identity
∫∞
0

φ (u| − λ, λ) dλ = e−2 max(u,0) where
φ(u|·, ·) is the normal density function. The derivation of this identity follows from
Andrews and Mallows (1974), who proved that

∫∞
0

a√
2πλ

e−
1
2 (a2λ+b2λ−1)dλ = e−|ab|, for

any a, b > 0. Substituting, a = 1, b = u and multiplying through by e−u yields
∫ ∞

0

1√
2πλ

e−
u2
2λ−u− 1

2 λdλ = e−|u|−u.

Finally, using the identity max(u, 0) = 1
2 (|u|+ u) gives the expression

∫ ∞

0

1√
2πλ

e−
(u+λ)2

2λ dλ = e−2 max(u,0),

which is the desired result.

A corresponding result can be given for the exponential power prior distribution
containing the regularization penalty,

p(β|ν, α) =
k∏

j=1

p(βj |ν, α) =
(

α

νΓ(1 + α−1)

)k

exp

(
−

k∑

i=1

∣∣∣∣
βj

νσj

∣∣∣∣
α
)

. (5)

We consider the general case of α ∈ (0, 2] though the special cases of α = 2 and α = 1
are by far the most important, as they correspond to “ridge regression” (Goldstein
and Smith 1974; Holmes and Pintore 2006) and the “lasso” (Tibshirani 1996; Hans
2009) respectively. West (1987) develops the mixture result for α ∈ [1, 2] and the same
argument extends to the case α ∈ (0, 1], see Gomez-Sanchez-Manzano et al. (2008). The
latter allows us to apply our method to the “bridge” estimator framework (Huang et al.
2008). The general case is stated below as Theorem 2.

Theorem 2. (Pollard 1946; West 1987) The prior regularization penalty can be ex-
pressed as a scale mixture of normals

p(βj |ν, α) =
∫ ∞

0

φ
(
βj |0, ν2ωjσ

2
j

)
p(ωj |α) dωj (6)
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where p(ωj |α) ∝ ω
− 3

2
j St+α

2
(ω−1

j ) and St+α
2

is the density function of a positive stable
random variable of index α/2.

A simpler mixture representation can be obtained for the special case of α = 1.

Corollary 1. (Andrews and Mallows 1974) The double exponential prior regularization
penalty can be expressed as a scale mixture of normals

p(βj |ν, α = 1) =
∫ ∞

0

φ
(
βj |0, ν2ωjσ

2
j

) 1
2
e−

ωj
2 dωj (7)

and so p(ωj |α) ∼ E(2) is an exponential with mean 2.

Corollary 1 was applied to Bayesian robust regression by Carlin and Polson (1991).

2.2 Conditional Distributions

Theorems 1 and 2 allow us to express the SVM pseudo-posterior distribution as the
marginal of a higher dimension distribution that includes the variables λ = (λ1, . . . , λn),
ω = (ω1, . . . , ωk). The complete data pseudo-posterior distribution is

p(β, λ, ω|y, ν, α) ∝
n∏

i=1

λ
− 1

2
i exp

(
−1

2

n∑

i=1

(1 + λi − yixT
i β)2

λi

)

×
k∏

j=1

ω
− 1

2
j exp


− 1

2ν2

k∑

j=1

β2
j

σ2
j ωj


 p(ωj |α).

(8)

where, in general, p(ωj |α) ∝ ω
− 3

2
j St+α

2
(ω−1

j ).

At first glance equation (8) appears to suggest that yi is conditionally Gaussian.
However yi, λi and β each have different support, with yi ∈ {−1, 1}, λi ∈ [0,∞),
and β ∈ <k. Equation (8) is a proper density with respect to Lebesgue measure on
β, λ, ω in the sense that it integrates to a finite number, but it is not a probability
density because it does not integrate to one. This is a consequence of our use of the
un-normalized likelihood in equation (3). The previous section shows that equation (8)
has the correct marginal distribution,

p(β|ν, α, y) =
∫

p(β, λ, ω|ν, α, y)dλ dω.

Therefore, it can be used to develop an MCMC algorithm that repeatedly samples
from p(β|λ, ω, ν, y), p(λ−1

i |β, ν, y), and p(ω−1
j |βj , ν), or develop an EM algorithm based

on the moments of these distributions. The next subsection derives the required full
conditional distributions from equation (8), with special attention given to the cases
α = 1, 2.
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There are other purely probabilistic models where our result applies. For example,
Mallick et al. (2005) provide a Bayesian SVM model by adding Gaussian errors around
the linear predictors in order to obtain a tractable likelihood. Effectively they consider
an objective of the form max(1− yizi, 0) where zi = x′iβ + εi. Our data augmentation
strategy can help in designing MCMC algorithms in this case as well. Pontil et al.
(1998) provide an alternative probabilistic model: imagine data arising from randomly
sampling an unknown function f(x) according to f(xi) = yi + εi where εi has an error
distribution proportional to Vapnik’s insensitive loss function: exp (−Vε(x)) defined by
Vε(x) = max(|x| − ε, 0). Our results show that this distribution can be expressed as a
mixture of normals.

The full conditional distribution of β given λ, ω, y

Define the matrices Λ = diag (λ), Ω = diag (ω), Σ = diag
(
σ2

1 , . . . , σ2
k

)
, and let 1 denote

a vector of 1’s. Also let X denote a matrix with row i equal to yixi. To develop the full
conditional distribution p(β|ν, λ, ω, y) one can appeal to standard Bayesian arguments
by writing the model in hierarchical form

1 + λ = Xβ + Λ
1
2 ελ

β =
1
ν

Ω
1
2 Σ

1
2 εβ ,

where εβ and ελ are vectors of iid standard normal deviates with dimensions matching
β and λ. Hence we have a conditional normal posterior for the parameters β given by

p(β|ν, λ, ω, y) ∼ N (b,B) (9)

with hyperparameters

B−1 = ν−2Σ−1Ω−1 + XT Λ−1X and b = BXT (1 + λ−1). (10)

Full conditional distributions for λi and ωj given β, ν, y

The full conditional distributions for λi and ωj are expressed in terms of the inverse
Gaussian and generalized inverse Gaussian distributions. A random variable has the
inverse Gaussian distribution IG (µ, λ) with mean and variance E (x) = µ and V ar (x) =
µ3/λ if its density function is

p (x|µ, λ) =

√
λ

2πx3
exp

(
−λ (x− µ)2

2µ2x

)
.

A random variable has the generalized inverse Gaussian distribution (Devroye 1986, p.
479) GIG(γ, ψ, χ) if its density function is

p(x|γ, ψ, χ) = C(γ, ψ, χ)xγ−1 exp
(
−1

2

(χ

x
+ ψx

))
,
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where C(γ, ψ, χ) is a suitable normalization constant. The generalized inverse Gaus-
sian distribution contains the inverse Gaussian distribution as a special case: if X ∼
GIG(1/2, λ, χ) then X−1 ∼ IG(µ, λ) where χ = λ/µ2. This fact is used to prove the
following corollary of Theorem 1.

Corollary 2. The full conditional distributions for λi is

p(λ−1
i |β, yi) ∼ IG (|1− yixT

i β|−1, 1
)
. (11)

Proof: The full conditional distribution is

p(λi|β, yi) ∝ 1√
2πλi

exp

{
−

(
1− yixT

i β − λi

)2

2λi

}

∝ 1√
2πλi

exp
{
−1

2

(
(1− yixT

i β)2

λi
+ λi

)}

∼ GIG
{

1
2
, 1, (1− yixiβ)2

}
.

Equivalently, p(λ−1
i |β, yi) ∼ IG (|1− yixiβ|−1, 1

)
as required.

The full conditional distribution of ωj is proportional to the integrand of equa-
tion (6). In general this is a complicated distribution because the density of the stable
mixing distribution is generally only available in terms of its characteristic function.
However, closed form solutions are available in the two most common special cases.
When α = 2 then p(ωj |β) is a point mass at 1. The following result handles α = 1.

Corollary 3. For α = 1, the full conditional distribution of ω is

p(ω−1
j |βj , ν) ∼ IG (νσj/|βj |, 1) . (12)

Proof: From the integrand in equation (7) we have

p(ωj |βj , ν) ∝ 1√
2πωj

exp

{
−1

2

(
β2

j /ν2σ2
j

ωj
+ ωi

)}

∼ GIG
(

1
2
, 1,

β2
j

ν2σ2
j

)
.

Hence (ω−1
j |βj , ν) ∼ IG (νσj/|βj |, 1) . We now develop the learning algorithms.

3 Point estimation by EM and related algorithms

This Section shows how the distributions obtained in Section 2 can be used to construct
EM-style algorithms to solve for the coefficients. Section 3.1 describes an EM algorithm
for learning β with a fixed value of ν. Then, Section 3.2 develops an ECME algorithm
when ν is unknown.
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3.1 Learning β with fixed ν

The EM algorithm (Dempster et al. 1977) alternates between an E-step (expectation)
and an M-step (maximization) defined by

E-step Q(β|β(g)) =
∫

log p(β|y, λ, ω, ν)p(λ, ω|β(g), ν, y) dλ dω

M-step β(g+1) = arg max
β

Q(β|β(g)).

The sequence of parameter values β(1), β(2), . . . monotonically increases the observed-
data pseudo-posterior distribution: p(β(g)|ν, α, y) ≤ p(β(g+1)|ν, α, y).

The Q function in the E−step is the expected value of the complete data log poste-
rior, where the expectation is taken with respect to the posterior distribution evaluated
at current parameter estimates. The complete data log-posterior is

log p(β|ν, λ, ω, y) = c0(λ, ω, y, ν)− 1
2

n∑

i=1

(
1 + λi − yixT

i β
)2

λi

− 1
2ν2

k∑

j=1

β2
j

σ2
j ωj

(13)

for a suitable constant c0.

The terms in the first sum are linear functions of both λi and λ−1
i . However, the λi

term is free of β, so it can be absorbed into the constant. Thus, the relevant portion
of equation (13) is a linear function of λ−1

i and ω−1
j , which means that the criterion

function Q(β|β(g)) simply replaces λ−1
i and ω−1

j with their conditional expectations

λ̂
−1(g)
i and ω̂−1(g) given observed data and the current β(g). From Corollary 2 and

properties of the inverse Gaussian distribution we have

λ̂
−1(g)
i = E(λ−1

i |yi, β
(g)) = |1− yixT

i β(g)|−1. (14)

The corresponding result for ω−1
j depends on α. When α = 2 then ωj = 1. The

general case 0 < α < 2 is given in the following Corollary of Theorem 2.

Corollary 4. For α < 2, if β
(g)
j = 0 then ω̂

−1(g)
j = E(ω−1|β(g), α, y) = ∞. Otherwise

ω̂
−1(g)
j = α|β(g)

j |α−2(νσj)2−α.

Proof: From Theorem 2, we have

p(βj |α) =
∫

φ(βj |0, ν2σ2
j ωj)p(ωj |α)dωj

where p(βj |α) ∝ exp (−|βj/νσj |α). Now notice that

∂φ(βj |0, ν2σ2
j ωj)

∂βj
=

−βj

ν2σ2ωj
φ(βj |0, ν2σ2

j ωj).
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Hence, for βj 6= 0 we can differentiate under the integral sign with respect to βj to
obtain

α(νσj)−α|βj |α−1p(βj |α) =
∫ ∞

0

φ(βj |0, ν2σ2
j ωj)p(ωj |α)

βj

ν2σ2
Jωj

dωj .

Dividing by p(βj |α) yields

α(νσj)−α|βj |α−1 =
βj

ν2σ2
j

∫ ∞

0

1
ω

p(βj , ω|α)
p(βj |α)

dω =
βj

ν2σ2
j

E(ω−1|βj , α).

Solving for E(ω−1|βj , α) completes the proof. In the case when α = 1 we can apply
Corollary 3 to obtain

ω̂
−1(g)
j = νσj |β(g)

j |−1,

which matches the general case. These results lead us to the following algorithm.

Algorithm: EM-SVM
Repeat the following until convergence

E-Step Given a current estimate β = β(g), compute

λ̂−1(g) = (|1− yixT
i β(g)|−1),

Λ̂−1(g) = diag(λ̂−1(g)),

Ω̂−1(g) = diag
(
ω̂
−1(g)
j

)
.

M-Step Compute β(g+1) as

β(g+1) =
(
ν−2Σ−1Ω̂−1(g) + XT Λ̂−1(g)X

)−1

XT (1 + λ̂−1(g)).

A few points about the preceding algorithm deserve emphasis. First, the M−step
is essentially weighted least squares with weights λ−1

i , though it is unusual in the sense
that the weights also appear as part of the dependent variable. Second, the algorithm
provides a new way of looking at support vectors. Observation i is a support vector
if yixiβ = 1, which means that it lies on the decision boundary. Equation (14) shows
that support vectors receive infinite weight in the weighted least squares calculation.
Thus we cannot find more than k linearly independent support vectors, and once k
are found they are the only points determining the solution. Third, βj = 0 is a fixed
point in the algorithm when α < 2. In practical terms this means that a search for
a sparse model must proceed by backward selection starting from a model with all
nonzero coefficients. A consequence is that the early iterations of the algorithm are
the most expensive, because they involve computing the inverse of a large matrix. As
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coefficients move sufficiently close to zero, the corresponding rows and columns can be
removed from XT Λ̂−1(g)X and XT (1+ λ̂−1(g)). When k is very large, we implement the
M−step using the conjugate gradient algorithm (Golub and van Loan 2008) initiated
from the previous β(g) in place of the exact matrix inverse.

3.2 Stability

The EM algorithm in the previous section will become unstable once some elements
of λ−1 or ω−1 become numerically infinite. Unlike more familiar regression problems,
where infinite values signal an ill-conditioned problem, the infinities here are expected
consequences of a normally functioning algorithm. When ω−1

j = ∞ it follows that
βj = 0, in which case one may simply omit column j from X and element j from β.
When λ−1

i = ∞ observation i is a support vector for which the constraint yiβ
T xi = 1

must be satisfied. Numerical stability can be restored by separating the support vectors
from the rest of the data. Let Xs denote the matrix obtained by stacking the linearly
independent support vectors row-wise (i.e. each row of Xs is a support vector). Let
X−s denote X with the support vector rows deleted. Let λ−1

−s denote the finite elements
of λ−1, and let Λ−1

−s = diag(λ−1
−s).

A stable version of the M−step can be given by “restricted least squares” (Greene
and Seaks 1991). The restricted least squares estimate is the solution to the equations

(
XT
−s(1 + λ−1

−s)
1

)
=

(
B−s XT

s

Xs 0

)(
β
ψ

)
, (15)

where ψ is a vector of Lagrange multipliers and

B−s = ν−2Σ−1Ω−1 + XT
−sΛ

−1
−sX−s.

The inverse of the partitioned matrix in equation (15) can be expressed as
(

B−s(I + XT
−sFX−sB−s) −B−sXT

s F
−FXsB−s F

)

where F = −(XsB−sXT
s )−1. The partitioned inverse can be used to obtain a closed

form solution to equation (15).

3.3 Learning β and ν simultaneously

The expectation-conditional maximization algorithm (ECM Meng and Rubin 1993) is
a generalization of EM that can be used when there are multiple sets of parameters to
be located. The ECM algorithm replaces the M−step with a sequence of conditional
maximization (CM) steps that each maximize Q with respect to one set of parameters,
conditional on numerical values of the others. Liu and Rubin (1994) showed that the
ECM algorithm converges faster if conditional maximizations of Q are replaced by
conditional maximizations of the observed data posterior. Liu and Rubin called this
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algorithm ECME, with the final “E” referring to conditional maximization of either
function. The ECME algorithm retains the monotonicity property from EM.

An ECME algorithm for learning β and ν together can be obtained by assuming a
prior distribution p(ν). The inverse gamma distribution

p(ν−α) ∝
(

1
να

)aν−1

exp(−bνν−α)

is a useful choice because it is conditionally conjugate to the exponential power distri-
bution in equation (5). Under this prior one may estimate ν with a minor modification
of the algorithm in Section 3.1. Note that the factor of ν−k from equation (5), which
could be ignored when ν was fixed, is now relevant.

Algorithm: ECME-SVM

E-Step Identical to the E-step of EM-SVM with ν = ν(g).

CM-Step Identical to the M-step of EM-SVM with ν = ν(g).

CME-Step Set

(ν−α)(g+1) =
bν +

∑k
j=1 |β(g+1)

j /σj |α
k/α + aν − 1

.

The CME step could be replaced by a CM step that estimates ν in terms of the
latent variables ω−1

j , but as mentioned above doing so would delay convergence.

4 MCMC for SVM

The development of MCMC techniques for SVM’s is important for two reasons. The
first is that the SVM fitting algorithms in use today only provide point estimates, with
no measures of uncertainty. This has motivated the Bayesian treatments of Sollich
(2001), Tipping (2001), Cawley and Talbot (2005), Gold et al. (2005) and Mallick
et al. (2005). Section 4.1 explains how the latent variable representation from Section 2
leads to a computationally efficient Gibbs sampler that can be seen as a competitor
to these methods. The second reason is that latent variable methods for SVM’s allow
tools normally associated with linear models to be brought to SVM’s. Section 4.2
demonstrates this fact by building an MCMC algorithm for SVM’s with spike-and-slab
priors.

4.1 MCMC for Lα priors

We first develop an MCMC-SVM algorithm for α = 1. Then we describe how to deal
with the general α case, including the possibility of learning α from the data.
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Algorithm: MCMC-SVM (α = 1 case)

Step 1: Draw β(g+1) ∼ p(β|ν, Λ(g), Ω(g), y) ∼ N (
b(g), B(g)

)
.

Step 2: Draw λ(g+1) ∼ p
(
λ|β(g+1), y

)
for 1 ≤ i ≤ n, where

λ−1
i |β, ν, yi ∼ IG (|1− yixT

i β|−1, 1
)
.

Step 3: Draw ω(g+1) ∼ p
(
ω|β(g+1), y

)
for 1 ≤ i ≤ p, where

ω−1
j |βj , ν ∼ IG (

νσj |βj |−1, 1
)
.

There are two easy modifications of the preceding algorithm that may prove useful.
First, one can add a step that samples ν from its full conditional.

Step 4: Draw ν(g+1) from the conditional

p(ν−1|β, y) ∼ Γ

(
aν + k, bν +

k∑

i=1

|βi|
)

.

A second, and somewhat more radical departure would be to simulate α from

p(α|β, ν) ∝
(

α

Γ(1 + 1
α )

)k

exp

(
−

k∑

i=1

∣∣∣∣
βj

νσj

∣∣∣∣
α
)

.

The draw from p(α|β, ν) is a scalar random variable on a bounded interval, which can
easily be handled using the slice sampler (Neal 2003).

There is reason to believe that averaging over ν (and potentially α) will lead to
increased mean squared error accuracy. Further improvements can be had by using a
Rao-Blackwellised estimate of β,

E(β|y) =
1
G

G∑
g=1

b(g).

Mallick et al. (2005, MGG) investigate the use of posterior means in an MCMC analysis
of SVM’s. MGG report that model averaging leads to dramatically increased perfor-
mance relative to “optimal” SVM chosen using standard methods. Our setting differs
from the MGG setup in two important respects. First, MGG modified the basic SVM
model by adding Gaussian errors around the linear predictors in order to obtain a
tractable likelihood, where we work with the standard SVM criterion. However, we
note that because we are working with the un-normalized SVM criterion our sampler
draws from a pseudo-posterior distribution. The degree to which this affects the usual
wisdom of Bayesian averaging is unclear. However, if mean squared prediction error is
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the goal of the analysis rather than (oracle) variable selection then the posterior predic-
tive mean should be competitive. Second, the MCMC algorithm from MGG updates
each element of β component-wise while our sampler provides a block update resulting
in much less time per iteration. Our data augmentation method could also be used to
draw the latent Gaussian errors introduced by MGG in a block update, resulting in a
further increase in speed.

The MCMC-SVM algorithm described above will not produce a sparse model, even
though the modal value of the conditional pseudo-posterior distribution might be zero
for some elements of β for a given ν (Hans 2009). There are two ways to recover
sparsity using MCMC. The first is to use MCMC as the basis for a simulated annealing
alternative to the EM algorithms from Section 3. A version of the pseudo-posterior
suitable for simulated annealing can be incorporated by introducing a scaling parameter
τ into the distribution as follows τ−1 exp (−(2/τ)d(β, ν)). Then the MCMC algorithm
can be run while gradually reducing τ from 1 to 0 (see, for example Tropp 2006).

4.2 Spike and slab priors

A second, more compelling, way of introducing sparsity is to replace the L1 regular-
ization penalty with a “spike-and-slab” prior (George and McCulloch 1993, 1997) that
contains actual mass at zero. Johnstone and Silverman (2004, 2005) have pointed out
the good frequentist risk properties of spike-and-slab (and other heavy tailed regular-
ization penalties) for function estimation.

A spike and slab prior can be defined as follows. Let γ = (γj) where γj = 1 if βj 6= 0
and γj = 0 otherwise. A convenient prior for γ is p(γ) =

∏
j πγ

j (1− πj)1−γj . A typical
choice is to set all πj equal to the same value π. Choosing π = 1/2 results in the uniform
prior over model space. A more informative prior can be obtained by setting π = k0/k,
where k0 is a prior guess at the number of included coefficients. Let βγ denote the
subset of β with nonzero elements, and let Σ−1

γ denote the rows and columns of Σ−1

corresponding to γj = 1. Then we can write a spike-and-slab prior as

γ ∼ p(γ), βγ |γ ∼ N (0, ν2[Σ−1
γ ]−1). (16)

With this prior distribution, the posterior distribution of γ may be written

p(γ|y, λ, ν) ∝ p(γ)
|Σ−1

γ /ν2|1/2

|B−1
γ |1/2

exp

(
−1

2

n∑

i=1

(1 + λi − yixT
i,γbγ)2

λi
− 1

2ν2
bT
γ Σ−1

γ bγ

) (17)

where b and B are defined in equation (10).
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Algorithm: MCMC-SVM (spike-and-slab)

Step 1: Draw λ
(g+1)
i ∼ p

(
λ|β(g), y

)
for 1 ≤ i ≤ n, where

p(λ−1
i |β, ν, yi) ∼ IG (|1− yixT

i β|−1, 1
)
.

Step 2: For j = 1, . . . , k draw γi from p(γi|γ−i), which is proportional to equa-
tion (17).

Step 3: Draw β
(g+1)
γ ∼ N

(
b
(g+1)
γ , B

(g+1)
γ

)
.

Here we can exploit the identity
n∑

i=1

(1 + λi − yixT
i,γbγ)2

λi
= c(λ) + bT

γ XT
γ Λ−1Xγbγ − 2bT

γ XT
γ (1 + λ−1),

which allows equation (17) to be evaluated in terms of the complete data sufficient
statistics XT

γ Λ−1Xγ and XT
γ (1 + λ−1). The identities XT

γ Λ−1Xγ = (XT Λ−1X)γ and
XT

γ (1 + λ−1) = [XT (1 + λ−1)]γ , imply that (for a given imputation of λ) the complete
data sufficient statistics do not need to be recomputed each time a new model is explored.
Model exploration is thus very fast. This algorithm has more steps than MCMC-
SVM(α = 1), but each step can be much faster because it is never necessary to invert
the full k × k precision matrix.

5 Applications

The email spam data described by Hastie et al. (2009) is a benchmark example in the
classification literature. It consists of 4601 rows, each corresponding to an email message
that has been labeled as spam or not spam. Each message is measured on the covariates
described in Table 1. There are a total of 58 predictors, including the intercept. We ran
the EM and MCMC algorithms against this data set several times with several different
values of the tuning parameters. Figure 1 plots the estimated coefficients for the first
25 variables in the model, showing how the dimension of the model increases with ν.
Shrinkage from the lasso prior is evident in Figure 1. When ν is small there are several
coefficients that are close to zero but which have not passed the numerical threshold to
be counted as zero in Figure 1(b).

The ECME algorithm proved more robust than standard software at estimating
SVM coefficients. Figure 2(a) compares the results from the ECME algorithm to the
R package penalizedSVM using the value of ν = 1.353 that ECME found optimal.
The penalizedSVM package is parameterized in terms of λ = 1/ν, so we used λ =
1/1.353 = .739 in the following. Figure 2(a) shows rough agreement between ECME
and penalizedSVM, subject to two caveats. First, we expect a difference in coefficients
because of different scaling conventions. Our algorithm scales the predictor variables
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Figure 1: (a) The first 25 standardized coefficients (βjσj) under the α = 1 penalty and (b)
number of nonzero coefficients as a function of ν. The vertical line dot is at the estimated
optimal value of ν.

through the factors of σj in the prior distribution. The penalizedSVM algorithm requires
that the columns of X be scaled beforehand. The second source of disagreement is that
both algorithms depend on randomization to some degree. Our algorithm initializes β to
a vector of standard normal random deviates. The randomization is necessary because
βj = 0 is a fixed point of the ECME algorithm, so we cannot initialize with zeros. We
ran both ECME and penalizedSVM multiple times, in some cases varying nothing but
the random seed, in others varying the strategies for centering and scaling the predictor
matrix input to penalizedSVM. In each case the R package produced between 3 and 6
large coefficients that dominated the others by 2-3 orders of magnitude. The specific
sets of variables with large coefficients differed from one run to the next. Figure 2(b)
shows the results from two successive runs of penalizedSVM, with the outliers truncated
so the remaining structure can be observed. Figures 2(c) and 2(d) show three successive
runs of ECME, with no truncation. The first and third runs converged, but the second
had not converged after 500 iterations. The Figures show that the degree of agreement
between runs of ECME (even without convergence) is greater than penalizedSVM, and
ECME produced no large outliers.

Figure 3 plots the marginal posterior inclusion probability for each variable based on
the Gibbs sampler with a spike and slab prior, where we set ν = 100 so that there would
be little shrinkage for variables that were included in the model. The bars in Figure 3
are shaded in proportion to the probability that the associated coefficient is positive.
Thus a large black bar indicates an important variable that is associated with spam.
A large white bar is an important variable that signals the absence of spam. Both the
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Figure 2: (a) Coefficients from our ECME algorithm plotted against coefficients from a
standard SVM fit using the R package penalizedSVM. (b) Coefficients from two runs of
penalizedSVM with different random seeds. Both plots truncate a few very large outliers from
penalizedSVM. (c) Coefficients from two runs of our ECME algorithm (the second run did not
converge). (d) Coefficients from two converged runs of ECME.
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predictor number meaning
word_freq_X 48 percentage of words in the email that match the

word X
char_freq_X 6 percentage of characters in the email that match

the character X
CRL_average 1 average length of uninterrupted sequences of cap-

ital letters
CRL_longest 1 length of longest uninterrupted sequence of capital

letters
CRL_total 1 total number of capital letters in the email

Table 1: Variables in the spam data set.

sparse (π = .01) and permissive (π = .5) models identify many of the same features as
being associated with spam. The permissive model includes all of the variables which
are certain to appear in the sparse model, as well as a few others that signal the absence
of spam. Both models include many more predictors in the posterior distribution than
are suggested by the prior.

The posterior draws produced by the MCMC algorithm largely agree with the point
estimates from the EM and ECME algorithms. Figure 4 plots the MCMC sample paths
for several coefficients, along with point estimates from the model with the optimal
value of ν = 1.353 estimated by ECME. Figures 4(a) and 4(b) are typical MCMC
sample paths for parameters that are rarely set to zero. They mix reasonably fast, and
typically agree with the ECME point estimates. Figures 4(c) and 4(d) are typical of
variables with inclusion probabilities relatively far from 0 and 1. For these variables,
ECME point estimates either tend to agree with the nonzero MCMC values, or else they
split the difference between 0 and the conditional mean given inclusion. Figure 5 plots
the coefficients and the raw data for the only two variables where the MCMC algorithm
disagreed with point estimates from EM and ECME. The two variables in question are
wf_george and wf_cs, both of which are strong signals indicating the absence of spam.
The words “george” and “cs” are personal attributes of the original collector of this
data, a computer scientist named George Forman.

A referee questioned whether the disagreement between MCMC and ECME might
be due to a lack of convergence in the MCMC algorithm. To address this possibility
we re-ran the sampler for 100,000 iterations, but the sampler did not leave the range of
values that it visited in the shorter run of 10,000 iterations. The disagreement on these
two predictors is more likely because both are such strong anti-spam signals that the
model has difficulty determining just how large a weight they should receive. The prior
distribution plays an important role in regularizing these types of “wild” coefficients.
The spike-and-slab prior is much weaker than the double exponential prior outside a
neighborhood of zero, so it offers the coefficients more leeway to drift towards positive or
negative infinity. The fact that ECME and MCMC essentially agreed on the remaining
56 parameters engenders confidence that both algorithms are functioning correctly.
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Figure 3: Inclusion probabilities for spike and slab SVM’s fit to the spam data set with (a)
π = .01 and (b) π = .5. The bars are shaded in proportion to Pr(βj > 0|y), so the darker the
bar the greater the probability the variable is positively associated with spam.
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Figure 4: Sample paths from the spike-and-slab sampler with ν = 100 and π = .5. The
horizontal line is the point estimate from the ECME algorithm that jointly estimated β and ν.
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Figure 5: Panels (a) and (c) show MCMC sample paths for the only two coefficients where
MCMC disagrees with the point estimates from ECME (shown by the horizontal line). Panels
(b) and (d) describe the distribution of the predictor variables for spam and non-spam cases.
Both variables are strong signals against spam.
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6 Discussion

At first sight, the hinge objective function max(1− yix
′
iβ, 0) for SVM’s seems to make

traditional Bayesian analysis hard, but we have shown that the pseudo-likelihood for
SVM’s can be expressed as a mixture of normal distributions that allow SVM’s to be
analyzed using familiar tools developed for Gaussian linear models. We have developed
an EM algorithm for locating point estimates of regularized support vector machine
coefficients, and an MCMC algorithm for exploring the full pseudo-posterior distribu-
tion. The MCMC algorithm allows useful prior distributions that have been developed
for Gaussian linear models, such as spike-and-slab priors, to be used with SVM’s in an
automatic way. These priors have an established track record of good performance in
Bayesian variable selection problems. Similar benefits can be expected for SVM’s. Ex-
tending our methods to hierarchical Bayesian SVM models and nonlinear generalizations
is a direction for future research.
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