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Data augmentation using 
generative adversarial networks 
(CycleGAN) to improve 
generalizability in CT segmentation 
tasks
Veit Sandfort  1, Ke Yan1, Perry J. Pickhardt2 & Ronald M. Summers1*

Labeled medical imaging data is scarce and expensive to generate. To achieve generalizable deep 

learning models large amounts of data are needed. Standard data augmentation is a method to increase 

generalizability and is routinely performed. Generative adversarial networks offer a novel method 
for data augmentation. We evaluate the use of CycleGAN for data augmentation in CT segmentation 

tasks. Using a large image database we trained a CycleGAN to transform contrast CT images into non-

contrast images. We then used the trained CycleGAN to augment our training using these synthetic 

non-contrast images. We compared the segmentation performance of a U-Net trained on the original 

dataset compared to a U-Net trained on the combined dataset of original data and synthetic non-

contrast images. We further evaluated the U-Net segmentation performance on two separate datasets: 

The original contrast CT dataset on which segmentations were created and a second dataset from a 

different hospital containing only non-contrast CTs. We refer to these 2 separate datasets as the in-
distribution and out-of-distribution datasets, respectively. We show that in several CT segmentation 

tasks performance is improved significantly, especially in out-of-distribution (noncontrast CT) data. 
For example, when training the model with standard augmentation techniques, performance of 

segmentation of the kidneys on out-of-distribution non-contrast images was dramatically lower than 

for in-distribution data (Dice score of 0.09 vs. 0.94 for out-of-distribution vs. in-distribution data, 
respectively, p < 0.001). When the kidney model was trained with CycleGAN augmentation techniques, 
the out-of-distribution (non-contrast) performance increased dramatically (from a Dice score of 0.09 to 
0.66, p < 0.001). Improvements for the liver and spleen were smaller, from 0.86 to 0.89 and 0.65 to 0.69, 
respectively. We believe this method will be valuable to medical imaging researchers to reduce manual 

segmentation effort and cost in CT imaging.

Segmentation of organs or pathologies promises to improve medical decision making by adding objective 
and reliable measurements to the clinical imaging process where this level of quantification would be too 
time-consuming if done manually.

Convolutional neural networks (CNN) with 2D and 3D inputs have achieved high segmentation perfor-
mance in various tasks1. However, machine learning models currently require large amounts of data, espe-
cially if high performance on a diverse dataset is required. Labeling medical image data is a very expensive and 
time-consuming task. A major issue is that a model trained in a speci�c dataset may not perform as well when 
applied in a moderately di�erent real-world dataset (distribution or dataset shi�)2. In this work, we evaluate the 
use of generative adversarial networks (GANs) to increase robustness and generalizability of organ segmentation 
in CT.
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�ere is a strong interest in using unlabeled data to improve deep learning performance. GANs are a very 
powerful group of networks which can generate plausible new images from unlabeled original images3. GANs 
have been previously used for data augmentation, for example, to generate new training images for classi�ca-
tion4, to re�ne synthetic images5 or to improve brain segmentation6. CycleGANs have also been used to improve 
segmentation7–9.

In many cases, CT scans performed with intravenous injection of iodine contrast agent result in clinically 
more meaningful and information-rich images, for example by helping to identify or classify tumors. �erefore 
in many cases, IV iodine contrast-enhanced CT (‘contrast CT’) is preferred over non-contrast CT. Nevertheless, 
there are many situations where the application of iodine contrast is not feasible due to reduced renal function, 
contrast allergy, failure of intravenous access during injection or unfavorable risk-bene�t ratio (e.g. in certain 
screening exams like CT colonography). Of note, the change of CT attenuation or image brightness when using 
IV contrast may be neither uniform nor dependent on the non-contrast CT attenuation of a tissue. �e change 
in CT attenuation depends on various biological and physical factors including the blood �ow to a tissue, the 
amount of extracellular volume of the tissue and the CT technology (e.g. tube voltage of the X-ray tube).

Segmentations of abdominal organs found in public CT datasets are near universally performed on 
contrast-enhanced CT scans while real-world data contains a certain percentage of non-contrast CT scans. �is 
constitutes a distribution shi� - where the training data is di�erent from real-world data - and may adversely 
a�ect performance in real-world applications.

We aimed to alleviate this issue by using data augmentation. Using generative adversarial networks (speci�-
cally CycleGAN10) we generate a synthetic non-contrast version of training data contrast CTs. We then train on 
the original data while using the synthetic non-contrast CTs for data augmentation.

Rendering images with the appearance of non-contrast CT from original contrast CT data is a non-trivial 
task. Recently, generative adversarial networks and in this case speci�cally cycle consistent generative adversarial 
networks have enabled a true breakthrough in the quality of synthetic image generation3,10, reviewed in11. �e 
key to this ability is an internal competition between an image transforming network (usually encoder/decoder 
architecture) and an adversarial network that attempts to discriminate generated synthetic images from real 
images. In the optimal case, the generated images would be indistinguishable from real images. �is technique 
makes it possible to transform images from one domain (in this case contrast CT) to another domain (in our case 
non-contrast CT) with unpaired images. �is task would have been considered by most experts to be impossible 
to achieve just a few years ago. In the speci�c type of GAN used, the images are translated back to the original 
domain to improve consistency, hence the name ‘CycleGAN’.

In the clinical realm, caution is needed. �e generated images may look like real images, but there is absolutely 
no assumption that the speci�c non-contrast images of an actual patient would really be similar to the generated 
images. Certainly, this is not a magical tool but more a very sophisticated type of ‘style transfer’. In the domain 
of CT it should be especially emphasized that these images are fundamentally di�erent from what is commonly 
called ‘virtual non-contrast’ images. Virtual non-contrast images are the product of dual-energy CT scans. �is 
enables a physical/mathematical modeling of the X-ray absorption and generates, within certain limitations, a 
true measurement of the tissues without the contrast. Of note, in this work, synthetic non-contrast CT images 
are used for strengthening data augmentation methods but not for actual measurements or diagnostic purposes.

We hypothesize that CycleGAN type data augmentation improves performance in a dataset of non-contrast 
CT.

Results
Synthetic non-contrast CT - qualitative evaluation. Figure 1 shows typical examples of contrast/syn-
thetic non-contrast pairs where the contrast image is a CT scan which was performed with intravenous contrast 
agent and the synthetic non-contrast image was generated by the trained CycleGAN. �e images also show the 
performance of the system when faced with various abnormalities/pathologies.

One concern in regard to CycleGAN based contrast to non-contrast transformation is that unusual pathology 
on the images might not be correctly transformed. �erefore a radiologist screened the CT scans for pathology 
or di�cult anatomy and evaluated the transformed non-contrast images. In the following we will discuss speci�c 
details of pathology or di�cult anatomy visualized in Fig. 1.

In part A the white arrow indicates a liver cyst with no contrast accumulation. �e resulting non-contrast 
image appears plausible (right panel). In part B the aorta is seen, which is very bright on contrast CT and is cor-
rectly reduced in brightness/attenuation on synthetic non-contrast CT (green arrow). In part C the white arrow 
points to a liver mass which is hypo-attenuating resulting in a plausible synthetic image. Part D shows a colon 
carcinoma with mild contrast enhancement indicated by the white arrow. �is contrast enhancement is correctly 
reduced in brightness/attenuation in synthetic non-contrast as it would be expected on true non-contrast. In 
part E the white arrow points to an abnormal kidney with contrast enhancement. On the right panel the bright-
ness/attenuation of the kidney is reduced in a plausible way on synthetic non-contrast CT. But there where also 
problematic examples where synthetic non-contrast images are not as expected. For example, on image B, indi-
cated by the white arrow, there is a stent present in the biliary system. �ese stents are marked with radiopaque 
material and therefore appear very bright on the CT regardless of whether IV contrast is present. In the synthetic 
non-contrast CT the stent appears much darker (lower attenuation) - this is not expected and incorrect. In part F, 
while the other features in this image appear plausible on synthetic non-contrast, the kidney still appears as if IV 
contrast was present in most areas (red arrow), which is incorrect.

In summary, the synthetic non-contrast images appear in most cases to be plausible on quick examination. 
It should be noted that an experienced radiologist would have no problem discriminating between synthetic 
non-contrast CT images and actual non-contrast CT images on full resolution images but this may be di�cult 
and take longer on scaled-down images.
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Segmentation results. Table 1 shows the segmentation performance measured by Dice score of each organ 
and for the in-distribution (contrast CT) and out-of-distribution (non-contrast) test sets (mean and standard 
deviation of 5-fold CV). Figure 2 shows box plots for pooled individual segmentation results of 5 cross-validation 
experiments.

In-distribution performance (contrast CT). First, in all organs a reasonable baseline performance for standard 
augmentation segmentation in the in-distribution test set is seen with Dice scores ranging from 0.89 to 0.94. If 
using no augmentation at all (column ‘None’ in Table 1) the Dice scores were overall similar compared to stand-
ard augmentation.

In the in-distribution dataset, CycleGAN augmented results were slightly improved compared to standard 
augmentation, especially in the spleen images (all p < 0.05).

The histogram equalization augmentation improved segmentation performance compared to stand-
ard augmentation in liver and spleen segmentations where it showed better performance than the CycleGAN 
augmentation.

Out-of-distribution performance (non-contrast CT). In the out-of-distribution non-contrast dataset a near com-
plete loss of performance is seen for the kidney segmentation when using no augmentation, standard augmen-
tation or histogram equalization augmentation with Dice scores of 0.06, 0.09 and 0.07, respectively. When using 
CycleGAN augmentation a dramatic increase of the Dice score for kidney segmentation is noted (from 0.09 to 
0.66, for standard and CycleGAN augmentation, respectively, p < 0.001). Smaller di�erences but a similar pattern 
is seen in the liver and spleen segmentations. In all organ tasks, the CycleGAN augmentation showed the best 
out-of-distribution performance compared with the other augmentation methods.

�e out-of-distribution (non-contrast CT) performance when training without any augmentation was greatly 
reduced compared to standard augmentation as can be seen in the liver and spleen tasks (Dice 0.21 vs 0.86 for 
no augmentation vs standard augmentation for liver and Dice 0.04 vs. 0.65 for no augmentation vs standard 
augmentation for spleen).

�e histogram equalization augmentation led to a small improvement in mean Dice scores compared to 
standard augmentation for liver and a small deterioration for kidney and spleen.

Volume measurement error results. Organ segmentations are frequently used in clinical research for vol-
ume measurements. �erefore we calculated the relative volume estimation errors (Methods, Eq. 2). �e results 
for this metric are shown in Table 2. �e in-distribution volume measurement errors for CycleGAN augmented 
segmentations were excellent for kidney and liver (3% and 4%, respectively) and reasonable for spleen (8%). For 
non-contrast data and in line with the �ndings on the Dice scores, a striking improvement (reduction) of the 
volume estimation error is seen for CycleGAN compared to standard augmentation. For example, for the kidney 
the volume errors were 0.45 vs. 0.19, p < 0.001, and for the liver the volume errors were 0.11 vs. 0.08, p = 0.008, 
for standard and CycleGAN augmentation, respectively.

A
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F

True Contrast CT Synthe�c Non-Contrast CT True Contrast CT Synthe�c Non-Contrast CT True Non-Contrast CT

Figure 1. Examples of true IV contrast CT scans (le� column) and synthetic non-contrast CT scans generated 
by a CycleGAN. �e rightmost column shows unrelated example non-contrast images. Overall the synthetic 
non-contrast images appear convincing - even when signi�cant abnormalities are present in the contrast CT 
scans.
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In line with the Dice scores �ndings, histogram equalization augmentation resulted in improved results 
for in-distribution (contrast CT) segmentations in liver and spleen (best results) while in out-of-distribution 
(non-contrast CT) the CycleGAN augmentation showed the lowest volume estimation errors.

Example images. Figure 3 shows examples of kidney, liver and spleen segmentations. In line with the 
summary statistics, the segmentations in the in-distribution test set look reasonably good (second row). In the 
non-contrast kidney example (�rst row) it becomes clear that the network trained with standard augmentation 
fails to segment the kidney (right upper image) while the network trained with CycleGAN augmentation gives a 
relatively good segmentation. In the le� column di�erences between these CT scans can be seen. Due to the high 
contrast uptake, the kidney appears brighter on contrast images (second row) compared to non-contrast images 
(�rst row). �is makes the separation of kidney and neighboring organs simpler (white arrows). �e contrast 
agent also results in a speci�c texture of the kidney which is not seen on non-contrast images (asterisk). In the 
third row, a liver segmentation on non-contrast images is shown. �e boundary between liver and heart is not 
easily detected in non-contrast CT and the model trained using standard augmentation falsely extends the liver 
area into the heart area (black arrow, third row, rightmost image). �e CycleGAN augmented model correctly 
respects the liver/heart boundary (marked with x). In the fourth row a spleen segmentation on non-contrast CT 
is shown. Again it is demonstrated that in a situation with ambiguous boundaries with neighboring structures the 
CycleGAN augmented segmentation shows a good result while the model trained using standard augmentation 
fails to detect large parts of the spleen (marked with +).

Discussion
De�cits in generalization to real-world datasets with moderately di�erent characteristics (distribution-shi�s) are 
major hurdles for the adoption of deep learning methods in clinical imaging.

We hypothesized that by performing data augmentation using generative adversarial networks segmentation 
performance could be improved in diverse image datasets. We evaluated the use of synthetic non-contrast CT 
images derived from contrast CT as a data augmentation method.

Organ Evaluation Dataset*

Augmentation Method

None Standard Histogram Eq CycleGAN

Kidney
in-distribution (contrast CT) 0.920 ± 0.013 0.940 ± 0.007 0.939 ± 0.006 0.944 ± 0.009

out-of-distribution (non-contrast CT) 0.059 ± 0.034 0.090 ± 0.039 0.066 ± 0.027 0.664 ± 0.040

Liver
in-distribution (contrast CT) 0.944 ± 0.005 0.941 ± 0.006 0.948 ± 0.003 0.947 ± 0.003

out-of-distribution (non-contrast CT) 0.207 ± 0.209 0.860 ± 0.009 0.873 ± 0.015 0.887 ± 0.006

Spleen
in-distribution (contrast CT) 0.884 ± 0.029 0.890 ± 0.037 0.919 ± 0.005 0.904 ± 0.032

out-of-distribution (non-contrast CT) 0.038 ± 0.009 0.654 ± 0.031 0.648 ± 0.051 0.691 ± 0.065

All Averaged
in-distribution (contrast CT) 0.916 0.924 0.935 0.932

out-of-distribution (non-contrast CT) 0.101 0.535 0.529 0.747

Table 1. Segmentation performance measured as Dice score for kidney, liver and spleen. Shown are mean 
scores and standard deviation of 5 cross-validation experiments. *For de�nitions see section Experimental 
Setup. Mean ± sd.
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Figure 2. Dice scores of di�erent organs for the tested augmentation methods in the two test sets (in-
distribution (contrast CT) vs. out-of-distribution (non-contrast).
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First, our results showed that in certain tasks, especially kidney segmentation, a model trained on contrast 
images will fail nearly completely on non-contrast images (Dice scores of 0.94 vs. 0.09 for contrast CT and 
non-contrast CT, respectively). �is is important to recognize, as in the clinical world non-contrast CT scans are 
frequently performed. Other tasks were less a�ected, but the pattern was still seen in spleen and liver segmenta-
tions. �ese observations make sense in the context of the iodine content of these organs. Due to the excretion of 
contrast through the kidney, this organ accumulates contrast agent and therefore the di�erences between contrast 
and non-contrast images are large. Intuitively, it is also likely that the U-Net segmentor learns to detect certain 
typical textures and patterns of kidney tissue caused by the contrast agent which are then not present on the 
non-contrast scans. �is is analogous to a grass detector which learns to detect the color green as an indicator of 
grass and then fails on black and white images. For a texture comparison see Fig. 3 marked with asterisks.

It should be noted that important pathologies such as tumors also frequently accumulate contrast agents and 
that a deterioration in performance can be expected if training data does not account for presence or absence of 
contrast.

Secondly, we observed that augmentation using CycleGAN-generated synthetic images signi�cantly improved 
segmentation performance in the non-contrast CT test set. Again, the e�ect was seen strongly in the kidney seg-
mentations (Dice scores of 0.09 vs. 0.66 for standard vs. CycleGAN augmentation). Surprisingly, there was also a 
trend toward improved segmentation performance in the in-distribution test datasets, especially for the spleen.

�irdly, histogram equalization augmentation led to improved results compared to standard augmentation 
for liver and spleen but no improvement for kidney (see Fig. 2). It could be hypothesized that histogram equal-
ization is helpful to some extent to model due to the global increase in brightness or CT attenuation that occurs 
when performing IV contrast enhanced scans, but it has limitations when there are strong local di�erences in 
contrast enhancement within a speci�c organ such as the kidney, which is the strongest contrast enhancing organ 
evaluated.

In addition, because volume assessment is an important task in the context of organ segmentation we evalu-
ated the accuracy of volume measurements using relative volume error. �ese results reemphasized the previous 
�ndings with reduction of the measurement error in all examined organs when using CycleGAN based augmen-
tation. We speculate that segmentation performance of many more structures with relevant contrast enhance-
ment may bene�t from this augmentation technique.

Methods to leverage CycleGAN in medical images have been described before in the literature. Seeboeck et 
al. used a CycleGAN to adapt between di�erent OCT (optical coherence tomography) retinal scanners7. �is 
approach di�ers from our work in that the model is trained on images from one type of scanner and then a 
CycleGAN attempts to make the testing scans from another scanner to be more similar to the training scans. 
In our work, we used the CycleGAN to train a U-Net that is capable of segmenting scans from both domains. 
In the case of contrast this may be more useful because it is not always known if a scan was performed with or 
without contrast and there is a large continuous range of contrast doses. Zhang et al. have used a complex 3D 
Cycle-GAN with an additional shape-consistency loss to enable modality transfer between cardiac MRI and car-
diac CT by incorporating a subset of labeled data in both modalities8. �is method is able to signi�cantly increase 
the performance of segmentations but it requires labels in both domains. Huo et al. have proposed a sophisticated 
cross-modality segmentation network which does not need labels in the target domain9. �ey explored the task 
of transferring labels from MRI to CT images with very good results. Our work focused on the issue of contrast 
and non-contrast CT which are not usually perceived as distinct modalities. However, given the large di�erences 
in performance shown in Fig. 2, in the context of CNNs they probably should be considered to be di�erent 
modalities. Our approach has the advantage that the synthetic training data can be inspected and evaluated for 
problematic cases and errors which may be helpful in a clinical scenario where interpretability is important. In 
addition a major di�erence is that we were able to perform the segmentation step in 3D.

A limitation of our method is that the CycleGAN method is applied to single slices (2D) of the 3D input 
volume. �is leads to slice-to-slice inconsistencies which may adversely a�ect performance. �is problem would 
be best alleviated by a fully 3D CycleGAN, which is challenging due to GPU memory considerations. In addi-
tion, there are limitations within the CycleGAN method itself. �e relationship between contrast to non-contrast 
CT is basically many-to-one (as multiple contrast phases or intensities would still correspond to the same 
non-contrast image). Within the framework of CycleGAN this leads to a one-to-many relationship in the reverse 

Organ Evaluation Dataset*

Augmentation Method

None Standard Histogram Eq CycleGAN

Kidney
in-distribution (contrast CT) 0.051 ± 0.016 0.038 ± 0.010 0.041 ± 0.0123 0.032 ± 0.008

out-of-distribution (non-contrast CT) 0.334 ± 0.076 0.450 ± 0.126 0.361 ± 0.071 0.189 ± 0.068

Liver
in-distribution (contrast CT) 0.047 ± 0.007 0.047 ± 0.008 0.038 ± 0.004 0.043 ± 0.010

out-of-distribution (non-contrast CT) 0.583 ± 0.247 0.107 ± 0.030 0.090 ± 0.026 0.080 ± 0.022

Spleen
in-distribution (contrast CT) 0.112 ± 0.014 0.104 ± 0.068 0.058 ± 0.021 0.083 ± 0.051

out-of-distribution (non-contrast CT) 1.487 ± 0.642 0.355 ± 0.0657 0.311 ± 0.060 0.265 ± 0.094

All Averaged
in-distribution (contrast CT) 0.070 0.063 0.046 0.053

out-of-distribution (non-contrast CT) 0.801 0.304 0.254 0.178

Table 2. Volume estimation error for kidney, liver and spleen segmentations. Average volume estimation error 
and standard deviation of 5 cross-validation experiments are shown. Lower volume estimation error indicates 
higher performance, and bold numbers represent the best result in each line.
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transformation, and there are di�culties with this type of transformation. Novel modi�cations of the idea behind 
CycleGAN will likely solve this issue, for example the concept of augmented CycleGAN12. �is concept would 
also enable generation of multiple contrast variants from a synthetic or real non-contrast image, such as di�erent 
contrast intensities and phases that could further enhance data augmentation.

In summary, our �ndings show that generative adversarial networks are a very useful augmentation tool for 
CT image segmentation. Given the scarcity and cost of labeled data, all means should be used to make more e�-
cient use of the available data. Augmentation using spatial transformations is standard and best practice but in 
CT images complex modi�cation of attenuation values is not typically performed. We present a relatively simple 
method that can improve segmentation performance in a variety of scenarios in CT imaging.

Methods
Data. Data for the in-distribution dataset (contrast CT) were obtained from the following sources:

Kidney: NIH Pancreas-CT dataset (unlabeled images available on TCIA, �e Cancer Imaging Archive), Liver 
and Spleen: Data Decathlon data set13. �e number and dimensions of images are shown in Table 3. Image data 
for the out-of-distribution (non-contrast CT) data set were obtained from a non-public screening study14 and 
were acquired at a di�erent hospital and for a di�erent indication (virtual colonoscopy). Test set labels of liver, 
kidney and spleen segmentations (n = 10) were generated by a physician with >5 years of medical imaging expe-
rience using Slicer3D. For the CycleGAN-training images from the DeepLesion data set15 were used.

Experimental setup. An overview of the experimental setup is shown in Fig. 4. �e pre-speci�ed aim was 
to compare segmentation performance of a 3D U-Net when trained using standard augmentation vs. CycleGAN 

Figure 3. Examples of segmentations. Original CT and expert segmentation are shown in the �rst and second 
columns and CycleGAN and standard augmented training results are shown in the third and fourth columns, 
respectively. For detailed comments see main text.
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+standard augmentation. In standard augmentation �ips, rotation, non-rigid deformation and crop were applied. 
In CycleGAN augmentation, in addition, either the original image was used or a synthetic non-contrast CT 
image was generated/transformed from the contrast CT using a CycleGAN (probability 0.5 for each). In addition 
to these pre-speci�ed analyses, we also performed explanatory analyses with no augmentation at all and with 
histogram equalization augmented training. No signi�cance testing was performed for these post-hoc analyses.

For the in-distribution dataset the train/validation/test split was performed with a relation of 75%/5%/20%. 
We chose the relatively low amount of validation data to maximize the amount of data available for training, but 
on the other hand this may introduce bias in some scenarios. �ere was one 3D volume per patient, therefore, no 
cross-contamination of test data occurred.

For the in-distribution (contrast CT) dataset classic 5-fold cross-validation was used. �e out-of-distribution 
(non-contrast CT) data was not part of the training data, therefore classic cross-validation was not feasible. To 
gather the variability of training on di�erent data folds we evaluated the complete test dataset with each fold of the 
evaluation for the out-of-distribution data. Dice scores and volume estimation errors were compared.

Neural network architecture and training. For segmentation a modi�ed 3D U-Net16 with residual con-
nections was implemented in PyTorch, inspired by17,18, see also Fig. 5. For each organ a separate model was 
trained. We used leaky ReLU as the activation function and replaced batch normalization with group normaliza-
tion (group size 16) because it was shown to result in improved performance in the setting of low batch size19. In 
addition, to enable processing of larger input volumes we inserted a strided convolution (stride 2, kernel size 7) 
a�er the input layer while adding a corresponding transposed convolution layer for learned up-sampling as the 
�nal layer. While theoretically computationally more expensive compared with multiple smaller kernel convo-
lutions this approach drastically reduces the amount of feature map memory needed in the �rst layers compared 
to a classical U-Net of the same size. �ese adaptations enabled processing of clinically acceptable input volume 
sizes of up to 256 × 256 × 192 on commercially available large-memory GPUs. Experiments were performed with 
192 × 192 × 192 volumes to keep training times amenable to a shared HPC environment (<10 hours). A Dice loss 
function was used (Eq. 1, where s = 1 for training and s = 0 for evaluation).

Loss
X Y s

X Y s
1 2

(1)
i i

i i

∩
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= −
| | +

| | | | +

Training was performed on the NIH Biowulf cluster using 2-GPU nodes (2xNVIDIA K80, for a total of 4 
logical GPUs with 12 GB each) with a batch size of 4 (pytorch nn.DataParallel). �e model consumed about 
5-6 GB of GPU memory per logical GPU during training. Training was stopped a�er 10,000 iterations or when 
no improvement in the validation set occurred for 10 epochs. �e model with the best validation performance 
was used for further testing.

Augmentation methods. Generation of synthetic non-contrast CT images using CycleGAN. For the train-
ing of the CycleGAN we manually selected contrast (n = 136) and non-contrast CTs (n = 70) from a superset 
of the DeepLesion NIH data set15 (complete and uncropped CTs used to generate the DeepLesion collection). 
�ese data were used to train a ResNet classi�er to distinguish contrast and non-contrast CTs. Using this classi�er 
all CTs in the DeepLesion dataset were classi�ed into contrast and non-contrast CT groups. We only used CTs 
where the probability for being a contrast CT was >0.8 or <0.2. Many of the non-contrast scans were low-dose 
and had excessive noise causing the arti�cial introduction of noise in the generated images. �erefore we only 
included non-contrast CTs with a noise measured by standard deviation of fat of <15 HU. �is resulted in 10,681 
contrast CTs and 603 non-contrast CTs available for the training of the GAN. Of note, no segmentation labels 
are available for this data set. �e publicly available implementation of CycleGAN was used10. For input images, 
CT attenuation numbers were clipped at −200 and 300 HU before normalization, as this is a range where iodine 
contrast a�ects the attenuation the most. Resolution was 256 × 256 and training was performed for 3 million 
iterations (3 GPUs, batch size 6). Inference results were randomly sampled and checked by an imaging physician 
for plausibility.

Histogram equalization augmentation. As an additional comparison, we performed data augmentation using 
histogram equalization20 to shi� the histogram of contrast CTs toward a non-contrast CT histogram using a 
Python implementation of the MATLAB function histeq. �e models were trained using a 0.5 probability for the 
original image and the histogram equalized image. Standard augmentation was used in addition. Training and 
evaluation were also repeated with no data augmentation. �e advantage compared to CycleGAN augmentation 
is that histogram equalization is well understood and does not show any unpredictable ‘black-box’ behavior.

Dataset
N in-Distribution 
Total

Train/Val/
Test

N Out-of-
Distribution Test Typical Dimensions

Kidney NIH 66 50/3/13 10 512 × 512 × 220

Liver DataDecathlon 231 179/9/43 10 512 × 512 × 500

Spleen DataDecathlon 40 30/2/8 10 512 × 512 × 90

Table 3. Numbers of images in each dataset.
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Standard data augmentation. A typical 3D data augmentation pipeline was used in all experiments including 
�ipping, random crop, 3D rotation (up to 30), and elastic 3D deformation (b-spline transformation, 10 control 
points, deformation Gaussian σ = 8). In addition, in experiments with enabled CycleGAN augmentation, the 
precomputed synthetic non-contrast CT images were used instead of the original CT data with a probability of 
0.5. All data were normalized to zero mean and unit variance. To improve training times with complex on-the-�y 
augmentations on multi-GPU machines, we cached augmented data and used 16 variants for each volume (where 
each variant is the result of applying all above-mentioned augmentation methods).

Statistical analysis. Test datasets (in-distribution test dataset and non-contrast test dataset) were evaluated 
on Dice loss and volume error. We decided to add a volume error metric because an important use case for organ 
segmentations is volume assessment. We calculated the relative volume estimation error as:

=
−

.Error
Volume Volume

Volume (2)
Volume

ExpertSegmentation UNetSegmentation

ExpertSegmentation

For statistical testing, the Wilcoxon signed-rank test was computed for individually paired samples.

3D U-net

Training Valida�on Test Test

5-fold Cross-valida�on

In-distribu�on (contrast CT) Out of-distribu�on (non-contrast CT)

Original Labeled Data Set

In-distribu�on (contrast CT)

Kidney

Liver

Spleen

Evalua�on

Standard 

augmenta�on

Standard augmenta�on

+

CycleGAN augmenta�on:

Synthe�c non-contrast CT

3D U-netTraining

Data

Augmenta�on

3D U-net

Histogram Equaliza�on 

Augmenta�on

3D U-net

No Augmenta�on

Figure 4. Overview of the experimental setup.

Figure 5. Basic architecture of the U-Net used. We inserted a strided convolution (green) as the �rst layer 
(stride 2) with a large kernel (7 × 7 × 7). �is modi�cation is complemented by a transposed convolution in 
the last layer (yellow). �is reduces greatly the need for feature map memory and signi�cantly increases the 
maximum input size. Curved arrows denote residual connections. Note that there is no skip connection at the 
highest level.
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Data availability
The datasets analyzed during the current study are available in the Medical Data Decathlon repository on 
medicaldecathlon.com and TCIA: wiki.cancerimagingarchive.net/display/Public/Pancreas-CT.
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