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ADstract 

in light of the necessary investments, commercially available data 

base systems usually offer comparatively general-purpose interfaces. 

These are suitable only for the data base specialist. In order for a 

aata base system to attract non-programmer users, interfaces must be 

provided that approximate the special user terminology and 

conceptualizations, if, in particular, these users form a 

heterogeneous group, a variety of interfaces will be required. 

Questions of interest are then the extent to which user interfaces 

should be standardized, the techniques which allow rapid 

implementation of new more specialized interfaces, or the procedure 

for selecting the most suitable inter£ace for a given problem. Based 

on the concept of hierarchy of abstract machines, the paper presents a 

possible approach to the solution of these questions. Three examples 

will be introduced to critically examine the concept and demonstrate 

some of its merits and shortcomings. 
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1 Introduction 

The success or failure of a data base system, no matter how 

weil-conceiveo it may appear to the author's mind, is ultimately 

decided by the users the system is supposed to serve. T~lis aspect is 

often overlooked by syste~ planners wr~o devote almost their entire 

effort towards organizational problems such as analyzing the 

in£ormational needs of an institution or organization, the current 

status of in£ormation flow within the organization and the necessary 

improvements to it. From the analysis a number of requirements are 

deriveG such as the extent o£ information integration, time 

characteristics, information system structure, adaptation o£ the 

organizational structure, relinquishment of old resources and 

provision of new ones. All too often, much less attention is being 

paid to the individuals who must use the system. They are simply 

expected to appreciate the needs o£ the organization and to adapt most 

willingly to the new environment. 

Human nature~ however~ is conservative. Human individuals will cling 

to the same terminology and methodology and try to solve the same 

problems unless and until one can make a most convincing point for 

reorientation. In many cases data base systems are not even introduced 

to solve new Kinds o£ problems. Rather they are supposed to improve 

the solution to existing and already well-understood problems, or at 

least use these problems as a point o~ departure. Under these 

circumstances there is no reason w~y users snould De burdened with 

radical changes in style. 

Unfortunatelyw for the manufacturer o~ a data base system this is just 

one side of a coin° For him, the development and implementation of a 

data base system represents a large investment which he can only 

justify by corresponding sales £igures. This precludes him from 

attending to each of a large variety of individual user needs Dut 

compels him to offer general-purpose interfaces. On the other hand it 

is these general-purpose interfaces that prove repugnant to many a 

potential user who has his own special terminology, conceptualizations 

and application problems. 

In order to resolve the dilemma, techniques must be developed that 

permit the adaptation of a data base system to various user needs. In 

particular, the solutions should address themselves to the following 

questions. 

(i) How can user language interfaces be separated from the 

operational and management characteristics o~ the data base 

system? 
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(if) Are there any techniques that allow, in a systematic way, for 

the rapid implementation of a user language according to given 

specifications? 

(iii) To which extent is it economically feasible to construct and 

stockpile "off-the-shelf" user languages? 

(iv) Given a set of language specifications, under which conditions 

can one build upon an already existing user language? Can one 

define a relation on user languages that formalizes these 

conditions and determines the amount of effort required? 

To answer these questions we shall define a hierarchical relationship 

between user languages. The nature of the relationship will be 

discussed in some detail. A number of examples will be introduced to 

explicate the approach and to point out its merits as well as some of 

its present shortcomings. The discussion is intended basically for 

non-procedural interactive languages. 

2 Hier@rcni,es O f user lang, uages 

2.1 Concepts 

The hierarchy of language interfaces shall be defined as follows [Kr 

75]: 

- Each interface is defined in terms of a ("lower") interface, and may 

itself serve as the basis for definition of a ("higher") interface. 

- There is exactly one interface which cannot be defined in terms of 

another interface and hence serves as the ultimate basis for all 

other interfaces. 

Such a hierarchy of interfaces may be graphically represented in the 

form of a tree where each node corresponds to a particular interface. 

level 3 

level 2 

level 1 

level 0 (DBMS) 

figure I 
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The hierarchy must be chosen such that it reflects a hierarchy of 

users. Level 0 corresponds to the data base specialist, while level 3 

might cater to a user completely untrained in computer affairs. 

The previous questions can now be restated with a little bit more 

precision. 

(i) Can all fundamental operational and management functions be 

solved underneath the basis on level 0? 

(ii) What are the formal criteria that allow to construct a hierarchy 

by defining new languages in terms of existing ones? 

(iii) Up to which level in the tree should interfaces be standardized? 

(iv) Suppose a given language specification is represented as a node. 

Can a path to an existing node De constructed, and the length of 

the path be "measured"? Can one determine the path with minimum 

length? I£ the path is too long, should intermediate nodes be 

introduced, and what would be their specifications? 

At tnis point in time, "length" is no more than an intuitive notion 

for which a formal measure does not exist. However, a rough outline of 

the aefinition of one node in terms o£ another one may often give some 

insight into the amount of effort necessary and thus provide an 

estimate of the length. 

Language hierarchies have long been mentioned in connection with 

programming languagesf e.g. Assembler - Low-level programming 

languages (e.g. PL 368 [Wi 68], ESPOL [Bu 72]) - High-level 

programming languages - Very high level languages (e.g., set oriented 

languages [SI 741). However, except for macro languages these do 

rarely conform to the strict definition given above (e.g. COBOL is not 

defined in terms o£ a lower-level programming language), the reason 

being that this would entail inefficient compilation. The same 

argument does not hold for data base languages where language analysis 

is but a minor part of query processing [Kr 75]. 

2.2 Explications 

The notion of hierarchy as introduced above is still vague and should 

be made more precise. Below several concepts known from the literature 

are introducede Their usefulness as well as some of their deficiencies 

will be discussed in the remainder of the paper. 
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(i) Characteristics of the root. 

There exist several schools that claim to provide the just and only 

basis for data base concepts. Before one may pass any judgment on 

these claims one ought to agree on the criteria that a basis would 

have to meet. It is commonly accepted that a data base is to be 

considered as the model of a certain reality. Hence a basis should be 

such that it provides concepts so primitive that any reality, be it 

physical or conceptual, could be adequately covered by it. Some 

authors lab 74, Su 74] have attempted to enumerate certain primitives: 

elementary objects, properties, relations, orderings, categories (or 

types), names, as well as sets of operators for creating, accessing, 

manipulating and deleting these. In addition, one might consider 

organizational questions such as parallelism and sharing of models by 

various users. 

(2) Dependencies between successive nodes. 

Since it is extremely general, the root is of little practical value 

to the average user. Users are invariably concerned not with all 

possible realities but with certain classes of realities, and wish 

their models to reflect the corresponding limitations.. In other words, 

the modeling tools on level 1 will differ from those on level 0 by 

defining certain restrictions on the way the primitives may interact. 

The same obviously is true for level 2 vis-a-vis level i, etc. These 

restrictions relate mainly to the manner in which objects may be 

composed into new objects, relations into new relations, and/or 

operations into new operations. 

(3) Characterization of a node as an abstract machine. 

Basically, the restrictions defined on the permissible compositions 

determine the dependencies between successive nodes. To make this a 

little bit more precise, the concept of abstract machine is 

introduced. An abstract machine is a set of object types, a set of 

operators for manipulating objects and de£ined on object types, 

together with a control mechanism that allows to construct and execute 

sequences of operations. Each node is then described in terms of an 

abstract machine. 

(4) Dependencies between abstract machines. 

By assigning an abstract machine to each node, the following 

properties must hold between two successive nodes A i and Ai+ 1 [Go 73]: 
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a) The resources and the functions provided by A i form the complete 

Oasis on which to build Ai+ I. There is no way to use properties of 

Ai- 1 in building Ai+ I. Hence every A i is a complete interface 

description in the hierarchy. 

b) Resources of A i used in defining new resources of Ai+ 1 can no 

longer be present in Ai+ 1 (i.e. they may become resources of Ai+ 1 

only i~ they are not part of a definition for another resource o~ 

Ai+l). 

Keeping these rules in mina I shall attempt, as a matter o£ 

illustration, a tentative classification of some results discussed in 

the literature [Ab 74, Co 7~, We 74, Kr 75, Wo 68, Wo 73, Gr 69, Col 

68]. 

SQUARE 

Relational 
model 

~ SEQUEL l~re~ ~ Lunar ~ Pharmacy 

r-----irestricted ~ restricted ~-L-~estricted 
J Jnatural j J natural j J natural 
~nglish ~English ~German 

] I ~redicate I jsemantic J j set 
3 logic ~- Ljprimitives_ _ ! -- I theory 
--... ! _ _I- ....... 

figure 2 

2.3 Consequences 

The concepts and rules introduced above impose a certain discipline on 

the design of user languages, on their application, and on the 

transition between them. Some of the consequences are outlined below. 

(i) If we strictly keep to the rules above, a new interface must be 

defined in terms of its immediate predecessor and not any 

arbitrarily chosen predecessor, i.e° immediate predecessors must 

not be bypassed ("stepwise abstraction"). On the other hand, given 

certain specifications and a suitable node in a tree, intermediate 

nodes that hopefully are of general usefulness should be 

introduced on the intervening path whenever the path proves too 

"long" ("stepwise refinement"). 
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(2) Given a path to the root, a user should De put into position - at 

least in principle - to formulate his requests in any o~ the 

languages that correspond to the nodes on the path. As a matter of 

fact, we found this an essential prerequisite for efficient SYstem 

testing since system activities may be observed and controlled to 

any desired level of detail [Kr 75]. 

(3) Queries are stated on some level and must successively be 

translated between levels until the root has been reached. 

Definition (of an abstract machine) and translation reciprocate 

each other: The definition of the next higher level £rom a given 

one determines the rules that govern the translation of statements 

on the higher level to those on the lower level. 

(4) Results are produced on the lowest level but must be presented to 

the user on a higher level. As a consequence, following the 

evaluation of a query a second ("reverse") translation must be 

invoked in order to propagate the results to higher levels. 

3 Set theoretic basis 

3.1 Motivation 

The rules of ch.2 have been applied to the construction o~ the KAIFAS 

question-answering system and have proven highly useful there. Hence 

this system will be chosen as the first example to demonstrate the 

practicability of the rules. For a more detailed description of the 

system the reader is referred to the literature [Kr 75]. 

Restrictions with regard to the general basis are motivated by the 

realities one wishes to consider. In the case of KAIFAS we presume 

that relations are exclusively of the property type (sets) or are 

binary relations and, more important, that objects are selected 

exclusively on the basis of given properties or relations which they 

meet or undergo, perhaps in logical combination. Indeed one can show 

that the set theoretic approach may be viewed as a generalization of 

the inverted file technique [Kr 75]. 
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3.2 Set theoretic machine 

O biect tlpes_ 

I Elementary objects (individuals), e.go ~ans Maier, Bonn, 

Aspirin 

M Sets, e.g. city, medication 

List of individuals. 

R Relations, e.g. ~ather, contraindication 

List o~ ordered pairs of individuals. 

Z Numbers 

D MeasuresF e.g. 2 years, 4 tablets/day 

Ordered pairs (number, unit expression). 

F Measure functions~ e.g. age, dosage 

Lists of ordered n-tuples whose last components are 

measures. 

B Truth values 

~perators 

On retrieval the machine is supposed to function in the £ollowing way. 

Set, relation~ and function names refer to objects in permanent 

storage° In order to manipulate the objects they must be trans£erred 

into unnamed registers o£ which an unlimited number is thought to 

exist. Hence all operations except for the load operations are 

register-to-register operations. 

Load operator__ss 

Mw, ev, en, ef Load a set, a relation (ev, en), and a measure 

function, respectively. 

Set operators 

MU: Mx~-~M Union 

Mn: MxM-~M Intersection 

Km: MxM->N Relative complement {x[xeMiAx@M2} 

Kz: M->Z Cardinality 

Binary relation operators 

Ko: R-~R Converse relation 

Rb: RxM-~R Restriction { (x,y) ~ (x,y)eRAxeM} 

Rp: KxR->R Product {(x,y)~ 3 z:(x,z)eRIA(Z,Y)eR2} 

RU: RxR-~R Union 

Reduction of binar~ relations 

Vo: R-~ Domain {xI3y:(x,y)eR} 
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Na: R-~M 

Vg: RxI-~M 

Ng: RxI-~M 

VgU: RxM-~M 

Range {xJ3y:(y,x)eR} 

Individual domain {xJ(x,I)eR} 

Individual range {x~(I,x)eR} 

Restricted domain {xl(x,y)eR^yeM} 

Reduction of measure functions 

Fw: FxI->D (n=2) 

Logical 0Perators 

e: IXM-~B Test on set membership 

c: MxM-~B Test on set inclusion 

In addition, 

the standard 

measures. 

the standard logical operators are available as well as 

arithmetic and comparison operators for numbers and 

Control mechanism 

Sequencing of operations 

"Programs" for the set theoretic machine are expressed in a functional 

notation. Operations are performed from left to right and, ~or each 

nested argument, from inside out. 

Example: A question such as "Are cities birthplaces of engineers?" 

would take the following form in the set theoretic machine 

c(Mw(Mcity), VgU(en(Rbirthplace), Mw(Mengineer))) 

Loops 

Loops are introduced by the use of bounded quanti£iers which nave 

three arguments: 

i) An expression resulting in a set of objects (range). 

2) An expression for the condition resulting in a truth value 

(scope); it may be regarded as the loop body. 

3) The name of a bound variable; each o£ its substitutions defines an 

invocation of the loop. 

Important quantifiers are 

AL: MxB -~B all, every 

EI: MxB -~B some 

DB: MxB -~M which 
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ZB: Mx~ ->Z how many 

with the le£t-hane ~ the 

conoition. 

bounding set and the le~t-nand 5 tne 

Zxamples : 

DB (x~Mw(~city) ~ e(xrVgO(en(Rbirtnplace),MW(Mengineer))) ) 

with the meaning o£ "~nicn cities are birthplaces o£ engineers". 

DB (x I , 

Mw (~manu f) 

ZB(x2, 

Vg(en(Rprod) ,Xl) , 

DB(x 3 , 

l~w (~lailment) , 

e(x2, Vg(en(Rmedic) ,x3))))) 

with the meaning of "How many products o£ which manufacturers are 

medications £or which ailments?" 

~x~ressions in the data base 

Set membership o£ an arbitrary ~ind is expressed Dy including, in the 

represen£ation o~ a set, arbitrary set expressions. Example (in 

German): 

Mrezeptp£1ichtig 

Ispasmocibalgin 

Vg(en(RDerivat), IOxazolidin) 

IMorpnin 

Mw(MOpiate) 

MW(MHypnotiKa) 

IMethadon 

Vg(en(RDerivat), IS uccinimid) 

Vg(en(RHeilmittel), IAgitiertheit) 

® 

® 

where ~ indicates all derivates of Oxazolidin to be prescription 

drugs, Qall opiates, etc. 

Tais concept is extended to relations and measure functions. Two of 

its advantages are: 

- Since all objects are evaluated on request only, changes to the data 

Dase may De made locally without regard to any interrelationships 

that may exist. 
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- Expressions may be stored without regard for the existence of any 

individuals for it. Hence one could construct a data base consisting 

exclusively of higher-order relationships. 

One consequence, however, is that the control mechanism must itself be 

defined recursively since it may be invoked on any load operation. 

3~3 Natu~@ 1 !anguage 

Few users will feel at ease with the highly stylized language 

introduced in sec. 3.2. One possible step of abstraction, therefore, 

is the definition of a new abstract machine accepting natural language 

input. By necessity this is a highly restricted form of natural 

language since its semantics, and hence its syntactic forms, can be no 

more than what may ultimately be reduced to a set theoretic 

interpretation. Moreover, it must be considered more restrictive than 

the set theoretic interface because while one may nest set theoretic 

expressions to an arbitrary depth, those beyond a certain depth simply 

cannot be stated in natural language in any comprehensible fashion. 

To speak of objects, operators and control mechanism in connection 

with natural language turns out to be highly unnatural, or rather 

impossible. It is possible, however, to define an abstract machine on 

that level in terms of the syntax of the interface which in turn may 

still be based on object types. This is in striking similarity to Very 

High Level languages vis-a-vis High Level program/r, ing languages: Very 

High Level languages are loosely described as languages used to 

specify what is to be done, rather than how it is to be done [SI 74]. 

In accordance with sec.2.2, the object types must relate to the ones 

of the set theoretic machine. In this case the relationship is 

straightforward as indicated by the following list: 

N proper names for the objects of the universe. 

A attributes (properties of an object of the universe). 

R references from one object of the universe to a second one (e.g. 

Thebacon is referred to by Morphium as its derivate). 

M references to measures. 

D numbers or measures. 

S sentences. These are of two kinds: sentences to be answered by yes 

or no, and sentences to be answered by counting or enumerating 

proper names. 
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Some examples from XAIfAS in which German was chosen as natural 

language interface. 

Ist Psyquil rezeptpflic__~ht_!~? 

N A 

Betraegt die Tagesdosis yon Cninidin 2 Gramm? 

M N D 

~elcne Oerivate yon ~orpNium sina rezeptpilichtigf 

The syntax of the inter£ace is describea by a 9ra~az ~itn tile 

iollowing general properties: 

(i) Syntactical variables must relate to the object types, hence they 

cannot be based on tile traditional grammatical categories SUCh as 

noun, noun phrase, adjective, etc. but on categories that are 

essentially semantical in nature. The variables are IN(names), ME 

(attributes), RE(references), ~F(references to measures), ZA 

(numbers) ~ SA (sentences), QO (quantifiers} . 

(2) On the other hand, the traditional categories inust be accounted 

for in some way, e.g. in order to reject incorrect inflections. As 

a consequence, each syntactical variable is indexe~ my a number of 

features. Examples: 

sAS masculine ) NO~ nominative ) 

FE~ feminine }gender GEN genitive ) case 

NED neuter ) OAT aative ) 

STR strong ~eclension ACC accusative ) 

ATT attribute apposition ADJ wora class(aaject./noun) 

~OM number (singular/plural) 

(3) gven for restricted natural language, grammars are Know~ to be 

extremely complex because of the multituae of syntactic aspects to 

be observed~ The application of features simplifies tI~e grammar 

insofar as it can be arranged in two levels, 

a) a context-free grammar in terms of the variables 

from (i); 

b) a feature program to be associated wit~l each production 

on level a). 

Example: Typical productions of level a) are 

aE  - ~  aE  ME 

ME - ~  RE 

ME - ~  RE NE 

~E - ~  RE 1N 

SA -* ~IE sind ~h? 
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The production 

ME 1 -~ ME 2 ME 3 

refers to the following feature program (syntactic variables are 

numbered for reference). 

Part I: Test o~ right-hand features for acceptance 

(reduction takes place only i~ the condition is true). 

t__es~ (ME2,+ADJ+ATI') A test (ME 3, -ADJ-Aq~) 

A ~!e~ (MAS,FEM,NE0,ME2,ME 3) Ameq (NO~,GEN,OAI,ACC,~IE2,~3) 

A egu (NUM,ME2,~E3) 

Part 2: Assignment of features to the syntactic variable on the 

left-hand side. 

-ADJ-ATT, co_~p (NUM,ME2), 

and (MAS,FEM,NEU,ME2,ME3) , a_qnd (NOM,GEN,DAT,ACC,~E2,ME3) 

Feature operators are underlined. For example, test is true when 

the features of the first argument meet the condition specified by 

the second argument, me__qq is true whenever at least one of the 

listed features agree in both syntactic variables specilied, co~ 

copies the features ol the syntactic variable specified. 

3.4 Pharmacolog~y 

The natural language level is supposed to serve a variety o£ 

application areas, we postulate that these application areas are all 

served by the same natural language grammar since each ~ust De 

explainable in terms of set theory. Consequently, these areas Giffer 

only in the vocabulary they assign to the object types. Level 3 is 

reached from level 2 simply by introducing names, and relating them to 

the object types. ~elow a few typical examples of assignment are given 

in the area of pharmacology. 

proper names medications, substances, companies, ailments, 

e.g. ~hebacon, Morphium, CIBA, Angina pectoris 

attributes properties 

e.g. Tablette, rezeptp~lichtig 

references e.g. Indikation and Kontraindikation (from ailment to 

medication), Hersteller (from company to medication) 

references e.g. Preis, Dosis, HaltbarKeit 

to measures 

numbers or e.g. 5 DM, 2 %~abletten/i~ag, ~ ~oc~len 

measures 

sentences e.g. ~elche Preise haben Praeparate, die bei Angina 

Pectoris indiziert sind und deren Kont~aindiKation nicht 

Glaukom ist? 
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3.5 Translations 

~he path between aa3acent nodes is traversed by translation (sec.2.3, 

(3) and (4)). ~e Shall briefly illustrate this for t~e passage between 

natural and set language. In this case translation consists of t~e 

t~ree traditional phases: lexical analysis, syntactic analysis ano 

code generation. The sentence 

"~elche Firmen sind Herstelier tablettenfoermiger Medikamente?" 

shall serve as an example. 

Lexical analzs!s 

Lexical analysis includes the mapping from the pharmacological to the 

natural language level, and for each word encountered, with a few 

exceptions, proceeds in three steps: 

(i) reduction of a word to its word stem; 

(ii) dictionary lookup resulting in a syntactical variable, values of 

some of its features, and s morphemic class, as well as the set 

level name for the word. 

(iii) assignment of further features on the basis of the morphemic 

class and the actual morphemic ending. 

• he lexical analysis of the entire sentence results in 

word Isyn.~ features ]int.name 

I v a r  I I 

Welche Q~ +MAS+FEM+NEU -~OM+NOM+ACC DB 

Firmen ME FEM-NUM+NOM+GEN+DAT+ACC M26 

sind - - - 

Hersteller RE +MAS+NUM+NOM+DAT+ACC R23 

RE +MAS-NUM+NOM+GE~+ACC 

tabletten- NE +MAS+NUM+NOM+AYT+STR+ADJ 

foermiger ME +FEM+NUM+GEN+DAT+ATT+STR+ADJ ~9 

ME +f~AS+FEM+NEU-NUM+GEN+ATT+STR+ADJ 

Medika- ME +NEO-NUM+NOM+GEN+ACC M22 

mente 

Note the syntactic ambiguities due to the different feature 

combinations for "Hersteller" and "tablettenfoermiger'. Note also that 

lexical analysis by itself cannot always determine the case (as for 

"Firmen', all four cases are still possible), or the gender (as for 

"tabletten~oermiger') ° 
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Syntactic analzs!s 

Syntactic analysis includes three phases: reduction (level a)), 

feature analysis (level b)), final code manipulation. For each 

production applied, reduction and feature analysis follow each other 

immediately. Hence a production is applied in three steps: 

(i) Matching of input string and right-hand side. 

(ii) Test of right-hand features for acceptance. 

(iii) If true, reduction to left-hand side and assignment of features. 

For example, the production and feature program from sec.3.3 result in 

the following when applied to the phrase "tabiettenfoermiger 

Medikamente": 

ME2 ('tablettenfoermig'): 

I) +MAS+NOM+NOM+AT~+ADJ (rejectea on m eq) 

2) +FEM+N~M+GEN+DAT+AT~+ADJ (rejected on me_~q) 

3) +MAS+FEM+NEO-NOM+GEN+AT~'+ADJ 

ME3 ('Medikamente') 

I) +NEH-NUM+NOM+GEN+ACC 

ME1 (result): 

i) +NEU+GEN-NOM-ADJ-ATT 

(note the disambiguation) 

The syntactic analysis of the entire sentence is illustrated in figure 

3. Because of the possibility of ambiguities the result is a parsing 

graph rather than a tree (in this case the ambiguity of the sentence 

is due to "Hersteiler'). The numbers adjacent to the syntactic 

variables refer to an associated list of features. 

Final code manipulation is left to the final stages of code 

generation, but must be considered part of the syntactic analysis 

because without it context-sensitive or transformational rules could 

not be avoided. 

~o~e_g~neration 

Whenever a production is applied, a semantic action associated with it 

generates a functional set expression. Its arguments point to other 

such expressions unless they are individuals. 

Example: 

(tablettenfoermiger Medikamente) 

/ 
Mw (Mg) MW (M221 

(tablettenfoermig) (Medikament) 



SA
,1
9 

A
,1

8
 

~ M
[,

 
1

4
 

N
D

 

M£
, I

~
 

l
l
 

I
p
 

9 
ME
, 

5
 

RE
, 
8 

ME
, 
~ 

M~
N 

[,
 

N[
o 
2 

?*
. 
I 

~
\
 

-
 

H
E

R
S

IE
L

L
 

A
B

L
['

r:
[ 

~
D

IK
A

H
E

N
 

C
O
 

Fi
gu
re
 3
 



199 

WELCHE FIRHEN SIND HERSTELLER TABLZTTENFOERI41GER HEDIKAHENTE ? 

02300047 15000000 DB ( 
I0000001 01100025 X1 AA 
15000000 140000C5 t ~'T ( 5 )  
01100033 15000000 ~ ( 
04000032 16000000 M26 ) 
16000000 01200001 ) £ 
15000000 10000001 ( XI 
01100025 15000000 AA ( 
14100025 01100045 ~'T (22) MV* 
15000000 01200040 ( VG* 
15000000 01100C30 ( £N 
15000000 05000027 ( R23 
16000000 01200044 ) MD 
15000000 01100033 ( ~H 
15000000 04000033 ( ~2Z 
16000000 01100033 ) MW 
15000000 04000026 ( H22 
16000000 16000000 ) ) 
16000000 16000000 ) ) 
16000000 16000000 ) ) 
26000000 00000000 E~IRBE ........ 

Figure 4 
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On completion of the parse, the pointer structure corresponaing to the 

syntactic variable SA is transformed into a linear string. This string 

must be submitted to a further string manipulation for two reasons. 

(i) Completion of the syntactic analysis. 

Quantifiers do not yet appear in front of the expression. ~oving 

them there is subject to a number of rules that govern their 

sequence. 

(2) Optimization. 

In many cases quantifiers (whose evaluation may be time-consuming) 

can be replaced Oy stanaard set or relation operators, e.g. DB by 

The cooe resulting from translation o~ tne sentence adore is shown in 

the printout in figure 4. 

Reverse translation 

Set level names may immediately be translated into the pharmaceutical 

level simply by again invoking the dictionary. However, under certain 

conditions (empty sets) set expressions may themselves De part of a 

result. This requires a translation into both level 2 and level 3. 

Examples: 

Vg(RI2, I14) -~ Heiimittel fuer Psychosen 

Mw(M9) -~ tabletten~oermig 

I2 -~ Verophen 

4 Semantic p_~rimitives as a basis 

4.1 Motivation 

In order to stuuy the aGequacy of the rules o~ cn.2 anQ to determine 

whether they must be ~urther refined or augmenteQ it is help£ul, snort 

of constructing systems, to examine existing systems that are arrangeG 

in t~e form of layers. One of the olQest systems of this ~ind (t~ougn 

it was not conceived that way) is Woods" question-answering machine 

[Wo 68, ~o 73]. Like the set theoretic approach, ~oods" universe is 

composed of objects and interrelationships between them. UnliKe the 

previous approach, these are not collected into mathematical sets and 

relations but treated as propositions to which a procedural approach 

is taken. This is probably due to an orientation towards explaining 

the semantics of natural language rather than manipulating concrete 

data bases. 
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4.2 Semantic Primitives 

~bie~t_t~P~ 

O Elementary objects, e.g. Boston, AA-57, DC-9, 8:~0 a.m. 

F n n-ary functions (n>l), e.g. departure time (of flight x I for place 

x2). I~hese need not be functions in the strict sense. If a 

function may yield more than one value (e.g. officer of a ship) 

it is defined as a successor function such that 

(start) officer(x,O) = a 1 

officer(x,al) = a 2 

(end) officer (X,an) = E~D 

R n n-ary relation (predicate) (n)l), e.g. 3et (flight x I is a jet), 

arrive (flight x I goes to place x2). 

Designators are either names of elementary objects or of ti~e form 

Fn(Xl,...,xn) where x i is a designator; e.g. departure time 

(AA-57, Boston) for 8:00 a.m. 

Propositions Rn(Xl,...,Xn) where x i is a designator; e.g. jet 

(AA-57), place (Boston), arrive (AA-57, Chicago). 

B Truth values 

Example: A set of semantic primitives for the flight schedules table 

(from [~o 68]): 

Primitive Predicates 

CONNECT (Xl, X2, X3) 

DEPART (Xl, X2) 

ARRIVE (XI, X2) 

DAY (XI, X2, X3) 

IN (XI, X2) 

SERVCLASS (XI, X2) 

MEALSBRV (XI,X2) 

JET (XI) 

DAY (XI) 

TIME (XI) 

FLIGHT (Xl) 

AIRLINE (XI) 

AIRPORT (XI) 

Flight X1 goes from place X2 to place X3 

Flight X1 leaves place X2 

Flight X1 goes to place X2 

Flight X1 leaves place X2 on day X3 

Airport X1 is in city X2 

Flight X1 has service of class X2 

Flight X1 has type X2 meal service 

Flight X1 is a jet 

X1 is a day of the week (e.g.Monday) 

Xl is a time (e.g. 4:00 p.m.) 

X1 is a flight (e.g. AA-57) 

X1 is an airline (e.g.American) 

X1 is an airport (e.g. JFK) 



CIT~ (Xl) 

PLACE (XI) 

PLANE (XI) 

CLASS (XI) 

AND (SI, S2) 

OR (Sl, S2) 

NO~ (Sl) 

IF~SE~ (Sl, s2) 
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Xl is a city (e.g. Boston) 

X1 is an airport or a city 

X1 is a type of plane (e.g. DC-3) 

X1 is a class of service (e.g. £irst-class) 

S1 and $2 ] 
| 

Sl or $2 ~ (where S1 and $2 are propositions) 
! 

Sl is false | 
! 

if Sl then S2J 

Primitive Functions 

DTIME (Xlo X2) 

ATIME (XI, X2) 

NUMSTOPS (XI,X2,X3) 

EQUIP (XI) 

FARE (XI,X2,X3,X4) 

the departure time of Zlignt x1 from place X2 

the arrival time of flight X1 in place X2 

the number o£ stops of flight X1 between place 

X2 and place X3 

the airline which operates flight X1 

the type of plane of flight X1 

the cost o£ an X3 type ticket from place X1 to 

place X2 with service of class X4 (e.g. the cost 

o£ a one-way ticket from Boston to Chicago with 

first-class service) 

Qperators 

To every function and relation there exists a program~e~ subroutine 

(procedure) which ~etermines a value of a £unction or the truth o£ a 

proposition. 

Examples (procedure names are capitalizeu) : 

JET (AA-57) -9 true 

ARRIVE (AA-57,Chicago) -9 true 

ARRIVE (AA-57, boston) -9 ~alse 

D~II~ (AA-57, boston) -9 8:~@ a.m. 

~nereas the abstract machine of cn.3 was Rased on object types Out 

specific operators, the abstract machine in this case is define~ in 

terms of both object and operator types. Specific instances must be 

supplied by the user for both of them. However, with the auvent of 

microprograma~ing, computer scientists should have little problems in 

adjusting to this kind o£ notion. 

Control mechanism 

As in the preceeing example, programs are expresseo in £unctional 

notation~ e.g. 
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TEST(CONNECT (AA-57, ~OSTON, C~ICAGO)) 

would stand for "Does AA-57 go £rom 5oston to Chicago?". Likewise, 

queries of any appreciable degree of complexity are based on the 

notion of bounded quantifier as a representative for loops. 

The £ormat for a quantified expression is 

FOR <quant> <var>/<class>:<pvar>; <qvar> 

where 

<quant> 

<var> 

<class> 

<pvar> 

<qvar> 

a type of quantifier (EACH,EVERY,SOME,THE, nMANY). 

a bound variable. 

class of objects over which quantification is to range. 

The specification is performed by special enumeration 

functions, e.g. SEQ,DATALINE,NUMBER,AVERAGE. Besides 

enumeration these functions may perform searches or 

computations. 

restriction on the range ~ may both be quantified 

scope ; expressions. 

Unlike KAIFAS where the result of the evaluation of an expression is 

automatically retranslated and displayeG, this must be explicitly 

requesteG by commands such as TEST (test trut~l o£ a proposition), 

PRINTOOT (print the representation for a ~esignator). 

Examples: 

(FOR EVERY X1 / (S£Q T~PECS):T; (PRiNTOOT (XI)) 

prints the sample numbers for all the lunar samples which are o£ 

type C rocks, i.e. breccias (T stands for "true"). 

(TEST (FOR 3~ MANY X1 / (SEQ FLIGHT):JET(XI); DEPART (XI,~OSTON))) 

"Do 30 jet flights leave Boston?" 

4.3 Natural language 

As a general rule, the introductory remarks to sec.3.3 apply here as 

well: The level of the "English-like" query language provided on level 

2 is influenced by t~%e range of expressions possible on the previously 

discussed level i. In contrast to KAIFAS, inspection of the data base 

is not limited to the evaluation of level 1 expressions but may take 

place during translation from level 2 into level i, too. The semantic 

actions associated with a rule of grammar impose further restrictions, 

e.g. they make sure that the first argument of CONNEC~ is inaeed an 

instance of the class FLIGR~. 
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This is illustrated by the £ollowing example. In a first step a 

syntactic analysis is performed and a phrase marker is derived, e.g. 

NP 

1 
NPR 

I 
M-57 

/ \  / %  
1 I ~  ,o 

Since verbs in ~nglish correspond rougniy to p~eaicates, an~ noun 

phrases are used to denote the arguments of the predicate, the verb in 

the phrase marker will be the primary factor in determining the 

predicate. In the example, the predicate will be CONNECT. For this it 

is necessary that the subject be a flight and that there be 

prepositional phrases whose objets are places representing origin 

(from) and destination (to). The grammatical relations among elements 

of a phrase marker are defined by partial tree structures, e.g. 

GI: S G2; S G3; S 

/ \  i I 
NP VP VP VP 

t / \  t 
( I )  V V NP 

1 1 i / P \  
(2) { I ) t2)  PREP NP 

subjecl-verb vetb-obj ect ( | ) { Z) 

Pfeposffion- objec! 
modifying o VP 

Among the three structures, G1 and G3 ootn match subt[ees In the 

phrase n~arker, v~hich of these is acceptable depends on the a~ditional 

rules, e.g~ 

(GI:FLIGHT(1) ana(2) = fly). 

((i) and (2) are positional variables in the partial tree structure). 

This rule obviously is satisfied. More co~nplex rules are possible; for 

example, the topmost S-node of the phrase marker is matched by the 

rule 

I-(GI:FLIGd%((1)) and (2) = fly) and 

2-(G3: (i) = ~rom an~ PLACE ((2))) and 

3-(G3:(I) = to and PLACE((2))) 

==> CONNECT(I-I,2-2,3-2) 
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4.4 Air!ine 9uide 

~he system under discussion was first applied to a flignt seneQules 

table. TO illustrate the application interface, a few examples of 

queries shall be given below (from [Wo 68]). 

Does American Airlines have a flight which goes from ~oston to 

Chicago? 

~hat is the departure time from Boston of every American Airlines 

flight that goes from Boston to Chicago? 

What American Airlines flights arrive in Chicago from Boston before 

1:8~ p.m.? 

Bow many airlines have more than 3 flights that go from Boston to 

Chi=ago? 

4.5 Lug~{ geology 

More recently the system has been applied to access, compare ana 

evaluate the chemical analysis data on lunar rock and soil composition 

that was accumulating as a result of the Apollo missions [~o ?3]. 

Examples: 

What is the average concentration of aluminum in high alkali rocks? 

Give me all analyses of SI~046! 

How many breccias contain olivine? 

Do any samples have greater than 13 percent aluminum? 

What is the average model concentration of ilmenite in type A rocks? 

4~6 Critique 

(i) The possibility of inspecting the data base both on level 1 and 

during translation from level 2 to level 1 introduces a note of 

confusion. Since, according to sec.2.3, translation is directly 

related to definition, the translation process must make no 

reference to the data base. The lack of separation will have 

practical repercussions: Either certain changes on level 1 will 

necessitate changes in the rules of grammar, or parts of the 

control mechanism for level 1 must be duplicated for translation 

purposes. 

(2) In Wooas" system the subroutines do not appear to verlfy that 

their arguments are of the proper kind (e.g. ARRIV~ Goes not c~eck 

whether AA-57 is indeed a flight or Chicago a place), since this 
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is done on translation~ If one left this (correctly) to level 1 

then primitive predicates and functions are related to each oLner. 

These interdependencies may be expressed by a set oi axioms, or in 

the parlance of data structures Dy types or categories 

corresponding to those unary predicates that restrict ranges oi 

arguments. As a consequence, tt~e concepts of aDstract machine ana 

relationships between abstract macnines must accoun~ not only for 

primitive terms but for axioms as well. (~ote that the KAl~AS 

machine circumvents t~is problem only by prescribing all 

operators.) 

(3) Operators (subroutines) ana objects are interdependent as well, 

albeit in a one-to-one fashion. In order to make sure that the 

requirements governing the relationship between abstract machines 

are met it suffices to treat a predicate or function and its 

corresponding procedure as two instances o£ the same resource. 

5 Relational model 

5.1 Motivation 

One oi the most widely alscusseQ approaches to Qata Oases is Coua's 

relational mooel [Co 7G,Co 72, ~e 74] which lenas itsel~ particularly 

well to an interpretation by abstract machlnes. CoQ~ supposes his 

users to explain their unlverse in terms of table-liKe structures. 

Intuitively speaking, a table consists ol a number of entries t~at are 

iormatte~ in exactly the same way: a sequence oi £ielGs orGerea on 

certain headings or field names or, as t~ey are called here, 

attributes. More formally, a entry is an ordered n-tuple and, 

consequently, a table is a relation that may be named. ~ntries are not 

named but are uniquely identified by a key, i.e. the contents ol 

particular fields. 

A certain familiarity with the relational model is assumea on the 

reader's part. Only its interpretation by a machine will be examined 

here. 

5.2 Relational algebra 

Qbie~t & 

A attributes naming a set of ob3ects (domain) 

Kn relations 
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R n (AI,A2,...,A n) S A 1 x A 2 x ... x A n 

Example: SUPPLI£R (SUPPLIERNR, ~AME, LOC), KEY=SOPPLIERNR 

SUPPLIER: SUPPLIERNR NAME LOC 

1 Jones New York 

2 Smith Chicago 

3 Connors Boston 

4 ~hompson New York 

Key attributes are indicatee; Keys may be composite. Hierarcnicai 

anQ other relationships are usually eliminateo ~y normalization. 

~ence all relations can be assumea to be normalizea. 

T n ~ R n n-tuple. 

Operators [We 74] 

9tand~d rela~ign operators 

Rnl Q Rn2 -9 Knl+n 2 Direct Product: 

{(Tnl~Tn2) JTnl E Rnl^Tn2 eRn2) 

(~ Concatenation operator) 

R nu R n -~ R n Union } attributes 

Rn~ R n -9 R n In t~rsectionl must be 

R n - R n -~ R n Di£~E~ence "compatible" 

Special operators 

Rn[A] -9 R m Projection: Kelation R n restricteo to the 

attributes A={AI,...,Am}. 

Rnl [AQ~]Rn2-~ Rnl+n2Join: 

{(Tnl~Tn2) JTnl E Rnl ̂  Tn2 ~ Rn2 ̂  Tnl [A]~Tn2 [B]} 

where A,~ sets of attributes, @ one oi {=,9,<,&,>,l}. 

(Slight modifications, e.g. natural join, are possible). 

R n [A@B] -9 R n Restriction: {~nJTng R n ̂  Tn[A]@Tn[B] } 

where A,B,O as above. 

R n [A÷~]R n ->R m ~iv~sion: [Co 71], p.74. 
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~o£tio ! ~e£h~n!s ~ i~elational al~e£r~) 

Since all operators nave been defined as infix operators, "programs" 

are formed by linear sequences o£ operators and operands rather than 

by neste~ expressions. For an example see sec. 5.3. 

5.3 Relational calculus (ALPHA) 

In place oi relation algebra Co~G proposes 

calculus (relational calculus), an~ proceeds to show 

expression in the relational calculus (alpha-expression) 

reduced to an equivalent relation algebraic expression. 

Alphabet for the calculus: 

Individual constants, a I, a 2, a 3, ... 

Index constants, i, 2, 3, 4, ....... 

(attributes are indexeu per relation insteau ot namee) 

Tuple variables, r I, r 2, r 3, ...... 

Predicate constants, monodic, PI, P2, P3, .... ; 

dyadic, =,~,<,~,>,~ 

Logical symbols, 3, V,A,v, 

Delimiters. 

an applieu preQicate 

tnat any 

may be 

Simple alpha-expressions nave t~e form 

(t I, t2, .... , tK) : w 

where - w a well-fo[meu formula, 

- t i distinct terms consisting of an indexeQ or 

non-indexed tuple variable, 

- the set of tuple variables occurring in tl, .o, t k 

is precisely the set of free variables in w. 

~xample: Alpna-expresslon ior "~ino the name and location oi all 

suppliers each o£ WhOm supplies all projects": 

(rl[2], r2{3]): 

Plrl^~P2r2 ] P3r3((rl[l]=r311]) A (r313]=r2[l])) 

After reduction to relation algebra: 

S 1 = R 1 

S 2 = R 2 

S 3 = R 3 

s=sI®s2® 3 
T 3 = S[I=6]~S~8=4~ 

T 2 = '1' 3 [1,2,3,4,~] 

T I = T 2 [(4,5)÷(1,2)]S 2 
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= TI[2,3 ] 

ALPHA is a language for alpha expressions that is slightly more 

appealing to the user than the predicate form shown above, ine example 

may be reformulated in ALPHA as 

I~ANGE SUPPLIER L 

RANGE PROJECT F 

RANGE SUPPLY K 

G~T ~ (L.~AME, L.LOC): 

(VP) (~K) ((L.SUPPLIEk~=K.SUPPLI~R~k) A (~.PiO0~R=P.P~OONk)) 

or, equivalently (order of quantifiers must be maintained!), 

RANGE SUPPLIER L 

RANGE PROJECT P ALL 

RANGE SUPPLY K SOME 

GET W (L.NAME, L.LOC): 

(L.SOPPLIERNR = K.SUPPLIERNR) A (K.PROJNR = P.PROJ~R) 

5.4 Higher levels 

~or reasons similar to the ones in cns. 3 an~ 4 languages have been 

devised that do not have to rely on a user's formal training, une 

language of tnis kind is SQOARE [bo ?4] wnich has been shown to oe 

reducible to the relational calculus. However, the view o£ [elatlens 

offered Dy SQOAR~ is different from t~at offerea ~y ALPHA: 

(i) Scan a column or columns of a table looking for a value or a set 

of values (as opposed to inspecting one row after another). 

(ii)For each such value found examine the corresponning row anG 

elements of given columns in this row. 

SQUARE statements are of a form suc~ as ("aisjunctive mapping") 

bRA(S) 

(read: "find B of R where A is S") that defines a mapping such that R 

is a relation, A and B are sets of attributes (domain and range, 

respectively), S is an argument that may itself be an expression. 

Other forms, e.g. for projection, conjunctive and n-ary mappings, nave 

a similar appearance. 

Example : ~iA~ig gMP DEPI' ( "TOY ") 

stanGs for "FinQ the names of employees in ti~e toy aepartment". 
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~ore recently attempts nave been reporteo that allow a user to engage 

a relational data base system in a ~ialog ~oun~eQ on natural ~ngiisn 

[Co ~4]. %he approach ~ii~ers drastically from t~e ones ~iscusseo in 

ehs.3 and 4 in that a truly two-way communication is envisioned. 

5.5 Comment 

It has been shown tnat botn ALPHA and SQUARh are equivalent to the 

relational algebra, i.e. any query expressible in relation algebra is 

expressible in ALPHA and in SQUA~, and vice versa, hence ALPHA and 

SQUARE are themselves equivalent. Equivalence is a symmetric relation. 

The condition on tne succession of abstract machines does not preclude 

equivalence~ the definition of the hierarchy by restriction however 

does. ~rom the point o~ user sophistication a hierarchy coul~ still De 

given ss relational algebra - ALPHA - SQOAR£ (in the eirection of 

increasing level). This indicates that ~urtner refinement on the 

notion of hierarcny is necessary. 

6 Conclusions 

There are some striking similaritzes between the examples o£ cns.3,4 

and 5: 

- In each the lowest level has been well £ormalizeu. 

- All rely on quantification as a means for building complex 

expressions. 

- All tend towards natural language on their higher levels° 

- All three systems have been implemented and found some application. 

On the other hand, only one of them (ch.5) so far attempteo to provide 

a less formal but still stylized language on an intermediate level. 

Experiences indicate that, at least in some well-defined situations, 

this may be necessary with the KAIFAS system (cn.3) as well. 

~nile a ~ew examples do noc constitute proof, at the very least they 

Qo suggest that nierarcnies o£ user languages coulo meet the 

objectives mentioned in the introduction. 0£ course, the relationship 

between successive levels will Rave to De made much more precise, as 

has been inoicateo belore. Furthermore, nigher levels imply a number 

o~ successive translations, ane techniques must be explored to measure 

and perhaps raise the efficiency of nigher levels. ~inally, tne paper 

did not attend to the critical question what form the root should 

take; this appears to be a largely unsolved problem. 
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