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Abstract Communicating face-to-face, interlocutors
frequently produce multimodal meaning packages consisting
of speech and accompanying gestures. We discuss a system-
atically annotated speech and gesture corpus consisting of
25 route-and-landmark-description dialogues, the Bielefeld
Speech and Gesture Alignment corpus (SaGA), collected in
experimental face-to-face settings. We first describe the pri-
mary and secondary data of the corpus and its reliability
assessment. Then we go into some of the projects carried out
using SaGA demonstrating the wide range of its usability:
on the empirical side, there is work on gesture typology,
individual and contextual parameters influencing gesture
production and gestures’ functions for dialogue structure.
Speech-gesture interfaces have been established extending
unification-based grammars. In addition, the development of
a computational model of speech-gesture alignment and its
implementation constitutes a research line we focus on.
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1 Introduction

In face to face conversation, interlocutors co-produce lan-
guage and gestures. By ‘gesture’, we refer to gesticulations
and speech-framed gestures according to Kendon’s contin-
uum [34,48], namely co-verbal hand and arm movements
which contribute to the conversational participants’ contribu-
tions. Both, words and gesture, are coupled by means of syn-
chrony as well as semantics. They are packaged into bimodal
information units [33,48]. To put it in psycholinguistic terms,
speech and gesture are aligned [54]. However, to date there is
no systematic account of how speech and gestures are used in
concert: under which circumstances do speakers make use of
co-speech gesture? What motivates the physical form (e.g.,
handshape, movement trajectory) of a gesture? How is the
division of labour between verbal and non-verbal means for
their cooperative constitution of an encompassing meaning?
We address these topics in an interdisciplinary way, viewing
it from a linguistic and a computer science perspective. Theo-
retical linguistic reconstructions, on the one hand, allow for a
formally explicit as well as precise modelling of the interface
between speech and gesture. The implementation of theoret-
ical models with computational means, on the other hand,
enables to simulate multimodal communicative behaviour in
virtual agents or robots. Both research lines, as pursued here,
draw on a rich empirical basis in the form of a detailed and
systematically annotated speech-and-gesture corpus, called
SaGA, the Bielefeld Speech-and-Gesture Alignment corpus
(cf. [45]).

The main focus of our study so far has been on iconic
gestures, that are gestures “which exhibit[s] a similarity or
analogy to the subject of discourse” ([30] CP 1.369), whereas
the “subject of discourse” is introduced verbally. Accord-
ingly, the functioning of iconic gestures can be conceived
of as an isomorphic mapping from discourse referents onto
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gestural properties realized in the gesture space. In order to
reconstruct those iconic mappings, a detailed representation
of both gestures and objects1 is necessary. A detailed ges-
ture representation is implemented by the three-part gesture
annotation grid of SaGA that rests on three inhouse annota-
tion manuals (one for gesture classification, one for gesture
morphology, and one for discourse gestures). The objects
depicted and talked about are entities of a virtual environ-
ment. Being already represented in a VR modelling language,
the SaGA corpus allows for a rigid empirical investigation
of the iconic function of gestures. However, there are good
reasons that there is not just one iconic mapping, but rather
a variety of them [21]. Regarding gestures, this insight has
been elaborated in the work of Müller [52], Kendon [36],
and Streeck [70] who distinguish a couple of different ges-
tural depiction functions. For instance, a gesture can depict
just the outline of an object, or represent its form three-
dimensionally. That is, iconic functions can be distinguished
by their domains. Their input can consist of various kinds of
properties of the thing to be depicted. We account for dif-
ferent iconic mappings via the specification of a so-called
representation technique for each iconic gesture occurrence.
Actually, we found that the form of iconic gestures qua repre-
sentation technique is not only determined by the properties
of the objects in their domain, but also influenced by aspects
of the dialogue context they occur in. The respective data
analysis is summarized in Sect. 3.1.

We also pursue an account to iconicity that presupposes
just one iconic function. Abstracting away from different
depiction methods, the domain of iconic gestures comes out
as populated not only with dimensionally closed kinds of
entities, but also with entities of mixed dimensionality. The
underlying gesture typology is described in Sect. 3.2, provid-
ing the basis for a computational simulation approach with
virtual agents (Sect. 3.3). How the typology can be used to
set up an interface with word meaning within the framework
of unification-based grammar is elaborated on in Sect. 4.

Section 5, finally, highlights aspects of multimodal dia-
logue. Here, it is exemplified how gesture interacts with
dialogue structure, how interactive gestures take part in the
grounding process, and how such aspects of multimodal dia-
logue can be incorporated into the multimodal behaviour of
a virtual avatar.

At first, however, the SaGA corpus is introduced in Sect.
2. Data collection, data annotation and its evaluation in terms
of interrater reliability are described.

1 Assuming a restriction of discourse referents to concrete, but virtual
objects, as is the case in many object descriptions. For some notes on
an extension to events see Sect. 5.

2 Experimental setting

A corpus consists of two kinds of data, viz. primary and
secondary data. The primary data is the collected empirical
material, for instance newspaper articles, video recordings or
audio files. The primary data is filed according to metadata,
enhanced with annotations or transcriptions. The added infor-
mation makes up a data set of its own, the secondary data. A
corpus is the gathering of both kinds of data, primary and sec-
ondary ones. Accordingly, in the following we describe the
collection of the primary data underlying the SaGA corpus
which has been gathered in an experimental study. Subse-
quently, the preparation of the secondary annotation data is
introduced. Since secondary data usually involves interpreted
data produced by a human interpretation process, one has to
ask whether the secondary data fulfils the scientific require-
ment of reproducibility. For this purpose, the secondary data
has been evaluated in a reliability study. The rationale of
assessing reliability and the respective results for our data
completes this section.

2.1 Data and data annotation

The primary data of the Bielefeld Speech-and-Gesture Align-
ment (SaGA) corpus is built around a virtual reality (VR)
town called SaGA town (see Fig. 1). The SaGA town con-
tains five sights worth seeing in addition to a park: a sculpture,
a town hall, a church square with two churches, a chapel,
and a fountain. The SaGA town was used as the stimulus
in our experimental study. Using a VR stimulus enables us
to neutralize two confounding variables: First, it allows the
researcher to gain complete control over the stimulus. Sec-
ond, it ensures that each participant gets exactly the same
input. The participants, unknown to each other, were grouped
into pairs and received a different role each, namely Route-
Giver and Follower. The Route-Giver of each participant
dyad was sent on a virtual bus ride along the sights and

Fig. 1 The SaGA town contains five sights (sculpture, town hall,
church square with two squares, chapel, fountain) and a park. The par-
ticipants are sent on a virtual bus ride along the indicated streets
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through the park. Subsequently, the Route-Giver described
the route and the passed sights to the Follower.

There are 25 dyads engaged in the spatial communication
task combining direction-giving and sight description. The
scenario invoked participants to communicate information
about the shape of objects and spatial relations between them,
a setting that is known to elicit rich gestural behaviour in com-
pany to speech [2]. We collected audio and video data from
the Route-Giver. For the videotape, three synchronised cam-
era views were recorded. In total, the SaGA corpus consists
of 280 min video material containing 4,961 iconic/deictic
gestures, approximately 1,000 discourse gestures and 39,435
words.

The data has been completely and systematically anno-
tated based on annotation manuals that have been developed
according to theoretical considerations and refined in pilot
annotation sessions. Annotation layers divide naturally into
two different partitions, the one relating to speech the other
relating to gestures. Speech transcription has been carried
out using Praat.2 The utterances of Route-Giver and Fol-
lower have been transcribed orthographically on the level of
words, with some extensions in order to account for pecu-
larites of spoken language, for instance, the frequent use of
interjections (“Ã’h”, “mmh”) or the melting of finite auxil-
iars with irreflexive pronouns into one spoken word [“wars”
(was it), “isses” (it is)]. In order to make an empirical study
of the iconic functioning of gestures (cf. Sect. 1 above) fea-
sible in the first place, gesture annotation is implemented
at a greater degree of detail. The gesture annotation has to
provide an analysis of gestural physical components, since
“[a]ll of these gestural components may convey meaning.”
[15, p. 104]. Thus, the annnotation scheme described below
differs in focus and content from psychological ones (e.g.
[48]) as well as from interactional ones like MUMIN [3]
and the thereof derived scheme(s) from the OTIM project3

[12,13] which aim at the role of gesture in turn manage-
ment and in which “[i]nternal gesture segmentation is not
considered.” [3, p. 277]. The SaGA scheme also differs
from “affiliation-based” schemes that aim at the temporal
relationship between gestural locations or movements and
their verbal affiliates [37] in that SaGA is not “restrict[ed
…] to hand/arm movement” (p. 326), but also recognizes
the significance of, for example, palm orientation or finger
configuration. In order to get at the gesture features that
potentially make up the value of an iconic function, we
have to pursue a kinematical approach to gesture annota-
tion (cf. also [35]). The first systematic kinematic decom-
posistion of gestural components has, to our knowledge,
been explored in the work of Calbris [15]. A related factor-
ization of gestures has been implemented in the CoGEST

2 http://www.praat.org.
3 http://aune.lpl.univ-aix.fr/~otim/index.html, accessed May 9, June.

scheme [22,23]. A systematic extension that is based on
the anatomically joints of arm and hands that bring about
movement has been implemented in the FORM scheme [47].
The same basic approach has also been pursued by Kopp
et al. [39]. The kinematic—or “morphologic”, as we call
it—part of the SaGA scheme is closely related to the latter
two schemes. However, it is the last one we build upon wihin
SaGA.

At first, all gestures have been segmented in order to spec-
ify the stroke phase [33]. The gestures (i.e. strokes) are then
typed for belonging to a certain kind, namely deictic, iconic or
it discourse. ‘Iconic’, a term coined by McNeill [48] alluding
to a Peircean triad. Müller [52] sets up a more fine-grained
classification of gestures according to what the hands do.
According to our domain of application, we adopt or modify
the sets of representation techniques proposed in the litera-
ture (see [36,52,70]). The classification of gestures within
SaGA now distinguishes the following eight representation
techniques:

• Indexing pointing to a position within gesture space;
• Placing as if an object is placed or set down within gesture

space;
• Shaping as if an object’s shape is contoured or sculptured

in the air;
• Drawing as if the hands trace the outline of an object’s

shape;
• Posturing the hand(s) form(s) a static configuration to

stand as a model or as a proxy for the object itself;
• Sizing as if hands or fingers indicate a certain distance or

size;
• Counting fingers are used to enumerate things by means

of what can be construed as an iconic representation of a
tally sheet;

• Hedging an indication of uncertainty (typically by a wig-
gling or shrugging movement).

In addition, each gesture has been coded for its so-called
morphology which comprises a specification of handshape,
wrist position, palm and back of hand (BoH, for short) orien-
tation. Movement within any of these dimensions is coded in
terms of concatenations of orientation predicates. The mor-
phology annotation makes use of the fact that the gesture
space of the speakers naturally embodies a spatial reference
frame. The gesture space is oriented along the anatomical
planes, i.e. the sagittal plane, the transversal plane and the
frontal plane. The respective orienting axes provide refer-
ence points for determining perspective predicates like ‘left’,
‘ahead’, ‘above’ etc. In detail, gesture morphology annota-
tion consists in the specification of the following kinematic
or physical gesture properties:
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• The handshape used in the performance of a gesture
stroke is coded in terms of the vocabulary given by a
modified American Sign Language lexicon [67].

• Palm orientation is specified in terms of the direction
of an axis orthogonal to the palm, whereby the follow-
ing six speaker-centric half-axes were used [31]: ‘for-
ward’, ‘backward’, ‘left’, ‘right’, ‘up’ and ‘down’. Up
to three of these basic values are combined into “slash
categories” to encode diagonal or mixed directions, for
instance ‘up/right’ or ‘up/right/forward’.

• The orientation of back of hand is treated like palm ori-
entation.

• We use Wrist Position for anchoring a gesture within
regions of gesture space like “right of body, at the height
of shoulder” or “straight ahead of chest”. In addition, the
extension of a gesture is specified via its distance to the
gesturer’s body. We distinguish five distance predicate,
ranging from contact of hand with body to outstretched
arm.

• For dynamic gestures, that are strokes that involve
motion, the gestural movement is captured by means
of sequences of the annotation predicates (including
slash categories) described above. Sequences of anno-
tation predicates are built by means of the temporal
‘>’-concatenator. For example, if a hand is first moved
upwards and then moved downwards, the wrist position
would be specified by the dynamic value ‘up>down’.

• To further classify the type of movement trajectory,
we distinguish between linear and curved movements.
Assume, for instance, the sequence of directions
‘up>right>down>left’. If it is performed linearly, the
resulting trajectory would be a square whereas it would
be a circle if the same sequence would be performed in
a curved way.

Note that this annotation scheme along with the inventory
for decomposing the physical performance of a gesture go
beyond previous schemes in various respects. First, anatom-
ically systematic dimensions of palm and BoH orientation
are not recognized within the trajectory-oriented CoGesT
scheme [22,23]. The FORM scheme [47] is not rooted in
the McNeillean notion of gesture space and does not account
for functional gesture types or representation techniques. The
scheme of Calbris is only concerned with “straight-line ges-
tures in space […]” [15, p. 104] but not with gestural move-
ments of any kind as we are here. The present annotation
schemes builds on the scheme used in Kopp et al. [39] to
capture two-handed gestures and the manifold configurations
they can manifest.

The direction dialogues are enriched with further infor-
mation about the overall discourse context. For this purpose,
an utterance of a participant is broken down into clauses.
A clause is the minimal syntactic unit that expresses a propo-

sition. Each clause is annotated for its associated commu-
nicative goal. Denis [20] developed several categories of
communicative goals that can be distinguished in route direc-
tions. We revised these for our purposes into four categories,
namely:

• Naming a landmark;
• landmark property description;
• landmark construction description; or
• landmark position description.

Following Halliday [29] we distinguish the thematization
structuring of clauses in terms of theme and rheme. The
theme is the topic of an utterance, of which the rheme is
predicated. Since the topic does not always coincide with an
already introduced discourse referent [40, p. 265] we addi-
tionally distinguish the information foci given and new. Bor-
rowing the terminology of Stone et al. [69], information foci
are classified according to the information states private or
shared.

Recall that the SaGA town is a VR town which is built from
uniquely named, mereologically organized constructors (like
windows, walls, houses, etc.). The fixed referential domain
makes it at least in principle possible to specify for any ges-
ture used in an object description the constructor it depicts.
This referential interpretation of gestures has been done for a
subset of seven dialogues (where a dialogue corresponds to a
complete video) so far. In addition, some spatio-geometrical
properties of the referent are coded. These object features
are drawn from an imagistic representation built for the VR
stimulus of the study. Note that this kind of information is
hardly available for field data.

The gesture annotation within SaGA is realized within
Elan.4 The multimodal corpus data are stored, retrieved and
transformed within the Ariadne system [51].

2.2 Reliability of annotation

The focus of assessing the reliability of annotations is repro-
ducibility (see [41]) for different evaluation foci). Several (at
least two) annotators rate the same set of data. The degree
of agreement between their ratings provides an index for
the reliability of the annotations. A rating is a measurement
procedure where a “two-legged meter” ([68, p. 194], quoted
from Cohen [18]) classifies some target data according to a
set of response categories. The human annotator functions
as an interpretive switchpoint bringing about the measure-
ment. Here lies the starting point for a qualitative distinction,
namely the distinction between Type I versus Type II ratings
[25]. Type I measurements are those where the human inter-

4 http://www.lat-mpi.eu/tools/elan.
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pretation effort leading to a rating is well-understood and,
hence, the outcome easily evaluable, whereas this is not the
case for measurements of Type II. An annotation of Type II
can be understood as “rating under epistemic uncertainty”
[66, p. 29]. The uncertainty involved in Type II ratings is a
source for random annotations. Ratings based on a random
decision, i.e. a decision driven neither by the traits of the
target datum in question nor by the coding instructions, are
unreproducible and therefore do not provide a base for assess-
ing reliability. This difference in the qualitative status has to
be accounted for in evaluations of respective annotations:
Type II annotations have to be adjusted for chance-based
agreements (cf. [16,18]). The gesture annotation introduced
in Sect. 2.1 comprises both types of annotation data, Type I
and Type II. The classification of gestures in terms of rep-
resentation techniques is prone to uncertainty. It is not well-
defined which observable features a gesture has to exhibit in
order to be classified as, say, shaping. There is some intu-
itive understanding of representation techniques, to be sure.
However, the regarding measuring is highly interpretive and
can not be made fully transparent (e.g., completely reduced
to perceptible gesture features). One serious reason for this is
that the understanding of a gesture depends on the linguistic
environment of that gesture.

The second set of gesture annotations, describing the so-
called gesture morphology, make up data of Type I. For
instance, specifying the orientation of a hand movement by
directions (‘left’, ‘right’, ‘front’, …) is well-understood and
has clear-cut application conditions. According to the Type
I/Type II data distinction, we employ different methods in
order to evaluate annotations of representation techniques
and annotations of gesture morphology. As a chance-
corrected coefficient determining the level of agreement to
be found in Type II data, we calculate the first order agree-
ment coefficient AC1 developed by Gwet [25]. In order to
assess the extent of association between annotations of the
Type I gesture morphology, we follow a strategy employed
by Bergmann and Kopp [6]: annotation predicates for the
orientation of the hands within gesture space are translated
into angle measures. (Dis-)agreement can then be calculated
in terms of angular deviations, but keep their ordinal data
type.

The size of the sample of gestures that is large enough
to reasonably test for agreement has been calculated for the
following values, set in the run-up to the reliability study:
we assumed to test for a reasonable agreement level of 70 %
with an α-error of 0.05 and a β-error of 0.85. The resulting n
of 477 gestures (i.e., segmented movements) has been drawn
from the morphology as well as from the technique anno-
tations. The Type I morphology sample has been classified
by four expert annotators, the Type II technique sample by
three expert coders. The reliability of gesture segmentation
has been addressed separately, see Sect. 2.2.4.

Table 1 Overview of Type II data reliability evaluation

Technique Referent InfoStruc InfoState Goal

0.784 0.91 0.95 0.86 0.88

Values denote AC1 coefficients

2.2.1 Type II annotations

The resulting first-order agreement coefficient AC1 for ges-
ture technique rating is 0.784. It’s confidence interval is
(0.758, 0.81), so that the proportion of agreement on ges-
tures’ representation modes given that the agreement is not
due to chance is significantly greater than 75 %, which com-
plies with our initially demanded reliability level. This also
holds for the speech-related Type II annotations, namely the
coding of information structure, information state, commu-
nicative goal and the VR referent. The respective coefficients
are collected in Table 1.

2.2.2 Type I annotations

The annotations that make up the Type I data of the SaGA
corpus transcribe the movement of a gesture within gesture
space—cf. the annotation description from Sect. 2.1. The
gesture space is a three-dimensional region which extends
along the sagittal, transversal, and frontal axis. The respec-
tive annotation predicates thus have a clear spatial interpre-
tation. Nevertheless, annotators may map an observed move-
ment onto different category labels or simply err. However,
the disagreement between, say, “movement to the right” and
“movement to the right and slightly down”, is less than that
between “movement to the right” and “movement to the left”.
Comparing just for sameness of annotation labels would not
capture the degree of spatial difference between them. In
other words: treating movement annotations as nominal data
will miss their ordinal scale information.5 We address this
problem by translating the annotation labels into angular
measures which can be analysed in terms of numeric dif-
ferences. The smallest angular deviation is 2.36◦ for the
direction of hand shapes, the biggest one is 46.16◦ for BoH
direction. On average, the angular difference for gesture mor-
phology as a whole is 27◦ (with average standard deviation
SD = 45). Given that the annotation categories resolve ges-
ture space into “slices” of 45◦ each, the average difference
comes close to the theoretically undecidable mean value of
22.5◦ (45/2◦). Table 2 provides an overview of the angular
deviations between annotators.

5 Since the movement annotation categories are coarse-grained in the
sense that they map a range of positions within gesture space onto just
one category, they are ordinal rather than interval or ratio scaled.
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Table 2 Overview of Type I data reliability evalution

BoH orient BoH dir Palm orient Palm dir HandShape dir Wrist dir HandShape

20.66◦ (2.47) 46.14◦ (13.64) 19.14◦ (1.92) 36.86◦ (20.33) 2.36◦ (1.11) 37.08◦ (6.5) 83 % (AC1 = 0.9)

Values denote mean angular deviation between annotations. The respective standard deviation is given in parenthesis. ‘BoH’ stands for “back of
hand”; ‘orient’ and ‘dir’ abbreviate “orientation” and “direction of movement”, respectively. For the sake of completeness the table also lists the
percentage of accordant handshape classifications—for details, please consult the text

2.2.3 Hand shapes

Evaluating the annotation of hand shapes requires a special
treatment, since the categories developed to classify the hand
shape observed comprise both Type I and Type II shares. In
the first instance, there is a set of basic shapes derived from the
American Sign Language (ASL) lexicon. These Type I labels
are then enhanced by Type II modifiers such as “loose” or
“spread”. The strategy we pursue is to map all modified hand
shapes onto their basic type and treat them as Type I data. As
a result, we found that the four annotators agreed on 83 %.
For the sake of comparison, we also calculated the chance-
corrected agreement coefficient for the hand shapes within
the sample of gestures drawn for reliability assessment. The
resulting AC1 value was 0.9.

2.2.4 Gesture segmentation

The segmentation of the gestures phases preparation, stroke
and retraction (plus eventually some hold phases) poses a
reliability assessment problem on its own, since it does not
fall in the “assignment of category-”setting. The usual anno-
tation task consists in assigning a given item to one of a set
of several response categories, usually of nominal data type.

To the contrary, the segmentation of movements into ges-
tures is an instance of a “marking of items”-setting. Thus,
gesture segmentation in the first place provides the items
that are the objects of classification in the “assignment of
category”-setting. The generic problems for an account of
assessing agreement of segmentations are summarised by
Thomann [73, p. 340] as follows:

• Each observer produces a different number of markings.
• There is a free “choice” of marking points on the time

axis.
• The markings vary in length.
• There is a multiple reciprocal overlapping of the mark-

ings.

The first problem in particular makes it impossible to
account for agreement of segmentations simply by look-
ing for (temporal or video frame-based extents of) overlaps
between the items identified by different observers. Hence,
we follow the reliability assessment strategy worked out by

Thomann [73] and calculate agreement in the “marking of
items”-setting in terms of clusters of markings. The proce-
dure and its implementation is described in Lücking et al.
[46]. Roughly, the rationale is as follows: picture the mark-
ings of various observers as segments on a time line. If all
markings are laid on top of each other, the regions in which all
or at least most observers identify items appear as accumula-
tions of segments, i.e. as clusters. The higher the “nearness”
of clustering of markings, the higher the degree of agreement.
Normalizing clusters against their random baseline results
in the respective segmentation agreement coefficient, called
degree of organization (DoH), which can take values within
the interval (−1, 1). The DoH values for the main gesture
phases are given in Table 3. We calculated the DoH for each
phase separately, since they are relevant to semantic (stroke)
and timing (preparation, retraction) aspects of speech-and-
gesture alignment (cf., e.g., the synchrony rules of McNeill
[48]). With a mean value of 0.7548 they are substantially bet-
ter than what would be expected by accidental coincidence
of segmentations.

In sum, the evaluation of the secondary data of the SaGA
corpus reveals a satisfactory degree of reliability. Chance-
corrected agreement on Type II data surpasses the self-set
threshold of 70 %. Observed interrater agreement on Type
I data results in angular values which, by and large, reveal
rather harmless dissent between annotators. Agreement for
gesture segmentation also reveals quite a large degree of
shared understanding of “gesture” among the annotators.
Hence, the SaGA corpus provides a reproducible data base
which can be exploited for empirically driven research.

3 Putting SaGA to use

3.1 Empirical analysis: what shapes iconic gesture use?

According to the predominant Peircean view, iconic gestures
communicate through iconicity, i.e., their physical form is

Table 3 The degrees of organization for gesture segmentation

Preparation Stroke Retraction

Left hand 0.75780 0.64062 0.91494

Right hand 0.68033 0.64865 0.88657
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said to correspond with object features such as shape or spa-
tial properties (cf. [48] and Sect. 1). In that respect, they con-
trast to language or other gesture types such as emblems,
whose meaningfulness is grounded in a conventionalized
form-meaning mapping. However, just like concrete utter-
ances are not fully determined by their conventional under-
pinning [there are, amongst other, a wealth of pragmatic
(e.g. [24]), psychological (e.g. [64]) and statistical (e.g. [38])
influences on language use], the particular form of an iconic
gesture token is not exclusively shaped by similarity with
a referent qua representation technique (cf. Sect. 1 above).
Rather, iconic gestures are also influenced by their linguis-
tic context and by the speakers’ individual gesture style. In
the following, we will review the major results of our SaGA
corpus-based studies.

Contextual factors Especially the choices6 whether a ges-
ture is produced or not and which representation technique to
use are subject to linguistic and discourse-contextual factors
[8,14]. As concerns the former, we found gestures to be pre-
dominantly produced for rhematic and private information.
Further, the linguistic context is influential: particular syn-
tactic noun phrases are much more likely to be accompanied
by gestures than others. And finally, it has an impact whether
a speaker performed a gesture beforehand, or whether the
hands were in a rest position. Concerning the use of represen-
tation techniques, our corpus analysis revealed that depict-
ing gestures (shaping, drawing, posturing) are preferred in
descriptive utterances, while the spatial arrangement of enti-
ties is typically accompanied by localizing gestures (index-
ing and placing). Moreover, different gestural representation
techniques co-occur with certain noun phrase patterns in a
significant way, and individual speakers tend to stay in the
same technique.

Gesture forms in different representation techniques To
investigate how different gesture form features are used
and combined, we explored the SaGA data separately for
each representation technique [4]. This investigation revealed
novel and corpus-based insights into the structure of gesture
techniques. On the one hand, we found that techniques are
characterized by different technique-specific patterns. For
instance, drawing gestures—in contrast to gestures of other
representation techniques—were found to be distinctive as
they were performed predominantly with one hand only, with
the pointing handshape ASL-G and with downwards oriented
palms. On the other hand, the selectivity of representation
techniques with regard to the iconic representation domain
is also found empirically. In indexing gestures, for instance,
handedness is sensitive to the position of the gesture’s refer-
ent (in accordance with Pfeiffer [53, p. 141]) while other form
features have technique-specific characteristics. In shaping or
drawing gestures, by contrast, shape features of the referent

6 The term ‘choice’ is not meant to imply a conscious process here.

were found to be decisive for the trajectory of wrist move-
ment. In sum, each technique was found to be characterized
by particular conventional aspects as well as iconic aspects.

Inter-individual differences Analyzing the individual dif-
ferences in the use of representation techniques revealed that
individuals differ significantly in the way they gesture about
the same thing, and these differences concern multiple deci-
sion levels involved in the process of gesture formation. First,
individual speakers in the SaGA corpus differ obviously in
how much they gestured, ranging from 2 gestures per minute
up to 30 gestures per minute. Second, speakers differed
considerably in their preference for particular techniques of
representation. Finally, inter-individual differences were also
found with regard to particular gesture form features. Espe-
cially handedness and handshape choice are subject to inter-
individual differences.

3.2 Gesture typology work using SaGA

The data assembled in SaGA show that there are recurrent
patterns in one subject’s gesture. These patterns generalize
to the gesture behaviour of other agents. So there seem to be
“gesture dialects”. However, there is considerable variation
across gesturers—see Sect. 3.1 above. Variation ranges from
the frequency of gesture use observed with agents or agents’
preferences for certain representation techniques (like draw-
ing, shaping or modelling) to the extent of gestures. As to
extent, we have large versus small gestures, lap-oriented ver-
sus torso-oriented ones, different scalings etc. Recurrent ges-
ture information was captured in the manual multi-modal
annotation of the data. It was assembled in types, repre-
sented as typed feature structures and coded in AVMs (see
[57]). Types are extracted manually considering which fea-
tures and information packages enter larger informational
structures and are used in different gesture contexts. Feature
bundles using a combination of hand-shape, palm, BoH or
wrist information are good candidates for a type as are feature
bundles associated with “depicting gesture Gestalts” such as
lines, flat regions or three-dimensional entities.

Comparing pointing gestures, line gestures and three-
dimensional “box” gestures we observe that types can be
ordered along dimensions and complexity: points exhibit
zero dimension, lines are one-dimensional, signs for flat
surfaces two-dimensional, gestures for containers three-
dimensional etc. “Line gestures” are lines drawn in ges-
ture space using the extended index finger; frequently these
“depict” routes, directions or edges of three dimensional
objects; “box gestures” are formed with both hands indi-
cating a container shaped like a box. In addition, there are all
sorts of composite cases, for example lines touching a cylin-
der, two bent lines forming a type of twisted angle and so on.
See Fig. 2 below for an illustration also indicating the impor-
tance of handedness and mixed cases. Since there exists an
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Fig. 2 Structure of the typology matrix

ordering along a scale of complexity and since there is a finite
source of shapes or features for all gesturing, an inheritance
hierarchy can be established for the gestures going into a full-
fledged typology: the more basic types pass their information
“further down” to other types. Looking at the range of ges-
tures observed in SaGA, we found out that some are fairly
well known and researched into, for example beats, emblems,
pointing gestures and iconic gestures (cf. [48, p. 76] for these
types). In addition, we have “quantificational” ones such as
for numbers or “all” which, according to the “counting” cat-
egory defined in one of our manuals (see Sect. 2.1 above),
also qualify as iconic gestures. Some gestures seem to oper-
ate on propositional contents in the role of “modifiers”. Fur-
thermore, gestures can have pragmatic functions as shown by
gestural “denials”, others may even express full illocutionary
acts, acting like constants. A new finding we have is that there
are gestures related to turn allocation and dialogue structure,
for example, self-selection of next speaker or next speaker
selection by current speaker can both be done by pointing
(see also the remarks on “interaction regulation” by means
of pointing gestures by Kendon [35]). Finally, we have com-
plex gestures produced by several agents in successive turns
collectively. In sum, we see that there is evidence that ges-
ture is not a mere construction-related or even propositional
phenomenon but permeates all levels of conversation. All of
these gesture shapes are based on a handful of typologically
relevant motor behaviours.

The gain of a systematic gesture typology is manifold: The
types factored out substantiate the very notion of a gesture
morphology: we see that gestures are built out of regular, sta-
ble parts, the aforesaid points, lines and so on. In the end, we
use the types isolated for computational gesture generation
and gesture understanding. Concerning computation, we can
establish a finite set of gesture building blocks to be used
as a generating device triggering simulated motor behaviour.
A study taking up this research line is Bergmann et al. [11].
On the understanding side we can associate conventionalised

descriptions of partial ontology providing a gesture’s mean-
ing with these gesture types, whose interface with verbal
meaning is conventionalised.

Our typological work was at first restricted to pointing and
iconic gestures co-occurring with noun phrases [26,57]. In
the sequel we developed classifications of gestures indicating
dialogue structure [28] and presently we work on gestures
related to full verb phrases [60].

3.3 A computational model of gesture production

To generate gesture forms from a given representation of
content we have proposed GNetIc, a gesture net special-
ized for iconic gestures [5]. These networks implement the
representation technique-based form-meaning relationship
as described in Sect. 3.2, and even go beyond it in that
they account for the empirical findings which indicate that a
gesture’s form is also influenced by specific contextual con-
straints like linguistic or discourse contextual factors (e.g.,
information structure, communicative goals, or previous
gesture use of the same speaker) as well as obvious inter-
individual differences (see Sect. 3.1). We employ a formal-
ism called Bayesian decision networks (BDNs)—also termed
Influence Diagrams that supplement standard Bayesian net-
works by decision nodes [5,7]. This formalism provides a
representation of a finite sequential decision problem, com-
bining probabilistic and rule-based decision-making. We are,
therefore, able to specify rules for the mapping of meaning
onto gesture forms and at the same time we can reconstruct
data-based patterns in terms of probability distributions.

GNetIc provides a feature-based account of gesture gener-
ation, i.e., gestures are represented in terms of characterizing
features as their representation technique and form features
which correspond to those covered by the gesture typol-
ogy (see Sect. 3.2). These make up the outcome variables in
the model which divide into chance variables quantified by
conditional probability distributions in dependence on other
variables, (‘gesture occurrence’, ‘representation technique’,
‘handedness’, ‘handshape’), and decision variables that are
determined in a rule-based way from the states of other
variables (‘palm orientation’, ‘BoH orientation’, ‘movement
type’, ‘movement direction’). Factors which potentially con-
tribute to these choices are considered as input variables. So
far, three different factors have been incorporated into this
model: linguistic/discourse context (communicative goals,
information structure, thematization, noun phrase type), fea-
tures characterizing the previously performed gesture, and
features of the referent (shape properties, symmetry, number
of subparts, main axis, position).

The probabilistic part of the network is learned from
the SaGA corpus data by applying machine learning tech-
niques. The definition of appropriate rules in the decision
nodes is based on our theoretical considerations of the
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meaning-form relation via gestural representation techniques
and our corpus-based analysis of these techniques. That is,
depending on the very representation technique, gesture form
features are defined to be subject to referent characteristics
as well as other gesture form features. See Fig. 3 for the gen-
eration network schema. With a set of rules the values for
palm and BoH orientation, movement type, and movement
trajectory of a gesture are determined. With respect to rep-
resentation technique-specificity, the rules account, e.g., for
the fact that drawing gestures are typically performed with a
downwards palm orientation and fingers oriented away from
the speaker’s body. In addition, regarding movement type,
the referent-characteristic shape properties are depicted.

Currently, the system has the ability to simulate five dif-
ferent speakers from the SaGA corpus by switching between
the respective decision networks built as described above.
These five speakers have been chosen because they gestured
at a relatively high rate while giving the object descriptions
so that the amount of data was sufficient to build the prob-
abilistic parts of the networks. A total of 288 gestures (473
noun phrases) was used for this purpose.

The GNetIc model was finally evaluated in two ways.
First, in comparison with empirically observed gestural
behavior, the model was shown to be able to successfully
approximate human use of iconic gestures, especially when
capturing the characteristics of individual speakers’ gesture
style [7]. Second, when brought to application in a vir-
tual agent, the generated gestural behavior was found to
be positively rated by human recipients [10]. In particular,
individualized GNetIc-generated gestures could increase the
perceived quality of object descriptions. Moreover, the vir-
tual agent itself was rated more positively in terms of verbal
capability, likeability, competence, and human-likeness.

4 Gesture and unification-based grammar

Unification-based grammars make up leading formal frame-
works for formulating grammars for natural languages.

Head-Driven Phrase Structure Grammmar (HPSG [56,63]),
Lexical Functional Grammar (LFG [19]), Sign-Based Con-
struction Grammar (SBCG [62]), and Fluid Construction
Grammar (FCG [65]) all rely on Attribute-Value Matri-
ces (AVMs) as representation format and the unification of
typed feature structures as central mechanism. Due to their
prominent status and the flexibility of AVM representations,
unification-based grammars are a first choice for formulating
a speech-gesture interface.

4.1 AVM representations for gestures

Using AVMs as a representation format for gestures goes
back at least to the work on a multimodal unification-based
grammar as part of a handheld pen-input interface by John-
ston [32]. However, Johnston’s gesture representations are
rather impoverished, they are strictly limited by the restricted
pen-input application domain. In the later work of Kopp et
al. [39], attribute-value pairs for representing a gesture are
oriented at the “morphology” of gestures. The architecture of
such gesture AVMs is straightforward: the orientations and
movements of palm, back of hand and wrist make up features
that are specified by appropriate orientation and movement
values (including the empty value for, say, static gestures).
The feature HANDSHAPE is assigned an (perhaps modified)
ASL hand shape name. Such a morphology-driven AVM rep-
resentation is used in the HPSG accounts of Lascarides and
Stone [42] and Alahverdzhieva and Lascarides [1]. The more
detailed SaGA gesture annotation can be readily linked to
such a feature structure representation (see [43,57]).

4.2 Multimodal parsing

Johnston [32] defined and implemented a multimodal chart
parser. This multimodal parser processes input on two
different input streams and conjoins them into a combined
structure. The constraint that licenses the junction is a tem-
poral one: a gesture that overlaps with a word or follows it
not more than four seconds can be combined into a multi-
modal structure. This constraint is backed by the phonolog-
ical synchnrony rule formulated, for instance, by McNeill
[48]. In this vein, Alahverdzhieva and Lascarides [1] and
Lücking [43] proposed an intonation constraint: a gesture
relates to a stressed verbal element in an overlapping time
interval.

4.3 Multimodal linking

In addition to a bimodal, phonetically driven parser and AVM
representations for gestures, we assume that the gesture mor-
phology relates to a typology of entities of mixed complexity
via the iconic mapping rep—see Sect. 3.2 above. For exam-
ple, rep maps the hand shape bent-B of a static left hand onto
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Fig. 4 Feature structure representation of a bent-B gesture

left-curved-side(s, i, g), where s is the side, i is the thing s is
a side of, and g is the gesturer, a parameter which is needed
to account for the perspectivity of “left”. A representation of
the characteristics of the bent-B gesture by means of an AVM
is given in Fig. 4, where the rep function is captured in terms
of the feature REP.

The left-hand-gesture is to be read as follows: the mor-
phology (MORPH) of the simple static gesture introduces the
hand shape value. The gesture’s verbal connector, V-CON,
has to be a stressed word. The entity represented by the ges-
ture is part of the gesture’s REP list. There, the typology
entry is given as the value of TYP. The semantic relation
between the gesture and its verbal connector is established
via linking, that is, by the sharing of indices. The INDEX of
the word is the ARGument of the gesture representation—
see index i . Furthermore, the representation is relative to a
certain perspective g, which has to be fixed contextually.

Gesture structures like the one from Fig. 4 can be
“plugged into” a multimodal HPSG framework as devel-
oped by Alahverdzhieva and Lascarides [1] or Lücking [43],
giving rise to a grammar modelling of speech and gesture
integration.

5 Work on gestures supporting dialogue structure
and interaction in SaGA

The experimental context for SaGA shows a kind of “Russian
Doll structure” with respect to embedding. This forms a sort
of precondition for gestures used in dialogical exchange: We
have the route context making use of the conversational par-
ticipants’ (CPs’) gesture spaces. It contains the topical or
baseline information dealing with the task. In addition, there
is the larger embedding context of the experimental situa-

Fig. 5 Embeddedness

tion (see Fig. 5) and a still larger one in which we have
the physical VR environment, the institute, the University or
Bielefeld town, etc. The discourse-related gestures observed
can be grouped roughly into gestures used in turn allocation,
feed-back gestures in second turn, those indicating assess-
ment of evidence, gestures serving to highlight information,
sequences of quick feed-back or monitoring gestures tied
to sub-propositional contributions and, finally, truly interac-
tive gestures exclusively social in character. All of these are
accompanying speech. For these we have developed a man-
ual (cf. [27]). Data descriptions can be found in Hahn and
Rieser [28] on which this report is based and in Rieser [58].

Here is a synopsis of the main findings: First we treat
gestures related to turn allocation. With Sacks et al. [61] we
assume a regularity for turn allocation in dialogue depend-
ing on the larger speech-exchange system: Current speaker
selects next. If next is not provided this way, one of the other
speakers self-selects. This option omitted, the first speaker
may continue. Similar to observations already made in Clark
[17], the SaGA data show that there is considerable freedom
in this schema. It does leave room for quick interrupts of
other. These become acceptable for CPs if motivated locally
and related to the common purpose. Turn-related gestures
exploit the “Russian Doll” property of the situation: cur-
rent speaker points to other to select her as next. Somewhat
surprisingly, indexing other to select self is also a possibil-
ity observed in roughly the same types of contexts. Further,
matching a class of specific verbal contexts, current speaker
may invite a contribution from other using a “gimme mo”
gesture. In addition, current speaker may ask to be given
a larger amount of time to carry on or complete his con-
tribution. He may indicate a lapse to be tolerated by other
and use a finger-to-lip or finger-below-lip gesture to express
that. In tightly coordinated discourse there is an interesting
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“attack-ward-off pair”: other may indicate that he wants to
contribute at a non-turn-transition relevance place. Discour-
aging that, current speaker may try to fence him off with a
characteristic posture. In the end, current speaker may yield
and offer a “go ahead” for the intruding CP. Speaker of a
second turn may use an iconic gesture of previous speaker in
order to indicate acknowledgement or accept (see Bergmann
et al. [11] for a simulation account of this phenomenon).
As with the indexing, next speaker’s gesture’s imitation uses
a topical gesture in a discourse function. Gestures can also
indicate assessment of evidence—cf. the hedging category
of gesture classification (introduced in Sect. 2.1 above). We
observed two groups of gestures to indicate reliability of
information. One is conveying doubt concerning the fit of
a description, the other one is indicating an agent’s epistemic
state concerning a situation. Similarly, gestures can be used
to highlight or to downgrade information: stressing informa-
tion can also be suggested lifting a G-shaped hand, directing
it against the addressee and moving it in a beat-like fashion.
By contrast, we have the near-universal “brush-away” ges-
ture indicating that information is considered to be not so
relevant, a finding that supports the analyses by Teßendorf
[71,72]. Perhaps our main finding was sequences of quick
feed-back or monitoring gestures tied to sub-propositional
contributions: CPs in near-to-natural task-oriented dialogue
often converse quickly and in short thrusts. So we can have a
Router’s “don’t interrupt” followed by the Follower’s “let me
interrupt” and, finally, the Router’s acknowledgement and a
“go ahead” gesture. This shows that full-blown dialogue acts
do not always matter. From all of these we want to delineate
gestures which are truly interactive such as hand and body
postures to mollify someone or touching or caressing him.
Here we have “calming down” and “don’t bother” gestures.

Another phenomenon of gesture use in dialogue is gestural
alignment. Here, two directions of alignment that involve
gestures have to be distinguished, namely alignment between
gesture and speech on the one hand and alignment between
gesture and gesture on the other hand. Concerning the for-
mer case, viz. speech-and-gesture alignment, a first attempt to
attest evidence for a mutual adaptation between both modal-
ities has been undertaken by Lücking et al. [44]. Starting
from the notion of multimodal ensembles, that are couples of
gestures and their verbal affiliates Kendon [36], it has been
found that the use of gestures has an influence on the distrib-
ution of words in multimodal discourse in such a way that the
distributional patterns that governs monomodal spoken dia-
logue gets slightly distorted. Note, that this approach there-
fore provides a measurement procedure for speech-gesture
alignment. Building on that work, the classification of multi-
modal ensembles has been formalized as a machine learning
task by making use of the notion of cross-modal alignment in
Mehler and Lücking [49]. In ongoing work, we assess cross-
modal alignment in terms of a network model for measuring

alignment in dialogue developed by Mehler et al. [50]. This
model is the first one that goes beyond surface repetition in
expressing and capturing alignment phenomena.

Concerning gesture–gesture alignment on the other hand,
we recently found—in a first systematic study of gesture
form convergence based on a large sample naturalistic dia-
logue data—that gesture use is also subject to inter-speaker
influences. In other words, we found evidence for gestural
alignment [9]. Remarkably, not all gesture features seem
to be subject to this effect. While the form features ‘wrist
movement’ and ‘finger orientation’ seem resistant to these
contingencies, we found that the use of particular gestural
representation techniques as well as the gesture form fea-
tures ‘handshape’, ‘handedness’ and ‘palm orientation’ are
significantly subject to inter-speaker convergence effects. In a
detailed analysis of those sensitive features we addressed the
question whether intra-speaker or inter-speaker influences on
gesture form are stronger: for all features under considera-
tion, alignment effects were found to be significantly stronger
within speakers than across speakers. That is, same speaker’s
gestures influence each other more than the gestures an inter-
locutor performs, notwithstanding the effectiveness of other-
alignment. Further, we investigated how gestural alignment
depends on the temporal distance between gestures. Here a
multi-faceted picture emerged: alignment in ‘handshape’ and
gestural representation techniques gets weaker with greater
distance, while alignment in ‘handedness’ and ‘palm orien-
tation’ remains constant. It will be discussed whether this
heterogeneous picture of gestural alignment at the level of
different features may be due to the fact that particular
features are communicatively bound, i.e., more crucial for
conveying intended meaning and less amenable for inter-
personal coordination.

Results from corpus investigation concerning dialogue
moves have been modelled in multi-modal dialogue theory
[55,58] and in simulation of multi-modal dialogue effects
[11]. In ongoing work we extend our modelling accounts to
cover further dialogue phenomena of multi-modal commu-
nication.

6 Conclusion

In this paper we presented the Bielefeld SaGA corpus, a col-
lection of naturalistic, yet content-controlled speech-gesture
data. The data is systematically and completely annotated,
the annotation being based on a grid developed to cover the
semantic and pragmatic fulcrum of iconic gestures, espe-
cially hand-shape and movements of hand in the gesture
space. It has been rated for practices like drawing and mod-
elling and for the fine-grained gesture morphology, both
yielded in the end a stable foundation for specifying the
semantics of gestures. In order to support gesture semantics
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and to initiate work on speech-gesture interfaces, gesture
occurrences were grouped into types adopting specific func-
tions, for example lines which can indicate trajectories of
movements or borders of surfaces or regions. We found out
that use of gesture types varies with speakers and contexts as
does gestural (as well as all linguistic) behaviour in general.
One of our main research questions was “Can we get at multi-
modal meaning related to gesture meaning and verbal mean-
ing as input?”. It was investigated using unification based
grammars and given different answers depending on the role
attributed to gesture meaning. Working through SaGA also
led to the discovery of non-familiar types of gestures sup-
porting dialogue structure and interaction regularities. Most
importantly, machine-learning treatment of annotated SaGA
structures led to the development of a talking and synchron-
ically gesturing avatar. The gestures it produced have in turn
been evaluated using model theory mapping them unto ges-
ture occurrences in SaGA and finally submitted to judge-
ments of human observers estimating naturalness and other
social parameters [59]. Especially work along these lines
is expected to be helpful in developing human-robot inter-
faces to facilitate communication using gestures on one or
both sides. Investigation of SaGA structures and its various
implementations have so far been mainly concentrated on
dealing gesturally with objects, especially landmarks. As a
consequence, dynamics in gesture execution did not play a
dominant role. We now started to investigate gestures tied to
the verbal constituents of utterances, for example, those indi-
cating the direction of routes taken, the junction of roads or
the flow of water from a fountain. From these investigations
we hope to gain insight into the topology of the speakers’
gesture spaces and to develop experimental tools for mea-
suring them using body trackers. A further hope is that these
measurements can be used to supplant the naïve observa-
tional annotation categories applied now and that this will in
the end lead to developing avatars equipped with richer and
more spontaneous gesture behaviour.
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