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Data-based control of motion systems

Maarten Steinbuch, Jeroen van Helvoort, Wouter Aangenent, Bram de Jager and René van de Molengraft

Abstract— This paper presents recent research results for
feedback control design of motion systems. Two model-free
approaches are investigated, that exploit the ease of experi-
mentation which is typical for motion systems. One approach is
data-based design of a linear feedback controller which realizes
desired closed-loop sensitivity and complementary sensitivity
transfer functions. These transfer functions are specified via
a data-based performance cost. The designer can prescribe
both the controller structure and the complexity. Experimental
results obtained in a direct-drive robot motion control problem
confirm the effectiveness of the design. A second line of research
is unfalsified control where a set of controllers is iteratively
tested against measured data. Experimental results for the well-
known fourth order benchmark motion system show feasibility
of the approach. Finally, we implemented a nonlinear SPAN
filter on the same system, which outperforms a linear feedback
design.

I. INTRODUCTION

Modern high tech mechatronic devices, such as for ex-
ample robotic manipulators and storage drives, constitute
a major economic value. Increasing performance demands
motivate a thorough analysis of limitations in the design. In
this study we will address the feedback control part of the
design of motion systems.
Typical for motion systems, is the relative ease of doing ex-
periments. The performance-limiting issues are primarily due
to causality. Plant models are relatively easy to acquire with
high accuracy, due to the experimental conditions mentioned,
and feedforward is always added for servo tasks. The primary
role of the feedback is to suppress disturbances. Since most
motion systems behave approximately as linear - certainly
under closed-loop conditions - and constraints on signals
are normally taken into account a-priori while designing the
servo task, i.e. they are not a relevant issue for feedback
design, controllers are typically also linear. Causality implies
that with respect to disturbance suppression, feedback is
always late (i.e. phase delay especially at high frequencies).
Therefore, high gain controllers (learning, repetitive) are used
whenever possible, for instance to suppress periodic distur-
bances. The Bode Sensitivity integral expresses the causality
in the form of reduction of low-frequent disturbances, at
the cost of amplification of (typically) high frequent sig-
nals (Waterbed effect), e.g. measurement noise. It is this
fundamental limitation which is the driving force for several
lines of research: (i) further exploring feedforward, including
iterative learning control, (ii) disturbance- and data-based
control, i.e., using the internal model principle and also the
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principle of ’machine-in-the-loop’ for adjusting the controller
parameters on the basis of on-line measurements, and finally,
(iii) non-linear control of linear motion systems. In this paper
we will show some of the recent research results with respect
to (ii) and (iii).
The data-based (DB) control field addresses techniques for
control design without explicitly making use of parametric
models, but merely based on measured signals. Here we
refer to a few DB methods: DB LQG control (Skelton
and Shi, 1994; Aangenent et al., 2005), unfalsified con-
trol (Safonov and Tsao, 1997), simultaneous perturbation
stochastic approximation (Spall and Cristion, 1998), itera-
tive feedback tuning (Hjalmarsson, 1999), disturbance-based
control (Steinbuch and Norg, 1998), and virtual reference
feedback tuning (Campi, Lecchini and Savaresi, 2002).
In our first study on DB control (Kostić, De Jager and
Steinbuch, 2004a), the motivations for the DB approach
are simplified off-line design of high-performance motion
controllers, and the direct supervision over the controller
structure and its complexity. Here, we investigate if the
control performance feasible with model-based motion con-
trollers can also be realized with data-based controllers. The
requirement is that the DB method must allow prescribing
the controller structure and the complexity at the start of the
feedback design. Based on the virtual reference feedback
tuning approach (Campi, Lecchini and Savaresi, 2002), we
derive a DB method for controller design, which enables
simultaneous shaping of the closed-loop sensitivity and the
complementary sensitivity transfer functions. Its practical
merits will be illustrated with experimental results obtained
on a benchmark direct-drive robotic system, see Section II.
In Section III an alternative is shown, known as unfalsified
control (Safonov and Tsao, 1997), where a set of feasible
controllers is tested against data. We are proud to show for
the first time experimental implementation results with this
technique (Van Helvoort, De Jager and Steinbuch, 2005).
For this we use the well-known fourth-order motion system.
The same system is used in Section IV to show results with
nonlinear control of motion systems, using the SPAN (’Split-
PAth Nonlinear’) filter. We now have experimental evidence
how to ’circumvent’ Bode’s gain/phase relation.
We will finish with conclusions in Section V.

II. VIRTUAL REFERENCE FEEDBACK TUNING

A. Method

The system shown in Fig. 1 illustrates a standard feedback
system, with controller C and plant P. Here we assume a
SISO one degree-of-freedom structure, although this is not
essential for the method we will develop. For simplicity of
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Fig. 1. Feedback system

notation we will omit the Laplace argument s. The desired
control performance is specified via the desired closed-loop
sensitivity So and complementary sensitivity functions To,
by which the designer specifies the desired dynamics of
the closed-loop system, e.g., a minimum bandwidth require-
ment, integral control, and a level of error reduction and
specification of the maximum closed-loop bandwidth for
achieving robustness against resonances and noise at higher
frequencies. For design purposes it is not strictly necessary
that So and To are complementary.

The objective is to design a stabilizing controller C which
closely realizes So and To. As objective function we now
define:

J(θ) = |To − C(θ)SoP | (1)

where the symbol θ denotes the vector of controller param-
eters to be designed. In order to minimize this objective
function we need the plant model P . However, if we apply
Eq. (1) to the measurable input data u(t), and by using
y = Pu, we obtain the data-based objective function:

J(θ) =
∑

t

Tou − C(θ)Soy (2)

where the sum is taken over the data sequence of inputs
u(t) and outputs y(t). The operators in Eq. (2) are taken as
discrete-time filter operators. For more details we refer to
(Kostic, de Jager and Steinbuch, 2004a).

B. Results

The direct-drive robot with three revolute joints (RRR
robot), shown in Fig. 2, is the subject of our case study.
We refer to (Kostić, De Jager and Steinbuch, 2004b) for the
kinematic and dynamic models. Due to direct-drive actuation,
the robot dynamics is highly nonlinear and coupled, which
impedes motion control of high performance. Their effects
are reduced via a nonlinear compensation based on the robot
rigid-body dynamic model. The robot dynamics that are
not covered by this compensation are handled by feedback
controllers, which we typically design using H∞ control
theory. For this paper, the feedback controllers were designed
using the DB method presented in the previous section. Here,
we will illustrate the DB feedback design for the 1st robot
joint only. The designs for the other joints were carried-out
in a similar way.

The prescribed structure of the controller was the product
of one integrator (thus directly enforced in the controller

Fig. 2. The RRR robot

structure) and two notch filters; the notches were based on
our experience of resonances at 28 Hz and 98 Hz in the
position measurements from the 1st robot joint; we used
a 12th order FIR filter as the basis function, with a total
of 13 tuning parameters. The parameters were computed
by minimization of Eq. 2. The Bode plot of the resulting
controller is shown in Fig. 3. By inspection of the plot,
one notices that the integral action was achieved, and that
effects of the enforced notches are present in the controller.
Apart from the enforced ones, several other notch effects
show up. Induced by the resonances in the plant dynamics,
these effects were created by the tuning part of the controller.

The Bode plot of the achieved sensitivity transfer functions
is shown in Fig. 4, together with the corresponding desired
transfer function response. The achieved transfer function
was computed based on the plant FRF data. Similarities
between the plots in the frequency ranges of interest are
in agreement with our criteria, the peaking in the sensitivity
is below 6 dB, and the controller passed the stability test.
Therefore, our requirements for the quality of the design
have been met.

III. UNFALSIFIED CONTROL

A. Method

In this section, unfalsified control theory is applied to
determine which control parameter sets in a specified control
structure are able to meet a given performance specification,
using only measured input/output data. The concept of
unfalsified control was introduced by Safonov and Tsao
(1997) as “a framework for determining control laws whose
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Fig. 3. the data-based controller FRF
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Fig. 4. desired and realized sensitivity

ability to meet given performance specification is at least not
invalidated (i.e., not falsified) by the experimental data.” This
data-driven model-free control approach recursively falsifies
control parameter sets that fail to satisfy a performance
specification, given measured data. The only assumption is
that at least one controller from the original controller pool
satisfies the performance specification at all times.

In early works, the controller parameter space was gridded,
resulting in a finite set of candidate controllers. A trade-off
has to be made between the number of candidate controllers
and the computational load. The restriction to a finite set
was lifted by Cabral and Safonov (2003) by employing an
ellipsoid to describe the region containing all unfalsified
controllers. New measurement data defines another ellipsoid,
and the intersection of both ellipsoids specifies the region
containing the unfalsified controller parameter sets including

the information of the new measurement data. This inter-
section is approximated by an outer-bounding ellipsoid, to
ensure that no unfalsified parameter set is wrongly falsified
and that an ellipsoidal unfalsified region is maintained.
However, the minimum-volume outer-bounding ellipsoid can
only be computed efficiently in a few specific cases, for
instance if the old ellipsoid is exactly sliced in half, as is
employed in (Cabral and Safonov, 2003).
In (van Helvoort, de Jager and Steinbuch, 2005), it is
shown that if new measurement data defines two parallel
half-spaces, the minimum-volume outer-bounding ellipsoidal
approximation of the intersection can be computed analyt-
ically. Hence, the resulting algorithm is fast and can be
implemented in real-time, as is shown in an experiment on
a motion system.

B. Results

Consider the performance specification

−∆(tk) ≤ Gm(s)r(tk) − y2(tk) ≤ ∆(tk) (3)

with Gm the reference model = desired closed-loop dynam-
ics, r the reference signal, y2 the angular position of the load
mass and ∆(tk) a threshold. With the controller structure

r(tk) = w(u(tk), y(tk))T θ (4)

the performance specification defines two parallel half-
spaces in the controller parameter space θ ∈ R

p, if
w(u(tk), y(tk)) is causally-left-invertible for u(tk).

The algorithm, as presented in (van Helvoort, de Jager and
Steinbuch, 2005), is implemented using a dSpace DS1102
controller board at a sampling rate of 1.0 kHz. The average
turnaround time is 0.57 ms. The experimental setup is a dual
rotary 4th order motion system, as shown in Fig. 5. It consists
of a load which is connected to a motor by a thin, flexible
bar.

MotorFlexible barLoad

Fig. 5. Photo of the dual rotary 4th order motion system.

The control parameter set is updated once it is falsified. In
Fig. 6, the tracking error Gmr − y2 is shown, together with
the thresholds −∆ and +∆. In this preliminary experiment,
a 1 Hz sinusoid is applied as a reference signal input
and the controller parameters are randomly initialized. The
current controller parameter set is unfalsified if the tracking
error is within the thresholds −∆ and +∆. It can be seen
that at t ≈ 1 second and repeatedly in the interval t ∈
(23, 38), the currently implemented controller parameter set
is falsified. A new controller parameter set is selected at
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Fig. 6. Tracking error during the experiment, together with the thresholds
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Fig. 7. Values of controller parameters during the experiment as a function
of time. The values change if the current control parameter set is falsified.

these time instances, as can be seen in Fig. 7, which shows
the implemented controller parameters as a function of time.

In Fig. 8 a Bode plot is shown of the open loop of
the system, with the unfalsified controller obtained after 50
seconds. A bandwidth of around 10 Hz is achieved, with a
phase margin of 40◦ (at 10 Hz) and a gain margin of 9 dB
(at 42 Hz). However, it can also be seen that the resonance
at 48 Hz peaks through the 0 dB line, causing only 15◦

phase margin at 46 Hz. The controlled system is stable but
the sensitivity is bad at the resonance peak. However, due
to the sinusoidal reference signal of 1 Hz, this frequency-
range is not excited and hence it will not result in a large
tracking error. Results with a more exciting reference signal
(e.g., a block signal) are still subject of research, as well as
incorporation of an unfalsified friction compensator.

IV. NONLINEAR CONTROL OF LINEAR MOTION SYSTEMS

A. Introduction

There has been considerable interest in literature on the
topic of fundamental limitations in feedback systems with
known plant dynamics. This has its origin in the seminal
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Fig. 8. Bode plot of the open loop transfer with the unfalsified controller
obtained after 50 s.

work of Bode (Bode, 1945), more recent work is contained
in (Seron et al., 1997). Most of this work is restricted to
linear feedback loops. Part of the limitations is inherently
linked to the plant and thus hold irrespective of how the
input is generated, be it via linear, nonlinear or time-varying
feedback. Other limitations are a consequence of the plant
acting in combination with linear time invariant (LTI) feed-
back control. This naturally rises the question if these latter
limitations can be ameliorated by using nonlinear or time-
varying in stead of LTI feedback.
Being aware of the difficulties and bad effects normally
associated with the presence of nonlinearities, it may appear
a step backwards to intentionally introduce nonlinearities
into an otherwise essentially linear system. A problem that
arises is to be able to predict the systems response for
various inputs. In many cases however, there may be good
reasons to intentionally introduce nonlinear elements in the
feedback loop. Indeed, in literature several examples have
been presented showing that nonlinear control can, in certain
circumstances, outperform linear time invariant feedback
control for known plants. In (Feuer et al., 1997), it is shown
that a simple PI controller whose integrator is switched on
and off depending on the size of the error, performs better
than its linear time invariant counterpart. Also, based on
experience, several nonlinear ‘tricks’ are used in industry
to obtain better performance of an LTI feedback system
(Heertjes and Steinbuch, 2004). A more systematic strategy
for nonlinear control of an LTI plant is reset control. Reset
control action resembles a number of popular nonlinear
control strategies such as relay control (Tsypkin, 1984),
sliding mode control (Decarlo, 1988) and switching control
(Branicky, 1988).
The motivation for these and other types of nonlinear control
for linear systems is the fact that linear controllers have the
inherent disadvantage that their gain and phase characteris-
tics are related (Bode, 1945). Specifically, the need to opti-
mize the open-loop high frequency gain often competes with
required high levels of low frequency loop gains and phase
margin bounds. Typically, in motion systems the open-loop
frequency response is required to have sufficient bandwidth

532



and large low frequency gain to obtain a fast response and
good settling behavior or tracking. On the other hand, at
high frequencies, the loop gain needs to be small to suppress
residual vibration and sensor noise. This performance trade
off is defined by Bode’s gain/phase relation, which limits
how fast the open-loop gain can cross unity gain while
maintaining closed-loop stability, whereas in the ideal case
these characteristics would be designed independently of one
another.
This section shows one example of nonlinear control of a
linear system and presents experimental results obtained on
the dual rotary 4th order motion system of Fig. 5, see also
(Aangenent, Van De Molengraft and Steinbuch, 2005) for
details. Since a common test of servo performance is the
step response, the goal is to show that the introduction of
nonlinear elements in an essential linear motion system can
improve the step response with respect to the combination
of overshoot and settling time when compared to standard
linear feedback. To the authors knowledge, no experimental
results of this kind obtained on motion systems have been
presented in literature yet. In section IV-B, the SPAN (split-
path nonlinear) filter is discussed, and experimental results
are presented in section IV-C.

B. Nonlinear control example

In this section, results of nonlinear control is presented
for the SPAN filter (Foster et al., 1966). The control setup
is depicted in Fig. 9.

P-
+

r(t) e(t) y(t)

CNL

Fig. 9. Control scheme.

In this figure, NL denotes the nonlinear control element, C
denotes the linear controller and P denotes the linear system
dynamics. In order to guarantee zero settling error, a linear
controller consisting of a proportional part, a lead/lag filter
and an integrator is applied to the system.

The SPAN filter is an attempt to obtain a filter which
has independent gain and phase characteristics. In Fig. 10,
a block scheme of a SPAN filter is depicted. This filter
processes the input in two paths and multiplies the output
of the two branches. The path containing the sign element

1
1+ 1s 

ABS

1+ 2s
1+ 3s 

SIGN

e(t)
X

f(e)

Fig. 10. Block diagram of a SPAN filter.

controls the sign of the signal and destroys all magnitude

information, while the absolute value element destroys all
sign information, and therefore controls the magnitude in-
formation. With this filter, it seems that the ’phase’ and the
magnitude can be independently chosen (although it is of
course now a nonlinear filter of which definitions of phase
and magnitude are unclear).
The SPAN filter can be used as a phase lead filter that does
not cause magnitude amplification. In the control scheme
in Fig. 9, the SPAN filter takes the place of the nonlinear
element, and the integrator and the lead filter are still used.
It is now possible to increase the cut-off frequency of the
integrator while keeping the closed loop stable by applying
a lead filter in the sign path of the SPAN filter. In the absolute
value path, a low-pass filter is used to attenuate higher
frequencies. In Fig. 11, the describing function of the SPAN
filter is depicted. This describing function is independent of
the amplitude of the input but depends only on the frequency.
As can be seen, within the describing function theory, this
filter is able to obtain phase lead while attenuating the
magnitude, something which is not possible with any linear
filter.
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Fig. 11. Frequency dependent describing function of the SPAN filter.

With the SPAN filter in the loop, the cut-off frequency
of the integrator can be increased without destabilizing the
closed-loop system.

In the design of the filter, the cut-off frequency of the
integrator is increased to 18.5 Hz, the cut-off frequency of
the low-pass filter is set to 11.14 Hz, the zero of the lead
filter is placed at 2.12 Hz, and the pole is located at 38.19
Hz. The gain of the SPAN filter was tuned to obtain a step
response without overshoot and a reasonable settling time
and is set to 0.15.

C. Experimental results

In Fig. 12, the measured step responses of the linear
controlled system and of the system with the SPAN filter are
shown. This filter is able to obtain approximately the same
settling time, while avoiding overshoot completely. This is a
response that cannot be obtained using a linear controller. A
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drawback of the SPAN filter is the tedious tuning. Since it is
a nonlinear filter, superposition does not hold and, therefore,
the tuning procedure for every parameter is based on trial-
and-error. A big advantage of the SPAN filter is the fact that
its performance is independent of the amplitude of the input.
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Fig. 12. Measured stepresponse of the linear system (dashed) and with the
SPAN filter (solid).

V. CONCLUSIONS

For motion systems in particular, experimentation is rel-
atively easy. The use of data to further improve feedback
designs is hence a useful research item for this class of
systems. In the paper both data-based approaches as well
as nonlinear control design have been shown. Experiments
show feasibility and stimulate further work in this area.
With respect to the data-based methods one could argue
that implicitely there is a plant model used. This holds
especially for the virtual reference method. It is not clear how
this works out for the unfalsified control. Further research
is necessary. The nonlinear control method shown here
generates more questions than answers. However, it is well
known that in industrial practice people use many sorts of
nonlinear control action to improve performance for specific
inputs or requirements. Interesting options for research are
to generate a systematic design procedure for classes of such
nonlinear elements.
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