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Abstract. Using measurements of the surface-ocean CO2

partial pressure (pCO2) and 14 different pCO2 mapping

methods recently collated by the Surface Ocean pCO2

Mapping intercomparison (SOCOM) initiative, variations in

regional and global sea–air CO2 fluxes are investigated.

Though the available mapping methods use widely differ-

ent approaches, we find relatively consistent estimates of

regional pCO2 seasonality, in line with previous estimates.

In terms of interannual variability (IAV), all mapping meth-

ods estimate the largest variations to occur in the eastern

equatorial Pacific. Despite considerable spread in the de-

tailed variations, mapping methods that fit the data more

closely also tend to agree more closely with each other in re-

gional averages. Encouragingly, this includes mapping meth-

ods belonging to complementary types – taking variability

either directly from the pCO2 data or indirectly from driver

data via regression. From a weighted ensemble average, we

find an IAV amplitude of the global sea–air CO2 flux of

0.31 PgC yr−1 (standard deviation over 1992–2009), which

is larger than simulated by biogeochemical process models.

From a decadal perspective, the global ocean CO2 uptake is

estimated to have gradually increased since about 2000, with

little decadal change prior to that. The weighted mean net

global ocean CO2 sink estimated by the SOCOM ensemble

is −1.75 PgC yr−1 (1992–2009), consistent within uncertain-

ties with estimates from ocean-interior carbon data or atmo-

spheric oxygen trends.
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1 Introduction

The global ocean acts as a major sink for anthropogenic car-

bon, and thereby helps to slow down the human-induced

warming of the Earth’s climate (Stocker et al., 2013).

Presently, approximately 27 % of the annually emitted car-

bon is taken up by the ocean (Le Quéré et al., 2015); in total

30 % of the anthropogenic carbon emitted since the industri-

alization of our planet has been stored by the ocean (Sabine

et al., 2004; Khatiwala et al., 2013). Thus, variations in the

oceanic carbon sink, in particular a possible decline under

climate change, co-determine the future climate trajectory.

In addition to this direct relevance, present-day variations in

the sea–air CO2 exchange, when related to possible driving

factors, can be employed to provide information on the un-

derlying mechanisms of ocean biogeochemistry.

Until recently, estimates of the oceanic CO2 uptake rate

and its variability were largely based on (1) ocean biogeo-

chemical process models (see e.g. Wanninkhof et al., 2013),

(2) inverse estimates based on atmospheric CO2 data (see

Peylin et al., 2013), or (3) inverse estimates based on ocean-

interior carbon data (Gloor et al., 2003, and subsequent re-

finements). However, while process models are useful tools

to study the sensitivity of carbon fluxes to the physical and

biogeochemical mechanisms that control them, they are not

specifically designed for state estimation and thus have large

uncertainties if used in this way (Wanninkhof et al., 2013).

Likewise, while atmospheric CO2 inversions are able to pro-

vide estimates of land–air CO2 exchange on large scales,

their sea–air CO2 flux estimates suffer from large relative er-

rors over most of the ocean due to the dominance of land

variability in the atmospheric signals (Peylin et al., 2013).

Finally, while ocean-interior inversions offer a strong data-

based constraint on the long-term flux in larger regions, they

do not provide flux variability or finer spatial detail.

A more direct quantification of the sea–air CO2 flux is

possible using measurements of the oceanic and atmospheric

partial pressures of CO2 (pCO2) in conjunction with a pa-

rameterization of the gas transfer across the sea–air inter-

face. Through extensive concerted community efforts, more

than 10 million surface ocean pCO2 measurements were

gathered and recently compiled into the SOCATv2 (Sur-

face Ocean CO2 Atlas version 2, Bakker et al., 2014) and

LDEOv2013 (Lamont-Doherty Earth Observatory version

2013, Takahashi et al., 2014a) databases.

Although pCO2 data have thus been available in nearly

all ocean basins for several decades, observations from ships

or fixed sensors can necessarily only cover a tiny fraction of

the spatio-temporal pCO2 field of the global surface ocean.

Therefore, to obtain continuous sea–air CO2 flux fields over

larger areas or the entire ocean, interpolation (gap-filling)

methods are needed to estimate values in all the periods

and areas not directly observed. Various methods have been

proposed to interpolate pCO2 data in space and time (Ap-

pendix A). They span a wide range of approaches, in par-
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Non-linear 

regression
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              Role of driver data       
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tions

Direct data signals
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Figure 1. Statistical interpolation methods essentially only use the

pCO2 data themselves, filling spatio-temporal gaps by assuming a

statistical relation to neighbouring data points. In well-constrained

areas/periods, they closely follow the signals contained in the data,

while in areas/periods far from neighbouring data points, they re-

main essentially unconstrained. Regression methods establish a

quantitative relation between pCO2 and a set of external variables

assumed to capture the major modes of spatio-temporal variabil-

ity. Adjustable degrees of freedom are constant in time and within

certain spatial regions, such that data gaps can be filled according

to the spatio-temporal structure in the external variables; however,

variability not contained in any of the chosen external data sets can-

not be reproduced. Non-linear regression methods (feed-forward

neural networks, self-organizing maps) essentially do not impose

any structure onto this relation between pCO2 and the drivers.

(Multi-)linear regression imposes a linear relationship, thereby re-

stricting the type of responses but ensuring a unique and mathemat-

ically well-defined solution. Finally, knowledge of biogeochemical

processes can be brought to bear by regression of pCO2 against

fields simulated by a biogeochemical process model, or by tuning

initial conditions or parameters in such a model simulation to match

the observations. However, this relies heavily on the structure of the

process simulation to be correct.

ticular with respect to the information sources tapped and

assumptions imposed. Due to that, some methods are able

to reproduce the signals in the data more closely, while oth-

ers are able to bridge the data-void areas/periods more effec-

tively (Fig. 1).

These complementary characteristics of the various ap-

proaches to some degree reflect differing targets of the in-

dividual studies. Correspondingly, their strengths and weak-

nesses can be expected to vary depending on the given pur-

pose. However, this complementarity offers a great opportu-

nity for robustness assessment, as the existence of common

features in the results of mapping methods based on different

principles gives strong support to the estimates. In periods or

areas without data, this is the only available way to assess un-

certainties. Furthermore, we can investigate the information

content of the various data streams used by some methods

and not used by others. It is the primary objective of the Sur-
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face Ocean pCO2 Mapping intercomparison (SOCOM) ini-

tiative to foster such inter-method investigations. SOCOM is

not meant to rank methods but to exploit the added value of

their complementarity. Ultimately it aims to identify which

features of the surface-ocean pCO2 field (and consequently

the sea–air CO2 flux) can be robustly inferred from the avail-

able surface-ocean carbon data, and to provide quantitative

estimates for these features, including an uncertainty assess-

ment. These sea–air CO2 flux estimates based on surface-

ocean carbon data are then available to feed into compre-

hensive carbon cycle syntheses like the REgional Carbon

Cycle Assessment and Processes (RECCAP) activity of the

Global Carbon Project (http://www.globalcarbonproject.org/

reccap/), which until recently mainly had to rely on model

simulations for variability.

This paper first introduces the ensemble of data-driven

pCO2 mapping methods currently available in the SOCOM

initiative (Sect. 2), and gives an overview of the estimated

seasonality and interannual variability (IAV) in oceanic

“biomes” (Sect. 4.1). As some of these pCO2 data-driven

methods have been used to assess interannual variations of

global sea–air CO2 fluxes in recent carbon budgets by the

Global Carbon Project (GCP; Le Quéré et al., 2015), we then

specifically analyse the interannual variations in the sea–air

CO2 fluxes. Focus is put on the consistency between regress-

ing and non-regressing methods, and on the amplitude of the

interannual sea–air CO2 flux variability (Sect. 4.2).

2 Mapping methods

This section provides an overview of the principles of the var-

ious mapping approaches and the range of particular choices

taken within each method class.

Details on the individual mapping methods (referenced by

labels in italics) are given in Appendix A and the references

cited there. Essential properties and technical parameters are

summarized in Tables 1–3. In particular, Table 3 gives the

spatial and temporal coherence scales of the adjustable de-

grees of freedom, determining the balance between the abil-

ity of a method to bridge data gaps and its ability to directly

follow the observed signals (see table footnote e). Table 4 in-

dicates which modes of pCO2 variability are, by construction

of the individual methods, estimated from the information

contained in the pCO2 data (rather than prescribed or deter-

mined in other ways). For a summary of method classes, see

Fig. 1 and its caption.

2.1 Statistical interpolation

Statistical interpolation schemes fit the data to suitable

auto-regressive models. The applied auto-correlation scales

have either been determined from the pCO2 data them-

selves (UEA-SI, OceanFlux-SI), chosen to reflect data den-

sity (Jena-MLS), or derived from empirical orthogonal func-

tion (EOF) analysis of an ensemble of process model simula-

tions (CU-SCSE). The interpolation is either done directly for

the pCO2 field (UEA-SI, OceanFlux-SI, CU-SCSE) or indi-

rectly for the field of ocean-internal carbon sources and sinks

determining the pCO2 field (Jena-MLS).

In most statistical interpolation schemes, those pixels/time

steps that are neither directly constrained by co-located

data nor indirectly constrained by sufficiently close data

(within the spatial or temporal correlation scales) fall back

to some “background state” or “prior”, namely, the es-

timated mean seasonality and estimated trend (UEA-SI),

parametrized temperature-related variations (Jena-MLS), or

a prescribed climatology plus a prescribed linear trend (CU-

SCSE). The ordinary block kriging used in OceanFlux-SI

does not use a priori data values and interpolates the data

to any distance, though the estimation uncertainty increases

with interpolation distance.

2.2 Regression to external drivers

2.2.1 Linear regression

(Multi-)linear regression (AOML-EMP, UEx-MLR, JMA-

MLR) expresses pCO2 as a linear combination of a set of

one or more driving variables (such as sea surface temper-

ature (SST), sea surface salinity (SSS), mixed-layer depth

(MLD), chlorophyll a, etc.), and adjusts their multipliers so

as to best match the pCO2 observations. The calculation is

done separately for each of a set of spatio-temporal domains.

Individual implementations differ in the set of chosen driver

variables, as well as in the choice of spatio-temporal domains

over which the same adjustable multipliers are used.

2.2.2 Non-linear regression

The forms of the non-linear regression technique currently

applied to map the sea surface pCO2 are self-organizing

maps (SOM; NIES-SOM) and feed-forward networks (FFN;

NIES-NN, CARBONES-NN), as well as combinations of

SOM and FFN (ETH-SOMFFN) or SOM and linear regres-

sion (UNSW-SOMLO).

– Self-organizing maps (SOM) project (multi-

dimensional) driver variables to a two-dimensional

discrete space of clusters (“neuron cells”). Observed

pCO2 values are then assigned to the clusters according

to their associated driver variable values. With this

information, spatio-temporal pCO2 maps are created

by finding neuron cells with similar driver variable

values for any given location/time step, and using the

associated pCO2 value there.

– Feed-forward networks (FFN) establish a non-linear

statistical relationship between a set of driver variables

and the pCO2 observations (training), and apply this re-

lationship to continuous fields of the driver variables to

create a continuous pCO2 map (prediction).

www.biogeosciences.net/12/7251/2015/ Biogeosciences, 12, 7251–7278, 2015
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Table 1. General information on the mapping methods.

Version used Contact Reference Method type

UEA-SI v1.0 Steve Jones Jones et al. (2015) Stat. interpol.

OceanFlux-SI v0.95 Jamie Shutler Shutler et al. (2015) Stat. interpol.

Jena-MLS oc_v1.3 Christian Rödenbeck Update of Rödenbeck et al. (2014) Stat. interpol.

CU-SCSE v1.0 Andy Jacobson Jacobson et al. (2015) Stat. interpol.

AOML-EMP v2 Geun-Ha Park Park et al. (2010a) Regression

UEx-MLR v2.0 Ute Schuster Schuster et al. (2013) Regression

JMA-MLR v2 Yosuke Iida Iida et al. (2015) Regression

UNSW-SOMLO v1 Tristan Sasse Sasse et al. (2013) Regression

ETH-SOMFFN ETH30yr01 Peter Landschützer Landschützer et al. (2014) Regression

CARBONES-NN 2014-02-18 Philippe Peylin http://www.carbones.eu/wcmqs/ Regression

NIES-SOM v1.2 Shin-ichiro Nakaoka Update of Nakaoka et al. (2013) Regression

NIES-NN v1.0 Jiye Zeng Zeng et al. (2014) Regression

PU-MCMC v1.0 Keith Rodgers Majkut et al. (2014) Model-based

NIES-OTTM 2013-08-11 Vinu Valsala Valsala and Maksyutov (2010) Model-based

Table 2. Original domains and grid resolutions of the products.

Original domain Original grid resolution

–spatiallya –temporally –spatially –temporally

UEA-SI Global (up to 70◦ N) 1985–2011 2.5◦
× 2.5◦ Monthly

OceanFlux-SI Global 1995–2009 1◦
× 1◦ Monthly

Jena-MLS Global 1987–2013 ≈ 4◦
× 5◦ Daily

CU-SCSE Global 1970–2011 1◦
× 1◦ Monthly

AOML-EMP Global 1985–2011 ≈ 4◦
× 5◦ Monthly

UEx-MLR Global 1990–2012 1◦
× 1◦ Monthly

JMA-MLR Global 1990–2012 1◦
× 1◦ Monthly

(Chl IAV since 1997)

UNSW-SOMLO Global (open-ocean) 1998–2011 1◦
× 1◦ Monthly

ETH-SOMFFN Global (up to 79◦ N) 1982-2011 1◦
× 1◦ Monthly

CARBONES-NN Global 1990–2009 2◦
× 2◦ Monthly

NIES-SOM Global 1998–2009 1◦
× 1◦ Monthly

NIES-NN Global 1990–2012 1◦
× 1◦ Monthly

PU-MCMC Global 1980–2009 4◦
× 5◦ Monthly

NIES-OTTM Global 1980–2010 1◦
× 1◦ Monthly

a Even if designated “global”, most methods exclude some coastal areas or the Arctic, or treat coastal areas as open ocean.

As for linear regression, the individual implementations dif-

fer in the set of chosen physical or biogeochemical driver

variables (SST, SSS, MLD, Chl a, etc.). Different choices

have also been made concerning spatialization: while some

implementations use independent neural networks within

predefined spatial or spatio-temporal regions, others use one

global network but add spatial or temporal coordinate vari-

ables to the set of drivers.

Non-linear regression methods have the advantage over

linear regressions that they can flexibly represent a wide

class of pCO2–driver relationships. On the other hand, FFNs

involve the risk that the non-linear extrapolation into data-

sparse regions might become unstable and produce outliers.

SOMs avoid this risk, though instead their discrete output

may contain spatial discontinuities.

2.3 Model-based regression and tuning

Although biogeochemical simulation models can success-

fully be tuned to reproduce WOCE-era transient tracer in-

ventories (Matsumoto et al., 2004), this does not ensure skill

in simulating trends and interannual variability, as tuning it-

self can in some instances merely be compensating for im-

proper process representation or insufficient parameteriza-

tions. Data assimilation or non-linear inverse modelling ef-

forts such as ECCO have been demonstrated to improve the

representation of the evolving physical state of the ocean

(Wunsch et al., 2009). Although promising, the incorporation

of biogeochemistry into a consistent assimilation or inversion

framework is still in the early stages of development.

Biogeosciences, 12, 7251–7278, 2015 www.biogeosciences.net/12/7251/2015/
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Within the methods collated here, biogeochemical ocean

process models have been used in the following ways.

– Modelled pCO2 fields have been split into differ-

ent timescales (seasonality, interannual variations) and

scaled so as to optimally match the pCO2 data (PU-

MCMC).

– Boundary conditions and initial fields of dissolved inor-

ganic carbon (DIC) are tuned during the model run itself

so as to optimally match the pCO2 data (NIES-OTTM).

3 Analysis methods

3.1 Ensemble collection

The pCO2 fields estimated by the various methods were re-

gridded by each provider to a resolution of 1◦ latitude ×1◦

longitude and monthly time steps, preferably by averaging

(if the original resolution is higher) or sub-sampling (if the

original resolution is lower). Also, a sea mask (map of cov-

ered ocean area, possibly fractional) was requested from each

provider. All subsequent processing was done by common

scripts.

3.2 Spatial gap filling

Most methods do not cover the entire ocean surface (see

Fig. A6). In particular, coastal areas or the Arctic are ex-

cluded in many methods. Some methods depending on

satellite-derived chlorophyll a input data exclude some high-

latitude areas during the dark season. OceanFlux-SI misses

all locations/months where the satellite-derived SST input

data are invalid. UEx-MLR has occasional invalid pixels for

numerical reasons.

These invalid pixels would pose severe problems to the

ensemble analysis because (1) spatial averages (Sect. 3.3)

would not extend over the same area, causing spurious dif-

ferences between the methods, and (2) the calculated sea–air

CO2 fluxes (Sect. 3.6) would miss parts of the ocean. Re-

stricting the comparison to the common ocean surface would

only partially solve (1) and not solve (2).

Therefore, we filled any pixels in the pCO2 maps that

are not covered by the considered mapping method (accord-

ing to its sea mask or its value being outside 0 < p CO2<

106µatm) but are ocean (according to bathymetry taken from

the ETOPO surface elevation data; US Department Com-

merce, 2006) by a common standard pCO2 field. This stan-

dard field is the sum of the monthly climatology by Taka-

hashi et al. (2014b) plus the year-to-year atmospheric pCO2

increase (the year-to-year atmospheric pCO2 increase is de-

rived from observed atmospheric CO2 mixing ratios by the

Jena CO2 inversion s85_v3.5 (as in Rödenbeck et al., 2013);

we use a 12-month running mean of the atmospheric pCO2

minus its mean in 2005, the year of the Takahashi et al.
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Table 4. Information content about various modes of variability as implemented by the individual mapping methods. Modes labelled as

“EST.” (estimated) are considered to reflect data-based information, as they either are directly estimated by time-dependent adjustments, or

are regressed against drivers through multiple adjustable degrees of freedom. The trend is considered estimated if the interannual degrees of

freedom allow a data-based trend to establish or if pCO2 is explicitly regressed against a rising term (time or atmospheric CO2).

Method Mean Seasonality IAV Trend Day-to-day

UEA-SI EST. EST. Partly est. EST. –

OceanFlux-SI EST. EST. Parameterized Prescribed –

Jena-MLS EST. EST. EST. EST. Parameterized

CU-SCSE EST. EST. EST. EST. Interpolated

AOML-EMP EST. EST. EST. Modelled –

UEx-MLR EST. EST. EST. EST. –

JMA-MLR EST. EST. EST. Prescribed –

UNSW-SOMLO EST. EST. EST. EST. –

ETH-SOMFFN EST. EST. EST. EST. –

CARBONES-NN EST. EST. EST. EST. –

NIES-SOM EST. EST. EST. EST. –

NIES-NN EST. EST. EST. EST. –

PU-MCMC EST. Scaled model Scaled model EST. –

NIES-OTTM EST. EST. EST. – –

Table 5. Biomes of Fay and McKinley (2014) used for time series

comparison (see Fig. 2).

No. Abbreviation Name

1 NP ICE (Omitted) North Pacific Ice

2 NP SPSS North Pacific Subpolar Seasonally Stratified

3 NP STSS North Pacific Subtropical Seasonally Stratified

4 NP STPS North Pacific Subtropical Permanently Stratified

5 PEQU-W West Pacific Equatorial

6 PEQU-E East Pacific Equatorial

7 SP STPS South Pacific Subtropical Permanently Stratified

8 NA ICE (Omitted) North Atlantic Ice

9 NA SPSS North Atlantic Subpolar Seasonally Stratified

10 NA STSS North Atlantic Subtropical Seasonally Stratified

11 NA STPS North Atlantic Subtropical Permanently Stratified

12 AEQU Atlantic Equatorial

13 SA STPS South Atlantic Subtropical Permanently Stratified

14 IND STPS Indian Ocean Subtropical Permanently Stratified

15 SO STSS Southern Ocean Subtropical Seasonally Stratified

16 SO SPSS Southern Ocean Subpolar Seasonally Stratified

17 SO ICE Southern Ocean Ice

(2014b) climatology). The filled pixels do not change the re-

sults strongly compared to signal size.

3.3 Biome averages

In this overview of the ensemble of mapping methods, we

consider time series of pCO2 averaged over the 17 biomes of

Fay and McKinley (2014, Fig. 2, Table 5). We use the time-

independent “mean biomes”, such that no spurious common

variability can be induced from changing averaging domains.

These biomes were chosen as they were derived from co-

herence in sea surface temperature (SST), spring/summer

chlorophyll a concentrations (Chl a), ice fraction, and max-

imum mixed-layer depth, and thus may reflect areas of rela-
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90°S
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90°N
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SP STPS

NA ICE

NA SPSS

NA STSS

NA STPS
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SA STPS

IND STPS

SO STSS

SO SPSS

SO ICE

Unclassified

Land

Figure 2. Map of biomes (Fay and McKinley, 2014) used for time

series comparison. See Table 5 for biome names.

tively coherent biogeochemical behaviour better than previ-

ously used “rectangular” regions (e.g. RECCAP, TransCom).

To filter for interannual variations (IAV), we consider 12-

month running means.

3.4 Time periods

Results are plotted over the respective valid period of each

method. Statistical analyses are restricted to the 1992–2009

period, when results of most mapping methods are available,

and when the data coverage is relatively good (this refers in

particular to the equatorial Pacific).

Biogeosciences, 12, 7251–7278, 2015 www.biogeosciences.net/12/7251/2015/



C. Rödenbeck et al.: An ensemble of pCO2-based sea–air CO2 flux estimates 7257

3.5 Diagnostics – comparison to data

3.5.1 Mismatch time series

As a first-order performance diagnostic, we com-

pare the mapping results to the monthly observed

values in the SOCATv2 gridded product (Sabine

et al., 2013; Bakker et al., 2014) (unweighted av-

erages – variable FCO2_AVE_UNWTD of file SO-

CAT_tracks_gridded_monthly_v2.nc). We look at map-

minus-data differences averaged over biomes, or over

biomes and years. These biome or biome/year averages are

taken only over those pixels/months that are covered by data,

and with at least 400 m water depth to avoid coastal data

(these coastal data may otherwise dominate the diagnostics

as the methods do not take the special environment along the

coasts into account). Spatial averages are further restricted

to the valid area of each method; this may slightly favour

methods with less surface coverage, because fewer data

pixels are then included in the mismatch.

In addition to averaged map–data differences, we also con-

sider time series of corresponding selective averages of the

pCO2 maps themselves sampled at the data locations/times.

3.5.2 The relative IAV mismatch Riav

As an overall measure of the mismatch between a given map-

ping product and the data with respect to interannual varia-

tions in a given biome, we use the amplitude of the average

difference between the map and the comparison data. (1) Av-

erages of the map–data difference are taken over biomes and

years, restricted to data-covered open-ocean pixels/months

as described in Sect. 3.5.1. (2) A mismatch amplitude M iav

is calculated as the temporal standard deviation of these

biome/yearly average differences over the 1992–2009 anal-

ysis period (if a method does not cover all of this analysis

period, statistics are calculated for a correspondingly shorter

period (Table 2), despite the slight inconsistency due to IAV).

(3) To be able to put these mismatch amplitudes M iav into

perspective, we similarly determine the mismatch amplitude

M iav
benchmark of “benchmark” fields where any oceanic IAV has

been removed. The benchmark maps have been created from

the mean seasonal cycle of the respective original maps. As

the missing pCO2 increase would cause unduly large mis-

matches between the benchmark and the data, we added the

year-to-year atmospheric pCO2 increase, which is suitable as

it has negligible interannual variations compared to oceanic

pCO2; we use the same atmospheric increase based on atmo-

spheric CO2 data as used to fill invalid pixels (Sect. 3.2). (4)

We then obtain a relative IAV mismatch for the given method

and biome as

Riav
=

M iav

M iav
benchmark

· 100%. (1)

It states by how much an estimate fits the data better due to

its interannual variations, compared to a state of “no knowl-

edge” about IAV. Alternatively, Eq. (1) can be seen as a nor-

malization of the IAV mismatch to signal size: as the bench-

mark fields do not contain any IAV, their mismatch ampli-

tudes M iav
benchmark reflect the IAV in the data (influences of

variations in data density will affect M iav and M iav
benchmark in

similar ways). Calculating the benchmark from each prod-

uct’s own seasonal cycle ensures a criterion comparable be-

tween the mapping methods (though the seasonal cycles are

quite similar for all methods anyway; see Sect. 4.1.1 below).

It is difficult to decide which Riav values can be regarded

as sufficient for IAV to be represented in a given map. For this

paper, we present all IAV results that manage to stay below

75%. This is an ample threshold, but in the light of possible

ambiguities in the Riav calculation we prefer it over a stricter

selection. To nevertheless make the likely range visible, we

de-weight results with higher Riav by smaller line thickness

in all time series plots.

To verify that the selection criterion is not unduely biased

by the fact that some methods use SOCAT data and others

use LDEO data (Table 3), IAV mismatch diagnostics have

also been calculated from the LDEOv2013 database (Taka-

hashi et al., 2014a, monthly binned), which is used as a data

source by some mapping methods. LDEOv2013 shares large

parts of data points with SOCATv2. Mismatch values are

slightly different depending on the database, but are quali-

tatively consistent.

3.5.3 The relative monthly mismatch Rmonth

An overall measure of mismatch on the monthly timescale

is calculated analogously to Sect. 3.5.2, except that monthly

mismatches are used rather than yearly averaged mis-

matches, and that the benchmark is the year-to-year atmo-

spheric increase without any seasonality. Thus this measure

is mainly sensitive to the seasonal cycle as the largest month-

to-month feature.

3.6 Sea–air flux calculation

Sea–air CO2 flux fields f have been calculated from the

pCO2 fields by

f = k̺L(pCO2 − pCO2
atm) (2)

with piston velocity k (employing the widely used quadratic

dependence on wind speed as in Wanninkhof (1992) but

scaled globally according to Naegler (2009), and reduced to

10 % over ice as in Takahashi et al., 2009), water density

̺, CO2 solubility L, and atmospheric CO2 partial pressure

pCO2
atm. The values of these auxiliary fields have been cal-

culated from various data sets (e.g. NCEP wind speeds from

Kalnay et al., 1996, OAFlux SSTs and ice cover from Yu and

Weller, 2007) as in Rödenbeck et al. (2013, see there for de-

tails) and used identically for all mapping methods; that is,
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the uncertainties in the flux parameterization do not enter the

comparison considered here.

As for pCO2, we consider the flux averaged over biomes

or the global ocean. Interannual flux variations are again cal-

culated as 12-month running means. Their amplitude Aiav

is measured as a temporal standard deviation of the yearly

flux over the 1992–2009 analysis period. From the ampli-

tudes Aiav
i of the individual mapping methods, we calculate

an ensemble mean inversely weighted by the relative IAV

mismatches Riav
i (for methods with Riav

i < 75%):

Aiav =

∑n
i=1A

iav
i /Riav

i∑n
i=11/Riav

i

. (3)

Methods not covering the full analysis period are discarded

in this average as there would be significant spurious changes

in the amplitude if any of the El Niño anomalies in 1992 or

1997 was not included.

4 Results and discussion

We first provide an overview of the estimated seasonal and

interannual variations in oceanic biomes (Sect. 4.1), and the

ability to estimate them from pCO2 data and available map-

ping methods. We then discuss interannual variations in the

sea–air CO2 flux in more detail (Sect. 4.2).

4.1 Biome-average pCO2 time series

4.1.1 Seasonality

As an introductory example, we first consider surface ocean

pCO2 averaged over the North Atlantic Subtropical Perma-

nently Stratified biome, which belongs to the relatively well-

observed regions and shows a pronounced seasonal cycle

in pCO2 (Schuster et al., 2013). Figure 3a shows monthly

pCO2 time series from the whole ensemble. For clarity of

details, three arbitrary years have been selected. The results

of the mapping methods generally agree with each other in

terms of the mean and the seasonal cycle to within about

10µatm.

Figure 3b compares the mapping results to the SOCATv2

monthly gridded observations. To this end, mapping re-

sults have been averaged only over those locations/times

where SOCATv2 comparison data exist. As these are the

locations/times where (most of) the estimates are directly

constrained, the mapping results generally follow the data

closely, and the ensemble spread is often smaller than in

panel a. In some months (e.g. September 2003 or July

2004) these selective averages deviate considerably from

the whole-biome average, likely reflecting spatial sampling

biases in the presence of spatial pCO2 gradients. In such

months, the ensemble spread tends to be higher than in

months less affected by sampling biases.
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Figure 3. pCO2 time series from all 14 presented mapping methods

averaged over the North Atlantic Subtropical Permanently Stratified

biome of Fay and McKinley (2014, illustrated by the little map).

Line styles indicate the relative monthly mismatch: Rmonth < 30%

(thick), 30–60% (medium), 60–75% (thin), above 75% (dashed).

(a) pCO2 on monthly time steps for three selected years. (b) As (a),

but averages only calculated over pixels with data in the SOCATv2

monthly gridded data set. (c) Mismatch: biome-average difference

between the submitted pCO2 fields and the co-located SOCATv2

monthly gridded values.

To objectively compare our results to the in situ data, we

calculate the average difference between the mapped pCO2

(at the data location) and the SOCATv2 monthly gridded val-

ues (panel c). In general, differences of the monthly values lie

within about ±10µatm. NIES-OTTM deviates farther, likely

because this approach is strongly determined by the mod-

elled seasonal cycle and thus does not follow the data more

closely.
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Time series for the complete set of biomes are given in

the Appendix. In terms of seasonality, the mapping meth-

ods show similar phasing and amplitude in almost all extra-

tropical biomes (Fig. A1), with few exceptions mainly in the

North Atlantic Subpolar Seasonally Stratified biome and the

Southern Ocean. The spread in the North Atlantic is some-

what surprising given the relatively good data coverage. Pos-

sibly this area has larger spatial heterogeneity not adequately

represented by (some of) the methods. NIES-OTTM shows

a seasonal cycle opposite to the other methods, a behaviour

present in many biogeochemical process models at high lat-

itudes (Valsala and Maksyutov, 2010; Schuster et al., 2013).

Methods agree on smaller seasonal amplitude in the tropics,

though substantial differences in amplitude and phase exist.

4.1.2 Interannual variability (East Pacific Equatorial

biome)

Interannual variability is exemplified by the East Pacific

Equatorial biome, which is also relatively well observed, and

features large coherent interannual variations in pCO2 asso-

ciated with the ENSO cycle (e.g. Feely et al., 1999). Fig-

ure 4a shows the results of those mapping methods with IAV

mismatches (Riav, Sect. 3.5) of at most 75% of the signal

size. This selection has been done because interannual sig-

nals in the data turn out not to be represented in all mapping

methods; thus the full ensemble (Appendix Fig. A2, panel

“Biome 6”) would highly overestimate the uncertainty of

IAV. All eight selected mapping methods consistently show

a reduction in ocean surface pCO2 during El Niño condi-

tions (1987, 1992, strong El Niño 1997/98, weak El Niños

also 2002, 2006, 2009/2010), though partially with different

amplitudes (see Sect. 4.2.1 for the particularly low ampli-

tude of UEA-SI). Methods regressing pCO2 against exter-

nal drivers (JMA-MLR, UNSW-SOMLO, NIES-SOM, ETH-

SOMFFN) tend to show mutually similar time variations

also on the finer 1–2-year timescale (e.g. 2008–2009), while

statistical interpolation methods (UEA-SI, Jena-MLS) may

show different finer-scale features. Despite this biome-wide

difference, averages at data-constrained pixels only (Fig. 4b)

mostly are much more consistent between methods. This is

expected as this selective average excludes all the gap-filled

pixels where values naturally depend much more on the ap-

plied mapping method. Most strikingly, in the data-poor pe-

riods up to 1988, regression and interpolation methods (as

far as they cover these periods) strongly differ in the whole-

biome average (panel a), while they more closely agree at the

data-covered pixels (panel b). This illustrates that the statisti-

cal interpolation methods solely rely on the pCO2 data con-

straint, while regression methods bridge data gaps as their

variability originates from the driver data that are available

throughout time. In the more data-rich periods (since about

1992 in this biome), interpolation and regression methods

do agree in many features even in the whole-biome average

(panel a). Due to the complementary origin of the variabil-

ity in these method classes (Fig. 1), this agreement confirms

that, at least in this biome, (1) sufficient interannual informa-

tion is contained in the available pCO2 observations (in the

more densely sampled period), and (2) the signals provided

through the driver data of the regression methods largely cap-

ture the essential modes of interannual pCO2 variability.

Note that the selective average over data-covered pixels

(panel b) also leads to temporal features very different from

the full average (e.g. the peak in 2001), revealing sampling

biases that alias seasonal variations and spatial gradients into

the yearly/spatial average due to sampling that is not fully

representative. These sampling biases pose the most promi-

nent challenge to all the mapping methods.

Panel c shows the biome/yearly average difference be-

tween the interpolated pCO2 fields and the SOCATv2

monthly gridded data set (Sect. 3.5), reflecting the mismatch

of mean, trend, and interannual variations (the sampling bi-

ases mentioned before should largely cancel out in this dif-

ference). Most mapping methods have a temporal mean mis-

match (bias) of less than a few µatm. The year-to-year mis-

matches are of different magnitudes for the individual map-

ping methods (note that the larger mismatches in 2009/10

occur in a period of very few data points and may not be rep-

resentative). Though the estimated interannual features can

only be trusted if the year-to-year mismatches are small (a

necessary condition), small year-to-year mismatches are not

yet a sufficient condition for correct interannual variations:

even if the available data points are fitted well, the extrapola-

tion to data-void areas can be wrong (“over-fitting”; see more

discussion in Sect. 4.2 below). Therefore, we stress that the

mismatch amplitudes are not meant to represent a detailed

ranking of quality of the methods. Nevertheless, we take it as

an encouraging finding that mapping methods with smaller

IAV mismatch (e.g. passing the more strict relative IAV mis-

match criterion of Riav < 30% [Jena-MLS, ETH-SOMFFN])

are also closer to each other in the whole-biome average

(panel a). Even this stricter selection comprises methods re-

gressing or not regressing pCO2 against external drivers,

i.e. complementary ways of extrapolating to data-void ar-

eas/periods (Fig. 1, Table 3 table footnote e). This reinforces

conclusions (1) and (2) above and confirms that meaning-

ful interannual estimates can be achieved from the available

pCO2 data and mapping methods in the equatorial Pacific.

4.1.3 Interannual variability (other biomes)

All mapping methods agree that the East Pacific Equato-

rial biome considered before (Sect. 4.1.2) has the largest

interannual variability of all biomes (Fig. A2). The other

biomes have much less interannual variability, leaving the

rising trend (similar to the atmospheric CO2 increase) as the

most prominent interannual feature. There is one mapping

method (NIES-OTTM) without a trend, a feature not however

supported by the data (see the large data mismatch with a

systematic trend in Fig. A3). Except for the West and East
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Figure 4. pCO2 time series from selected mapping methods (hav-

ing a relative IAV mismatch Riav < 75%) averaged over the East

Pacific Equatorial biome of Fay and McKinley (2014, illustrated

by the little map). Line styles indicate the relative IAV mismatch:

Riav < 30% (thick), 30–60% (medium), 60–75% (thin). (a) Inter-

annual pCO2 variations (12-month running mean). (b) As (a), but

averages only calculated over pixels with data in the SOCATv2

monthly gridded data set. (c) Mismatch: biome/yearly average dif-

ference between the submitted pCO2 fields and the co-located SO-

CATv2 monthly gridded values.

Pacific Equatorial biomes, the small year-to-year variations

around the rising trend are not generally consistent between

the mapping methods (ensemble spread similar to or larger

than the variations themselves).

Overall, mean mismatches (biases) are in the order of 3–

4µatm in all biomes (Fig. A3). As the mismatches do not

consistently rise or fall over time, they confirm the esti-

mated pCO2 trends (except for NIES-OTTM that does not

have the rising trend in pCO2). The year-to-year mismatches

have amplitudes of 3–4µatm in some methods, but also mis-

matches as large as or larger than the interannual variations

for other methods (Riav > 75%, dashed lines). Except for

the North Atlantic Subtropical Seasonally Stratified biome,

each ocean region has at least some mapping methods with

relative IAV mismatch below 60 or even 30%, including

both interpolation methods as well as linear and non-linear

regressions. Methods tying IAV to process model simula-

tions (PU-MCMC, NIES-OTTM) often have large relative

IAV mismatches, except for PU-MCMC in the Northern Pa-

cific biomes.

4.2 Sea–air CO2 flux variability

In order to link the estimated pCO2 variability to variability

of sea–air CO2 exchange as considered for the Global Carbon

Project (GCP; Le Quéré et al., 2015), we calculated sea–air

CO2 fluxes f , using the same gas exchange formulation for

each mapping method (Sect. 3.6).

4.2.1 The East Pacific Equatorial biome

We first consider again the East Pacific Equatorial biome

identified above as the biome with the largest interannual

variability. Fig. 5a provides its sea–air CO2 fluxes estimated

by eight selected mapping methods (having relative IAV mis-

match Riav < 75% for biome-averaged pCO2). The year-to-

year flux variations are mainly driven by the pCO2 vari-

ability (compare to Fig. 4a). Again, interannual features are

largely similar between the mapping methods in this biome,

but differ in their amplitudes (Fig. 5b). There is some ten-

dency that the mapping methods with smaller IAV mismatch

show larger interannual amplitudes. Strikingly low interan-

nual variability is found in UEA-SI, while fitting the data with

Riav
= 52% better than various other methods. This method

moves away from the estimated mean seasonality only in the

close vicinity of the data points, as justified by the short

auto-correlation lengths of near-simultaneous pCO2 levels

found in the pCO2 data (Jones et al., 2012). It thus gives

a lower bound of IAV secured by the data information (Jones

et al., 2015). As interannual features can be assumed to be

more spatially coherent than features on the timescale of ship

cruises (especially in the equatorial Pacific), the low IAV am-

plitudes by UEA-SI are likely an underestimate.

4.2.2 The global ocean

Figure 5c provides global sea–air CO2 fluxes estimated by

10 selected mapping methods (having relative IAV mis-

match Riav < 75% for global pCO2). These mapping meth-

ods mostly agree in their decadal variations, with a pro-

nounced decadal enhancement in ocean CO2 uptake after the

year 2000, preceded by a period of little decadal change or

rather weakening uptake (see Fig. A7). This confirms a fea-
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Figure 5. Interannual sea–air CO2 flux variations in the East Pacific Equatorial biome (left) and the global ocean (right) from selected

mapping methods (having relative IAV mismatch Riav < 75% for pCO2 averaged in the respective region). (a, c) Time series (yearly flux

sum). Line styles indicate the relative IAV mismatch: Riav < 30% (thick), 30–60% (medium), 60–75% (thin). The vertical dotted lines

delimit the analysis period for the amplitude computation. (b, d) Amplitudes Aiav
i

of interannual CO2 flux variations (see Sect. 4.2) plotted

against the relative IAV mismatch amplitude Riav
i

for each submission (cases not fully covering the analysis period have been omitted to

avoid inconsistencies). The weighted mean Aiav (Eq. 3) is given as a horizontal line.

ture also simulated by process models (see Fig. 7 of Le Quéré

et al. (2015) and the discussion in Sect. 3.6 of Rödenbeck

et al., 2014). One of the areas contributing to this change in

decadal trends is the Southern Ocean, where Landschützer

et al. (2015) found consistency of decadal trends between

ETH-SOMFFN and Jena-MLS, having relatively low Riav

values there.

There is less agreement in the sub-decadal variations of

the global sea–air CO2 flux, despite the much closer mu-

tual agreement of the same mapping methods in the well-

constrained East Pacific Equatorial biome (Fig. 5a). This

lower agreement reflects the more uncertain flux contribu-

tions from the poorly data-constrained areas. For example,

the larger sub-decadal variations by Jena-MLS to a large

extent originate from the South Pacific Subtropical Perma-

nently Stratified biome (Fig. A4, panel “Biome 7”), which

is a data-poor region and therefore may receive spurious

variability from the equatorial Pacific extrapolated too far

south (indeed, the amplitude of the variations decreases with

shorter latitudinal extrapolation radius [latitudinal a priori

correlation length], Sect. 3.3 of Rödenbeck et al., 2014),

though according to the Riav criterion these larger variations

match the data better than the smaller variations. Another

contributor of sub-decadal Jena-MLS variability is the Pacific

sector of Biome 16: In the Southern Ocean, essentially only

two areas (south of New Zealand and south-west of Patag-

onia, respectively) are data-covered for multiple years, such

that signals from there are extrapolated into their data-void

surroundings. Due to this low data coverage, the Southern

Ocean biomes 15 and 16 also contribute considerably to the

ensemble spread in general (Fig. A4). Unfortunately, the ab-

sence of data also means that we cannot validate or falsify the

different extrapolations. In summary, despite the success in

constraining CO2 fluxes in the equatorial Pacific from avail-

able data and mapping methods (Sect. 4.2.1), estimates of

year-to-year variations in the global sea–air CO2 flux face

larger uncertainties due to the undersampled regions.

Despite these differences in the detailed variations, the am-

plitude of global flux IAV (Sect. 3.6) is relatively consistent

(panel d). The global weighted ensemble mean Aiav (Eq. 3)

is 0.31 PgC yr−1 (horizontal line in panel d). Many biogeo-

chemical process models have less variability than that (mean

of 0.20 PgC yr−1 in Le Quéré et al., 2015) and thus likely un-

derestimate IAV in the ocean carbon sink (compare Séférian

et al., 2014; Turi et al., 2014). Inverse estimates based on

atmospheric CO2 data show both larger and smaller oceanic
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IAV (Peylin et al., 2013), reflecting the fact that they can con-

strain land variability but less so ocean variability.

Though the primary strength of the pCO2 constraint lies

in its information on temporal variations and smaller-scale

spatial variations, we also consider the long-term mean

global sea–air CO2 exchange. The total mean flux (com-

prising both uptake induced by anthropogenic atmospheric

CO2 rise and natural river-induced outgassing) estimated

by the different methods ranges between −1.36PgC yr−1

and −1.96PgC yr−1 (for the 1992–2009 analysis period),

with a weighted ensemble mean (analogous to Eq. 3

but using the inverse mean pCO2 bias as weights) of

−1.75PgC yr−1. This is consistent within uncertainties with

the independent estimate from inverting ocean-interior car-

bon data of −1.7PgC yr−1 (Gruber et al., 2009) nominally

for 1995. Subtracting a river-carbon-induced outgassing

flux of 0.45PgC yr−1 (Jacobson et al., 2007), the ensem-

ble mean corresponds to an anthropogenic CO2 uptake of

−2.2PgC yr−1. This is again consistent within uncertainties

with the estimate from the globally integrative constraint by

the atmospheric O2 and CO2 trends of −2.2 ± 0.6PgC yr−1

given by Manning and Keeling (2006) for the slightly differ-

ent 1993–2003 period.

5 Conclusions

Measurements of surface-ocean pCO2, mapped into continu-

ous space–time fields, offer a much more direct way to quan-

tify sea–air CO2 fluxes and their variations than previously

available approaches (model simulations, atmospheric inver-

sions, ocean-interior inversions). Taking advantage of an en-

semble of 14 partially complementary surface-ocean pCO2

mapping methods recently collated by the SOCOM initiative,

we analysed sea–air CO2 flux variability globally and for a

subdivision of the ocean into 17 biomes (Fay and McKinley,

2014). This study has found the following.

– Surface-ocean pCO2 data together with mapping meth-

ods constrain the seasonality of regional pCO2 essen-

tially in all ocean biomes (mostly within 10µatm).

– Interannual variations of regional pCO2 are constrained

at least in the more densely observed ocean regions

(tropical Pacific, parts of the northern temperate Pacific

and Atlantic). The tropical Pacific is consistently esti-

mated as the biome with the largest interannual vari-

ations, with reduced CO2 uptake during El Niño peri-

ods. The global ocean CO2 uptake is estimated to have

gradually increased since about 2000, with little decadal

change prior to that.

– Interannual variations in the global sea–air CO2 flux are

estimated to have an amplitude of 0.31 PgC yr−1 (av-

erage across mapping methods weighted according to

IAV mismatch). Therefore, most biogeochemical pro-

cess models appear to significantly underestimate this

variability (Le Quéré et al., 2015, quote a model-derived

amplitude variation of 0.2PgC yr−1).

– Though the primary strength of the pCO2 constraint lies

in its information on temporal variations and smaller-

scale spatial variations, the estimated net integrated

global sea–air CO2 flux of −1.75PgC yr−1 (weighted

ensemble mean) is consistent within uncertainties with

the independent estimates based on inverting ocean-

interior carbon data and on atmospheric O2 and CO2

trends.

For forthcoming analyses involving data-based sea–air

CO2 flux products, we recommend – if possible – using sev-

eral interpolation products, or at least testing the robustness

of the features under consideration by checking the consis-

tency between several products. In particular, agreement be-

tween complementary mapping methods taking variability

either from driver data or directly from pCO2 data (Fig. 1),

as found here for the interannual variations in the tropical Pa-

cific, lends great support to the estimated features, as it shows

consistency between different information sources.

However, the mapping products should be selected care-

fully and weighted according to suitable performance diag-

nostics, to ensure their suitability in a given purpose. The pre-

sented “relative IAV mismatch” criterion provides a neces-

sary condition for IAV applications. Analogous “relative mis-

match” criteria can also be defined and calculated for other

timescales. However, as discussed in the paper, it would be

even better to use sufficient conditions (e.g. derived by test-

ing the power of the mapping methods to reconstruct mod-

elled pCO2 fields from pseudo data subsampled as the real

data). Such sufficient conditions are not yet available for the

SOCOM ensemble, but are planned in forthcoming studies.

SOCOM does not identify an “optimal” mapping method

or method class. We also discourage any ensemble averag-

ing (or medians, etc.) of full spatio-temporal fields or time

series, as this would result in variations that are not self-

consistent any more and fit the data less well than individual

products. Only for scalar statistical quantities of the spatio-

temporal fields, such as amplitudes of variation, correlation

coefficients, etc., may it make sense to summarize the ensem-

ble into averages of these quantities, weighted according to

the above-mentioned performance diagnostics.

Many of the pCO2 mapping products are updated when

new data sets become available, and the mapping methods

are subject to further development. The SOCOM intercom-

parison may serve to stimulate such developments, though

results should not be assessed in terms of their position in the

ensemble, but only in terms of objective criteria. At the web-

site http://www.bgc-jena.mpg.de/SOCOM/ we aim to pro-

vide an updated list of products and ensemble analyses. SO-

COM welcomes further members contributing estimates of

the spatio-temporal pCO2 field or the sea–air CO2 flux based

on surface-ocean carbon data.
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The basis of all mapping products considered here are

extensive pCO2 observations over many years. Even when

external information is used to bridge data gaps (Fig. 1), a

minimum amount of data in time or within areas of simi-

lar biogeochemical behaviour is indispensable. Missing data

may not only lead to missing out on existing features, but

even to creation of spurious features due to sampling bi-

ases. Though the exact limits to interpolation capacity can

only be determined through targeted studies (e.g. by run-

ning interpolation schemes only on part of the data and

then comparing to the other part), this study already shows

that (1) with realistic sampling efforts (e.g. in the above-

mentioned well-constrained regions) and available mapping

methods, constraining pCO2 variability is possible (as in

Fig. 5a, Sect. 4.2.1), but (2) undersampled regions limit our

current ability to determine the global total flux in its finer

detail (Fig. 5c, Sect. 4.2.2). This highlights the high prior-

ity that should be given to sustaining the ongoing sampling

and to closing observational gaps. As many of the undersam-

pled regions are not well accessible by ships, autonomous

sampling devices, such as BioARGO floats (Claustre et al.,

2010), seem indispensable as an additional observation com-

ponent. In addition to the actual measurements, the use of

pCO2 observations in regional and global sea–air CO2 flux

products also depends on the continuation of all the efforts to

quality-control the data and to provide them in a consistent

and user-friendly form.
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Appendix A

A1 UEA-SI (statistical interpolation)

Method description: the approach combines temporal inter-

polation through curve fitting (one to four seasonal harmon-

ics and a linear trend – Masarie and Tans, 1995; Schuster

et al., 2009) and spatial interpolation using the concept of

spatial de-correlation lengths, or a “radius of influence”, in-

terpolating data based on the likely similarity between spa-

tially separated points (Cressman, 1959; Levitus, 1982). In

addition, cubic spline fitting is used to move away from

the fitted mean seasonal cycle to incorporate interannual

variations where data points exist. The de-correlation scales

applied in the interpolation are determined from the auto-

correlation characteristics of the pCO2 data along ship tracks

or in time (Jones et al., 2012).

Main intention/focus: to produce a pCO2 data set for vari-

ous uses. To quantify the impact of modes of climate variabil-

ity on pCO2 and air–sea fluxes. The chosen approach departs

from other methods through its purely statistical approach; it

does not use any data sources other than pCO2.

Documentation: Jones et al. (2015).

Contact: Steve Jones.

A2 OceanFlux-SI (ESA STSE OceanFlux Greenhouse

Gases)

Method description: the in situ pCO2 data within SOCAT are

first corrected to a common satellite-derived temperature data

set using an isochemical temperature dependence. This cre-

ates an in situ data set with a common SST reference. Each

in situ data point is then corrected to the year 2010 by as-

suming a trend of 1.5µatm yr−1. The data are then binned

into a monthly 1 × 1◦ format. These monthly binned data

are kriged to produce a spatially complete data set (Goddijn-

Murphy et al., 2015). We finally generate an interannual time

series by (1) cyclically using this climatological data set over

time, (2) adding a prescribed trend of 1.5µatm yr−1 in pCO2,

and (3) correcting the pCO2 values according to the differ-

ence between the climatological SST and the actual satellite-

derived SST at each time and location (Shutler et al., 2015).

We use here the original data set (not filtered based on the

uncertainty).

Main intention/focus: produce a spatially complete

monthly climatology of pCO2 data for 2010 that uses a con-

sistent temperature data set which is valid at a consistent

depth in the water.

Documentation: Goddijn-Murphy et al. (2015, monthly

climatology), Shutler et al. (2015, interannual variations).

Contact: Jamie Shutler.

A3 Jena-MLS (data-driven mixed-layer scheme)

Method description: the mixed-layer scheme is a data-driven

interpolation scheme, primarily based on pCO2 observa-

tions but also compatible with the dynamics of mixed-

layer carbon content. Firstly, the sea–air CO2 fluxes and the

pCO2 field are linked to the spatio-temporal field of ocean-

internal carbon sources/sinks through parametrizations of

sea–air gas exchange, solubility, and carbonate chemistry,

as well as a budget equation for mixed-layer dissolved

inorganic carbon (DIC). Then, the ocean-internal carbon

sources/sinks are adjusted to optimally fit the pCO2 field

to the pCO2 observations (in the present version oc_v1.3:

SOCATv3, Bakker et al., 2015). Spatio-temporal interpola-

tion is achieved by Bayesian a priori smoothness constraints

with prescribed spatial and temporal de-correlation scales;

temporal interpolation also results from the inherent relax-

ation timescales of the mixed-layer carbon budget. Though

the process parametrizations are driven by SST, wind speed,

mixed-layer depth (MLD) climatology, alkalinity climatol-

ogy, and some auxiliary variables, this external variability

only determines features not constrained by the pCO2 ob-

servations (e.g. day-to-day variations, or variability in data-

void areas/periods), while the estimated pCO2 field in well-

constrained areas/periods is only determined by the observed

signals (no regression against drivers).

Main intention/focus: global CO2 flux field product pri-

marily based on observations only, with a focus on flux vari-

ability, also to be applied as an ocean prior in atmospheric

CO2 inversion (in particular the Jena inversion, Rödenbeck,

2005). The mixed-layer scheme has been chosen because it

can be extended to link carbon variability to further observ-

ables (mixed-layer PO4, atmospheric O2), to use these as ad-

ditional independent data constraints.

Documentation: Rödenbeck et al. (2013, method descrip-

tion and seasonality); Rödenbeck et al. (2014, interannual

variations and link to oxygen).

Contact: Christian Rödenbeck.

A4 CU-SCSE (Surface Carbon State Estimate)

Method description: the Surface Carbon State Estimate

(SCSE v1.0, Jacobson et al., 2015) is a Kalman filter interpo-

lation scheme for mapping pCO2 over the global ocean dur-

ing the entire period for which SOCAT point observations

are available. It is designed to provide a statistically well-

characterized prior estimate to an atmospheric CO2 analy-

sis like CarbonTracker. SCSE tracks the time-varying mag-

nitudes of a set of basis functions, determined as an opti-

mal difference from a reference state composed of the Taka-

hashi et al. (2009) pCO2 climatology for the year 2000 plus a

1.5µatm yr−1 global trend. Uncertainties are explicitly char-

acterized by a full-rank posterior covariance matrix, which

can then be used to produce realistic error estimates for arbi-

trary spatial domains. SCSE is a gridded estimation scheme

that tracks pCO2 for each 1◦
× 1◦ grid cell, but its effec-

tive spatial resolution is controlled by the number of basis

functions used within each of 10 defined ocean basins. The

number of basis functions used within each basin varies with
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time and is determined by the number of available observa-

tions. This is intended to allow higher resolution at times and

places where there are more pCO2 measurements. The ba-

sis functions include empirical orthogonal functions (EOFs)

of pCO2 from a set of CMIP5 ocean carbon cycle simu-

lations, intended to represent the within- and across-model

variations of climatology, trends, and variability on interan-

nual to decadal timescales. They are assigned widely differ-

ent relaxation timescales (3 months–5 years) as determined

by the EOF analysis.

Documentation: Jacobson et al. (2015).

Contact: Andy Jacobson.

A5 AOML-EMP (diagnostic model using empirical

relationships)

Method description: AOML-EMP uses empirical relation-

ships between surface-ocean pCO2 and SST, trained based

on sub-annual variations in the Takahashi pCO2 climatology

and the associated climatological SST values. These relation-

ships are then applied to interannually varying SST (using the

NOAA optimal interpolation SST product – www.ncdc.noaa.

gov/oisst).

The original analysis of Park et al. (2010a) does not im-

plicitly include the effect of rising atmospheric CO2 levels. In

the modified Park et al. analysis presented in Le Quéré et al.

(2015), the effect of increasing atmospheric CO2 on the sur-

face ocean is simulated by applying the output of the “CO2-

only” run of the NCAR CCSM-3 model (National Center for

Atmospheric Research’s Community Climate System Model

Version 3) to each grid cell over the time period. The sub-

decadal variability is the same for each approach as they

are based on the same pCO2 mapping. The decadal trend

of CO2 flux calculated from the original AOML-EMP ap-

proach shows a slight decrease in uptake, while the modified

approach shows an increase in uptake that is attributed to a

negative feedback in CO2 uptake due to ocean warming that

is overwhelmed by increased anthropogenic CO2 uptake.

Main intention/focus: a data-driven global CO2 flux prod-

uct.

Documentation: Park et al. (2010a, b).

Contact: Geun-Ha Park.

A6 UEx-MLR

Method description: multi-parameter regression in

12 separate ocean regions (RECCAP regions; see

http://www.globalcarbonproject.org/global/pdf/RECCAP_

Soft_Protocol.v4.pdf and Fig. 1 in Schuster et al., 2013)

from 1990 to 2012. Main data stream used as constraint: the

SOCATv2 gridded product (Sabine et al., 2013) plus addi-

tional recent gridded data (all on 1◦ latitude by 1◦ longitude

by 1 month). Driver variables used: SST, mixed-layer depth,

chlorophyll a, atmospheric pCO2.

Main intention/focus: seasonal through interannual vari-

ability of the sea–air CO2 flux.

Documentation: Schuster et al. (2013, RECCAP).

Contact: Ute Schuster.

A7 JMA-MLR

Method description: the global ocean was divided into 44

sub-regions based on the features of observed pCO2 and

SST/SSS/Chl a variability and then optimal equations for es-

timating pCO2 in the sub-regions were derived from mul-

tiple regressions using SST, SSS and Chl a as indepen-

dent variables. Rather than using time as an independent

variable, secular trends of pCO2 (for wider biomes than

the sub-regions) were evaluated separately from multiple

regressions, subtracted from the data, and re-added to the

pCO2 map. Observed pCO2, SST and SSS in SOCATv2

and satellite Chl a (SeaWiFS and MODIS/Aqua: http://

oceancolor.gsfc.nasa.gov; before 1997, the climatology of

satellite chlorophyll a data are used) are used to derive equa-

tions and analytical SST (MGDSST: Kurihara et al., 2006)

and SSS (MOVE/MRI.COM-G: Usui et al., 2006), and the

same Chl a data mentioned above are used to reconstruct the

pCO2 fields.

Main intention/focus: to map the global pCO2 and CO2

flux fields based on surface observation data and evaluate the

interannual variability and long-term trend of global ocean

CO2 uptake. The merits of using simple multiple regression

analysis for estimating pCO2 include its possibility to give

oceanographic explanations for the pCO2 variability.

Documentation: Iida et al. (2015, method description and

trend analysis).

Contact: Yosuke Iida.

A8 UNSW-SOMLO (self-organizing multiple-linear

output)

Method description: in this approach we couple a neural net-

work clustering algorithm with a multiple linear regression

(MLR) to diagnose monthly ocean surface pCO2 distribu-

tions from 1998 through to 2011. The algorithm first cap-

tures larger-scale ocean dynamics by a data-based clustering

of the grid cells into “biogeochemical fingerprints” using a

self-organizing map (SOM). The SOM approach utilizes the

SOCATv2 gridded pCO2 product along with co-located SST,

SSS, Chl a, MLD, and geographical information (n vector)

to iteratively cluster the data set into a set of 196 neurons

(the spatial domains of which we refer to as biogeochemi-

cal fingerprints). Within each neuron, MLRs are then derived

between pCO2 and the optimal set of sea-surface tempera-

ture/salinity/Chl a, MLD, and atmospheric xCO2. Thus, each

MLR can be thought of as a local-scale optimizer that fol-

lows the global non-linear optimization analysis performed

by the SOM. To predict pCO2 using any independent set of

driver data, a similarity measure is first used to determine

www.biogeosciences.net/12/7251/2015/ Biogeosciences, 12, 7251–7278, 2015
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which neuron best represents the driver data values, then the

pCO2 value is predicted using the regression parameters es-

tablished with training data of that neuron. We call this ap-

proach SOMLO: self-organizing multiple linear output.

Main intention/focus: to diagnose monthly ocean sur-

face pCO2 distributions and air–sea CO2 fluxes from 1998

through to 2011, and to advance our understanding of sea-

sonal to interannual variability.

Documentation: Sasse et al. (2013).

Contact: Tristan Sasse.

A9 ETH-SOMFFN (a combined two-step neural

network approach)

Method description: as a first step, a self-organizing map

(based on climatological pCO2, SST, SSS, MLD, and Chl a)

is used to cluster the global ocean into biogeochemical

provinces. Within each province, a feed-forward network is

then used to reconstruct the non-linear relationship between

drivers (SST, SSS, MLD, Chl a (before 1998 using a clima-

tology), and atmospheric xCO2) and gridded pCO2 observa-

tions from SOCAT.

Main intention/focus: produce global pCO2 and CO2 flux

maps; investigate seasonal and interannual variability within

the study period.

Documentation: Landschützer et al. (2013, 2014).

Contact: Peter Landschützer.

A10 CARBONES-NN

Method description: CARBONES-NN is a neural network

framework developed within the CARBONES (http://www.

carbones.eu/wcmqs/) EU-FP7 project that maps surface

ocean pCO2 observations to first-order explanatory vari-

ables. As explanatory variables, it uses observations from

satellites (surface chlorophyll climatology from SeaWiFS),

model outputs (SST, SSS, MLD) from the MERCATOR

ocean reanalysis, previous step pCO2 estimates (recursive

approach) and latitude as a proxy for atmospheric conditions.

A two-step neural network approach is applied based on a

multi-layer perceptron network coupled with a variational

data assimilation scheme. A first calibration step adjusts the

seasonal component of pCO2 using climatological data (ref-

erence year 2000; from Takahashi et al. (2009) sampled at the

points where there are measurements). This step recreates a

2-D monthly climatology of pCO2 that is similar to the one

of Takahashi et al. (2009), but also different as the interpo-

lation is based on the explanatory variables. A second step

uses the raw pCO2 data (LDEOv1.0, Takahashi et al., 2007)

to adjust the interannual variability of pCO2 over the period

1989 to 2009. A moving assimilation window is used. Input

variables and pCO2 data were previously gridded at monthly

temporal and 2◦
× 2◦ spatial resolutions. Note that most of

the coastal ocean pCO2 data have been filtered out.

Main intention/focus: produce global CO2 sea–air flux

maps over the past decades to be coupled in the Carbon Cy-

cle Data Assimilation System developed at LSCE within the

CARBONES project.

Documentation: CARBONES website (http:

//www.carbones.eu/wcmqs/) and article under prepara-

tion.

Contact: Philippe Peylin.

A11 NIES-SOM

Method description: self-organizing map with linear increas-

ing trend with time.

Main intention/focus: pCO2 mapping and evaluating sea-

sonal/interannual air–sea CO2 exchange.

Documentation: Nakaoka et al. (2013, for the North Pa-

cific); Nakaoka et al. (2015; for the Pacific).

Contact: Shin-ichiro Nakaoka.

A12 NIES-NN (feed-forward neural network)

Method description: we first estimated the global trend of

pCO2 using the method of Zeng et al. (2014) and used this

trend to normalize the pCO2 data to the reference year 2000.

We then modelled the spatial and seasonal variations in the

reference year using a feed-forward neural network (Zeng

et al., 2015b). The driver variables include SST, SSS, Chl a,

latitude, longitude, and month. For training, climatologies of

the driver data are used. For prediction, we use time-variant

SST (it would be ideal to use time-variant SSS and Chl a

as well, but no such data are available in certain modelled

periods). Due to the use of climatologies of the driver data

and the normalized pCO2 to train the neural network, the

predicted pCO2 does not yet contain a trend; therefore, the

trend estimated in the first step is re-added to the network

output. We use all data from SOCATv2 that fulfill the se-

lection criteria elevation < −500m, ice cover < 50%, SSS

> 25, and SST > −10◦C. Software implementation details

of the model can be found in Zeng et al. (2015a).

Main intention/focus: monthly CO2 maps and long-term

global trend.

Documentation: Zeng et al. (2014, for climatol-

ogy); (Zeng et al., 2015b, for time-varying fields);

Zeng et al. (2015a, software implementation); data set

doi:10.1594/PANGAEA.834398.

Contact: Jiye Zeng.

A13 PU-MCMC

Method description: the Princeton pCO2 product is calcu-

lated by a Bayesian inversion (using a Markov chain Monte

Carlo (MCMC) minimization algorithm) as described in Ma-

jkut et al. (2014). The pCO2 field is decomposed into (A) the

decadal trend, (B) the June 1995 mean value, (C) the seasonal

cycle, and (D) the interannual variability. Each of these terms

is derived from process model simulations, and then scaled

Biogeosciences, 12, 7251–7278, 2015 www.biogeosciences.net/12/7251/2015/
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so as to optimally fit the pCO2 observations. The data prod-

uct that is inverted is LDEOv2010 (Takahashi et al., 2012).

Two forward models were used to derive the prior fields,

with the main model being GFDL’s MOM4p1-BLING. For

MOM4p1-BLING the underlying physical model is GFDL’s

Modular Ocean Model version 4.1 (Griffies et al., 2004)

with 3 ◦ horizontal resolution. The biogeochemical model is

Biology Light Nutrient and Gas (BLING; Galbraith et al.,

2011). The model was forced at the surface with several

reanalysis products, including CORE-II (Large and Yeager,

2009), ERA-40 (Uppala et al., 2005), and NCEP-1 (Kalnay

et al., 1996). Additionally, the two simulations with NEMO-

PISCES from the study of Rodgers et al. (2014) were in-

cluded in the analysis.

Main intention/focus: seasonal through decadal variability

in pCO2 and air–sea CO2 fluxes.

Documentation: Majkut et al. (2014).

Contact: Keith Rodgers.

A14 NIES-OTTM (ocean tracer transport model with

variational assimilation of surface ocean pCO2)

Method description: the offline OTTM is run with physi-

cal data from GFDL coupled ocean–atmospheric re-analysis

version-2 data for the period of 1980–2010 (Delworth et al.,

2006; Gnanadesikan et al., 2006). The necessary input data

used from the re-analysis are as follows: the time-dependent

3-D currents, hydrography and surface 2-D variables such

as MLD, heat fluxes, water fluxes and sea surface height.

The physical part of OTTM calculates the evolution of trac-

ers in the global ocean (Valsala et al., 2008). The biological

model is adapted from McKinley et al. (2004). The export

production in the surface euphotic zone (0–140 m) is cal-

culated using prescribed monthly climatological phosphate

and light, scaled by a spatially varying α parameter which

accounts for maximum export rate and for those processes

which are not accounted for by the phosphate and light lim-

itation model. The surface ocean chemistry model is taken

from the OCMIP-II abiotic model (Orr et al., 1999). The

physical–biogeochemical model is used to simulate the sur-

face ocean pCO2 and air–sea CO2 fluxes. The surface ocean

pCO2 in the model is constrained by a variational assimila-

tion method in which a conservative adjoint of data–model

misfit of pCO2 (using the pCO2 climatology and LDEOv1.0

point data; Takahashi et al., 2007) is tracked backward in

time in the 3-D ocean over an iteration window of 2 months.

At each iteration, the forward model corrects the initial and

boundary condition of DIC (dissolved inorganic carbon) ac-

cording to the weighted adjoints. The iterations are truncated

when the mismatch falls below a minimum value of 10% of

its initial value (see Valsala and Maksyutov, 2010).

Documentation: Valsala and Maksyutov (2010).

Contact: Vinu Valsala.
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Figure A1. Monthly pCO2 variations over years 2003–2005 (arbitrarily selected) as estimated by all mapping methods, averaged over the

biomes by Fay and McKinley (2014, see Fig. 2, panels roughly in geographical arrangement). Vertical scales span the same range for all

biomes (100 µatm), but some vertical shift has been chosen according to the mean spatial pCO2 pattern. Line styles indicate the relative

monthly mismatch: Rmonth < 30% (thick), 30–60% (medium), 60–75% (thin), above 75% (dashed); the legend reflects “global”. In some

biomes, lines of certain mapping methods with higher mismatches have been clipped (rather than enlarging the vertical scale), in order to

maintain clarity. Biomes 1 (North Pacific Ice) and 8 (North Atlantic Ice) have been omitted due to extremely sparse data coverage.
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Figure A2. Interannual pCO2 variations as estimated by all mapping methods, averaged over the biomes by Fay and McKinley (2014, see

Fig. 2, panels roughly in geographical arrangement). Line styles indicate the relative IAV mismatch: Riav < 30% (thick), 30–60% (medium),

60–75% (thin), above 75% (dashed); the legend reflects “global”. Vertical scales span the same range for all biomes (100 µatm), but some

vertical shift has been chosen according to the mean spatial pCO2 pattern. In some biomes, lines of certain mapping methods with higher

mismatches have been clipped (rather than enlarging the vertical scale), in order to maintain clarity. Biomes 1 (North Pacific Ice) and 8

(North Atlantic Ice) have been omitted due to extremely sparse data coverage.
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Figure A3. Mismatch between the interannual pCO2 variations as estimated by all mapping methods and the SOCATv2 monthly gridded

values (biome/yearly averages of the map–data difference sampled at the location/time of the comparison data, Sect. 3.5.1).

Biogeosciences, 12, 7251–7278, 2015 www.biogeosciences.net/12/7251/2015/



C. Rödenbeck et al.: An ensemble of pCO2-based sea–air CO2 flux estimates 7271

Biome 2 - NP SPSS

     

-0.6

-0.4

-0.2

0.0

0.2

     

 

 

 

 

 

Biome 3 - NP STSS

     

-0.6

-0.4

-0.2

0.0

0.2

     

 

 

 

 

 

Biome 4 - NP STPS

     

-0.6

-0.4

-0.2

0.0

0.2

     

 

 

 

 

 

Biome 5 - PEQU-W

     

-0.4

-0.2

0.0

0.2

0.4

Y
e
a
rl
y
 C

O
2
 f
lu

x
 (

P
g
C

/y
r)

     

 

 

 

 

 

Biome 6 - PEQU-E

     

0.0

0.2

0.4

0.6

0.8

     

 

 

 

 

 

Biome 7 - SP STPS

1990 1995 2000 2005 2010

-0.6

-0.4

-0.2

0.0

0.2

     

 

 

 

 

 

UEA-SI
OceanFlux-SI
Jena-MLS
CU-SCSE
AOML-EMP
UEx-MLR
JMA-MLR
UNSW-SOMLO
ETH-SOMFFN
CARBONES-NN
NIES-SOM
NIES-NN
PU-MCMC
NIES-OTTM

Biome 9 - NA SPSS

     

-0.6

-0.4

-0.2

0.0

0.2

     

 

 

 

 

 

Biome 10 - NA STSS

     

-0.6

-0.4

-0.2

0.0

0.2

     

 

 

 

 

 

Biome 11 - NA STPS

     

-0.4

-0.2

0.0

0.2

0.4

     

 

 

 

 

 

Biome 12 - AEQU

     

-0.4

-0.2

0.0

0.2

0.4

     

 

 

 

 

 

Biome 13 - SA STPS

1990 1995 2000 2005 2010

-0.4

-0.2

0.0

0.2

0.4

     

 

 

 

 

 

Global

1990 1995 2000 2005 2010

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

     

 

 

 

 

 

 

Biome 14 - IND STPS

     

-0.6

-0.4

-0.2

0.0

0.2

     

 

 

 

 

 

Biome 15 - SO STSS

     

-1.0

-0.8

-0.6

-0.4

-0.2

     

 

 

 

 

 

Biome 16 - SO SPSS

     

-0.6

-0.4

-0.2

0.0

0.2

     

 

 

 

 

 

Biome 17 - SO ICE

1990 1995 2000 2005 2010

-0.4

-0.2

0.0

0.2

0.4

     

 

 

 

 

 

Figure A4. Interannual variations of the sea–air CO2 flux as estimated by all mapping methods, integrated over the biomes by Fay and

McKinley (2014, see Fig. 2, panels roughly in geographical arrangement). Line styles indicate the relative IAV mismatch: Riav < 30%

(thick), 30–60% (medium), 60–75% (thin), above 75% (dashed); the legend reflects “global”. Vertical scales span the same range for all

biomes (0.8 PgC yr−1 except the global flux), but some vertical shift has been chosen according to the mean spatial flux pattern. In some

biomes, lines of certain mapping methods with higher mismatches have been clipped (rather than enlarging the vertical scale), in order to

maintain clarity. Biomes 1 (North Pacific Ice) and 8 (North Atlantic Ice) have been omitted due to extremely sparse data coverage.
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Figure A5. Data density of the gridded SOCATv2 product used for comparison: number of data-covered pixels per month in each biome.

(Note that these values are only roughly indicative of the strength of data constraint, which not only depends on the number of data, but also

strongly on their distribution within the biome. Also, the magnitudes cannot be compared between biomes, because they have differently

many pixels and the pixel size depends on latitude. Further note that several methods use LDEO or other SOCAT versions, and thus may be

constrained more strongly or more weakly in certain periods.
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Figure A6. Valid domain for each mapping method (coloured area). The colour gives the number of valid months within the period of the

method; a number less than the maximum (dark red) indicates either (1) a fractional sea mask along coasts (Jena-MLS), (2) seasonally invalid

months due to unavailable chlorophyll a input data (JMA-MLR, ETH-SOMFFN, NIES-SOM), or (3) occasional invalid months due to missing

SST input (OceanFlux-SI) or numerical reasons (UEx-MLR).
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(b)

Figure A7. Decadal sea–air CO2 flux variations in the global ocean

from selected mapping methods (having relative IAV mismatch

Riav < 75% for globally averaged pCO2). (a) Interannual time se-

ries as in Fig. 5c. Line styles indicate the relative IAV mismatch:

Riav < 30% (thick), 30–60% (medium), 60–75% (thin). The ver-

tical dotted lines delimit the periods for the trend computation.

(b) Linear trends over 1991–2001 (smaller symbols) and 2001–

2011 (larger symbols) plotted against the relative IAV mismatch

amplitude Riav
i

for each submission (cases not fully covering the

two trend periods have been omitted to avoid inconsistencies). Error

bars only reflect the uncertainty of the linear fit due to interannual

variations (calculated assuming consecutive years to be statistically

independent). Despite the very short periods, a more negative trend

in the later period is a significant and consistent feature. The solid

black horizontal lines give the weighted mean trends for the two

periods, where submissions have been weighted both according to

Riav and to the uncertainty of the linear fit.
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