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Abstract— First principle models and empirical models are
necessarily approximate. In this paper we develop two empirical
approaches that use a delta model to modify an initial model by
means of cascade, parallel or feedback augmentation. A sub-
space based nonlinear identification algorithm and an adaptive
disturbance rejection algorithm are both used to construct the
delta model. Three classes of errors in the initial model, i.e.
unmodeled dynamics, parametric errors and initial condition
errors are considered. Some illustrative examples are presented.

I. INTRODUCTION

Both first principle (that is, analytical) models and empiri-
cal (that is, identified) models are approximate. The required
accuracy of a model is application dependent. In this paper,
within the context of Hammerstein systems, we assume that
an initial model is available and that the fidelity of the initial
model is insufficient. For example, the initial model may be
erroneous with regard to initial conditions, parameters, or
order (due to unmodeled dynamics). Our goal is to apply
identification methods and adaptive disturbance rejection
methods to improve the accuracy of the initial model. To
do this, we combine the initial model with a delta model to
obtain an augmented model. This technique is of particular
interest when the initial model is a large-scale analytical
model or a computer simulation (e.g. CFD or MHD), in
which case it is convenient to add a small delta model to
it rather than replace the initial model.

A related approach developed in [4] corrects a model of a
structure with truncated modes by appending an analytically-
derived delta model in parallel. Furthermore, in [3] a method
is given for modifying an existing controller based on
knowledge of deviations in the plant. Several classes of plant
deviations are considered including feedback, parallel and
cascade. However, the aim of [3] is not to correct the model
itself, but rather to correct the controller such that it handles
deviations in the plant.

A delta model can be combined with the initial model
in cascade, parallel, or feedback. In the present paper we
consider subspace identification and adaptive disturbance
rejection to construct the delta models. For the cascade and
parallel augmentation case, we can use subspace identifi-
cation methods to build the delta models, whereas using
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adaptive disturbance rejection, delta models for all three
cases can be constructed.

For model refinement using subspace identification, we
set up an identification problem in which we construct an
empirical model of the error between the true system and
the initial model, that is, the delta system. This approach as-
sumes the ability to obtain input-output data by experiment.
Subspace-based nonlinear identification algorithms [6] are
then used to construct a delta model, that is, a model of
the delta system. Subspace algorithms are desirable for this
application because of their ability to provide an estimate
of the delta system’s initial state, and thus correct errors
in the initial state. Although, in accordance with subspace
algorithms, the state space basis of the identified delta model
is unknown, we show that the estimated initial state can
nevertheless correct errors in the initial state.

Subspace algorithms [5], [7] are used to identify state
space matrices (A,B,C,D) based on the known inputs and
outputs of the system. These methods are computationally
tractable and naturally applicable to MIMO systems. In this
paper the n4sid command in Matlab System Identification
Toolbox is used for linear system identification, and the
method developed in [6], [2] is used for Hammerstein system
identification. With these algorithms, the system order can
be manually chosen or automatically set based on numerical
criteria.

For model refinement using adaptive disturbance rejection,
we formulate the model refinement problem as an adap-
tive disturbance rejection problem. An adaptive disturbance
rejection algorithm is then used to tune the delta model.
In this paper, the ARMARKOV algorithm [8] is used for
adaptation. Since adaptive disturbance rejection methods for
Hammerstein systems are not well developed, we restrict
ourselves to linear systems in this case. We also note that
the adaptive disturbance rejection algorithm can be used as
a system identification tool when the initial model is set to
zero in the parallel augmentation framework.

In section 2 we present model refinement using subspace
identification algorithms. First model equivalence concepts
for Hammerstein systems are examined. These results are
then used to suggest procedures for using subspace algo-
rithms for the parallel and cascade augmentation case. In
section 3 we discuss model refinement using adaptive distur-
bance rejection. In section 4 we present a few representative
examples to illustrate the above ideas.
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II. MODEL REFINEMENT USING SUBSPACE

IDENTIFICATION

We first examine model equivalence for Hammerstein
systems. This differs from traditional model equivalence con-
cepts in the presence of the static nonlinearity and a non-zero
initial conditions. Then we present procedures for cascade
model augmentation and parallel model augmentation.

The notation S ∼

[
A B f

C D g

]
x(0)

denotes the discrete-

time Hammerstein dynamical system

x(k + 1) = Ax(k) + Bf(u(k)), (II.1)

y(k) = Cx(k) + Dg(u(k)), (II.2)

with initial condition x(0), where x ∈ R
n, y ∈ R

l, u ∈ R
m,

f : R
m �→ R

r and g : R
m �→ R

s. If (A,B,C) is minimal,
where A ∈ R

n×n, then n is the order of S. The notation
u1 ≡ u2 means u1(k) = u2(k) for all k ≥ 0.

Definition II.1. Let S1 and S2 be systems with inputs u1

and u2 and outputs y1 and y2, respectively. Then S1 and S2

are equivalent if y1 ≡ y2 whenever u1 ≡ u2.

Proposition II.1. Consider the nth order systems

S1 ∼

[
A1 B1 f1

C1 D1 g1

]
x1(0)

, S2 ∼

[
A2 B2 f2

C2 D2 g2

]
x2(0)

with f1(0) = f2(0) = g1(0) = g2(0) = 0. Then S1 and S2

equivalent if and only if D1g1(u) = D2g2(u) for all u, and
there exists a nonsingular matrix S ∈ R

n×n such that

A1 = SA2S
−1, C1 = C2S

−1, x1(0) = Sx2(0), (II.3)

and

B1f1(u) = SB2f2(u) for all u. (II.4)

Proof. Sufficiency is immediate. To prove necessity, by
setting u1 = u2 = 0, and using equivalence, we can show
that

x1(0) = Sx2(0), (II.5)

with S
�
= (QT

1 Q1)
−1QT

1 Q2, where Q1 and Q2 are
the observability matrices respectively. Since (A1, C1) and
(A2, C2) are both observable, Q1 and Q2 have full rank,
and hence S and S−1 always exists. Further, using the
above mentioned construction for S, the rest of the proof
follows.

A. Cascade Delta-Model Augmentation

Consider the system S0 ∼

[
A0 B0 f0

C0 D0 g0

]
x0(0)

and the

initial model Sm ∼

[
Am Bm fm

Cm Dm gm

]
xm(0)

. The system with

input ym and output y∆ is the cascade delta system S∆,
which is connected in series with the initial model to obtain
the cascade-augmented model Sa

�
= S∆Sm shown in Figure

1.

true system

initial model

+

−

delta model

augmented model

S0

Sm S∆

y0

ym y∆

u

x0(0)

xm(0) x∆(0)

y0 − y∆

Fig. 1. Cascaded Delta-Model Augmentation

Proposition II.2. Suppose that S∆Sm and S0 are equiva-
lent. Then y∆ ≡ y0 for all inputs u.

In view of Proposition II.2, we use subspace-based nonlin-
ear identification algorithms [6] to construct a cascade delta
model Ŝ∆ with input u∆ = ym, where ym is the initial model
output, and output y∆ = y0, where y0 is the true system

output. Then, a cascade-augmented model Ŝa
�
= Ŝ∆Sm can

be constructed as shown in Figure 1 to approximate the true
system S0.

B. Parallel Delta-Model Augmentation

Consider the system S0 ∼

[
A0 B0 f0

C0 D0 g0

]
x0(0)

and the

initial model Sm ∼

[
Am Bm fm

Cm Dm gm

]
xm(0)

. The system with

input u and output y∆ = y0−ym is the parallel delta system
S0 − Sm, which is illustrated in Figure 2.

Proposition II.3. Consider two Hammerstein systems S0

and Sm, then the parallel delta system S0 − Sm is also a
Hammerstein system.

Proof. Let u ∈ R
m be the inputs to both the systems

and let y0 ∈ R
l and ym ∈ R

lm be the outputs of the two
Hammerstein systems respectively. Now, the parallel delta
system output is given by

y∆(k) = y0(k) − ym(k)

= C0x0(k) + D0g0(u(k)) − Cmxm(k)

−Dmgm(u(k))

=
[

C0 −Cm

] [
x0(k)
xm(k)

]

+
[

D0 −Dm

] [
g0(u(k))
gm(u(k))

]
. (II.6)

So the parallel system can be written as

x∆(k + 1) = A∆x∆(k) + B∆f∆(u(k)), (II.7)

y∆(k) = C∆x∆(k) + D∆g∆(u(k)), (II.8)

where, x∆(k) =

[
x0(k)
xm(k)

]
, A∆ =

[
A0 0
0 Am

]
, B∆ =[

B0 0
0 Bm

]
, f∆(u) =

[
f0(u)
fm(u)

]
, C∆ =

[
C0 −Cm

]
,

D∆ =
[

D −Dm

]
, g∆(u) =

[
g0(u)
gm(u)

]
and x∆(0) =
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[
x0(0)
xm(0)

]
. Thus the resulting system is again a Hammer-

stein system.

+

−

true system

initial model

Sm

y0

u
x0(0)

xm(0)
ym

y0 − ym

S0

Fig. 2. Parallel Delta System
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Fig. 3. Delta-Model Identification for Par-
allel Augmentation
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+
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Fig. 4. Parallel Model Augmentation

Proposition II.4. Suppose S0−Sm and S∆ are equivalent
with outputs y0 − ym and y∆, respectively. Then the output
y0−ym−y∆ of the system S0−Sm−S∆ is identically zero
for all inputs u.

Proposition II.5. Suppose that S0 − Sm and S∆ are
equivalent. Then S0 and Sm + S∆ are equivalent.

Proof. Since S0−Sm and S∆ are equivalent it follows that
y∆ ≡ y0 − ym. Therefore y0 ≡ ym + y∆ and hence S0 and
Sm + S∆ are equivalent.

To construct a parallel delta model, consider the initial
model Sm of the true system S0. From Prop. II.3, the delta
system S∆ = S0 − Sm is a Hammerstein system. The
subspace based nonlinear identification algorithm [6] can
thus be used to construct a model of the delta system based

on the input u and the output y0 − ym. This is illustrated
in Figure 3. The identified model Ŝ∆ is an approximation
of S0 − Sm. Next, a Hammerstein parallel-augmented model

Ŝa
�
= Sm + Ŝ∆ can be constructed as shown in Figure 4 to

approximate the true system S0.
Since linear systems are special cases of Hammerstein

systems, with f(u) = u, all the above arguments apply even
if we have a linear initial model Lm for a Hammerstein
system S0.

III. MODEL REFINEMENT USING ADAPTIVE

DISTURBANCE REJECTION

Adaptive disturbance theory for Hammerstein systems are
not well developed, so in this section we restrict our dis-
cussion to linear systems only. We discuss model refinement
using adaptive disturbance rejection with cascade, parallel,
feedback and combined cascade-feedback architectures.

Consider a linear system L0 described by the discrete-time
state-space equations

x0(k+1) = A0x0(k)+D10

⎡
⎣ w1(k)

w2(k)

⎤
⎦ , (III.1)

y0(k) = C0x0(k)+D20

⎡
⎣ w1(k)

w2(k)

⎤
⎦ , (III.2)

and an initial model Lm with the equations

xm(k+1) = Amxm(k)+D1mw1(k)+Bmu(k), (III.3)

ym(k) = Cmxm(k)+D2mw1(k)+Dmu(k), (III.4)

where w1(k) is a known input signal, u(k) is the output from
the delta model, and w2(k) is an unmeasured disturbance in
the true system L0.

The objective of delta modeling is to construct a delta
model in cascade, parallel, or feedback with the initial model,
so that the resulting augmented model matches the true
system. In the case of a parallel delta model, Bm and Dm

are zero since the output from the delta model is directly
added to the output of the initial model. In Section 2
subspace identification was used to construct the delta model.
In the case of feedback interconnection, however, subspace
identification cannot be used since the required u(k) to
achieve model matching is unknown. Instead, the problem
is recast as an adaptive disturbance rejection problem.

Consider again the true system (III.1) and (III.2), and the
initial model (III.3) and (III.4). To achieve model matching
we require that the error y0(k) − ym(k) be small. Hence
the control inputs u(k) have to be modified in a way that
makes ym(k) equal to y0(k). This problem can be viewed
as a disturbance rejection problem where the performance

variable z
�
= y0−ym is minimized in the presence of external

disturbances w1(k) and w2(k).
Four different interconnection structures are considered for

the delta model, represented by Lc ∼

[
Ac Bc

Cc Dc

]
. In all four

cases the signal used to tune the controller parameters is the
error between the outputs of the true system and the model,
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z
�
= y0 − ym. Defining x̃(k)

�
=

[
x0(k)
xm(k)

]
and w(k)

�
=[

w1(k)
w2(k)

]
, it will be shown that the delta modeling problem

can be written in the standard control architecture form
shown in Figure 5. In the context of adaptive disturbance
rejection, the delta model Lc is the adaptive controller, the
initial model is the plant Lm, and knowledge of w2(k) or the
true system L0 is not required. Thus, adaptively controlling
the initial model Lm to minimize the performance variable z,
achieves the objective of constructing an augmented model
to match the true system L0. So, once the model refinement
problem is recast in the form of Figure 5, a standard adaptive
disturbance rejection algorithm like ARMARKOV [8] can be
used to tune the delta model.

w(k) z(k)

u(k) y(k)

Lc

Gzw Gzu

Gyw Gyu

Fig. 5. Control architecture for the standard
problem

A. Cascade Interconnection

In the cascade case, the input to the delta model Lc is

w1(k), and thus we define the controller inputs y(k)
�
=

w1(k). This scheme shown in Figure 6 can be represented
in the standard form as⎡

⎣ z(k)
y(k)

⎤
⎦=

⎡
⎣ L0 −

[
Lm 0

]
−Lm[

I 0
]

0

⎤
⎦

⎡
⎣ w(k)

u(k)

⎤
⎦ ,

(III.5)

with the state space realization
⎡
⎢⎢⎣

x̃(k + 1)
z(k)
y(k)

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

A0 0 D10 0
0 Am

[
D1m 0

]
Bm

C0 −Cm D20 −
[

D2m 0
]

−Dm

0 0
[

I 0
]

0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

x̃(k)
w(k)
u(k)

⎤
⎥⎥⎦ .

(III.6)B. Parallel Interconnection

In parallel interconnection, the delta model Lc is con-
nected as shown in Figure 7. The parallel architecture
represented in the standard form has the stet space realization

⎡
⎢⎢⎣

x̃(k + 1)
z(k)
y(k)

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

A0 0 D10 0
0 Am

[
D1m 0

]
0

C0 −Cm 0 −I
0 0

[
I 0

]
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

x̃(k)
w(k)
u(k)

⎤
⎥⎥⎦ .

(III.7)

+

−

L0

LmLc

w1

w2

u

y0

ym

z = y0 − ym
True System

Initial ModelDelta Model

Fig. 6. Cascade interconnection for model refine-
ment.
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+

+
+

L0

Lm

Lc

w1

w2

u

y0

ym

z = y0 − ym
True System

Initial Model

Delta Model

Fig. 7. Parallel interconnection for model refinement.

C. Feedback Interconnection

The feedback interconnection problem is shown in Figure

8. In this case the controller inputs y(k)
�
= ym(k). Thus the

standard form state space representation is
⎡
⎢⎢⎣

x̃(k + 1)
z(k)
y(k)

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

A0 0 D10 0
0 Am

[
D1m 0

]
Bm

C0 −Cm D20 −
[

D2m 0
]

−Dm

0 Cm

[
D2m 0

]
Dm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

x̃(k)
w(k)
u(k)

⎤
⎥⎥⎦ .

(III.8)

−

+

L0

Lm

Lc

w1

w2

u

y0

ym

z = y0 − ym
True System

Initial Model

Delta Model

Fig. 8. Feedback interconnection for model refinement.
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D. Cascade and Feedback Interconnection

In the feedback interconnection an additional feedforward
path can be included to obtain a combined feedback and
cascade interconnection, as illustrated in Figure 9. Noting

that y(k)
�
=

[
ym(k)
w1(k)

]
, the standard problem can be written

in the state space form as
⎡
⎢⎢⎣

x̃(k + 1)
z(k)
y(k)

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 0 D10 0
0 Am

[
D1m 0

]
Bm

C0 −Cm D20 −
[

D2m 0
]

−Dm

0 Cm D2m 0 Dm

0 0 I 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

x̃(k)
w(k)
u(k)

⎤
⎥⎥⎦ .

(III.9)

−

+

L0

Lm

Lc

w1

w2

u

y0

ym

z = y0 − ym
True System

Initial Model

Delta Model

Fig. 9. Cascade and feedback interconnection for
model refinement.

E. Identification using Adaptive Disturbance Rejection

Identification of linear systems can be considered a special
case of model refinement, with the initial model being the
zero model. Thus setting Lm = 0 in Figure 7, recovers
the classical identification framework, with the adaptive con-
troller Lc acting as the identified model. Casting the problem
in this form, an adaptive disturbance rejection algorithm can
be used to perform system identification.

IV. EXAMPLES

A. Model Refinement Using Subspace Identification

1) Unmodeled Dynamics Example: Here we consider the
equations of an acoustic duct. The equations and state space
realizations are given in [1], where the speed of acoustic
waves is 343 m/s, the density of air is 1.21kg/m3, length
of the duct is L = 2m, and the duct model includes four
modes.

To emulate unmodeled dynamics the initial model Sm of
the acoustic duct is obtained by deleting the states associated

with the second mode. Hence S0 is 8th order and Sm is
6th order. The system parameters and initial conditions of
the retained states are assumed to be known. The frequency
responses of the true system and the initial model are shown
in Figure 10.

The fit errors using cascade augmentation for the various
orders of the cascade delta model are shown in Table I, from
which it is clear that a 6th-order cascade delta model is
needed for an accurate fit of the forced and free responses.

Cascade Delta-Model Free Response Forced Response
Order Error Error

6 6.0578e − 10 3.5481e − 09
4 2.3649 4.5346
2 12.9163 27.5859
0 7.0867 32.5159

TABLE I

RESPONSE ERRORS OF AUGMENTED MODELS WITH REDUCED-ORDER CASCADE

DELTA MODELS, WHEN THE INITIAL STATES OF S ARE KNOWN, FOR UNMODELED

DYNAMICS

For parallel augmentation, an accurate fit for the forced
and free responses is obtained with a 2nd-order parallel delta
model as shown in Figure 11 and Table II.

Parallel Delta-Model Free Response Forced Response
Order Error Error

2 3.6216e − 11 1.2049e − 10
0 7.0867 32.5159

TABLE II

RESPONSE ERRORS OF THE PARALLEL AUGMENTED MODELS WITH

REDUCED-ORDER PARALLEL DELTA MODELS, FOR UNMODELED DYNAMICS

2) Parametric Error and Initial Conditions Error Exam-
ple: We consider a spring mass damper system with an input

nonlinearity. Defining the states as x
�
=

[
q q̇

]T
, where

q is the position of the mass and q̇ is the velocity, the state
space matrices are

A =

[
0 1

−k/m −c/m

]
, B =

[
0

1/m

]
, C =

[
0 1

]
,

where m is the mass, k is the spring stiffness and c is the
damping constant. The input nonlinearity is chosen to be
f(u) = u2 + u3. We use k = 2, m = 5, and c = 3 and a
square wave as the input sequence u.

The N4SID command in Matlab is used to identify a
linear model of the Hammerstein system described above.
This identified model is then used as the initial model,
and Hammerstein delta-model augmentation is performed
on this initial model. The initial model is erroneous in the
nonlinearity and the linear dynamics. Table III shows the
error in the forced response for both the initial and the
parallel augmented model.

B. Model Refinement Using Adaptive Disturbance Rejection

Consider the same spring mass system used in the previous
example. The initial model has a parametric error in the
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Parallel Delta-Model Forced Response
Order Error

0 21.8959
2 2.0939 × 10−7

TABLE III

FORCED RESPONSE ERRORS FOR PARALLEL-AUGMENTED MODELS FOR THE LOW

ORDER SYSTEM EXAMPLE.

spring stiffness and the damping coefficient. The true values
are chosen to be m = 8, k = 20, b = 1 and the erroneous
values in the initial model are m = 8, k = 44, b = 4. A
white noise input drives the true system and the initial model.
The frequency response curves of the true system, initial
model and the augmented model is shown in Figure 12. The
combined feedback and cascade architecture is employed in
this example.

For identification of the spring mass damper system, the
initial model is set to zero in the parallel interconnection
framework. The frequency response curves of the true system
and the identified model are shown in Figure 13.

V. CONCLUSION

In this paper we developed and illustrated two approaches
to improve model accuracy by using a delta model combined
in cascade, parallel or feedback with an initial model. In
the case of model refinement using subspace algorithms,
by identifying the initial fit error system, the identified
model was combined with the initial model to construct
an augmented model. This technique was shown to be
only partially effective for correcting initial conditions and
parametric errors. However, the method is more effective
for correcting unmodeled dynamics. In the case of model
refinement using adaptive disturbance rejection, the problem
was recast as a disturbance rejection problem and the AR-
MARKOV adaptive disturbance rejection algorithm was used
to tune the delta model. This technique was found to be more
effective for correcting parametric errors.
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Fig. 11. Unmodeled Dynamics Example. Discrete-time frequency
responses of the true system and the parallel augmented model.
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Fig. 12. Adaptive Disturbance Rejection Example. Frequency
responses of the true system, initial model and the augmented
model for a combined cascade and feedback interconnection.
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Fig. 13. Identification Example. Frequency responses of the true
system, the identified model for the spring-mass system.
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