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Abstract

Several lines of evidence suggest that the warming climate plays a vital role in driving certain

types of extreme weather. The impact of warming and of extreme weather on forest carbon

assimilation capacity is poorly known. Filling this knowledge gap is critical towards
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understanding the amount of carbon that forests can hold. Here, we used a perfect-deficit

approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they

correlate to climate extremes, based on observational data measured by the eddy covariance

method at 27 forest sites over 146 site-years. We found that droughts severely affect the carbon

assimilation capacities of evergreen broadleaf forest (EBF) and deciduous broadleaf forest. The

carbon assimilation capacities of Mediterranean forests were highly sensitive to climate

extremes, while marine forest climates tended to be insensitive to climate extremes. Our

estimates suggest an average global reduction of forest CPC due to unfavorable climate extremes

of 6.3 Pg C (∼5.2% of global gross primary production) per growing season over 2001–2010,

with EBFs contributing 52% of the total reduction.

S Online supplementary data available from stacks.iop.org/ERL/9/065002/mmedia

Keywords: climate extremes, drought, carbon assimilation capacity, perfect-deficit approach,

forests

1. Introduction

Forests store ∼45% of terrestrial carbon (∼1600 Pg C), con-

tributing ∼50% of terrestrial net primary production

(Bonan 2008) and making them significant carbon sinks that

can mitigate global warming (Nemani et al 2003, Gielen

et al 2013), an effect which may be dampened by changing

climate (Cox et al 2000, Friedlingstein et al 2006, Zhao and

Running 2010, Yi et al 2010, 2013). The 2003 heat wave and

drought reduced Europe’s gross primary production (GPP) by

30%, which reversed the effect of four years of net carbon

sequestration (Ciais et al 2005). It is expected that such

extreme events will increase in frequency and intensity

(Meehl, Tebaldi 2004, Mu et al 2011, Trenberth 2012).

Studying the impacts of climate extremes on the carbon cycle

of forests is important to understand carbon-climate feedback

mechanisms because even a small shift in the frequency or

severity of climate extremes may result in positive feedback

to climate warming (Allen et al 2010, Serrano et al 2013).

However, investigations into the impacts of climate extremes

on the carbon cycle are still at the rudimentary level. In this

study, we applied the perfect-deficit approach of Yi et al

(2012) to identify extreme values of canopy photosynthetic

capacity (CPC) and climate variables from flux tower data.

The daily CPC is calculated as the maximum rate of GPP of

the day from FLUXNET tower data at 30 min resolution.

CPC forms an upper boundary for the instantaneous canopy

photosynthetic rates for a specific site-year. It is hypothesized

that ecosystem carbon assimilation capacity is only con-

strained by climate conditions, and thus a perfect CPC

(PCPC) is defined as a measure of the maximum carbon

assimilation potential for a site given site-specific ‘perfect’

climate conditions for a particular day of the year over the

years for which data were sampled. Deficits of CPC can be

readily identified by subtracting CPC curve from the PCPC

curve.

We introduced three indices (duration, intensity and

severity) to quantitatively evaluate extreme climate impacts

on forests carbon assimilation capacity, indicated by CPC

deficits. Principal component analysis (PCA) was applied to

identify the driving forces of climate-related carbon assim-

ilation reduction.

We used 27 forest sites from Europe, North America and

South America, each with at least four years of continuous

carbon and water flux records. The represented ecosystem

types include evergreen broadleaf forests (EBF), deciduous

broadleaf forests (DBF), evergreen needleleaf forests (ENF)

and mixed forests (MF). We also utilize the MODIS GPP and

land cover datasets covering 2001–2010 to determine the

spatial context of changes in forest carbon assimilation at the

global scale. Key objectives of this study were: (1) identify

the site-inherent ‘perfect’ conditions for maximal productivity

over the observational records; (2) discover patterns in dis-

ruption of forest carbon assimilation associated with climatic

extremes; and (3) expand the application of the method (Yi

et al 2012) geographically to large scale estimation of the

reduced carbon assimilation caused by climate extremes.

2. Methods

2.1. Sites and data

2.1.1. Flux tower data. We used data from the FLUXNET

‘La-Thuile’ database. Data have been processed in a standard

methodology described in Papale et al 2006. The data are

storage corrected and u* filtered. We used growing season

data (May–October) from 27 forest sites, including four EBF,

seven DBF, 13 ENF, and three MF (figure 1). These sites

have a minimum of four years of continuous (gap-filled)

records of GPP and meteorological variables, including

temperature (Ta), precipitation (P), net radiation (Rn), vapor

pressure deficit (VPD). GPP was partitioned from net

ecosystem exchange (NEE) based on nonlinear regression

algorithms (Reichstein et al (2005)). Evaporative fraction is

calculated from measured latent heat (LE) and sensible heat

(H). EF is represented by the ratio between LE and the sum of

sensible and LE fluxes: EF =LE/(LE +H), This can be also

written as EF =LE/(Rn−G), where Rn is net radiation, G is

ground heat flux, and Rn−G is available energy. If the near

soil surface moisture declines, less energy will be used for

vaporization, resulting in low EF. In contrast, if adequate

water is available for plants due to sufficient precipitation or

root access to groundwater, the amount of energy used for

Environ. Res. Lett. 9 (2014) 065002 S Wei et al
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vaporization will increase, leading to high EF (Schwalm

et al 2010). Because of the synthetic nature of EF in

characterizing land surface conditions for soil moisture and

available energy for plant to use and evaporation, it has been

widely used as a drought index (Heim 2002, Nishida (2003)).

Here EF is the drought indicator in our analysis.

2.1.2. MODIS GPP and land cover. We used global monthly

GPP datasets (MOD17A2) provided by Zhao and Running

(2010). The MODIS GPP algorithm is used to calculate

global GPP with 0.05 × 0.05 degree spatial resolution over the

period 2001–2010. Land cover classification (MOD12C1) is

defined by the International Geosphere Biosphere Programme

(IGBP) global vegetation classification scheme. (https://

lpdaac.usgs.gov/products/modis_products_table/mcd12c1).

We masked the areas that are non-forested. ENF,

EBF, MF, and DBF were identified based the gridded land

cover. (http://www.mmnt.net/db/0/0/firecenter.umt.edu/pub/

NPP_Science_2010/Monthly_MOD17A2/GEOTIFF_0.05

degree).

2.2. CPC

2.2.1. Forest CPC and PCPC. The concept of CPC

represents the daily maximum carbon assimilation (Yi

et al 2012). The daily CPC of ecosystems was defined as

the maximum value of half-hourly GPP in a day, which was

derived from FLUXNET NEE data by nonlinear regression

(Reichstein et al 2005). A yearly CPC curve is constructed

from daily GPP data (figure 2(a)). This CPC curve forms an

upper boundary for the instantaneous canopy photosynthetic

rates, and the area under the CPC curve represents ecosystem

carbon assimilation potential—how much carbon dioxide

potentially can be assimilated by an ecosystem at a site in an

individual year. This data-based CPC is in good agreement

with modelled photosynthetic capacity (Amax) (figure 2(a),

modelling in details given in the online supplementary

materials available at (stacks.iop.org/ERL/9/065002/

mmedia). PCPC is defined as a measure of the maximum

carbon assimilation potential for a site given site-specific

‘perfect’ climate conditions for a particular day of the year

over the years for which data are available. The PCPC values

are calculated for each day of the year as the maximum CPC

recorded on that day across all available years of site data.

Thus, a PCPC curve of maximized carbon assimilation

potential can be constructed (figure 2(a)). The difference

between PCPC and CPC is defined as CPC deficit

(figure 2(a)). We investigate the relationship between

magnitudes of the CPC deficit of forests and their driving

forces.

2.2.2. MODIS GPP deficit. The perfect-deficit approach was

also applied to MODIS GPP datasets. The PCPC was

calculated as the maximum value of monthly GPP over the

years 2001–2010. The CPC deficits were calculated as the

difference between monthly PCPC and monthly CPC of

specific years.

Environ. Res. Lett. 9 (2014) 065002 S Wei et al

Figure 1. Spatial distribution of the studied forest sites. The forest types are shown in the legend. 27 Fluxnet forest sites were used in this

analysis, including four evergreen broadleaf forests (EBF), seven deciduous broadleaf forests (DBF), 13 evergreen needleleaf forests (ENF)
and three mixed forests (MF). These sites have a minimum of four years of continuous data of gross primary product (GPP), Temperature
(Ta), Precipitation (P), net radiation (Rn), Latent hear (Le) and Sensible heat (H).
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2.2.3. Climate potential index. We used a similar approach as

above to define climate drivers or drought proxies (Ta, Rn, P,

VPD, and EF). We extracted the yearly climatic potential

curve from the daily maximum observed value of each

climate variable for each site-year. Climatic envelopes were

defined as the maximum values for each day-of-year observed

from at least four continuous yearly records. Climatic drivers

are defined as differences between climatic potential and

climatic envelopes representing ‘perfect’ climate.

2.3. Extreme indices

2.3.1. Threshold value. The threshold levels of extremes

were defined by the relative monthly CPC deficit

Ri= (PCPCi−CPCi)/PCPCi, here the PCPCi is the ith

month PCPC (calculated by integrating daily PCPC), and

CPCi is ith month CPC (from integrating the daily CPC).

Based on sensitivity analysis (Supplementary figure 1),

Ri= 0.3 is used as a threshold value to identify extreme

CPC events. We did piecewise linear regression between Ri

and the fraction of months with relative CPC deficit greater

than Ri. The Ri = 0.3 is close to the break point between a line

with steep slope (more sensitive) to one with gentle slope

(less sensitive). In order to emphasize severe extreme events

and keep results less sensitive to the choice of Ri, we therefore

used Ri= 0.3 as the threshold value. The legitimateness of

using Ri= 0.3 as the threshold value in present paper is also

evidenced by previously published drought and heat wave

events that occurred in 2003 in Europe and caused significant

GPP reduction (Ciais et al 2005). These documented extreme

events can be identified by the choice of Ri = 0.3 as the

threshold value in our analysis.

2.3.2. CPC deficit duration, intensity and severity. The

concept of CPC deficit indices is borrowed from drought

terminology (Sheffield and Wood 2007) in which a drought

index is calculated as the deficit of soil moisture relative to its

seasonal climatology. Similarly, an extreme index from the

point of view of the carbon cycle could be calculated as the

deficit of CPC relative to its PCPC. An extreme event is

defined as a period of duration of n months with relative

deficit ratios larger than an arbitrary level. The departure of

CPC from PCPC is the extreme event magnitude Mi

(g CO2m
−2),

= −M PCPC CPC , (1)
i i i

where i is the ith month of n months with Ri exceeding 0.3

within a May–October period. The mean magnitude over the

CPC deficit duration is the intensity I (g CO2m
−2month−1),

∑=
=

I M n. (2)
i

n

i

1

The product of duration and intensity gives the CPC

deficit severity S (g C m−2),

= ×S I n, (3)

or

∑=
=

S M . (4)
i

n

i

1

We also define classes of extreme events based on their

duration as follows:

D1–2(1⩽ n⩽ 2), short or medium term, D3–6 (3⩽ n⩽ 6),

long term, where the subscript to D indicates the range of

drought duration in months.

2.4. Statistical analysis

2.4.1. PCA. PCA is a widely used technique in atmospheric

sciences. It is a quantitative method to explain the variation of

large sets of inter-correlated variables, transforming them into

a smaller set of independent (uncorrelated) variables

Environ. Res. Lett. 9 (2014) 065002 S Wei et al

Figure 2. Perfect-deficit approach and modeled Amax. (a) Compar-

ison of CPC, and PCPC by the perfect-deficit approach from flux
tower data and modeled photosynthetic capacity Amax—using the
light-response model (Ruimy et al 1995, Yi et al 2004) (Supple-
mentary Materials). The deficit (shadow) represents the severe GPP
drop occurred in growing season 2003 at the IT-Ro2 site located in
Italy. PCPC gives the observed site-specific maximum daily GPP
rate given ‘perfect’ conditions. (b) Perfect evaporative fraction (PEF)
and daily maximum evaporative fraction (EF) in 2003. The shading
indicates the EF deficit for that year.
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(principal components). Here, PCA is used to find the

correlations between CPC deficits and climate drivers during

the northern growing season (May–October). Datasets were

standardized before we compute the PCA. We use the first

three principal components, which account for at least 70% of

the whole dataset variance, to construct plots with axes

formed by these three components. The correlations among

CPC deficit and climatic drivers were approximately equal to

the cosines of the angles between the corresponding lines in

the plot (Wilks 2006) (Supplementary figure 2) (This is an

approximation because the variance described is 70% and

above, rather than 100%).

2.4.2. Smoothing algorithm. All of the climatic drivers and

model variables were smoothed using a 10 d moving average.

3. Results and discussion

As an example, the yearly photosynthetic capacity (Amax)

curve for site IT-Ro2 (DBF) is constructed from daily data

extracted using equation (S1). The physiological meaning of

Amax is the carbon assimilation rate at saturating values of

photosynthetic photon flux density. The yearly dynamics of

CPC from the perfect-deficit approach and Amax from the light

response model were shown in figure 2(a). Overall, the data-

based CPC is consistent with the model-based Amax. Both

CPC and Amax show the severe carbon assimilation reductions

during the 2003 growing season in European DBF sites.

However, the modeled Amax largely overestimates the carbon

assimilation around the beginning and end of the growing

season, and slightly underestimates it during the growing

season. The index EF deficits show the similar pattern as CPC

deficit (figure 2(b)). The clear relationship between GPP

deficits and EF deficits occurring at the IT-Ro2 site

(figures 2(a), (b)) may indicate that drought was the major

constraint to growing-season carbon assimilation in this site.

As shown for the example site, we applied the perfect-

deficit approach to 27 forest sites covering EBF, DBF, MF

and ENF ecosystems to calculate the duration, intensity and

severity of CPC deficits. Duration means the number of

months with relative deficit above 0.3, intensity was calcu-

lated as the mean magnitude of CPC deficit over the duration

and severity is the product of intensity and duration (see

methods). CPC deficit duration, intensity, and severity for

each site are listed in table 1. Severe CPC deficit events,

characterized by long duration, were mostly discernible at

EBF and DBF sites (D3–6 > 3). For ENF and MF, only 4.9%

and 7.7% of sites exhibit severe CPC deficit events. As shown

in figure 3, at the biome scale, the EBF sites were dominated

by significant reduction in carbon assimilation indicated by

large CPC deficits. Over the studied sites, the EBF CPC

deficits were at the highest average severity, with assimilation

reduction of 824.2 g CO2m
−2 per growing season, 1.8 months

of duration, and 415.4 g CO2m
−2month−1 of intensity. The

average severity, duration and intensity were similar for DBF

sites: 673.2 g CO2m
−2, 1.5 months, and 412.3

g CO2m
−2month−1 respectively. The frequency of severe

CPC deficit events in the broadleaf forests (i.e. EBF and

DBF) indicates high inter-annual variability of carbon

assimilation capacity in these ecosystems. In contrast, the

ENF sites rarely exhibit significant CPC deficits, with

aggregated average values of severity, duration, and intensity

of 149.2 g CO2m
−2, 0.5 months, and 186.6

g CO2m
−2month−1, respectively. The three MF sites behaved

similarly to the ENF sites. We found that the CPC deficits of

forests vary significantly by climate region. The frequency of

severe CPC deficits of Mediterranean forests was high

(table 1). Because Mediterranean forests usually suffer from

long dry summers, drought is the most important cause of

forest carbon assimilation declines in this climate zone. There,

75% of the severe CPC deficit events coincide with significant

EF deficits.

We applied PCA to illuminate the correlation between

CPC deficits and climatic drivers. Conventionally, deconvo-

luting the climatic effects of carbon assimilation is difficult,

because the climatic variables and drought index usually co-

vary strongly. PCA methods can effectively separate those

effects (Jung et al 2007, Wilks 2006). As illustrated in

figure 4, CPC deficit of EBF strongly correlates with EF

deficit, with a mean correlation coefficient (denoted by cosine

of two lines that represent EF deficit and CPC deficit) of 0.42.

The cosine values between CPC deficit and other climatic

variables (Ta, Rn, VPD and P) range from −0.04 to 0.04,

indicating very weak correlations. For DBF biomes, the CPC

deficit also displayed strong correlation with EF (cosine of

0.43), but slight correlation with Rn (cosine of 0.18). These

results suggest a drought control on CPC in these two

broadleaf biomes. However, the correlations of broadleaf

forest CPC deficits and precipitation were weak. This may be

attributed to several reasons. First, the typical probability

density of precipitation is a gamma distribution, while the

PCA approach assumes that data is normally distributed. This

mismatch may introduce bias to assess the role of precipita-

tion in its correlation to CPC deficits. Second, precipitation is

a sporadic input to the soil moisture budget (Noy-Meir 1973),

and does not influence ecosystem activities immediately. In

addition, compared to herbaceous vegetation, trees are gen-

erally more resistant to instantaneous local environmental

changes (Teuling et al 2010) because they can access deep

soil moisture and groundwater, which smooth out variability

in response to precipitation.

A number of previous studies have suggested that, in

temperate boreal forest ecosystems, the growing season

photosynthetic capacity is mostly constrained by temperature

(Falge et al 2002, Griffis, Black 2003). Indeed, the correlation

of the CPC deficits in both ENF and MF with climatic drivers

was weak (figure 4). The correlation between ENF CPC

deficit and Rn was highest (cosine 0.26) out of the climatic

drivers, while the MF CPC deficit had no significant corre-

lation with any of the climate drivers or with EF.

Within the same type of forest, the climatic control of

carbon assimilation capacity could vary among climatic zones

(Supplementary table 1). The CPC deficits of Mediterranean

EBF (Csa) was apparently controlled by drought while that of

Environ. Res. Lett. 9 (2014) 065002 S Wei et al
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Table 1. Forest flux towers used in this study and the number of long term CPC deficit events (over May–October) in each.

Site

code Site name Lat Lon Veg Climate Years

Severe CPC deficit

events

Duration

(months)

Severity

(g CO2m
−2)

Intensity

(g CO2m
−2month−1)

US-

MMS

Morgan Monroe State

Forest

39.32 86.41 DBF Cfa 2000–2005 — 0.5 115.1 230.2

DE-Hai Hainich 51.08 10.45 DBF Cfb 2001–2006 — 0.7 224.3 336.5

FR-Hes Hesse Forest-

Sarrebourg

48.67 7.06 DBF Cfb 2001–2006 3(2003–2005) 2.0 1171.3 585.7

IT-Ro1 Roccarespampani1 42.49 11.93 DBF Csa 2001–2006 3(2001,2003,2004) 2.2 946.1 436.7

IT-Ro2 Roccarespampani2 42.39 11.92 DBF Csa 2002–2006 2(2003,2004) 1.6 956.3 597.7

US-Wcr Willow Creek 45.81 −90.08 DBF Dfb 2001–2006 1(2001) 1.7 719.3 431.6

CA-Oas SK-Old Aspen 53.63 −106.2 DBF Dfc 2000–2005 1(2003) 2.2 579.9 267.6

Average 1.5 673.2 412.3

BR-

Ma2

Manaus—ZF2 K34 −2.61 −60.3 EBF Af 2002,2002,2004–2006 1(2002) 2.0 1276.3 638.2

FR-Pue Puechabon 43.74 3.59 EBF Csa 2001–2006 2(2005,2006) 2.5 1171.3 468.5

IT-Cpz Castelporziano 41.71 12.37 EBF Csa 2001–2006 2(2001,2006) 2.3 795.7 341.0

PT-Esp Espirra 38.64 −8.6 EBF Csa 2002–2004, 2006 — 0.3 53.5 214.1

Average 1.8 824.2 415.4

US-Dk3 Duke Forest

Loblolly Pine

35.97 −79.09 ENF Cfa 2002–2005 — 0.0 0.0 0.0

US-Sp3 Donaldson 29.75 −82.16 ENF Cfa 2001–2004 — 0.5 223.2 446.4

DE-Tha Harandt 50.96 13.57 ENF Cfb 2001–2006 — 0.3 119.1 357.4

DE-Wet Wetzstein 50.45 11.45 ENF Cfb 2002–2006 — 0.6 214.1 356.9

IT-Lav Lavarone 45.95 11.28 ENF Cfb 2001–2002,2004,2006 — 0.0 0.0 0.0

NL-Loo Loobos 52.17 5.74 ENF Cfb 2001–2006 — 0.0 0.0 0.0

IT-Sro San Rossore 46.58 11.43 ENF Csa 2001–2006 1(2003) 1.3 448.1 336.1

US-Wrc Wind River Crane Site 45.82 −121.95 ENF Csb 2000–2002,2004,2006 2(2000, 2006) 1.6 657.3 410.8

US-Ho1 Howland Forest 45.2 −68.74 ENF Dfb 1999–2004 — 0.0 0.0 0.0

US-Ho2 Howland Forest 45.21 −68.75 ENF Dfb 1999–2004 — 0.0 0.0 1.0

CA-obs SK-Southern Old

Black Spruce

53.99 −105.12 ENF Dfc 2000–2005 — 0.5 87.1 174.2

CA-ojp SK-Old Jack Pine 53.9 −104.69 ENF Dfc 2000–2005 — 0.8 127.9 153.5

FI-Hyy Hyytiala 61.84 29.29 ENF Dfc 2001–2006 — 0.3 63.1 189.4

Average 0.5 149.2 186.6

BE-Bra Brasschaat 51.31 4.52 MF Cfb 2000,2002,2004–2006 1(2002) 2.0 629.8 314.4

BE-Vie Vielsalm 50.3 5.99 MF Cfb 2001–2004,2006 — 0.0 0.0 0.0

US-Syv Sylvania Wild-

erness Area

46.242 −89.35 MF Dfb 2002–2005 — 1.0 154.1 154.1

Average 1.0 261.3 156.2

Severe CPC deficit events are defined as three consecutive months with relative deficit ratio (monthly CPC deficit divided by PCPC) exceeding 0.3 (D > 3). Severe CPC deficit events were mostly discernible at EBF and

DBF sites. Climate grouping follows the Köppen–Geiger classification scheme: A, moist tropical climate, with Af indicating tropical rain forest; C, moist climate with mild winters: Cfa and Cfb represent humid

subtropical climate, Csa and Csb represent Mediterranean climate; D, moist climates with severe winters: Dfb represents humid continental climate and Dfc represents subpolar climate.

6



tropical (Af) EBF depended less on climatic factors. In con-

trast to Mediterranean (Csa) DBF, whose carbon assimilation

capacity exhibited a strong dependence on drought, con-

tinental and moist tropical DBF (Cfb and Dfb) carbon

assimilation capacities were less impacted by drought.

Instead, Ta and radiation were stronger constraints.

Figure 5 illustrates the monthly global spatial extent of

CPC deficits during the growing season. Non-forested areas

are masked from the analysis. We estimate a climate-attri-

butable global reduction of forest CPC of 6.3 Pg C (∼5.2% of

total terrestrial GPP) per growing season, and EBF forests

contributed 51.7% of the total reduction. Although DBF

displayed significant CPC deficits at the site level, the total

carbon lost was small due to the small area this biome covered

globally. The high CPC deficits of EBF occur in August and

September, especially at the tropical forests of Brazil. The

large CPC deficits in temperate and boreal forests (ENF and

MF) occurred in May, most pronounced at boreal forests of

Canada, northern United States, and western Russia. The ENF

and MF biomes together contribute almost half of total forest

carbon assimilation reduction.

4. Conclusions

We analyzed the effects of climate extremes on forest carbon

assimilation and discussed how that might impact the carbon

cycle. An observation-based estimate of those impacts was

presented by introducing three indices of assimilation deficit

periods: duration, intensity and severity. Our study suggests

that carbon assimilation capacities of broadleaf forests (EBF

and DBF) could be significantly impacted by drought, indi-

cated by low values of EF. On the global scale, EBF con-

tributes more than 50% of the carbon reduction of forests.

Climate extreme events, specifically drought, are expected to

increase in intensity and severity in the future. The present

analysis can help identify and quantify the impacts of climate

extremes on terrestrial carbon cycles and improve our

understanding of carbon-climate feedback mechanisms.

Environ. Res. Lett. 9 (2014) 065002 S Wei et al

Figure 3. Duration, intensity and severity of CPC deficit of Fluxnet forest sites (per growing season). Shown are the median (red horizontal

lines), the quartiles (colored boxes), 25th and 75th percentiles (the edges of the box). Duration counts the months with relative deficit ratio
exceeding 0.3 for each growing season. Magnitude indicates the sum of the differences between monthly PCPC and CPC. Mean magnitude
(the value of magnitude over duration) is defined as intensity. The product of duration and intensity gives the CPC deficit severity.

Figure 4. Correlations between CPC deficits and climatic variable

deficits (May–October). Shown are the median (red horizontal lines),
the quartiles (colored boxes), 25th and 75th percentiles (the edges of
the box). The correlations are calculated using principal component
analysis. Three components are retained to form three dimensional
plots, which explain at least 70% of total variations of the dataset
(Supplementary table 2). Correlations are calculated as the cosines of
the angles between GPP deficits and Temperature (Ta), Radiation
(Rn), vapor pressure deficit (VPD), Precipitation (P), Evaporative
Fraction (EF) deficits. CPC deficits of DBF and EBF are highly
correlated with EF deficits, suggesting drought control of carbon
sequestration among these two types of forests.
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Environ. Res. Lett. 9 (2014) 065002 S Wei et al

Figure 5. Remotely sensed GPP deficit over May–October. GPP deficits through 2001–2013 are aggregated into monthly means. In this

study, we used global MODIS GPP datasets published in Zhao and Running (2010) to calculate GPP deficits by perfect-deficit approach (Yi
et al 2012). Forest GPP was calculated based on MOD12C1 land cover product. Non-forested areas were masked from our analysis.
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