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ABSTRACT
The massive computational power available in off-the shelf
Graphics Processing Units (GPUs) can pave the way for its
usage in general purpose applications. Current interfaces to
program GPU operation are still oriented towards graph-
ics processing. This paper is focused in disparities on those
programming interfaces and proposes an extension to of the
recently developed Caravela library that supports stream-
based computation. This extension implements effective
methods to counterbalance the disparities and differences in
graphics runtime environments. Experimental results show
that these methods improve performance of GPU-based ap-
plications by more than 50% and demonstrate that the pro-
posed extended interface can be an effective solution for gen-
eral purpose programming on GPUs.

Categories and Subject Descriptors
D.1.3 [Software]: PROGRAMMING TECHNIQUES—Con-
current Programming, Parallel programming

General Terms
Performance

Keywords
Graphics processing unit, DirectX, OpenGL, general pur-
pose processing

1. INTRODUCTION
The need for realistic graphics representations, especially

in the entertainment market, has promoted GPU perfor-
mance growth by leaps and bounds in the recent years. This
growth-rate exceed the ratio defined by the Moore’s law [13].
Since GPUs have become commodity components in almost
all personal computers, instead of only being present in
high-performance computing systems, researchers have been
focusing their attention on GPU’s potential computational
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performance. Therefore, GPUs are being regarded as new
high performance computing available platforms, with the
ability of speeding up processing and freeing Central Pro-
cessing Units (CPU) for other tasks.

Contemporary GPUs are programmable, which allows their
programming for general purpose applications. However,
the burden of efficiency rests upon the users/programmers
knowledge of graphics processing details in order to utilise
the GPU resource efficiently. For example, the calculations
on GPU are performed by rendering to a screen buffer. This
mechanism is responsible for the main difference in the mem-
ory interface and in control of the GPUs, when comparing
with CPU. Therefore, it is up to the programmer to go back
and forth, between the controlling code for GPU and the one
corresponding algorithm for the target application. Thus, to
let the programmer focus on the algorithm without the need
to known the details of the graphics runtime environment,
we need to implement a uniform interface for GPU-based
applications.

Although GPU hardware implementation differs among
vendors, a common processing pipeline is provided, which
is composed by a vertex and a pixel processor. The user
interface for GPU is specified as a graphics application pro-
gramming interface running on the host CPU. The most
well-known interface software for graphics runtimes are the
DirectX9 [3] and the OpenGL 2.0 [12]. However, those run-
times have different functionalities and different capabilities
for graphics applications. Therefore, to design a uniform
interface for GPU-based applications its required to address
those interface differences, without degrading performance.

This paper discusses the main differences in capabilities
and performance of DirectX and OpenGL graphics runtimes.
In addition, a novel and uniform programming interface is
proposed, which has been implemented as an extension to
the Caravela library [1]. The Caravela library provides an
API for stream-based computing using GPU resources de-
veloped by the authors of this paper. We also present the im-
plementation details of an extension to the Caravela library
that provides a common programming interface without de-
grading performance. Moreover, experimental performance
evaluations are performed in order to confirm that the pro-
posed extension is an effective and efficient way to program
general purpose applications on GPUs.

This paper is organised as follows: The following section
describes features of GPUs and details of its programming.
In section 3, graphics runtime environments are compared
and a novel interface extended in the Caravela library is
proposed. The performance of the Caravela library and the
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Figure 1: Organization around GPU.

proposed extension are experimentally evaluated and the re-
sults are presented in section 4. Finally, we will conclude this
paper in section 5.

2. GENERAL PURPOSE PROCESSING ON
GPUS

In today’s computers, GPU can act as a coprocessor of
the CPU via a peripheral bus, such as the AGP or the PCI-
Express buses, as shown in Figure 1. CPU uses a VRAM
(Video RAM) through a dedicated connection to read/write
the processed graphics objects. To process graphics objects,
the CPU sends object data to the VRAM and program code
to the GPU.

2.1 GPU hardware and programming
characteristics

Figure 2 shows the required processing steps on a GPU in
order to create a graphical image in a frame buffer to be dis-
played in a screen. First, graphics data is prepared as a set
of normalized vertices of objects on a referential axis defined
by graphics designer (Figure 2 (a)). The vertices will be sent
to a vertex processor to change size and/or perspective of
the object, by calculating rotations and transformation of
the coordinates. In this step, all the objects will be mapped
to a standardized referential axis. In the next step, a ras-
terizer interpolates the coordinates and defines planes that
form the graphic objects (Figure 2 (b)). Finally, a pixel pro-
cessor receives these planes from the rasterizer and creates
color data in the frame buffer by calculating composed RGB
colors from textures (Figure 2 (c)). Each color data is writ-
ten into the frame buffer, and thus the buffer will be output
to the screen. The current GPUs, which have multiple pixel
processors as shown in Figure 1, can process this color data
concurrently for different parts of a screen.

In actual GPUs, vertex and pixel processors are program-
mable, and are composed of fast and dedicated floating point
pipelined units, mainly programmed for graphics applica-
tions. The rasterizer is composed of fixed hardware and its
output data can not be fetched by CPU, so the CPU usually
uses only the computing power of the pixel processors.

The idea of using GPUs for replacing CPUs not only for
graphical tasks originated a new research area designated by
General-purpose Processing on Graphics Processing Units
(GPGPU) [9] [11]. GPGPU applications control GPU hard-
ware using a graphics runtime environment. These graphics
runtime components operate in the CPU domain, in order to
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Figure 2: Graphics processing steps.

control the GPU. Because these runtime environments have
been firstly designed for graphics processing, its interfaces
are not familiar to scientific users/programmers in general.
For example, when an application wants to output NxN ma-
trix, the programmer needs to setup a frame buffer and he
must understand that the output will be generated to an
NxN pixel plane. Although this is the correct operation for
a graphics applications it does not make sense for GPGPU
applications. Thus, it is important to define a new Appli-
cation Programming Interface (API) for GPGPU that hides
the graphical legacy of GPU.

To solve the problem of disparities between graphics run-
time environments and general purpose processing require-
ments and characteristics, some solutions have been pro-
posed, such as Sh [4], Scout [10] and Brook [7]. Sh is a
graphics processing interface with an object oriented inter-
face for C++. The program for pixel processor is written in
Sh language and Sh covers the difficult control of graphics
runtime environments. Scout is another wrapper for graph-
ics which uses a language based on C*. Although details
of graphics runtime are hidden by these two systems, they
are still targeted for visual applications. Therefore, the pro-
grammer can not completely eliminate graphical dependent
environments or issues. Brook is a compiler-oriented inter-
face for GPU-based applications for which programmer just
needs to identify functions to be transposed to programs on
a pixel processor (this program is called pixel shader) with
a special keyword (kernel). Although this interface seems
to be one of the best solutions for the problem mentioned
above, it is hard in practice to tune the achieved perfor-
mance, namely regarding memory access such as buffers’
management.

Therefore, we need to address the problem of disparity
between the programming interface and the graphics envi-
ronment, and keep focused in its two main aspects: the level
of complexity needed to program general purpose applica-
tions on GPUs and the achieved performance.

2.2 Caravela platform
Caravela platform [1] is an interface for stream-based com-

puting implemented by the authors of this paper. The Car-
avela platform uses the concept of flow-model for program-
ming a given task. Applications on the platform use Car-
avela library for mapping the flow-model into processing
units.

206



Input Data Stream(s) Constant Values

Input 4

Input 5

Input 6

Output 0

Output 1

Output 2

Output Data Stream(s)

Input 3 ConstantOP

Program

Figure 3: Structure of the flow-model.

Graphic card

GPU GPU GPUGraphic card

GPU GPU GPU

Host memoryCPU

System bus

Bus bridge

Peripheral bus

Graphic card

GPU GPU GPU

Machine

Adapter

Shader

Figure 4: Resource hierarchy in the Caravela li-
brary.

2.2.1 Representing application according to the
flow-model

As shown in Figure 3, the flow-model is composed of in-
put/output data streams, constant parameter inputs and a
program which processes the input data streams and gener-
ates the output data streams. The application program in
Caravela is executed as a stream-based computation, such
as the one of data-flow processor. However, the input data
stream of a flow-model can be randomly accessed because
the input data streams are memory buffers for the pro-
gram that use this data. On the other hand, the output
data streams are sequences of data units that compose the
stream. Thus, the execution of the program embedded in
the flow-model is not able to touch any other resources than
the I/O data streams, which is an advantage in a security
perspective.

The flow-model also has another advantage for distributed
environments. All the methods to execute a task are encap-
sulated into a data structure. Therefore, the flow-model
can be managed as a distributed object, which can be easily
fetched anywhere based on the Caravela runtime environ-
ment. For example, when a flow-model is placed in a remote
machine, it can be fetched by any other machines and the
execution mechanism from the flow-model be reproduced.

The processing unit to be assigned to a flow-model pro-

Table 1: Basic functions of Caravela library.
CARAVELA CreateMachine(...)

creates a machine structure.

CARAVELA QueryShader(...)

queries a shader on a machine.

CARAVELA CreateFlowModelFromFile(...)

creates a flow-model structure from XML file.

CARAVELA GetInputData(...)

gets a buffer of an input data stream.

CARAVELA GetOutputData(...)

gets a buffer of an output data stream.

CARAVELA MapFlowModelIntoShader(...)

maps a flowmodel to a shader.

CARAVELA FireFlowModel(...)

executes a flowmodel mapped to a shader.

gram can be a software-based emulator, an hardware data
flow processor, an hardware dedicated processor, etc. . Herein,
in the scope of this paper, we are interested in GPU as the
processing unit. The processing style of GPU, which reads
texture inputs by stream and generates the output data as
a stream, perfectly fits into the flow-model framework.

2.2.2 Caravela library
The Caravela platform is mainly composed by a library

that supports an API for GPGPU. The Caravela library
has been adopted to the definitions for the processing units
represented in Figure 4: Machine is a host machine of a video
adapter, Adapter is a video adapter that includes one or
multiple GPUs and finally Shader is a GPU. An application
needs to map a flow-model into a shader, to execute the
mapped flow-model.

Table 1 shows the basic Caravela functions for a flow-
model execution. Using those functions, a programmer can
easily implement target applications in the framework of
flow-models, by just having to map flow-models into shader(s).
Therefore, the programmer does not need to know about
graphics runtime environment details, which means that
Caravela library can become one of the solutions to relieve
the chief problem of differences between graphical environ-
ments mentioned in the previous section.

However, to efficiently support multiple graphics runtime
environments in the lower layer of Caravela library, care
should be taken to understand their differences in methods
and features. If a graphics runtime environment, which a
programmer aims to instantiate from the Caravela library,
has special performance tuning functions, the programmer
would like to be sure that the interface provided by Caravela
library takes advantage of that. Therefore, we need to con-
sider extended functions for a uniform interface for GPGPU
applications that tunes-up runtime procedures in order to
achieve the best performance in different graphics runtime
environments.

3. UNIFORM PROGRAMMING INTERFACE
FOR GPU-BASED APPLICATIONS

First of all, let us consider the possible differences between
DirectX9 and OpenGL 2.0, herein just designated DirectX
and OpenGL respectively.
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3.1 Functional comparison between runtimes
When a uniform interface is designed, one of the most

important issues is compatibility of graphics runtime envi-
ronments over different Operating Systems (OSs). The Di-
rectX is embedded into Windows. Therefore, its functional-
ity is supported trustfully as long as we are using Windows.
However, DirectX is not compatible with other OSs such as
Linux1. Therefore, the implementation of the uniform in-
terface using the DirectX is relevant only to the Windows
OSs.

On the other hand, OpenGL is ported to almost all avail-
able OS in the market. For Windows, the basic functions are
available in the opengl32 dynamic library. However, an ap-
plication using vertex or pixel processor needs the functions
of OpenGL Extention Specification implemented by GLEW
(The OpenGL Extension Wrangler Library) [5] for instance,
which provides an interface to create program object for the
processors.

3.1.1 GPU resource management
When multiple GPUs are connected to a machine, the

GPGPU applications may want to use those processing units
concurrently. The uniform interface should individually man-
age these GPUs if they are available on the graphics runtime
environments.

DirectX is able to manage multiple video adapters sep-
arately. It can allow resources, such as input textures, to
be allocated separately. Therefore, the uniform interface
must support the functionality of concurrently executing
GPU programs. Contrarily, OpenGL uses a default video
adapter via GLUT [6]. This interface does not allow to
specify which video adapter is used. Thus, the uniform in-
terface allows both situations but automatically switches to
a single program mode at any time in a machine if OpenGL
is being used.

3.1.2 Shader language and Compiler
GPU can execute a dedicated program written in a shader

program language. The graphics runtime environments can
accept high-level shader language or assembly language. The
differences appear at the translation level of the shader code.

DirectX accepts both the assembly language and the high
level language. The shader code written in the assembly
language must follow the GPU model specified by Microsoft
called Shader Model. The shader program begins with the
shader version instruction, such as ps 2 0 for Pixel Shader
Model 2.0. The assembly-based shader code is assembled
by D3DXAssembleShader function. On the other hand, the
HLSL (High Level Shader Language) is available, which is a
C language like interface for the shader programming. The
compilation is performed by the D3DXCompileShader func-
tion. This function takes one of the shader model versions
available on the target GPU. The shader version supported
by a target GPU is dependent on the GPU architecture.
For example, nVIDIA’s GeForce7 supports Shader Model
3.0. However, Geforce6 only supports the version 2.0. This
means that even if a shader program is written in HLSL,
loop statements are unrolled in GeForce6, because it can
not use the loop instruction supported by the Shader Model
3.0.

1Although the DirectX9 for WINE[2] emulates DirectX run-
time, Linux itself does not have any native runtime for Di-
rectX.
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Figure 5: Buffer management for graphics: (a) data
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DirectX provides a software emulator that supports the
Shader Model 3.0 at runtime. This emulator is originally
used for the reference design for driver developers. How-
ever, normal user can use this emulator as a substitute of a
programmable GPU hardware. Thus, it is possible to check
the shader code behavior even without GPU hardware.

OpenGL supports GLSL (OpenGL Shader Language) [8]
to write shader programs. The compilation of a shader pro-
gram is performed by glCompileShaderARB function, which
will use the compiler functionality on video driver. There-
fore, the syntax checking, restrictions and optimizations are
dependent on the driver vendors, even though the basic syn-
tax follows GLSL specification.

In OpenGL, global variable GLEW ARB fragment shader

indicates if the GPU is programmable. Because OpenGL
does not provide any software emulator, it is impossible to
check the behavior of the shader unless the programmable
GPU hardware is available.

3.1.3 Buffers’ sizes and memory management for
graphics

Maximum sizes of input textures and output frame buffers
are a constraint that defines the maximum problem size.
Since the Video RAM (VRAM resource) connected to GPU
is a finite resource, sizes of texture and frame buffer are de-
fined by the graphics runtime environments. DirectX limits
the sizes of texture and frame buffer to the maximum dis-
play size, such as 1024x768. OpenGL allows the maximum
possible size to be independent of screen size, being possi-
ble to create 4096x4096 pixel textures with the recent GPU
hardware.

The graphics runtime environments provide functions to
allocate buffers for input textures and frame buffers. The
buffers are allocated on host memory and on VRAM as
shown in Figure 5(a). At the execution of a shader pro-
gram, the input texture buffer allocated on the host memory
is copied to the one allocated on the VRAM. Frame output
buffers are allocated in the same way and data is copied
back from the VRAM to the host memory.

With DirectX, input texture buffer and frame buffer (called
render target) are created in runtime, namely through the
CreateTexture method –Usage argument specifies the type
of the texture, 0 for the input texture and D3DUSAGE RE-
NDERTARGET for a frame buffer, and have a special mem-
ory shape as shown in Figure 5(b). It includes an optimiza-
tion area for displaying, where application is inhibited to
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touch. Therefore, to initialize input data or to get output
data, GPGPU application has to write/read the data con-
sidering the pitch length. This mechanism prevents dynam-
ically exchange of a texture defined as an input texture with
another defined as a frame buffer, because the buffer prop-
erties can only be modified by the CreateTexture method.
Therefore, the data of input texture and the one of frame
buffer must be copied to/from the VRAM when the GPGPU
application needs to exchange data located in those buffers.

The situation with OpenGL is different, because it man-
ages input textures and frame buffers by defining them just
as “textures” which are linked to the target buffers. For ex-
ample, when a frame buffer is allocated in VRAM by the
glTexImage2D function, it will be attached to the frame
buffer by the glFramebufferTexture2DEXT function. Ap-
plications can change the attachment of the input texture
and output frame buffers by using the glActiveTexture and
the glBindTexture functions. This means OpenGL is able
to dynamically control the pointers to the input texture or
the frame buffers in the GPU. Moreover, the data buffer for
texture can be provided as a buffer dynamically allocated
by application itself, which means that the buffer that holds
data to be copied to VRAM is not allocated by the graphics
runtime. For example, the glTexSubImage2D function copies
the texture data to VRAM and the glReadBuffer function
copies the texture data from VRAM. These functions can
accept a buffer pointer dynamically allocated on host mem-
ory by application. Thus, applications have only to pass
the pointer from the frame buffer to the input texture to
feedback data for further calculations on GPU.

In summary, the static management for the GPU resources
is similar between DirectX and OpenGL, except for the dif-
ferences of the language types: the assembly or the high-
level language. Therefore, the interface for the static func-
tionalities is easily defined. However, management of VRAM
buffers significantly differs with runtime environments. The
data I/O operation between host memory and VRAM is a
key operation to achieve high performance. It can be con-
cluded that the uniform interface must have a capability for
tuning buffering mechanism for data I/O. For example, con-
sidering a recursive application, which has to read generated
output data as input data for subsequently computation, is
possibility to optimize the feedback buffering mechanism.
According to the mechanisms of data exchange found on
the runtime environments referred above, let us categorize
the possible methods to implement the feedback (see Fig-
ure 5(a)):

1. copy method - this method copies frame buffer data
in VRAM to host memory, then copy this data to input
texture buffer on the host memory and finally copy it
to texture buffer back in the VRAM; both runtimes
provide functions to implement this method;

2. Swap pointer method- this method just exchanges
pointers for input texture and output texture buffers
on host side; only OpenGL provides this method by
passing the pointer from glReadBuffer function to
glTexSubImage2D function;

3. Swap frame method- this is the most efficient method,
that swaps output buffer and input texture buffer on
GPU side; only OpenGL also provides functions to im-
plement this method.

All these different copy methods have to be considered
to design the uniform interface for GPU-based applications,
in order to fully exploit the GPU’s potential performance.
Moreover, from the user perspective the interface must be
unique but it has to implicitly perform the best in any ma-
chine and environment. In the next section, we show an
extended interface in Caravela which hides the differences
between runtimes and achieves high performance results.

3.2 Hiding runtime differences in Caravela
library

3.2.1 Static functionality: resource management
Applications using Caravela library will try to acquire a

shader for executing a flow-model. The runtime is speci-
fied by the argument of CARAVELA Initialize() at the be-
ginning of the application. Then the application will call
CARAVELA CreateMachine() to create a definition of host
machine. Using the machine structure, it calls CARAVELA Qu-

eryShader() trying to find a shader in the machine. Condi-
tions to find the shader, such as the shader model version for
DirectX, suitable for the flow-model created by CARAVELA -

CreateFlowmodelFromFile() will be passed as the argu-
ment. If the conditions match, CARAVELA MapFlowmodelInt-

oShader() is called to map the flow-model to the shader.
This function creates input textures and frame buffers, com-
piles a program in the flow-model and downloads it into the
Shader, by using one of the graphics runtime environments.
CARAVELA GetInputData() will create a buffer in host mem-
ory and return the buffer. Considering the compatibility for
DirectX9, the returned buffer includes a value for the pitch
length. The initialization of buffer will be performed by an
access macro named GETFLOAT32 1D or GETFLOAT32 2D that
will calculate an offset to the desired data. After the initial-
ization of the input data, CARAVELA FireFlowModel() will
be called to execute the flow-model, and will generate output
data from the flow-model. This function creates the output
buffers on VRAM implicitly. Finally, CARAVELA GetOutputD-

ata() copies the data from VRAM to a buffer on host mem-
ory, and returns the pointer to this buffer to the application.
This buffer will be also accessed by the GETFLOAT32 1D or
GETFLOAT32 2D macro. Considering the operations above,
Caravela library is able to provide the same functionality
both for the DirectX and the OpenGL.

3.2.2 Dynamic capabilities: buffer management
The execution steps described in the previous subsection

cover only non-recursive applications, which means the out-
puts are never used for further processing. According to the
section 3.1.3, the buffer management can be optimized in
OpenGL, leading to the proposed extensions for the Car-
avela library.

In the Caravela flow-model, a recursive I/O will be pre-
sented as a connection from an output data stream to an
input data stream. We define a data structure called I/O
pair which has an input stream’s index number and an out-
put stream’s index number of the flow-model. In the uniform
programming interface, the I/O pair is created by CARAVELA

CreateSwapIoPair() function. To swap the I/O streams,
CARAVELA SwapFlowmodelIO() function is called and an I/O
pair is passed as an input parameter to the function.

The implementation of CARAVELA SwapFlowmodelIO() dif-
fers from DirectX to OpenGL due to the availability of dif-
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ferent buffer management mechanisms. The DirectX ver-
sion performs the copy method presented above while the
OpenGL version implements the swap pointer method or
the swap frame method. The implementation of the swap
pointer method is straightforward, by passing a pointer from
the glReadBuffer function to the glTexSubImage2D func-
tion, thus avoiding copy operations, such as memcpy(). The
implementation of the swap frame method is more tricky.
OpenGL allows only a frame buffer that is already assigned
to be used as the input texture buffer on GPU. There-
fore, before exchanging the I/O pair, the input buffer must
be considered as an additional frame buffer by using the
glFramebufferTexture2DEXT function. After assigning the
frame buffer, the I/O pair will be exchanged at every call of
CARAVELA SwapFlowmodelIO(). Performance tuning is per-
formed by adopting the fastest method, which is experimen-
tally identified in the next section.

Summarising, applications with a recursive algorithm ini-
tialises an input buffer of a flow-model registered to an I/O
pair at the first iteration. After the execution of the flow-
model, CARAVELA SwapFlowmodelIO() is called to exchange
the data of the I/O pair. After the second iteration, the ap-
plication does not need to use CARAVELA GetInputData().
Therefore, with reduction of data copy operations it is ex-
pected an improvement in processing ability.

4. EXPERIMENTAL EVALUATION
To evaluate performance of the Caravela library exten-

sions, this section shows an experimental results using two
machines which characteristics are presented in Table 2.
Three experimental evaluations are considered in this sec-
tion: (1) analysis of copy operation in GPU-based appli-
cation, (2) performance of different buffering methods (3)
overall performance analysis for real applications. For these
evaluations, FIR (Finite Impulse Response) filters and IIR
(Infinite Impulse Response) filters, that performs recursive
computing, are considered. These are well known linear sys-
tems y = f(x):

FIR : yn =

15
X

i=0

bi ∗ xn−i (1)

IIR : yn =

7
X

i=0

bi ∗ xn−i +

8
X

k=1

bk ∗ yn−k (2)

In both cases the filter coefficients (16 taps) are constant
values available at the input of the flow-model. Therefore,
the flow-model for FIR filtering consists only of an input
stream for the input signal while the flow-model for IIR
filtering consists of two input streams, one for the input
samples and another for the feedback path.

The programs of the flow-model are written in the HLSL,
and compiled to the Pixel Shader Model 3.0 profile of Di-
rectX and in GLSL for OpenGL. The program fetches the
input data stream controlling the sampler register that ob-
tains the address information for the input texture. Then,
the computation corresponding to equations (1) and (2) are
performed. Note that a register (valuables for GLSL) ob-
tains four single precision floating point values. Therefore,
each output from the program includes four results.

On both applications, processes from the creation of the
flow-model to its mapping to a shader are performed in ex-
actly the same way. However, for the IIR filter case, the

Table 2: Environment for experiments
Machine1 Machine2

Chipset nForce4 Ultra 945GM Express

CPU AMD Opteron Intel CoreDuo

170@2GHz T2300@1.66GHz

Main memory 2x1GB DDR 400 2x512MB DDR2 533

Graphics MSI NX7300GS nVIDIA GeForce Go 7400

board 256MB DDR 128MB DDR2

Display size 1280x1024 1280x800

OS WindowsXP Pro WindowsXP Home
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Figure 6: Overhead analysis for copy operation.

feedback of output values is performed by an I/O pair for
reusing the output results.

Evaluation results will be shown as an execution time of 30
iterations per application, varying the input signals between
1M(Mega=220), 4M and 16M samples.

4.1 Overhead analysis for copy operation
Before analyzing performance of buffering methods, it is

important to know how much time the copy operations be-
tween host memory and VRAM take. This evaluation shows
ratios of the copy time in the FIR and the IIR filter appli-
cations executed on DirectX and OpenGL. Therefore, the
Caravela library with the copy method is applied to the re-
cursive feedback operation. Due to the texture size restric-
tion by screen size of DirectX, 4M samples can not be input
to filters in Machine2.

Figure 6 shows the total execution times on Machine1 and
Machine2, isolating the time for copy operations (shown as
Copy time) from the remaining time. The remaining time in-
cludes the time for copy operation between buffers allocated
on host memory, calculation time on GPU and setup time
for GPU execution. The execution times on both runtime
environments are similar and the time for copy operation
between host memory and VRAM takes from 70% to 80%.
Because the FIR filter does not need to feedback the output
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Figure 7: Buffering method comparison.

data to the input in host memory, the time ratio for copy
operation shows larger than the one of the IIR filter. The
IIR filter requires additional copy operations on host mem-
ory to move the result of calculation at every iteration from
the output buffer to the input buffer. Although the copy
time ratio is smaller than the one of the FIR filter, note
that the copy time among the buffers allocated in the host
memory is included in the remaining time (i.e. “Others” in
the figure).

According to the result shown in Figure 6, we can conclude
that it is essential to optimize the buffering operation in
order to reduce the time for copy operations on GPGPU
applications.

4.2 Buffering method comparison
This evaluation shows a performance comparison between

the copy method, the swap pointer method and the swap
frame method for recursive application, namely the IIR fil-
ter. The swap pointer and the swap frame methods are
implemented on the CARAVELA SwapFlowmodelIO() function.
The setup with 16M samples is not available on the Ma-
chine2 because it shares its host memory with the GPU
for rendering operations, and thus it does not have enough
memory to execute it under the condition without swapping
the content of the host memory to its Hard Disk.

Figure 7 shows the elapsed time of the IIR filter using
the different methods, varying the number of input samples.
The swap pointer method shows better performance than
the copy method because the copy operations performed on
the host memory are reduced. A performance improvement
of 20% to 40% is achieved with the swap pointer method
regarding to the copy method. Although this improvement
is caused by the removal of the copy operations on the host
memory, this is a real performance improvement. Moreover,
a performance improvement about 30% is achieved with the
swap frame method regarding to the swap pointer method.
Therefore, the total performance by the swap frame method
is an improvement about 55% to 60%. This is a remarkable
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Figure 8: Overall performance comparison of GPU
versus CPU performance to FIR filtering (NA: Not
Available).

performance improvement which has a profound impact in
the processing time of recursive applications in GPUs.

4.3 Overall performance comparison
This section compares the performance of graphics run-

time environments with CPU-based approaches for filtering
application. For DirectX, the copy method, the only avail-
able, is applied in this run. For OpenGL, the swap frame
method is applied, in order to obtain the best performance.

Figures 8 and 9 compare the GPU-based implementation
with the CPU-based one. The 16M samples with DirectX
runtime is not available on the Machine1 due to the screen
size limitation. In addition, the CPU-based implementation
and the OpenGL one for the IIR filter on Machine2 are not
presented because the starvation of the memory implies a
lot of swapping to Hard Disk.

Regarding FIR filter, the DirectX shows a little bit more
overhead comparing to OpenGL and the performance of
GPU-based implementation, using Caravela library, is 7 to
13 times and 3 to 4 times faster than the CPU-based im-
plementation on the Machine1 and the Machine2, respec-
tively. Regarding IIR filtering, the DirectX shows worse
performance than OpenGL due to the overhead caused by
the copy method. Considering the performance on both run-
time environments, the GPU-based implementation for the
IIR filter using Caravela library is 6 to 18 times and 2 to
5 times faster than the CPU-based implementation on the
Machine1 and the Machine2, respectively.

4.4 Considerations about the results
According to the experimental results presented above,

we can underline the following three most relevant issues in
order to improve performance of GPGPU applications.

Copy operations on GPGPU applications are very fre-
quent, due to the data migration from the host memory
to the VRAM and vice-versa. Therefore, reducing the num-
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Figure 9: Overall performance comparison of GPU
versus CPU performance to IIR filtering (NA: Not
Available).

ber of copy operations is important to improve performance
of GPU-based processing systems. Another issue is related
to the efficiency of shader program on GPU, since the copy
operations in the GPGPU applications cause a large over-
head. Therefore, a huge amount of calculations should be
embedded to a shader program. Finally, the data buffering
methods in GPGPU application are very important in order
to improve the overall performance of GPU-based applica-
tions. When a uniform interface for GPU-based application
is designed, the interface should include the functions to op-
timize data buffering. Particularly, for recursive processing
applications, the swap frame method has to be applied.

The Caravela library prepares functions to control the
I/O pair. Using these functions, implicit use of the best
method for data buffering is guaranteed for different graph-
ics runtime environments. Thus, the uniform interface for
GPGPU applications, with flexibility for performance tun-
ing, has been implemented as an effective extension to the
Caravela library.

5. CONCLUSIONS
This paper proposed a uniform interface, that hides dif-

ferences in graphics runtime environments and allows pro-
grammer of GPGPU to concentrate on the programming of
algorithms instead of wasting time with details of graphical
programming environments. The authors proposed a novel
interface that provides an optimization technique, called the
swap frame method. The method has been implemented as
an extension of the Caravela library for the OpenGL run-
time environment, using the functions handling the I/O pair,
which implements recursive feedback in a flow-model.

According to experimental results, the extensions perform
very well, achieving an improvement of about 60% perfor-
mance compared with the one without the proposed opti-
mization method. Finally, it can be concluded that the pro-
posed method to provide a uniform interface to GPGPU ap-
plications operates effectively to exploit the potential perfor-
mance of the GPU. The proposed extensions are prepared to
accommodate new versions of the DirectX and the OpenGL
graphics runtimes or even new runtime environments that
turned out to be available in the future for GPUs.
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