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ABSTRACT
Caches have become increasingly important with the widen-
ing gap between main memory and processor speeds. How-
ever, they are a source of unpredictability due to their char-
acteristics, resulting in programs behaving in a different way
than expected.
Cache locking mechanisms adapt caches to the needs of

real-time systems. Locking the cache is a solution that
trades performance for predictability: at a cost of gener-
ally lower performance, the time of accessing the memory
becomes predictable.
This paper combines compile-time cache analysis with data

cache locking to estimate the worst-case memory perfor-
mance (WCMP) in a safe, tight and fast way. In order to
get predictable cache behavior, we first lock the cache for
those parts of the code where the static analysis fails. To
minimize the performance degradation, our method loads
the cache, if necessary, with data likely to be accessed.
Experimental results show that this scheme is fully pre-

dictable, without compromising the performance of the trans-
formed program. When compared to an algorithm that as-
sumes compulsory misses when the state of the cache is un-
known, our approach eliminates all overestimation for the
set of benchmarks, giving an exact WCMP of the trans-
formed program without any significant decrease in perfor-
mance.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; C.4 [Performance of Systems]:
Performance attributes

General Terms
Measurement, Performance
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Worst-Case Execution Time, Data Cache Analysis
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1. INTRODUCTION
With ever-increasing clock rates and the use of new archi-

tectural features, the speed of processors increases dramat-
ically every year. Unfortunately, increased memory latency
affects all computer systems, being a key obstacle to achieve
high processor utilization. The basic solution that almost all
systems rely on is the cache hierarchy.
While caches are useful, they are effective only when pro-

grams exhibit sufficient data locality in their memory ac-
cesses. Various hardware and software approaches have been
proposed lately to exploit caches efficiently. Software prefet-
ching [26] hides the memory latency by overlapping a mem-
ory access with computation and other accesses. Another
useful optimization is applying loop transformations such
as tiling [4, 7, 19, 34] and data transformations such as
padding [5, 16, 27, 30]. In all cases, a fast and accurate
assessment of a program’s cache behavior at compile time is
needed to make an appropriate choice of parameter values.

1.1 Caches in Real-Time Systems
Real-time systems rely on the assumption that tasks’ worst-

case execution times (WCETs) are known. In order to get
an accurate WCET, a tight worst-case memory performance
(WCMP) is needed. However, cache behavior is very hard
to predict, which leads to an overestimation of the WCMP,
and thus for the WCET as well. For this reason, many
safety-critical systems such as antilock brake systems do not
use caches: it is very hard to prove that the system is reli-
able under all circumstances. For instance, the ARM966E-S
processor does not have a cache in order to have predictable
memory timings.
When using caches in hard real-time systems, there is an

unacceptable possibility that a high cache miss penalty com-
bined with a high miss ratio might cause a missed deadline,
jeopardizing the safety of the controlled system. A system
with disabled caches will however waste a lot of resources;
not only will the CPU be underutilized but the power con-
sumption will be higher. Memory accesses that fall into the
cache are faster and consume less power than accesses to
larger or off-chip memories.
Frameworks of WCET prediction are used to ensure that

deadlines of tasks can be met. While the computation of
WCET in the presence of instruction caches has progressed
in such a way that makes it possible to obtain an accurate
estimate of the WCET [1, 2, 13], there has not been much
progress with the presence of data caches. The main prob-
lem when dealing with data caches is that each load/store
instruction may access multiple memory locations (such as
those that implement array or pointer accesses).



Cache locking allows some or all of the contents of the
cache to be locked in place. Disabling the normal replace-
ment mechanism, provided that the cache contents are known,
makes the time required for a memory access predictable.
This ability to lock cache contents is available on several
commercial processors (PowerPC 604e [25], 405 and 440
families [15], Intel-960, some Intel x86, Motorola MPC7400
and others). Each processor implements cache locking in
several ways, allowing in all cases static locking (the cache
is loaded and locked at system start) and dynamic locking
(the state of the cache is allowed to change during the sys-
tem execution).
Whereas loading and locking the cache offers predictabil-

ity, it does not guarantee good response time of tasks (thus,
we are trading performance for predictability). On the other
hand, static cache analysis allows us to predict the WCMP
and does not affect the performance. However, static anal-
yses only apply to codes free of data-dependent constructs.
We introduce a method that combines static cache anal-

ysis and cache locking in order to achieve both predictabil-
ity and good performance. Furthermore, it allows comput-
ing a WCMP estimate of tasks in a fast and tight way.
Our approach first transforms the original program issuing
lock/unlock instructions to ensure a tight analysis of the
WCMP at static time. In order to keep a high performance,
load instructions are added when necessary. Later, the ac-
tual computation of the WCMP estimate is performed. We
present results for a collection of programs drawn from sev-
eral related papers in the real-time area [1, 17, 33]. This col-
lection includes kernels operating on both arrays and scalars,
such as SQRT or FIBONACCI. We have also used FFT to
show the feasibility of our approach for typical DSP codes.
For the sake of concreteness, we present results for a direct-
mapped and a set-associative cache with different cache line
sizes. We have chosen the memory hierarchies of two modern
processors widely used in the real-time area: microSPARC-
IIep [29] and PowerPC 604e [25].

1.2 An Overview
This paper addresses the bounding of WCMP in the pres-

ence of data caches. Moreover, we want an accurate analysis
that, combined with a low-level analysis (i.e., pipeline timing
analysis), allows us to obtain a tight WCET. In particular,
we use a static data cache analysis. We first start mod-
ifying the program, issuing lock/unlock instructions when
necessary. There are typically parts of the code which are
analyzable and where each access can correctly be catego-
rized as a cache hit or miss. For some other parts in which
data-dependent situations arise (such as indirection arrays)
or where multiple paths can be taken, we lock the cache and
load into it, if necessary, data likely to be accessed.
There are a few important concepts useful for developing

a static cache analysis. The state of the cache can only be
determined if all memory addresses are known. The state of
the cache is unknown from the point in the code where an
unknown cache line is accessed. In order to simplify WCET
computation when studying pipelined processors, we want
to guarantee hits or misses for each memory access. Thus,
even if we know the memory addresses of the further memory
accesses, the cache behavior cannot be predicted exactly; it
may be that the unknown memory access has trashed the
cache line we planned to reuse; it may be that it has actually
brought the data we are going to access.

We have developed a compile-time algorithm that identi-
fies those regions of code where we cannot exactly determine
the memory accesses, and locks the cache. It uses a locality
analysis based on Wolf and Lam’s reuse vectors [34] to select
the data to be loaded. Since the state of the cache is known
when leaving the region, we can apply a static analyzer for
the next regions of code, thus having both predictability and
good performance.
Once the program is transformed, the static analyzer de-

termines the worst-case memory performance. It analyzes
scalars and array accesses whose subscripts are affine func-
tions of the loop indices. We have implemented Ghosh et
al’s Cache Miss Equations (CMEs) [12], extending its ap-
plicability following our previous work [32]. This allows us
to analyze very large codes consisting of subroutines, call
statements, IF statements and arbitrarily nested loops free
of data-dependent constructs. We have extended this analy-
sis in such a way that it takes into account memory accesses
in locked regions, as well as the state of the cache at the
entry and exit points of the locked regions.
We have implemented our system in the SUIF2 compiler.

It includes many of the standard optimizations, which al-
lows us to obtain a code competitive to product compilers.
Using SUIF2, we identify high-level information (such as ar-
ray accesses and loop constructs) that can be further passed
down to the low-level passes as annotations. We plan to in-
tegrate our WCMP calculation to an existing WCET tool [8]
that already analyzes pipelines and instruction caches. The
WCET tool generates possible paths which are analyzed by
the WCMP method. Finally, the cache behavior is fed back
and used to compute the WCET (i.e., the longest path) of
the task.
The rest of the paper is organized as follows. Section 2

reviews the flow analysis used in our approach. Section 3
describes an algorithm for having a predictable and high
performance data cache. Section 4 presents our experimen-
tal framework, and Section 5 discusses our results. Section 6
contains some related works in the area that aim at analyz-
ing the cache behavior statically and computing the WCET
in the presence of data caches. Finally, we conclude and give
a road map to some future extensions in Section 7.

2. MERGING OF PATHS
Real-time requirements on a system are passed on as re-

quirements on all system parts. That implies that is neces-
sary to know the execution time for the tasks in a real-time
system. Since execution time varies, the WCET (i.e., the
longest execution time for a program for all possible inputs)
is used as a safe upper limit.
The analysis from a high-level point of view is concerned

with the possible paths through the program. The temporal
behavior of the processor is the basis which all other calcula-
tions rely on. This means that caches have to be considered.
A naive approach to compute the WCET of a task would
be to run the program for each possible input. However,
this is not possible in practice due to measurement time.
Running the program with the input data that causes the
WCET would be a solution, but it is usually hard to know
such data for regular programs. Besides, caches may give
different results for two identical runs due to the previous
state of the cache. Therefore, static analysis is needed.
Unfortunately, it is infeasible to analyze all possible paths.

Approximations during computation must be selected so



Merge Point

if (!a[i])
b[i]++;

else
c[i]--;

for (i=0;i<4;i++)
if (a[i])

break;

Merge Point

for (i=0;i<2;i++)
if (a[i]){

a[i]--;
break;

}
else

a[i]++;

(a) IF Construct (b) Loop Construct (c) Loop with IF

Figure 1: Basic merge operations.

that path explosion is reduced: a simple loop with an IF-
THEN-ELSE statement that iterates a hundred times gen-
erates 2100 possible paths. We use a common technique
known as merging to make the analysis more efficient. This
basically consists of reducing the path explosion by merging
paths in those cases where a path enumeration is needed [9,
13, 23].
However, this approximation trades performance for ac-

curacy. At every merge point, the most pessimistic assump-
tions are made in order to have a safe estimate. In the
presence of caches, this generally translates to an unknown
state of the cache, since the final state of the cache for each
path is also merged.
Merge points can be chosen arbitrarily depending on ac-

curacy and execution time desired. We use the following
merge points when the actual control flow is unknown:

Data-dependent conditionals. Figure 1(a) shows an ex-
ample of such a case. At compile time, it is impossible
to figure out which branch is going to be executed.
The merge point is set in such a way that it merges
the outcomes from both branches.

Unknown number of iterations of a loop. This situa-
tion arises when either the bounds are unknown or
there is a jump out of the loop. Either way, a path
is created for each possible number of iterations, and
all of them merged later when they exit the loop (see
Figure 1(b)).

Notice that these two situations can be combined. When
analyzing a loop with a data-dependent conditional, we may
want to merge the branches of each iteration and later, all
the iterations (see Figure 1(c)).
Some of the problems can be partially solved at compile

time. To address the symbolic loop bound problem, we use
interprocedural constant propagation to eliminate as many
symbolic loop bounds as possible. Inspecting the memory
accesses for the different outcome branches of an IF state-
ment may allow us to detect that the memory accesses are
actually the same, thus we do not have to distinguish among
them.
When all else fails, we generate the control flow graph

and analyze all different paths for those sections that are
not statically analyzable. We lock those regions in order to
avoid an unknown state of the cache due to merging: when

a memory access cannot be classified as a hit or a miss, both
situations should be analyzed later in the pipeline analysis.
The approach presented here merges paths exactly in the

situations described above. Figure 2 shows the codes with
the lock instructions for the corresponding codes in Figure 1.
A later step goes through the graph looking for redundant
lock/unlock instructions. Figure 2(d) shows the final code
for Figure 2(c) after unnecessary lock/unlock instructions
have been removed.

3. PREDICTABLE CACHE BEHAVIOR
In this section, we introduce our method to have a pre-

dictable program. We first discuss some important concepts
related to data cache analysis and how we solve the problem
of predictability. Then, we outline an algorithm to selec-
tively load the cache, so that the performance is not jeop-
ardized. Finally, we present how this approach can be used
to compute the WCMP and WCET.
Understanding data reuse is essential to predict cache be-

havior, since a datum will only be in the cache if its line was
referenced some time in the past. Reuse happens whenever
the same data item is referenced multiple times. This reuse
results in locality if it is actually realized; reuse will result in
a cache hit if no intervening reference flushes out the datum.
Given that, a static data cache analysis can be split into

the following steps:

1. Reuse Analysis describes the intrinsic data reuse among
all different memory references1.

2. Data Locality Analysis describes the subset of reuses
that actually results in locality.

In the following, we describe each step and explain how we
use data cache locking for those cases where this cache anal-
ysis cannot be applied.

3.1 Reuse Vectors
In order to describe data reuse, we use the well-known

concept of reuse vectors [34]. They provide a mechanism for
summarizing repeated memory accesses which is limited to
perfect loop nests. We have extended them in a previous

1We use memory reference to note a static read or write in
the program. A particular execution of that read or write
at run-time is a memory access.



lock();
if (!a[i])

b[i]++;
else

c[i]−−;
unlock();

lock();
for (i=0;i<4;i++)

if (a[i])
break;

unlock();

lock();
for (i=0;i<2;i++){

lock();
if (a[i]){

a[i]−−;
break;

}
else

a[i]++;
unlock();

}
unlock();

lock();
for (i=0;i<2;i++){

if (a[i]){
a[i]−−;
break;

}
else

a[i]++;
}
unlock();

(a) IF Construct (b) Loop Construct (c) Loop with IF (d) Loop with IF (final code)

Figure 2: Non-analyzable codes with lock instructions.

work [32, 35] so they can describe the most recent previous
access (MRPA) among arbitrary loop nests2.
Trying to determine all iterations that use the same data is

extremely expensive. Thus, we use a concrete mathematical
representation that describes the direction as well as the
distance of the reuse in a methodical way. The shape of the
set of iterations that uses the same data is represented by a
reuse vector space [34]. Whereas self reuse (both spatial and
temporal) and group temporal reuse is computed in an exact
way, group spatial reuse is only considered among uniformly
generated references (UGRs), this is, references whose array
index expressions differ at most in the constant term [11].
Note that reuse vectors provide a pessimistic (safe) ap-

proach to describe reuse3. In the case that a reuse vector
is not present, we assume there is no reuse, thus, there will
not be locality and a cache miss will be computed.

3.2 Data Locality
Data locality is the subset of reuse that is realized; i.e.,

reuse where the subsequent use of data results in a hit. To
discover whether a reuse translates to locality we need to
know all data brought to the cache between the two accesses
(this implies knowledge about loop bounds and memory ac-
cess addresses) and the particular cache architecture we are
analyzing.
In order to get the best performance from the cache, we

should try to lock it as few times as possible. Besides, each
locked region should be as small as possible. Thus, the more
constructs we can analyze statically, the better. CMEs [12]
are mathematical formulas that provide a precise charac-
terization of the cache behavior for perfectly nested loops
consisting of straight-line assignments. Based on the de-
scription of reuse given by reuse vectors, some equations are
set up that describe those iteration points where the reuse is
not realized. Solving them gives information about the num-
ber of misses and where they occur. In a previous work [32],
we further extended them in order to make whole program
analysis feasible, by handling call statements, IF statements
and arbitrarily nested loops.
Even though generating the equations is linear in the num-

2An isolated statement is considered to be inside a loop that
iterates only once.
3In presence of timing anomalies, some modifications have
to be done in the pipeline analysis [24].

ber of references, solving them can be very time consuming.
Since hard real-time systems need a safe WCET bound, all
different iteration points have to be analyzed. For soft real-
time software with large data sets, we can use probabilistic
methods based on sampling [31, 32] to solve the equations
in a faster way.

3.2.1 CMEs for Cache Locking
Given a memory reference, the equations are to investigate

whether the reuse described by its reuse vectors is realized
or not. We now briefly discuss how we extend our analysis
to caches with locking features.
For these caches, we have to treat in a different manner

references within a locked region compared to those within
an unlocked region. Regarding the reuse vectors, it is enough
to ignore reuse vectors whose tail reference4 is in a locked
region. As those accesses within a locked region do not bring
data to the cache, they cannot affect the result of future
accesses. Furthermore, they cannot affect the decision of the
LRU replacement policy since they do not create a recent
use of a memory line.
When analyzing potential cache set contentions, refer-

ences within a locked region should be ignored. Again, since
they do not either bring data or modify the LRU state, they
will not generate any set contention. The effect of extra load
instructions is implicit in the analysis, since they are treated
as usual memory accesses.

3.3 Data Cache Locking
In the discussion so far, we have ignored the effects of

data-dependent memory accesses. Whereas the inability of
expressing reuse leads to an overestimation of the miss ratio,
the presence of data-dependent accesses makes the estimate
of whether the reuse is realized or not infeasible. Further-
more, a safe approach that considered all further accesses as
misses would have a large overestimation.
One approach to overcome this problem in real-time sys-

tems is to lock the cache for the whole execution of the
program. Unfortunately, this translates to very poor cache
utilization, especially when data does not fit the cache. In
order to confirm this intuition, we have run all different pro-
grams (for a detailed description of the benchmarks, see Sec-
tion 4) in two different ways: (i) unlocked cache (i.e., enabled

4Reference that brings data to cache.



Miss Ratio Cycles
Program Analysis MIN MAX AVG Increase(%) Degradation(%)

Unlocked 1.88 33.53 10.01
MM Locked+Load 59.14 99.36 82.27 721.77 599.55

Unlocked 5.67 8.33 7.94
CNT Locked+Load 18.08 98.72 64.45 710.92 565.67

Unlocked 3.57 14.29 7.66
ST Locked+Load 3.57 96.80 35.87 389.87 307.87

Unlocked 1.43 1.43 1.43
SQRT Locked+Load 1.43 1.43 1.43 0.00 0.00

Unlocked 0.49 0.49 0.49
FIB Locked+Load 0.49 0.49 0.49 0.00 0.00

Unlocked 8.37 16.74 10.93
SRT Locked+Load 8.37 93.73 18.49 69.16 58.28

Unlocked 0.90 1.74 0.96
NDES Locked+Load 0.90 6.56 1.33 38.40 12.30

Unlocked 0.59 56.10 9.18
FFT Locked+Load 0.59 93.64 20.15 119.37 97.66

Table 1: Comparison of performance between an unlocked cache and a locked cache loaded with the most
accessed lines for programs in Table 2. Increase represents the average increase in miss ratio across all
architectures. Degradation stands for the the average increase in cycles across all architectures.

cache), and (ii) loading the cache with most frequently ac-
cessed memory lines5 and locking it. We have analyzed the
following caches: 4KB, 8KB, 16KB and 32KB (32B per line)
for three different associativities (direct-mapped, 2-way and
4-way). We have also simulated the microSPARC I cache
architecture (direct-mapped, 512 bytes, 32B per line). We
present results accounting only for load/store instructions:
we assume a conservative architecture where a cache hit
takes 1 cycle and a cache miss 50 cycles. Table 1 shows
that the loss in performance for all different programs is
significant (in some cases, it degrades more than 500% in
cycles). Only in those cases where all data fits the cache
such as SQRT (it only accesses a few floating point values)
or SRT (when the cache is large enough to store the vector
being sorted) cache locking performs well.
Initially it may appear that obtaining a reasonable bound

on the WCMP when the data accessed is unknown is far
from being feasible. This includes indirection arrays (e.g.,
a[b[i]]), variables allocated dynamically (e.g., mallocs) and
pointer accesses that cannot be determined statically. How-
ever, a tight prediction of the WCMP can be achieved by
automatically locking and loading the cache in those regions
where we find those accesses.
Real-time codes are usually free from dynamic memory

allocation. Otherwise, as long as the actual calls to the
malloc routine and the size of the memory allocated are
known at static time, it is possible to figure out where the
mallocs go, just by keeping information about the allocated
and deallocated memory in the program. If everything else
fails, the only option is to lock the cache when accessing
data allocated dynamically.
Pointer analysis is used to determine some pointer val-

ues, and programmer annotations can be used to tighten
the analysis. When analyzing indirection arrays in a loop,
we lock the cache for the loop nest. If the array being ac-
cessed fits the cache, we load it. Otherwise, we make sure
that it is not in the cache by invalidating those lines that

5We collect this information running the program once and
collecting statistics for each memory line accessed.

contain parts of it6. This allows us to (i) predict the result
of the memory access, and (ii) reduce the variation of the
execution time, since we cannot have a hit when we have
predicted a miss (and vice versa).
In order to obtain an accurate WCMP of a task with li-

brary calls, we would need to analyze the source code of the
library to generate annotations that would help our analy-
sis. Otherwise, just to ensure that those calls do not interfere
with our analysis, we lock the cache before each call state-
ment and unlock it afterwards. The memory accesses within
the library call will not be guaranteed as hit/miss, thus both
situations will be analyzed in the pipeline analysis.

3.4 Selecting Data to Lock in the Cache
The benefit of cache locking is clear from the predictability

point of view. Locking the cache allows us to analyze data-
dependent constructs while not jeopardizing the analysis of
the forthcoming code. Unfortunately, it may happen that
the program does not benefit from locality.
In order to overcome this problem, we can load the cache

with data likely to be accessed. Nevertheless, determining
accurately which data in the cache gives best performance
is too expensive; it would be the same as knowing, before
running the program, the most accessed memory lines for
each cache set. However, we can use a simple analysis based
on the reuse vectors to determine which data to load, if any.
Figure 3 gives an outline of the algorithm we use to load

the cache selectively. We begin our analysis collecting all
analyzable variables that are accessed in the locked region
(l.2). For each variable, we try to compute its range (if it is
an array, it is the part of it accessed within the region) and
classify all its references in uniformly generated classes (l.6).
We estimate the amount of data that can be reused from out-
side the locked region using the reuse vectors. Our algorithm
is a simple volume analysis based on reuse vectors (l.9). It
is a modified version of those proposed previously [28, 34]
in order to handle locked regions.
Since we want to maximize the locality, we start allocating

those variables that are going to be accessed most. Itera-

6We can obtain this information from our static analyzer.



1 for each locked region
2 R:=vector < pair <variable, memory references>>; // analyzable variables accessed within the region
3 RS:= sort (R,Â); // the variable with more references is the first
4 for i:=0 to (RS.size()-1) do // it iterates over the variables
5 // UGR is a vector <uniform generated reference class>
6 Compute UGR (UGR, RS[i].memory references()); // classes are computed
7 UGRS:= sort (UGR, Â); // the class with more elements is the first
8 for j:=0 to (UGRS.size()-1) do
9 if (!Has Locality(UGRS[j]) {
10 // Range of addresses touched is computed
11 Range:=Compute Range of Variable(RS[i].variable(), UGRS[j]);
12 Load (UGRS [j], Range); // code is generated to load the cache
13 }
14 DD=vector <variable>; // variables with data-dependent accesses within the region
15 DDS:= sort (DD,Â); // the most accessed variable is the first
16 for i:=0 to (DDS.size()-1) do // it iterates over the variables
17 if (Fits in Cache(DDS[i]))
18 Load (DDS[i]);
19 else
20 Invalidate(DDS[i]);

Figure 3: Algorithm for selective loading. A cache architecture where individual lines within a set can be
invalidated is assumed.

tively in descending order (l.8), we analyze the uniformly
generated classes, computing the range of memory lines to
be loaded (l.11). If the data set is larger than the cache, we
may try to load a memory line that maps to a cache set that
is already full. In those cases, we do not reload it since it
has been loaded by a variable with higher locality. Then, we
analyze variables that have non-analyzable accesses, assum-
ing that the whole array is accessed. If there is space in the
cache (l.17), we load it, otherwise we remove all elements
present in cache (l.20).
In the discussion so far, we have ignored the effects of pos-

sible conflicts with memory accesses coming after the locked
region. It may happen that we flush out a memory line that
otherwise would have been accessed later on. This would
cause, in the worst case, one miss per each cache line. How-
ever, keeping those lines could cause a poor performance for
the locked region. Achieving the best overall performance
(i.e., deciding which memory lines to load taking into ac-
count the whole program) is a challenging problem that we
plan to address in the future.

3.5 Putting it All Together
In this subsection, we will use the code in Figure 4(a) to

illustrate our algorithm. We assume, for this example, a
4KB direct-mapped cache, with 16B per line. We run our
compiler, which detects those constructs that are not analyz-
able at compile time (Figure 4(b)). In Figure 4(c) we show
the code after deciding the regions that should be locked.
When locking the whole loop body, the compiler decides to
lock the whole loop to avoid unnecessary locks/unlocks at
every iteration.
The next step consists in deciding which data to load.

Figure 4(d) summarizes the outcome of the locality anal-
ysis. For the first region, it identifies three variables and
the ranges for two of them; for b it assumes the whole do-
main. Eventually, it checks the locality of the references.
a is already in the cache, but c and b are accessed for the
first time, thus we would like to load them. First, it loads

c since it is more accessed than b. In this example, there is
enough space in the cache to load b too, but if there were
not space enough in cache, we would prefer to load c rather
than b. Using the reuse vectors, we detect temporal locality
between the two occurrences of a[i], and the volume anal-
ysis says that neither access will flush the datum accessed
out from the cache. A similar analysis is performed for the
second region, determining that k is already in cache.
Eventually, the worst-case memory performance will be

computed. With the information of when a memory access
is to be a miss/hit, we compute that the longest path is
the one where c[i]>15 holds in all instances. It results in
26 misses due to first accesses to k and a, 50 misses due to
the loading of b and c and 775 hits. In case that array b
did not fit the cache, we would estimate all its accesses as
a misses, since we would not know the memory lines being
accessed (besides, we would have invalidated array b since
our analyzer would not take advantage of it).

4. EXPERIMENTAL FRAMEWORK
Figure 5 depicts the framework used in our experiments.

We try to implement the analysis as general as possible, so
we do not tie ourselves to any specific language. Instead, our
compiler is written using the SUIF2 internal representation,
which can be generated from different front-ends. We use
SUIF2 to collect all information about memory accesses and
control flow (it basically applies abstract inlining [32] and
detects loops and IF statements). The paths that are used
to eventually obtain the longest path (i.e., the one corre-
sponding to the worst-case scenario) are currently manually
fed to our system.
The core block is the one that computes the equations and

solves them, which describes the cache behavior. For that
purpose, we have followed the techniques outlined in the
literature [12, 31, 32]. We have extended them to deal with
locked regions (see Section 3.2.1). Equations are generated
in such a way they take into account the extra load and
lock/unlock instructions.
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(a)

int a[100], b[100];
int c[100], k=0;

for (i=0;i<100;i++)
a[i]=random(i);

for (i=0;i<100;i++)
c[i]=b[a[i]]+c[i];

for (i=0;i<100;i++)
if (c[i]>15)

k++;
c[i]=0;

(b)

Non-analyzable constructs:
b[a[i]];
c[i]>15

(c)

int a[100], b[100];
int c[100], k=0;

for (i=0;i<100;i++)
a[i]=random(i);

lock(); /*region 1*/
for (i=0;i<100;i++)
c[i]=b[a[i]]+c[i];

unlock();
for (i=0;i<100;i++){

register int temp=(c[i]>15);
lock();/*region 2*/
if (temp)
k++;

unlock();
c[i]=0;

}

(d)

Region Variables Locality Load
c:0. . .99 N/A YES

1 b: N/A N/A YES
a:0. . .99 a[i] NO

2 k: 0 k NO

Figure 4: Example of how our algorithm works.

Name Description
MM Multiply two 100x100 Int matrices
CNT Count and sum values in a 100x100 Int matrix
ST Calc Sum, Mean, Var (2 arrays of 1000 doubles)

SQRT Computes square root of 1384
FIB Computes the first 30 Fibonacci numbers
SRT Bubblesort of 1000 double array
NDES Encrypts and decrypts 64 bits
FFT Fast Fourier transformation of 512 complexs

Table 2: Benchmarks used

An overview of the eight benchmark programs can be seen
in Table 2. They are all written in C, drawn from different
real-time papers that analyze data cache behavior.
To check the accuracy of our method, we compare our re-

sults against a memory simulator7 modified to handle lock-
ing caches. We present results in terms of memory cost.
Thus, we account only for load/store and lock/unlock in-
structions. We analyze two modern architectures to esti-
mate the miss penalties. For the microSPARC II-ep [29]
(direct-mapped, 8KB bytes, 16B per line), each hit takes 1
cycle and each miss 10 cycles. For the PowerPC 604e [25]
(4-way, 16KB cache, 32B per line), each hit is 1 cycle and
each miss accounts for 38 cycles. Lock and unlock instruc-
tions take 1 cycle to execute in both processors. Instructions
to load the cache are treated as normal memory accesses.
Writes and reads are modeled identically.

5. EXPERIMENTAL RESULTS
We now present results from our simulation studies. We

first confirm the accuracy of our static data cache analysis
comparing it against a simulator. We show that the reuse
vectors and the modified equations accurately model the
actual cache behavior. Then, we analyze the efficiency of our
loading algorithm for reducing the performance degradation
due to the lock/unlock instructions. Finally, we present our
estimated WCMP for the set of benchmarks.

5.1 Accuracy
The results of our first set of experiments are shown in

Table 3. Table 3(a) shows the accuracy of our method for
those codes where locking was not necessary. All the pro-
grams consist of a set of subroutines, some of them con-
taining IF statements. In all the cases, we predict exactly

7A locally written simulator. It has been validated over the
years against the well-known DineroIII trace-driven simula-
tor [14].



Simulated Estimated Est/Sim
Name C. Cost Cost Ratio

S 7108684 7108684 1.00
MM P 8836226 8836226 1.00

S 75000 75000 1.00
CNT P 122500 122500 1.00

S 223 223 1.00
FIB P 279 279 1.00

S 31784 31784 1.00
ST P 32500 32500 1.00

(a) Codes where cache is not locked.

Simulated Estimated Est/Sim
Name C. Cost Cost Ratio

S 332 332 1.00
SQRT P 883 883 1.00

S 7509 7509 1.00
SRT P 12287 12287 1.00

S 9040 9040 1.00
NDES P 9450 9450 1.00

S 233344 233344 1.00
FFT P 807936 807936 1.00

(b) Codes with lock/unlock instructions.

Table 3: Dynamic results for data caching. S stands for microSPARC-IIep, P for PowerPC 604e.

the same results as yielded by the simulator. Moreover, we
predict for each memory access exactly the actual behavior.
Table 3(b) presents the results for those codes where our

method issued lock/unlock instructions. In order to show
our capability to statically analyze the cache behavior in
this situation, we analyze the same path that is actually
executed in the simulator. Thus, we can isolate the results
of our analyzer from those of the WCMP computation. Our
method obtains the same results as the simulator in all cases.

Compile-time Overhead. The average execution time
needed to analyze each configuration was 0.6 seconds. MM
was the program that took most time, with 3 seconds for
each cache configuration, since we have to evaluate more
than 4 million accesses.

5.2 Performance of Data Locking
The goal of using data locking is to eliminate unpredictabil-

ity by locking those regions in the code where a static ana-
lyzer cannot be applied. However, cache locking may cause
degradation in performance, which we try to avoid by means
of loading the cache with data likely to be accessed. To eval-
uate the effectiveness of this approach, we compare the mem-
ory cost of the resulting code with lock/unlock instructions
against the same code extended with selective load instruc-
tions. For the sake of comparison, we do not consider the
additional cycles due to extra loads and locks/unlocks. In
order to isolate the results from those of the WCMP com-
putation, we consider the actual path that is executed.
The results of this experiment are shown in Table 4. We

analyze programs where lock/unlock and load instructions
were issued. We can see that in the general case, locking the
cache without loading it leads to a significant performance
degradation, in one case as large as over 1000%. When
loading the cache, performance degradation is usually elim-
inated. In those cases where there are conflicts among data
accessed in the locked regions, loading the cache reduces the
performance degradation, but it cannot eliminate it com-
pletely. Finally, last column presents the number of extra
loads issued to load the cache. It shows that the reduction
of memory cost can be achieved with few selected loads.
We have evaluated the overall overhead of the resulting

code in more detail. Figure 6(a) contains the results where
cycles due to locks/unlocks and extra loads are considered.
The memory cost is normalized to the memory cost of the ac-
tual execution of the program without lock instructions. We
can see that the slowdown ranges from 0% to 43%, mainly

because the cache is not big enough to contain all data ac-
cessed in the locked regions. For instance, FFT has an over-
head of 43% for the microSPARC-II architecture. When
the cache size is increased, the conflicts disappear and the
overhead is minimal.
In the following section, we show how this small degrada-

tion in performance allows having a fully predictable pro-
gram. Thus, we can compute the WCMP in a much tighter
way than previous approaches. Even though the actual ex-
ecution time of the task may increase, the WCMP will be
smaller, thus we will be able to make better use of resources.

5.3 WCMP
Our locking algorithm will be successful if the presence of

locked regions allows us to compute a smaller WCMP than
before. This is, if WCMP(task+lock+load)<WCMP(task).
In order to see the effectiveness of our approach, we have

compared our method to compute WCMP with two other
methods that are currently used:

• Cache disabled (i.e., cache locked all the time).

• Cache unlocked, making pessimistic assumptions when-
ever we do not know what happens. This can be seen
as considering an empty cache where we would unlock
the cache in our approach.

We use as a reference the actual WCMP of the program
without lock instructions.
Figure 6(b) shows the different estimates for each method.

When we consider the cache disabled, all memory accesses
are considered as misses, producing a very large overesti-
mation of the WCMP. The values show that the estimated
WCMP is between 5 and 38 times larger than the actual
one.
The pessimistic approach performs better than consider-

ing the cache disabled, but it is still far from a tight WCMP.
The estimated WCMP is between 2 and 22 times larger than
the actual WCMP. Our approach gives an exact WCMP of
the transformed program (i.e., the program with lock in-
structions).

5.4 Summary
Overall, we have shown the effectiveness of our approach.

Whereas some performance may be lost due to the locking
mechanism (in the worst case, the program runs 0.4 times
slower), we can achieve a perfect estimate of the WCMP for



Name C. Unlock Lock Lock & Load ∆U (%) ∆L(%) #Loads
S 158 330 158 108.8 0.0 1

SQRT P 214 881 214 311.6 0.0 1
S 7507 7507 7507 0.0 0.0 0

SRT P 12285 12285 12285 0.0 0.0 0
S 6299 6992 6992 11.0 11.0 0

NDES P 6970 6970 6970 0.0 0.0 0
S 88696 231296 118544 160.7 33.6 256

FFT P 52736 805888 52736 1428.1 0.0 128

Table 4: Memory cost in cycles for the lock & load algorithm. S stands for microSPARC-IIep, and P for
PowerPC 604e (∆U=loss of performance without loading the cache, ∆L=loss of performance when loading
the cache).

the benchmarks given. Besides, we have seen that the esti-
mate of the WCMP(task+lock+load) is much smaller than
the best estimate of the WCMP(task). For those programs
where lock instructions are not issued, our estimate is exact
and there is no overhead.
We first have presented results that highlight the accu-

racy of our static approach. Later, we have seen that in all
cases, our selective locking technique allows us to fully pre-
dict the cache behavior, which translates to an exact com-
putation of the WCMP. We have shown that estimating the
WCMP without the help of locking the cache is very hard,
and it usually yields very large overestimates. Moreover, the
knowledge of the memory behavior will allow us to compute
a tighter WCET.

6. RELATED WORK
In the past few years several strategies have been pre-

sented for analyzing cache memory behavior analytically.
Predicting cache behavior is a key issue for cache opti-

mizers. Ghosh et al [12] presented the CMEs framework
targeted at isolated perfect loop nests consisting of straight-
line assignments. They show that the CMEs can be helpful
in reducing the number of cache misses for scientific codes.
Fraguela et al [10] use a probabilistic method to provide a
fast estimate of cache misses, describing reuse only among
references in the same nest. Recently, Chatterjee et al [6]
presented an ambitious method for exactly predicting the
cache behavior of loop nests by means of Presburguer for-
mulas. Because of the complexity of their algorithm, they
have only evaluated it on very small kernels. Finally, Vera
and Xue [32] examine the problem of analyzing whole pro-
grams. This model is able to predict misses for large codes
consisting of data-independent constructs (including calls
and IF statements).
Meanwhile, the real-time community has intensified the

research in the area of predicting WCET of programs in
presence of caches. Calculation of a tight WCET bound
of a program involves difficulties that come from the very
characteristics of data caching. Even though some progress
has been done when studying processors with instruction
caches [2, 13, 20], few steps have been done towards analyz-
ing data caches.
Alt et al [1, 9] provide an estimation of WCET by means of

abstract interpretation. As well as the usual drawbacks from
abstract analysis (i.e., time consuming and lack of accuracy),
they only analyze memory references which are scalar vari-
ables. When providing experimental results, they only deal

with instruction caches. Lim et al [22] present a method
that computes the WCET taking into account data caching.
However, they only analyze static memory references (i.e.,
scalars), failing to study real codes with dynamic references
(i.e., arrays and pointers). Kim et al [17] propose a method
that extends and improves the previous method extending
the analysis that classifies references as either static or dy-
namic. However, they deal neither with arrays nor with
pointers (i.e., only detecting temporal locality). Further, it
is limited to basic blocks, without taking in account possi-
ble reuse among different subroutines or loop nests. Li et
al. [21] describes a method which does not merge the cache
state but tries to calculate possible cache contents along with
the timing of the program. The whole CPU is modeled by a
linear integer programming problem, and a new constraint
is added for each element of a calculated reference. This
requires a very large computation time, and has problems
of scalability with large arrays. Besides, they do not report
results for WCET in presence of data caches.
White et al [33] propose a method for direct-mapped caches

based on static simulation. They categorize static memory
accesses into (i) first miss, (ii) first hit, (iii) always miss and
(iv) always hit. Array accesses whose addresses can be com-
puted at compile time are analyzed, but they fail to describe
conflicts which are always classified as misses. For instance,
they overestimate the memory cost by 10% and 17% for
MM and ST respectively (we estimate the WCMP exactly
without issuing lock instructions).
Lundqvist and Stenström [23] propose an approach where

variables that have non-analyzable references are mapped
onto a non-cacheable memory space. They show that the
majority of data structures in their benchmarks are pre-
dictable, but they do not present the overhead of the trans-
formed program. Neither do they report results for WCET
or WCMP using their approach. Finally, Campoy et al [3]
introduce the use of locking instruction caches. They use
static locking, presenting a genetic algorithm in an attempt
to reduce the solution space when selecting the best con-
tents for the cache. They represent each memory block by
means of one bit, which flips between 0/1 (in-cache/out-
cache). On one hand, we have shown that static locking is
not a good solution for data caches. On the other hand,
while this approach may work for small programs, it is not
easy to see how it can be extended to data caches:(i) each
possible solution would occupy a lot of memory (data is typ-
ically much larger than programs), and (ii) we would need
a static analysis to evaluate each potential solution.
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Figure 6: Statistics of our approach. S stands for microSPARC-IIep, P for PowerPC 604e.

7. CONCLUSIONS
This paper combines static cache analysis with data cache

locking to estimate the worst-case memory performance in
a safe, tight and fast way. First, an approach to statically
analyze the cache behavior is reviewed. It uses an extended
version of the reuse vectors as a safe measure of reuse, re-
sulting in a set of equations that describes where this reuse
translates to locality.
Second, we give a novel approach to overcome the prob-

lem of data-dependent constructs. We describe how locking
caches can be used to avoid interferences and unpredictabil-
ity. Later, we discuss how to load the cache in order to
achieve good performance.
Finally, we combine both methods which results in a tool

that predicts the worst-case memory performance in a tight
and safe way, with an acceptable loss of performance. Com-
bined with a timing analysis platform, we may obtain a
much tighter WCET estimate than previous approaches.
Furthermore, it can be used for computing WCET estimates
in multi-task systems when combined with the cache parti-
tioning technique [18].
Overall, this paper contributes with a unique technique

that provides a considerable step toward a useful worst-case
execution time prediction of actual architectures. Written
as a compiler pass, it both issues lock/unlock/load instruc-
tions and computes the worst-case memory performance in
presence of k-way set-associative data caches. Moreover, our
framework can be used to guide the compiler in order to gen-
erate code that exploits the cache memory and computes the
WCMP at the same time. Even though performance is not
typically a key issue in real-time systems, a better use of the
cache is very useful in order to reduce power consumption.
While this work represents an important step towards pro-

gram predictability in presence of data caches, there are
still some issues that can be investigated further. A better
pointer analysis could be beneficial to lock fewer regions, and
would help us to classify their accesses as misses or hits. It
may also be interesting to take into account the overall per-
formance when selecting data to lock in the cache. We plan
to investigate these research directions in order to have full
predictability and better performance.
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