
90

Over the past couple of decades,
trends in both microarchitecture and under-
lying semiconductor technology have signif-
icantly reduced microprocessor clock periods.
Meanwhile, the technology trend in main
memories has been a move toward higher den-
sities rather than significantly reduced access
times. Together, these trends have significantly
increased relative main-memory latencies as
measured in processor clock cycles. To avoid
large performance losses caused by long mem-
ory access delays, microprocessors rely heavi-
ly on a hierarchy of cache memories. But
cache memories are not always effective, either
because they are not large enough to hold a
program’s working set, or because memory
access patterns don’t exhibit behavior that
matches a cache memory’s demand-driven,
line-structured organization.

To partially overcome cache memories’ lim-
itations, the cache memory controller can pre-
dict memory addresses likely to be accessed
soon and then prefetch the data into the
cache. Basic methods prefetch sequential lines;
that is, they access cache lines at addresses
immediately following the line currently being
accessed. Simple sequential methods prefetch
after every cache miss, or they prefetch cache

lines immediately following earlier prefetched
lines that the processor has actually used.1

To be effective, prefetching must be timely;
a prefetch request must occur far enough in
advance that the prefetch data is available at
the time it is needed. On the other hand, over-
ly aggressive prefetching can actually reduce
performance by wasting limited memory
bandwidth and other hardware resources.
Consequently, more advanced prefetch algo-
rithms prefetch only after detecting a pattern
of miss addresses, providing some assurance
that future prefetches will be useful.2 Then, if
prefetches are indeed successful, the algorithm
can increase the prefetch degree (the maximum
number of cache lines prefetched in response
to a single prefetch request) until the latency of
a main-memory access is completely hidden.

The more advanced prefetch methods use
tables to record history information about
memory-addressing behavior.3-6 Figure 1a
illustrates conventional table-based methods.
A prefetch table can contain stride informa-
tion, a stride being a constant value that sep-
arates members of an address sequence. Or
the table can contain information describing
more-complex access patterns, as in Markov
prefetching.4 The prefetcher accesses the table

Kyle J. Nesbit
James E. Smith

University of Wisconsin-

Madison

BY ORGANIZING DATA CACHE PREFETCH INFORMATION IN A NEW WAY, A GHB

SUPPORTS EXISTING PREFETCH ALGORITHMS MORE EFFECTIVELY THAN

CONVENTIONAL PREFETCH TABLES. IT REDUCES STALE TABLE DATA,

IMPROVING ACCURACY AND REDUCING MEMORY TRAFFIC. IT CONTAINS A

MORE COMPLETE PICTURE OF CACHE MISS HISTORY AND IS SMALLER THAN

CONVENTIONAL TABLES.

DATA CACHE PREFETCHING USING
A GLOBAL HISTORY BUFFER

Published by the IEEE Computer Society 0272-1732/05/$20.00  2005 IEEE

with a key, such as a load
instruction’s program counter
or a miss address. Then, the
prefetcher uses history infor-
mation read from the table to
predict future miss addresses
and launch prefetch requests.

Although they are simple,
conventional table-based
methods are relatively ineffi-
cient because they reserve a
fixed amount of table space
per prefetch key. Depending
on the keys that occur, the
history information in some
table entries might go unused
for a very long time and
become stale—that is, the
information no longer reflects
current conditions. Accessing a stale table
entry can trigger ineffective prefetches.

We propose an alternative structure, shown
in Figure 1b, for holding prefetch history. In
this structure, a fixed-length FIFO table, the
global history buffer (GHB) holds cache miss
addresses. All miss addresses enter the table in
the order they occur; in the figure, they enter
at the bottom and exit from the top. GHB
information associated with a given prefetch
key is organized as a linked list, which is
accessed indirectly via a hash table. This
method automatically reduces the amount of
stale address history and allows a more accu-
rate reconstruction of miss address patterns in
the context in which they occur. As a result, a
designer can implement enhanced prefetch-
ing algorithms based on strides as well as
more-complex access patterns.

Like most recent research on data cache
prefetching, our work focuses on the data
cache level closest to main memory because
modern out-of-order superscalar processors
more easily tolerate misses to the other cache
levels. In our research, we focus on systems
with two cache levels, L1 and L2, and prefetch
into L2. Of course, we can extend the GHB
method to an L3 cache, if present.

Table-based prefetching
Before proceeding with GHB-based

prefetch algorithms, we first review conven-
tional table-based versions, generally illus-
trated in Figure 1a.

Stride prefetching
Conventional stride prefetching uses a table

to store stride-related history information for
individual load instructions.3 A load instruc-
tion’s program counter (PC) is the prefetch
key that indexes the table. Each table entry
holds the load’s most recent previous stride
(the difference between its two most recent
preceding miss addresses), the most recent
previous miss address (to allow computation
of the next stride), and state information
describing the consistency of the load’s recent
stride behavior. Following a cache miss, if the
prefetch algorithm detects a constant stride
pattern, it triggers prefetches for addresses a
+ s, a + 2s, …, a + ds, where a is the load’s cur-
rent address, s is the detected stride, and d is
the prefetch degree. More aggressive prefetch
implementations use a higher value for d.

Correlation prefetching
Correlation prefetching can prefetch more-

complex patterns than strides. Markov prefetch-
ing is a correlation method that uses a history
table to record consecutive miss addresses.4 The
prefetch key is a memory address (irrespective of
the load’s PC) that misses in the cache. Each
table entry holds a list of miss addresses that
have immediately followed the prefetch key’s
address in the past. When a cache miss occurs,
the miss address indexes the correlation table,
and the member(s) of the table entry’s address
list are prefetched, with the most recent miss
address first.

91JANUARY–FEBRUARY 2005

History table

Prefetch
key

Prefetch
address

Prefetch
algorithm

Index
table

Global
history
buffer

Prefetch
key

Prefetch
address

Prefetch
algorithm

F
IF

O

(a) (b)

Figure 1. Table-based data cache prefetch methods: conventional prefetch table (a); global
history buffer prefetch structure (b).

Distance prefetching is a generalization of
Markov prefetching.5 Originally proposed for
prefetching TLB entries, distance prefetching
can easily be adapted to prefetching cache
lines. This adaptation uses an address delta,
the distance between two consecutive miss
addresses, as the prefetch key into the corre-
lation table. Each correlation table entry holds
a list of deltas that have followed the prefetch
key’s delta in the past. The algorithm then uses
the delta list to compute prefetch addresses by
adding the deltas to the current miss address.
Distance prefetching is a more compact form
of Markov prefetching because one delta cor-
relation can represent many miss address cor-
relations. Also, because it uses deltas rather
than absolute addresses, distance prefetching
can trigger successful prefetches for miss
addresses that have not occurred in the past.

Conventional prefetch tables store prefetch
history inefficiently. First, table data can
become stale and consequently reduce prefetch
accuracy (the percentage of prefetches for data
the program actually uses). Second, tables suf-
fer from conflicts when multiple prefetch keys
hash to the same table entry. A common solu-
tion for reducing table conflicts is to increase
the number of entries, but this approach
increases the table’s memory requirements and
the percentage of stale data held in the table.
Third, tables hold a fixed, usually small amount
of history per entry. Adding more prefetch his-
tory per entry creates new opportunities for
effective prefetching, but the additional
prefetch history also increases the table’s mem-
ory requirements and the amount of stale data.

GHB prefetching
For more efficient prefetchers, our alterna-

tive structure decouples prefetch key match-
ing from the storage of prefetch-related history
information. As Figure 1b shows, the overall
structure has two levels:

• Index table. Prefetch algorithms access
the index table with a key as in conven-
tional prefetch methods. The key can be
a load instruction’s PC, a cache miss
address, or a hashed combination of the
two. Index table entries contain point-
ers into the GHB.

• Global history buffer. The GHB is an n-
entry FIFO table (implemented as a cir-

cular buffer) that holds the n most recent
L2 miss addresses. Each GHB entry stores
a global miss address and a link pointer.
The link pointers chain the GHB entries
into address lists. Each address list is a
time-ordered sequence of addresses with
the same index table prefetch key.

Depending on the key used for hashing into
the index table, a designer can implement any
of several history-based prefetch methods.
Here, we describe the GHB’s use for correla-
tion and stride prefetching and more general
forms of each.

As a circular buffer, the GHB prefetching
structure eliminates many problems associat-
ed with conventional tables. First, the GHB
FIFO naturally gives table space priority to
the most recent history, thus eliminating the
stale-data problem. Second, the index table
and the GHB are sized separately. The index
table must only be large enough to hold the
working set of prefetch keys. Moreover, index
table entries are relatively small, containing a
tag (for hash index matching) and a single
pointer into the GHB (about 1 or 2 bytes).
The GHB is larger, with a size chosen to hold
a representative portion of the miss address
stream. Last, and perhaps most important, a
designer can use the ordered global history to
create more-sophisticated prefetching meth-
ods than conventional stride and correlation
prefetching.

A possible drawback of using the GHB is
that collecting prefetch information requires
multiple table accesses (to follow the linked
lists). However, this delay is relatively small in
comparison with the L2 miss delay. Our per-
formance evaluation takes the table access
delay into account.

To simplify the discussion and illustrate rela-
tionships between prefetch methods, we fol-
low a consistent taxonomy in naming the
methods. We denote each method as a pair
X/Y, in which X is the prefetch key and Y is
the mechanism for detecting addressing pat-
terns. We consider two prefetch keys: program
counter (PC) and global addresses (G)—miss
addresses that are independent of PC. We con-
sider three detection mechanisms: constant
stride (CS), address correlation (AC), and delta
correlation (DC). Conventional table-based
methods fit into this taxonomy—stride

92

HOT INTERCONNECTS 12

IEEE MICRO

prefetching is PC/CS, Markov prefetching is
G/AC, and distance prefetching is G/DC.

Markov prefetching
We first use Markov prefetching (G/AC) to

illustrate a GHB implementation. Figure 2
shows the structure of a GHB G/AC prefetch-
er. When an L2 cache miss occurs, the miss
address indexes the index table. If there is a
hit in the index table, the index table entry
will point to the most recent occurrence of the
same miss address in the GHB. This GHB
entry is also at the head of the linked list of
other entries with the same miss address. For
each entry in this linked list, the next FIFO-
ordered entry in the GHB is the miss address
that immediately followed the current miss
address in the past. These “next” miss address-
es, one for each linked list member, are
prefetch candidates. With the GHB’s bottom-
to-top orientation in Figure 2, the “next”
GHB entries (shaded light gray) are immedi-
ately below the current miss’s linked list entries
(shaded dark grey). Therefore, in this exam-
ple, the prefetch candidates generated by
walking the address linked list are C and B.

Stride prefetching
In stride prefetching (PC/CS), a load

instruction’s PC hashes into the index table,
and the GHB address list is the sequence of
recent miss addresses for the given PC. The
prefetcher calculates the load’s strides by com-
puting the differences between consecutive
entries in the linked list. If the prefetcher
detects a constant stride—for example, if the
first x computed strides are the same—the
prefetcher generates prefetch requests for the
constant-strided address stream. In this article,
we use an x value of 2, which is consistent with
most conventional stride prefetchers.

Generalized correlation prefetching
Existing Markov (G/AC) and distance

prefetching (G/DC) methods prefetch only
according to immediate successor correlations.
Markov methods prefetch using w addresses
that immediately followed the current address
in the past, and distance methods prefetch
according to w address deltas that have imme-
diately followed the current delta. We refer to
this method as width prefetching. The value w
is “wired” into the table structures that imple-

ment Markov and distance prefetching—that
is, it depends on the number of elements in
each table entry. For most workloads, a prob-
lem with relying only on width is that the
effective look-ahead is relatively short and
prefetches have poor timeliness.

A variation is depth prefetching. In this
method, the prefetching mechanism begins
with the current miss address and accesses the
GHB sequentially, triggering a series of
prefetches of length d. In Figure 2, using a d
value of 2 would result in the prefetching of
both C and D by the linked list’s middle ele-
ment. Depth prefetching lets the prefetcher
run farther ahead of the actual address
stream.6 There are also hybrid methods that
use a combination of width and depth. In Fig-
ure 2, if w is 2 and d is 2, blocks C and D will
be prefetched, followed by B and C (although
the second prefetch to C is redundant and will
be filtered out).

In practice, the GHB correlation prefetch-
ing method improves prefetch accuracy by
ignoring old prefetch data. Consider an
example (not illustrated by a figure): With
Markov prefetching, if the successors of A
were B, B, … B, and C, where C is the old-
est successor, a GHB prefetching method
with a w of 2 would examine the first two suc-
cessors and prefetch only B. In contrast, a
conventional table prefetching method would
prefetch B and C, no matter how long ago
successor C occurred.

93JANUARY–FEBRUARY 2005

Index
table

Miss
address

Global
history
buffer

F
IF

O

D
C
B
A

D
C
B
A

D
C
A
C

A
C
B

Head
pointer

Figure 2. GHB global/address correlation
(G/AC) prefetcher.

PC delta correlation
Using load instruction PC values as prefetch

indexes is a very effective method of dividing
the miss address stream into separate access
patterns. However, stride prefetching (PC/CS)
is limited by the history held in its prefetching
table: the previous miss address and the previ-
ous stride. As a result, the most sophisticated
way to detect patterns is simply to compare
the current stride with the previous stride. This
approach is good for most loads, but some
loads have predictable access patterns that are
not constant strides. For example, consider the
address and delta stream shown in Table 1.
This example access pattern is representative
of a load that accesses the first three fields in
an array of C-style structs. Such a pattern can
trick constant-stride prefetching mechanisms
into generating superfluous prefetches. In this
example, the short bursts of unit strides will
cause a constant-stride method to prefetch
down an incorrect unit-stride address stream.

In contrast, the GHB contains the actual
sequence of a load’s miss addresses (up to the
GHB size limit). The prefetcher can use this
information to detect delta access patterns

within a load’s address stream and to prefetch
down a nonstride, but regular, delta access pat-
tern like the example.

Our new GHB method, program counter/
delta correlation (PC/DC), correlates on delta
pairs (two consecutive deltas). This method can
accurately describe the entire access pattern of
our example with three delta pairs. Table 2 lists
the correlations for the example address stream.
The two most recent deltas in the example are
62 and 1. Following the miss to address 129, if
the prefetcher searches the address sequence in
the GHB in reverse order for the same delta
pattern (62 and 1), it finds it first at (2, 64, 65).
When the delta pair (62, 1) appeared previ-
ously, the next deltas were 1, 62, 1, and 1.
Therefore, if the prefetch degree is 4, address-
es 130, 192, 193, and 194 will be prefetched.

Performance evaluation
To evaluate GHB prefetch methods, we

used a subset of the SPEC CPU2000 bench-
mark suite. The subset includes all the SPEC
benchmarks that have a performance improve-
ment of at least 5 percent when simulated with
an ideal L2 cache that always hits. These
benchmarks have a potential for improvement
via prefetching. Table 3 shows the subset.

Simulation methodology
For simulations, we skipped the first billion

instructions and collected data for the next
billion instructions. We used a modified ver-
sion of SimpleScalar 3.0 with a more detailed
memory system for collecting performance
data.7 Table 4 details the simulator configu-
ration. To eliminate the need for additional
prefetch structures, the algorithm places
prefetched lines directly into the L2 cache.

For timing simulations, we assumed that
each access to the index table and GHB mem-
ory arrays has a one-cycle read latency, which
is reasonable for relatively small tables. If an
L2 miss occurs while the GHB state machine
is servicing a previous prefetch query, the
prefetcher aborts the previous query and han-
dles the new L2 miss.

94

HOT INTERCONNECTS 12

IEEE MICRO

Table 1. Example address and delta stream.

Addresses 0 1 2 64 65 66 128 129
Deltas 1 1 62 1 1 62i 1

Table 2. Address stream correlations for example in

Table 1.

Prefetch prediction
Most recent delta pairs (4 subsequent deltas)

(1, 1) 62 1 1 62
(1, 62) 1 1 62 1
(62, 1) 1 62 1 1

Table 3. SPEC

benchmarks with an

ideal L2 instructions-

per-cycle (IPC)

improvement greater

than 5 percent.

SPECfp SPECint
ammp mcf
art twolf
wupwise vpr
swim parser
lucas gap
mgrid bzip2
applu
galgel
apsi

Table 4. Simulator configuration.

Issue width 4 instructions
Load/store queue 64 entries
RUUsize 128 entries
Level 1 D-cache 16-Kbyte, 2-way set-associative
Level 1 I-cache 16-Kbyte, 2-way set-associative
Level 2 cache 512-Kbyte, 4-way set-associative
Memory latency 140 cycles

For performance evaluation, we focus on
G/DC methods (both conventional distance
prefetching and GHB implementations) and
PC-indexed methods (conventional stride
prefetching (PC/CS) and GHB PC/DC). We
do not give Markov prefetching (G/AC)
results because G/AC performance is gener-
ally worse than G/DC and requires far more
table storage (on the order of megabytes).

As explained earlier, the GHB G/DC hybrid
prefetching method has two prefetch degree
components: width and depth. For this study,
we made them equal and state a single w, d
number as the method’s overall degree. This
terminology is at odds with the strict defini-
tion of prefetch degree; for example, a hybrid
method with a prefetch degree of 4 can actu-
ally generate up to 16 prefetch requests at a
time. For hybrid methods with a large prefetch
degree, however, the product of the width and
depth components is only weakly related to
the amount of data actually prefetched. Such
methods typically generate fewer prefetches
because of redundant prefetch addresses
(caused by overlaps in the GHB) and a high
likelihood of preemption by another prefetch
request. Consequently, because hybrid
prefetching proceeds depth first, the stated
prefetch degree is more closely related to
prefetch depth than prefetch width.

Table configurations
We used an initial set of performance sim-

ulations to determine optimal table sizes for
each prefetching method. For these simula-
tions, we held the prefetch degree constant at
4 and varied the table configurations over a
wide range. Table 5 summarizes the table con-
figurations we chose for each method. When
calculating table size, we included the 32-bit
tags in the conventional tables and in the index
table. In general, sizes for the GHB methods
are smaller than those of their conventional
counterparts with similar configurations.

GHB prefetch performance
Figure 3 compares the GHB-based prefetch-

ing methods with their conventional table-
based counterparts (labeled “table” in the
figure). Figure 3a shows average performance
improvement (measured as the harmonic
mean of IPC) over a range of prefetch degrees
from 1 to 16, and Figure 3b shows the arith-
metic mean increase in memory traffic per

95JANUARY–FEBRUARY 2005

Table 5. Table configurations. (IT: index table)

Prefetching method Table configuration Size (Kbytes)
Conventional distance prefetching (G/DC) 512 table entries 18
GHB G/DC 512 IT entries × 512 GHB entries 8
Conventional stride prefetching (PC/CS) 256 table entries 6
GHB PC/DC 256 IT entries × 256 GHB entries 4

Prefetch degree

Table G/DC (width)
GHB G/DC (depth)
GHB G/DC (hybrid)
Table PC/CS
GHB PC/DC

180

160

140

120

100

80

60

40

20

0

P
er

ce
nt

ag
e

in
cr

ea
se

 in
m

em
or

y
ba

nd
w

id
th

1

(b)

2 4 8 16

Prefetch degree

40

35

30

25

20

15

10

5

IP
C

 im
pr

ov
em

en
t p

er
ce

nt
ag

e

1

(a)

2 4 8 16

Table G/DC (width)
GHB G/DC (depth)
GHB G/DC (hybrid)
Table PC/CS
GHB PC/DC

Figure 3. Performance comparisons: harmonic mean of IPC improvement
for the Spec benchmark subset in Table 2 (a), and arithmetic mean of
increase in memory traffic for the same Spec benchmark subset (b).

instruction (with respect to no prefetching).
Considering G/DC methods first, it is appar-

ent that conventional distance (G/DC width)
prefetching does not have sufficient look-ahead
to capture G/DC’s full potential. Depth
prefetching outperforms width prefetching by
10 percent (at a degree of 16). Hybrid prefetch-
ing outperforms depth prefetching by an addi-
tional 10 percent (and outperforms width
prefetching by 20 percent).

Depth prefetching does not perform as well
as hybrid prefetching for two reasons. First,
correlations often occur close to the head of
the GHB, and second, depth prefetching can-
not achieve the same coverage as hybrid
prefetching. When a correlation is close to the
head of the GHB, the depth method runs out
of history and terminates before prefetching to
its entire prefetch degree. Hybrid prefetching
resolves this problem by prefetching depth
until it reaches the head of the GHB, and then
prefetching the next depth chain, which is far-
ther from the head.

A drawback of hybrid prefetching is
increased memory traffic. The hybrid method
consumes 50 percent more memory traffic
than the depth method, but picking more
appropriate depth and width components for
the given workload (that is, choosing depth
and width components that are not equal) can
reduce hybrid memory traffic. On the other
hand, compared to conventional distance
prefetching, which has 140 percent more

memory traffic than the depth method, the
hybrid method’s memory traffic is relatively
low. These results support our claim that con-
ventional correlation tables suffer from stale
data and, consequently, poor prefetch accu-
racy. On a system with tightly constrained
memory bandwidth, the additional memory
traffic would likely degrade performance.

To better illustrate the behavior of stale table
data, we tracked each entry’s age in the dis-
tance-prefetching correlation table. An entry’s
age is the number of cycles since the entry was
last touched. The tracking method employs a
logarithmic scale to form age groups; the first
age group is less than 16 cycles, the second age
group is between 16 and 256 cycles, and so on.
The simulator used the age of the correlations
to monitor the number of prefetches generat-
ed from each age group. When a prefetch was
generated, the correlation’s age was included
with the prefetch request, allowing the simu-
lator to monitor how many prefetches from
each age group are successful—that is, how
many result in a later cache hit. With this data,
we calculated the accuracy of prefetches from
each age group.

As Figure 4 shows, prefetches generated by
entries less than 4K cycles old are 10 times
more accurate than prefetches generated by
entries older than 16K cycles. Furthermore,
most prefetches come from entries between
64K and 1M cycles old, and their prefetch
accuracy is less than half that of prefetches
generated by entries less than 4K cycles old.

Overall, PC-indexed methods perform bet-
ter and consume less bandwidth than G/DC
methods. The GHB PC/DC method outper-
forms conventional stride prefetching (table
PC/CS) by 7 percent and has approximately
the same memory traffic (for a prefetch degree
of 16). These results show that the PC/DC
method can prefetch the same access patterns
as constant-stride prefetching and gets addi-
tional performance from its ability to prefetch
more-complex delta access patterns. Figure 3b
shows that PC-indexed methods don’t benefit
as much as G/DC methods do from the GHB’s
ability to reduce stale data. For conventional
stride prefetching, table entries are associated
with a specific load instruction. Even if a table
entry has not been accessed for a long time, it
is less likely that a load instruction’s behavior
has changed since it was last accessed.

96

HOT INTERCONNECTS 12

IEEE MICRO

Age (cycles)

60

50

40

30

20

10

0

P
er

ce
nt

ag
e

in
cr

ea
se

16 256 4K 64K 1M 16M 256M

Prefetch accuracy
Age distribution

Figure 4. Age distribution of table history that generates a prefetch and
prefetch accuracy per age group. The left axis represents the percentage of
accurate prefetches (accuracy) and the percentage of prefetches per age
group (age distribution).

Collectively, the new GHB prefetching
methods perform as well or better than their
conventional counterparts. The first GHB
method, GHB G/DC, shows a 20 percent
IPC improvement over distance prefetching,
while reducing memory traffic 90 percent.
The second GHB method, GHB PC/DC,
shows a 7 percent IPC improvement over
stride prefetching and generates the same
amount of memory traffic. In support of our
performance results, GHB prefetching has
been independently verified to out-perform
other proposed prefetching mechanisms.8

Extensions of our research will consider
applications of the GHB to next-genera-

tion memory technologies. If anything, the
importance of prefetching will grow over the
next decade as relative memory latencies con-
tinue to increase. At the same time, there will
be significant increases in memory bandwidth,
as next-generation memory technologies move
to more sophisticated topologies and signal-
ing techniques. Unfortunately, increases in
memory bandwidth will have little direct effect
on single thread performance. However, more
advanced prefetching methods may provide
promising indirect ways of using extra mem-
ory bandwidth to improve single thread per-
formance. Looking beyond the GHB
mechanism, our research makes another
important contribution by illustrating that it
is less important to produce prefetches quick-
ly than it is to produce more accurate prefetch-
es with higher prefetch coverage. This result
supports future research into more advanced
prefetching structures and algorithms that take
longer, but produce better prefetches. MICRO

Acknowledgments
This research was funded by an Intel under-

graduate research scholarship, a University of
Wisconsin Hilldale undergraduate research fel-
lowship, and by National Science Foundation
grants CCR-0311361 and EIA-0071924.

References
1. A.J. Smith, “Sequential Program Prefetching

in Memory Hierarchies,” IEEE Trans. Com-
puters., vol. 11, no. 12, Dec. 1978, pp. 7-21.

2. J.M. Tendler et al., POWER4 System Microar-
chitecture, IBM tech. white paper, 2001.

3. T. Chen and J. Baer, “Effective Hardware-

Based Data Prefetching for High-Performance
Processors,” IEEE Trans. Computer Systems,
vol. 44, no. 5, May 1995, pp. 609-623.

4. D. Joseph and D. Grunwald, “Prefetching
Using Markov Predictors,” IEEE Trans. Com-
puter Systems, vol. 48, no. 2, 1999, pp. 121-
133.

5. G.B. Kandiraju and A. Sivasubramaniam,
“Going the Distance for TLB Prefetching: An
Application-Driven Study,” Proc. 29th Ann.
Int’l Symp. Computer Architecture (ISCA 02),
IEEE Press, May 2002, pp. 195-206.

6. Y. Solihin, J. Lee, and J. Torrellas, “Using a
User-Level Memory Thread for Correlation
Prefetching,” Proc. 29th Ann. Int’l Symp.
Computer Architecture (ISCA 02), IEEE
Press, 2002, pp. 171-182.

7. D. Burger and T. Austin, The SimpleScalar
Toolset, Version 3.0, http://www.
simplescalar.org.

8. D. Gracia-Perez, G. Mouchard, and O.
Temam, “MicroLib: A Case for Quantitative
Comparison of Micro-Architecture Mecha-
nisms,” Proc. 37th Int’l Symp. Microar-
chitecutre (MICRO 04), IEEE Press, 2004,
pp 43-54.

Kyle J. Nesbit is a PhD candidate in the
Department of Electrical and Computer Engi-
neering at the University of Wisconsin-
Madison. His research interests include
processor performance modeling, power-effi-
cient processor design, virtual machines, and
memory optimization. Nesbit has a BS in elec-
trical engineering from the University of Wis-
consin-Madison. He is a student member of
the IEEE.

James E. Smith is a professor in the Depart-
ment of Electrical and Computer Engineering
at the University of Wisconsin-Madison. His
current research interests include high-perfor-
mance and power-efficient processor imple-
mentations, processor performance modeling,
and virtual machines. Smith has a PhD in
computer science from the University of Illi-
nois. He is a member of the IEEE and ACM.

Direct questions and comments about this
article to James E. Smith, Dept. of Electrical
and Computer Engineering, University of
Wisconsin-Madison, 1415 Engineering
Drive, Madison, WI 53706; es@ece.wisc.edu.

97JANUARY–FEBRUARY 2005

