
JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 3, SEPTEMBER 2005 169

Data Caching and Query Processing in MANETs
JINBAO LI

School of Computer Science & Technology, Harbin Institute of Technology,
Harbin, China, 150001
Email: lijzh@hit.edu.cn

YINGSHU LI, MY T. THAI
Department of Computer Science & Engineering, University of Minnesota,

Minneapolis, MN 55455, USA
Email: �yili, mythai�@cs.umn.edu

JIANZHONG LI
School of Computer Science & Technology, Harbin Institute of Technology,

Harbin, China, 150001
Email: lijinbao@hit.edu.cn

Received: July 15 2005; revised: August 20 2005

Abstract—This paper investigates query processing in
MANETs. Cache techniques and multi-join database operations
are studied. For data caching, a group-caching strategy is
proposed. Using the cache and the index of the cached data,
queries can be processed at a single node or within the group
containing this single node. For multi-join, a cost evaluation
model and a query plan generation algorithm are presented.
Query cost is evaluated based on the parameters including the
size of the transmitted data, the transmission distance and the
query cost at each single node. According to the evaluations, the
nodes on which the query should be executed and the join order
are determined. Theoretical analysis and experiment results show
that the proposed group-caching based query processing and the
cost based join strategy are efficient in MANETs. It is suitable
for the mobility, the disconnection and the multi-hop features
of MANETs. The communication cost between nodes is reduced
and the efficiency of the query is improved greatly.

Index Terms—MANET, mobile database, group-caching, join,
query Plan

I. INTRODUCTION

The emergence of powerful portable computers, along with
advances in wireless communication technologies, has made
mobile computing a reality. Mobile applications such as stocks
trading, traffic controls and weather forecasts have become
increasingly popular. As the number of mobile applications
increases rapidly, there has been a growing demand for the
use of distributed database architectures for various applica-
tions. Various wireless data networking technologies, Wireless
Application Protocols (WAPs) and the third generation mobile
phones, have been developed recently. A mobile computer is
envisioned to be equipped with more powerful capabilities,
including the storage of a small database and the capability of

This work was supported by the National Natural Science Foundation
of China under Grant No.60473075; the Natural Science Foundation of
Heilongjiang Province of China under Grant No.ZJG03-05 and No.QC04C40.

data processing. In a mobile computing environment, char-
acteristics such as availability, connectivity, low-bandwidth,
data quality, usage cost and the battery power impose new
constraints on traditional distributed database systems. Tradi-
tional distributed database techniques cannot efficiently sup-
port queries in mobile computing environment. Consequently,
query processing in mobile database, which is conducted by
some fixed hosts and several mobile hosts, has emerged as an
issue of growing importance [1].
A mobile database can be recognized as a kind of distributed

database that supports mobile computing. In general mobile
wireless networks [1], [5], there are two sets of entities: Base
Stations (BSs) and hosts. The hosts are either fixed or mobile
(called MH). Fixed hosts communicate over the network with
a fixed topology, while mobile hosts communicate with other
hosts (mobile or fixed) via a wireless channel.
Recently, the above mobile wireless networks are attracting

more and more attention. Location-aware query processing
technique has been studied in [2]. The authors proposed a
cost model considering location, CPU and memory utilization,
power consumption and transmission. The main problem is
that the location information is needed and the support from
the BS is required. Location-aware continuous queries are
studied in [6]. Sanjay introduced a query processing model
by using the hierarchical concept and summary database [7].
In this model, there is a summary database stored at each
BS or MH. If the data referred by the query is un-accessible,
some approximate results can be obtained from the summary
database.
With the development of mobile computing, another kind of

wireless network, MANET, emerges. In a MANET, both the
hosts and the BSs are mobile. Thus, query processing becomes
much more complex than that in general wireless networks
[4]. How to optimize mobile queries, cache and replicate

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 3, SEPTEMBER 2005 170

data, manage transactions and routing are the key issues in
MANETs. Till now, most researchers just focus on the routing
problems. Only a few researches studied query processing
from the viewpoint of distributed database. To improve data
access, three data replication methods were presented in [8].
A system framework for query processing in MANETs was
proposed in [3]. This system only supports simple queries, and
does not take the query optimization into consideration.
In this paper, the technologies of data caching and query

processing in mobile distributed database systems are mainly
investigated. The major contributions are as follows: (1) A
group-caching based query algorithm is proposed, the purpose
of which is to execute a query at a single node or within
its group. At first, the algorithm searches the local caching
index and obtains some partial results. Then, it searches
the group through group-caching index, and obtains all the
matching results and the nodes where they are. At last, all the
other results are obtained from the original nodes. (2) A cost
model and an optimization technique for the join operation are
proposed, which focus on reducing the transmission cost. The
locations of the nodes and the MSS support are not necessary
in the strategy. It evaluates a query cost based on the size of
the transmitted data, the transmission distance and the query
cost at each single node. According to the evaluations, the
nodes on which a query should be executed and the join order
are determined. This is an optimal query plan.
The paper is organized as follows. Section 2 introduces

MANETs and mobile distributed databases. Node grouping
and dynamic the group-caching strategy are presented sepa-
rately in Section 3 and Section 4. Group-caching based query
processing is introduced in Section 5. The cost model and join
processing technique are illustrated in Section 6. Experimental
results are shown in Section 7. The paper is concluded in
Section 8.

II. MANETS AND MOBILE DISTRIBUTED DATABASES

A MANET is a special kind of wireless network consisting
of a collection of mobile hosts. There is no fixed infras-
tructure in a MANET. The hosts are connected wirelessly.
Each host has mobility, so the topology of the network
changes continuously. There are no BSs in a MANET. MHs
communicate either through a single-hop or multi-hop routing.
Each MH is a router and has the ability of conducting search
dynamically, locating and connection restoring. The MHs can
also re-configurate the topology of a MANET dynamically, do
distributed processing, share data and route messages among
MHs. The architecture of a MANET is shown in Fig. 1. The
nodes in the figure are MHs. A dashed circle centered at each
node represents the area where the transmission from this node
can be successfully received.
The mobile database system in a MANET is a dynamic

distributed database system, which is composed of some
mobile MHs. Each MH has a local database system. The
architecture of the mobile database system is shown in Fig. 2.
Each node in the mobile database system may be either a

client in some applications or a server in other applications.
Each node can propose a query as a client and can also process

Fig. 1. MANET.

Fig. 2. Mobile Distributed Database in a MANET.

the queries from other nodes as a server. As shown in Fig. 2,
each node needs a middleware to support the mobile query
processing.
There are three layers in a mobile distributed database

system: the application layer, the middleware layer and the
database layer. The architecture is shown in Fig. 3. The
application layer accepts user queries. The middleware layer is
the core of the mobile distributed database system. Queries are
processed by the middleware, transmitted to the middleware
of other MHs in the network. The middleware of a MH
sends queries to the local database system. After the database
finishes executing a query, the results are transmitted from the
middleware layer to the application layer and then the results
are returned to the user. The middleware layer is transparent
to users. Users need not to know the topology of the network,
the status of the network and the query processing method.
Users use the mobile database system as a local one.
The middleware layer is divided into three sub-layers fur-

ther: the network layer, the cache layer and the query layer.
The network layer is responsible for the communications in

the system. Its main functions are as follows. (1) Managing
location information of nodes. Each node should clearly know
its position and the relative position with the surrounding
nodes. (2) Dividing nodes into groups. For ease of routing
and caching, all the nodes in the system are divided into
several groups according to their relative positions. When a
node moves, the group information should be maintained. (3)

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 3, SEPTEMBER 2005 171

Fig. 3. Architecture of a Mobile Distribude Database System.

Routing data packets between the query layer and the cache
layer. Group routing strategies are adopted in this paper to
implement the communications between nodes that are not
directly connected. The data from the query layer and the
cache layer might be sent to any other nodes through the
network layer.
The cache layer focuses on data caching in the system. The

limited bandwidth in MANETs makes the communication cost
the main cost of query processing. Node mobility and packets
conflictions make the network topology change frequently,
meanwhile, disconnection of nodes often occur. This delays
the data transmission in the network. The cache layer stores
data accessed frequently by the query nodes or their neighbors.
This decreases the query response time and improves the
data accessibility when node disconnection occurs. With the
changing of network topology and the updating of the data
at each node, the cached data should be updated dynamically
to ensure the consistency between the cached data and the
original data in the database.
The query layer parses the syntax of user queries and

determines the query types. It searches a local or group cache
index for the cached items. If all the query results are found,
the query ends. Otherwise, the query layer searches other
results from remote nodes. For join queries, the query layer
evaluates the query cost and generates some distributed query
plans. The data nodes and the query nodes select the optimized
one based on the query cost and the status of the network.

III. NODE GROUPING

In a MANET, any node communicates peer-to-peer. In order
to communicate with nonadjacent nodes, the communication
path should be determined, which is called routing. Group
routing strategy is adopted in this paper. It divides the nodes
in the network into some groups. A routing request is sent
to several different groups, and then the destination nodes are
searched in these groups. This method broadcasts a request

among the groups, which reduces the broadcast range of the
request packet.
Each group has a master node. It maintains the topology

of the group dynamically. To reduce the cost for the master
to maintain the group and increase the communication speed
among nodes in the group, each master should communicate
with its members directly through single-hop routing. A node
needs not to know the whole topology of the network. But
it needs to know its neighbors within a group. Each node
determines which group it belong to through exchanging a
series of messages and feedbacks with its neighbors. The rules
for grouping are as follows:

1) Each group has only one master, and the group ID is
the same as the master’s ID.

2) Each group has some members. The distance between
the master and its members is one hop.

3) Every node belongs to only one group. That is, each
member has only one master.

4) The master is a member of itself.
5) The neighboring groups communicate with each other

through their gateways. When member i of group A is
a neighbor of some member of another group B, then
node i is called the gateway of A�B. The Gateways
are communication bridges between the neighboring
groups. The information should be exchanged through
the gateways among groups.

In general, any two nodes can communicate with each
other through multi-hop routing in MANETs. According to the
above rules, all the nodes in a MANET will be divided into
several groups, and the members in a group can communicate
with each other through the master of this group. These groups
can connect with each other through gateways. Thus, any
two nodes in a network can communicate with each other
through masters and gateways. Because the distance between
a master and its members is one hop, the distance between
any two nodes in the same group is at most two hops. For
two neighboring groups, the distance between two masters is
not larger than three hops and the distance between any two
nodes in these two groups is at most five hops.
If a group has just one node, the node must be the master

and it is called an island node. If all the members in a group
leave this group, the master in this group will become an island
node. The node which is first added to the network is an island
node.
The grouping steps are as follows:

1) Node A in the initial phase or after its position chang-
ing broadcasts a HELLO message (including node A’s
MasterID) to A’s neighbors. The neighbors receiving the
HELLO message answers a RHELLO message back to
node A.

2) After node A receives the RHELLO message from its
neighbors, it first updates its status:

a) If node A is a member of its group but not the
master, then it determines by itself to leave this
group or not. If A leaves the group, then it becomes
an island node.

b) If node A is the master but loses all its members,

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 3, SEPTEMBER 2005 172

Fig. 4. Node Grouping.

then it becomes an island node.

3) If node A becomes an island node, then it tries to join
another group. Node A first finds all the masters of its
neighbors using its received RHELLO messages, then,
it selects one master among them by sending a message
RM to ask if it can join the group.

4) If the master receiving node A’s RM accepts the request
of node A, then it answers an agreement message RRM
to make node A become its member.

The grouping of the network that has 10 nodes is shown in
Fig. 4. The nodes are divided into 3 groups. The master of
group 1 is node 1, and the members of it include node 1, 2,
6, 8 and 9. The master of group 4 is 4, and its members are
3, 4, 5 and 10. Node 7 is the master and the only member
in group 7 because nodes 6 and 8 have joined group 1. The
gateway node is node 6 or 8 between group1 and group7; the
gateway nodes are node 2 and 3 between group1 and group4.
In Fig. 4, it shows that the distance between two masters of
two adjacent groups is at most 3 hops.

IV. DYNAMIC GROUP-CACHING STRATEGY

Caching technique has been widely used in distributed
database systems. The servers connect with each other fixedly
and persistently. The topology of a distributed database system
seldom changes. However, in mobile computing environment,
the topology changes frequently because nodes move fre-
quently. The communication among nodes is not reliable,
which makes traditional catching techniques not suitable for
mobile database systems. Considering the characteristics of
mobile computing environment, researchers have made an
intensive study of the technology of caching, and proposed
some caching strategies about mobile database systems [1],
[12].
The same as in traditional distributed databases, caching

is an efficient way to speed up query processing for mobile
databases. Existing caching strategies are mainly based on BSs
in wireless networks and not applicable for MANETs. Multi-
hop routing in a MANET makes the distance (the number of
hops) between two nodes the main factor of data transmission

Fig. 5. Logic Frame of the Cache Layer.

cost. In distributedmobile databases, it is common to query the
database at many nodes. For the limited cache space at a query
node, merely caching data at the query node would decrease
cache usage ratio. We present a group-caching strategy, in
which data is cached in a group. The query response time
is reduced by shorten the transmission distance. At the same
time, all the nodes in a group could use the cached data and
the cache usage ratio is increased.
Section 2 introduces the architecture of our distributed

mobile database system. The cache layer of the system is in
charge of data caching, which is shown in Fig. 5.
The dynamic group-caching strategy caches and distributes

data items based on the probability they are accessed by
nodes or groups and the data valid time (the time up to the
next update of database). All the nodes in a group share the
group cache. The cached items are distributed among different
members in the group. The caching strategy updates the data
in cache and maintains the index periodically to keep it in
consistency with the original data.
In this strategy, cache index is divided into two levels, the

node cache index and group cache index. The node cache
index and the group cache index are defined as follows.

Definition 4.1: node cache index is a cached index main-
tained by a node. A segment in a database is the minimal
cached unit, called cached item. It records the cumulative
frequency of the segments accessed by the node, and whether
the segments are cached at the node.

Definition 4.2: group cache index is a cached index main-
tained by the master of a group. It records the nodes in which
the cached item located, the data valid time, the total frequency
of the data accessed by the nodes in the group.

Using dynamic group-caching strategy, every group of
nodes caches the data from outside of the group which is
accessed frequently. It sets a high priority on the data whose
valid time is longer. We use PT [10] to represent the possibility
that a data item is cached in a group.
The definition of PT is as follows:

���� � ��� � �� � ��� � ��� � ���

where ��� is the frequency that node � requests for item � in a
time unit. �� is the remaining time for the next update of data

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 3, SEPTEMBER 2005 173

Fig. 6. Dynamic Group Cache Strategy.

item �. �� is the current time, and �� is the time when data
will be updated next time. PT evaluates the frequency that a
data item is accessed by a node in its valid time.

Definition 4.3: The group PT is defined as follows:

�������� �
��

���

��� � ��

As shown in Fig. 6, the dynamic group-caching strategy
consists of four phases: eliminating the invalid cached items,
collecting information, assigning the cached items and replac-
ing the items in cache.

(1) Eliminating the invalid cached items. When nodes move,
the members in a group might change, which causes
the change of the group cache index. The master needs
to delete the invalid items to maintain the group cache
index. The valid time of all the data items in the group
cache index is subtracted by one update cycle. The
master deletes all the cached indices of the items whose
remaining time are less than one update cycle, because
they would be invalid before the next location update.
At the same time, the master sends a message to the
nodes whose indices are deleted, and notifies that node
to eliminate the corresponding items from its local cache
index and the database.

(2) Collecting information. The master collects the accessing
information of each item outside this group accessed by
the nodes in the group, creates a new or updates the old
group cache index. For the data segment that is not cached
in the group cache index currently, the valid time of the
segment is obtained from the node where it is.

(3) Assigning the cached items. After the master collects the
information, it deletes the indexed items whose valid time
is less than one update cycle, and sorts the items in the
group cache index by PT in descending order. If a cached
item is not in the group, it is obtained from some remote
data nodes, and cached at the member node where the
item is accessed most frequently. If it is unsuccessful to
cache the data item or the cache of the node is full, select
the node whose data access frequency is inferior to this
node, and so on.

(4) Replacing the cached items. If the caches of all the
members are full and there are cached items whose PTs
are less than that of the current items, the cached index
of the item with the minimal PT should be deleted from
the group and the corresponding data item should also be
deleted from the member in the group. After the cache
is released, it is assigned to the current item.

The dynamic group-caching strategy determines the cache
order of data items according to the information of the items
accessed by the group. It also decides which node an item
should be distributed to based on the frequency the item is
accessed by the members. The strategy considers not only
the frequency of data item accessed by the group, but also
that accessed by each node in the group. Valid time is mainly
considered by the strategy. The items with long valid time will
be cached in priority. It improves the usability of the cache,
and avoids the frequent replacement of the cached items.

V. GROUP-CACHING BASED QUERY PROCESSING

To introduce the query processing algorithm based on the
group-caching strategy, we first take a single-table query on
one node as example. The multi-table query processing on
many nodes can be derived from this algorithm. A query with
single-table on one node is expressed as follows:

SELECT Node.Table.Attr1, Node.Table.Attr2,.
FROM Node.Table
WHERE Condition

After receiving a query statement from a user, the query
node analyzes the query statement and constructs the query
plan, which is submitted to the local or remote node to execute.
With the group-caching strategy, the query results may be from
the local data, the local cached data, the group cached data or
the remote original data.
The single-node query algorithm based on group-caching

is shown as follows:

1. IF QueryNode receives a query THEN

1.1 IF it is a local query THEN search the local
database;

1.2 ELSE

1.2.1 check the local cache index and acquire the data
that satisfy the query condition.(matching set);

1.2.2 deliver the query whose matching set is deleted to
the group master;

2. IF Master receives the query THEN

2.1 IF the data node belongs to the group THEN send
the query to the node;

2.2 ELSE search the group cache index, get the subset
of items matching the query and the corresponding
member nodes in the group;

2.3 construct a subquery with the query set and the
matching subset ; 2.4 send the subquery whose
matching subset has been eliminated to correspond-
ing member nodes;

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 3, SEPTEMBER 2005 174

3. IF the data node receives the query THEN

3.1 3.1 execute the query in local data or local cached
data items;

3.2 send the subquery result to the query node;

4. The Query node receives all the subquery results from
other nodes and gets the final results.

The query plan and its execution are shown in Fig. 7.
Let � be the size of the data in a query table. The distance

from the data node to the query node is � hops. The cache hit
rate is �. The speed of disk I/O is 	��	
. The speed of wireless
transmission is 	���.
Let � � � be the size of data that can get from the group

cache for a query, � � � � 	��	
 is the time to read the data
from disk. Because the maximum distance between any two
nodes in a group is � hops, the maximum time of transmitting
the query results is �� � � � 	��� if the group cache items are
hit. The size of query results obtained from a data node is
��� �� � �, the time of reading disk is ��� �� �� �	��	
, and
the time of transmission is ��� �� �� �	��� ��. The response
time of the single-node query based on the group cache is as
follows:

� � � � 	��	
 � �� � � � 	��� � ��� �� � � � 	��	

� ��� �� � � � 	��� ��

Due to the speed of accessing disk is far more than the speed
of wireless transmission, we omit the time for the disk I/O.
Thus the response time of the query is shown as follows:

�� � � � 	��� � �� � �� � � � 	��� ��

If we do not use the cache, all the query results must be
obtained by data nodes. The response time of the query is
� � 	��� ��. Consequently, the ratio of the responding times
with the cache to that without the cache is �� � � ��

.

VI. JOIN OPERATION AND THE COST MODEL

Mobile query processing [6] is an extension of distributed
query processing. To support distributed query in mobile net-
works, the disconnection, bandwidth and the reliability must
be considered. The mobile query optimization must consider
the characteristics of the mobile network and adopt appropriate
optimization strategies based on the status of the network.
In mobile distributed database system, the query cost is

generally determined by the communication cost, the size of
the transmitted data, the transmission distance and the ability
of the nodes. The percentage of the bandwidth and the time
occupied are the main costs [2].
Suppose that all the MHs have the same processing ability

and wireless communication ability (so the effects of the
processing ability and the communication ability are ignored).
MHs may have different power. In a MANET, the communi-
cation cost is the main cost limited by the multi-hop routing,
the bandwidth and the communication ability. The query cost
is determined as following:
query cost � � the size of the data �� the transmission

distance �� local query cost �;

S: the number of the tuples �� the number of the bytes of
a tuple;
D: the number of the hops in transmission C: the query cost

at a query node or a data node
Data transmission is mainly resulted from the join and union

operations. So the optimization of the join operation is very
important.
A typical query with two-table multi-attribute join on two

different nodes is expressed as follows:

SELECT Node1.Table1.*, Node2.Table2.*,
Node1.Table1.Attr1, Node2.Table2.Attr2, . . .
FROM Node1.Table1, Node2.Table2
WHERE Node1.Table1.Attr1 � Node2.Table2.Attr2
Operator1 Node1.Table1.Attr3 � Node2.Table2.Attr4
Operator1 Node1.Table1.Attr5 Operator2 Value1
Operator1 Node2.Table2.Attr6 Operator2 Value2 � � �

where,
Operator1 � � and, or �
Operator2 � �
� ���
�� �� � ��
The size of the join can be evaluated as follows [9]:

� ��� �� ��� �
� ���� � � ����

��
���

��	�	 ���� ���� 	 ���� ����

where � ��� is the number of the tuples in relation �,
	 ��� � � is the number of the different values of the attribute
� in �, and ���

 � �� are the join attributes.
A distributed query optimization is composed of two

parts: distribution optimization and local optimization. The
distribution optimization is usually more important than the
local optimization. It is based on reducing the communication
cost. The local optimization can be done using the centralized
database optimization techniques. This paper combines
the two methods. The query plan generation algorithm is
described as follows.

Query plan:

1. QueryNode sends the query to DataNodes;
2. After the DataNodes accept the query:

2.1 process the query in local database, select the
WHERE conditions on local data, project on the
result attributes and the join attributes which are
related to local data only;

2.2 calculate the distance from itself to the Query-
Node(Own D) and the size of the local subquery
result(Own S);

2.3 Sends Own D and the information about the sub-
query result(Info) to the other DataNode;

3. Data nodes accept the distance information Other D and
the subquery results information Info from the other Data-
Node;

3.1 calculate the distance from itself to the other data
node(Between D), calculate the data size after join

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 3, SEPTEMBER 2005 175

Fig. 7. Query Plan Based on Group Cache.

Join S and the subquery result size of the other data
node Other S according to Info;

3.2 generate three subquery plans and the cost model:

P1: Both of the data nodes transmit the subquery
results to QueryNode. Join is executed by Query-
Node;

�� � ��� � ���� � ������ � ������ �

P2: Local node transmits the subquery results to the
other data node. The other data node executes the
join and returns the join results to QueryNode;

�� � ��� � �������� ������ � ������ �

P3: The other data node transmits the subquery results
to local node. Local node executes the join and
returns the join results to QueryNode;

�
 � ����� ��������� ������ ����� �

if �� is the smallest, then P1 is selected
Transmit the subquery results to QueryNode;
if �� is the smallest, then P2 is selected;
Transmit the subquery results to the other data
node;
if �
 is the smallest, then P3 is selected;

Waiting to accept the subquery results from the other
data node;

4. If the DataNode accepts the subquery results from the
other data node, then

4.1 join local subquery results with the accepted results
based on join conditions and the result attributes;

4.2 package the join results and return it to QueryNode.

5. If QueryNode accepts the join result package from Data-
Node, then output the results.

6. If QueryNode accepts two subquery results from both
data nodes, then join the two subquery results on the
join conditions and the result attributes and output the
join results.

In the algorithm, QueryNode is the node that sends a query
and DataNode is the node that executes the subquery.
The execution process of the query plan is illustrated in

Figure 8. Besides, when both �� and �
 are failure and
the subqueries in both of the data nodes have finished, ��
is executed.
We analyze the cost of the two-node join algorithm based

on the two-table single-attribute equal join of the two nodes.
Because the size of the subquery command from the

QueryNode and the size of the subquery results transmitted
between the two data nodes are small, the time to transmit the
information among the nodes is omitted.
�� and �� are the sizes of the table �� at node � and the

table �� at node �. 	��	
 is the I/O speed of the local disk.
	��� is the speed of the transmission. A is the join attribute.
�� and �� are the distances from QueryNode to node � and
node 2 respectively. The distance from node � to node � is
��.
The time for reading/writing �� at node � and �� at node �

is �� � 	��	
 and �� � 	��	
. The time for transmitting �� and
�� to QueryNode is �� �	��� ��� and �� �	��� ���. The size
of the join result of �� and �� is:

� ��� �� ��� � � ���� � � �������	�	 ���� ��� 	 ���� ���

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 3, SEPTEMBER 2005 176

Fig. 8. The Execution of Query Plans.

The size of the join result of �� and �� is:

����� � �� � �����	�	 ���� ��� 	 ���� ���

The time for the disk I/O of the join result of � � and ��
is ����� � 	��	
. The transmission time is ����� � 	��� ��� or
����� � 	��� ���.
If the join operation is executed in QueryNode, the query

response time is

�� � �� � 	��	
 � �� � 	��	
 � �� � 	��� ���

� �� � 	��� ��� � ����� � 	��	

If the join operation is executed at node 1, the query
response time is

��� � ��� �	��	
��� �	������������ �	��	
������ �	������

If the join operation is executed at node 2, the query
response time is

��� � ��� �	��	
��� �	������������ �	��	
������ �	������

Because the speed of the disk I/O is much higher than the
speed of the multi-hop transmission in a MANET, we omit
the time for the disk I/O. The join algorithm selects the one
that has the smallest cost among the three query plans. The
query response time of the two-node join is:

������ � 	��� ��� � �� � 	��� ����

�� � 	��� ��� � ����� � 	��� ����

�� � 	��� ��� � ����� � 	��� ����

For centralized join, the join operation is executed by
QueryNode. The query response time of the two-node join
is:

�� � 	��� ��� � �� � 	��� ���

The ratio of the two-node join proposed in this paper to the
centralized two-node join is

������ ��� ��� � ����� �������� ��� � �� �����

��� ��� � ����� �������� ��� � �� �����

VII. EXPERIMENTS AND PERFORMANCE ANALYSIS

In order to test the proposed algorithms, a simulation
environment for MANET has been built. The number of
the nodes in the MANET consisting of 20 nodes, and all
nodes are distributed within an area of 1000�1000, effective
communication radius of all the nodes are 300 units of length.

A. Experiments of queries based on group caching strategy

We simulated the single-node query based on group-cache,
direct-cache and non-cache to study their performance. Group-
cache uses the algorithm proposed in section 5. Direct-cache
directly caches the data at single node, but without group
management.
In this experiment, the update cycle of a node position was

10 seconds, i.e. a node moves to a new place per 10s. Each
node submitted a random query periodically and searched for
the data among the random nodes in the networks. To make
the caching easily, the range of each query was 10 percent

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 3, SEPTEMBER 2005 177

Fig. 9. Hit Rate of Cache.

of the data in the node. The size of the cache in a node was
set to 0 percent, 25 percent, 50 percent, 75 percent and 100
percent of the querying range respectively. Figure 9 shows
the hit rate of the group-cache and the direct-cache with the
single-node query algorithm. Figure 10 shows the comparison
of the response time between the query with group-cache,
direct-cache and non-cache.

As can be seen, Fig. 9 shows the hit rate of the group-
cache and direct-cache increases correspondingly to the size
of the cache. But the hit rate of group-cache is distinctly
higher than that of direct-cache. In the group-cache, not only
because coverage rate of the cache which makes more data
items cached in the group is increased, but also because the
index management is set to the cache of nodes in the group.
Thus, if only the query arrives at the group, it can quickly
match the data cached in the group to obtain the whole or
partial query results, increasing the number of query results
and the hit rate. In the direct-cache, the query can hit if only
it arrives at the node cached, otherwise it can not use the data
cached. So the hit rate is low.

Figure 10 shows that the response time using the group-
cache is less than that of direct-cache and non-cache. Because
many data items relating to the query are cached in a group,
these data could be shared among the nodes to enhance the
query efficiency. On the other hand, due to the higher hit rate
of group-cache, many queries can obtain the query results (or
partial results) on the nodes cached to decrease greatly the
frequency of obtaining directly the query results to the origin
nodes. So using group-cache not only reduces effectively
the amount of data transmission among the nodes, but also
decreases the average response time of a query. In direct-cache,
because of the lower hit rate of caching and less query results
that can obtain on the data cached, the query frequently visits
the origin data nodes. Thus the response time of a query using
direct-cache is longer than that using group-cache, but shorter
than that using non-cache. With an increase of the cache size
in a node, the hit rate of group-cache and direct-cache increase
gradually, and the query response of group-cache and direct-
cache time is shortened gradually.

Fig. 10. Average Response Time of Single-node Query.

Fig. 11. Execution Time of the Two Join Methods.

B. Join query experiments on two nodes

The experiments for testing the distributed join algorithm
proposed in this paper and the centralized join were conducted.
Distributed join used the algorithm proposed in section 6.
Centralized join first filtered on the two data nodes, than sent
the sub-query results to QueryNode , and next joined the
results on the query nodes using the subquery plan P3.
In these experiments, the update cycle of a node position

was 5 seconds. Several nodes were selected to submit a
random join-query periodically. Four query plans were tested
to study their performance. Every plan used different data sets.
In all the four plans, the size of R1 is 10000 tuples; the size of
R2 ranges from 10000 to 40000 tuples, that is, plan1 is 10000
tuples, and plan2 is 20000 tuples and so on. The experiment
results are shown in Figure 11.
Figure 11 shows that as the data amount increases, the re-

spond time for the distributed join increases more slowly while
the time for the centralized join increases more rapidly. In a
MANET, the bandwidth of wireless communication is limited
and nodes communicate by multi-hops, so the communication
cost is the main cost of a query. Based on the characteristics
above, different query plans are selected for different situations
by the algorithm proposed in section 6. That is, the main
optimization aim is to reduce the communication cost among

JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, VOL. 1, NO. 3, SEPTEMBER 2005 178

nodes. In the distributed join, the algorithm first do filtering
on the two data nodes, then calculates the cost of different
plans and finally executes the query using the plan whose cost
is the minimum. Hence the distributed join can minimize the
amount of communication among nodes, decreasing obviously
the respond time. The centralized join is just the special case of
distributed join (Plan 3 in Fig. 8). In this case, if the selectivity
on one or two of the two data nodes is lower, then more data
need be sent to QueryNode. So the response time is distinctly
greater than that of distributed join

VIII. CONCLUSION

With the development of the mobile computers and the
wireless communication techniques and the decreasing of
the hardware cost, the applications of the mobile database
have become more and more popular. Thus the demand
for the research of database techniques in mobile networks
has been growing rapidly. This paper focuses on the group-
caching strategy, the group caching based query processing,
the join operation, and the query optimization of join in mobile
distributed databases in a MANET. The cost model of the
join operation and the query plan generating algorithm are
proposed. The group caching and the join strategy proposed in
this paper are suitable for the characteristics of the MANET
such as mobility, equity, multi-hops... It greatly reduces the
amount of the communication and the query execution time.

REFERENCES

[1] M. H. Dunham and A. Helal. Mobile Computing and Databases: Anything
new? SIGMOD Record, 24(4), 1995.

[2] H.-E. Kottkamp and O. Zukunft. Location-aware query processing in
mobile database systems. Proceedings of the 1998 ACM Symposium on
Applied Computing, 1998.

[3] F. Perich, S. Avancha, A. Joshi and Y.Yesha. Technical report, Query
Routing and Processing in Mobile Ad-hoc Wireless networkss, UMBC,
October 2001.

[4] L. D. Fife and L. Gruenwald. Research Issues for Data Communication
in Mobile Ad-Hoc Network Database Systems. SIGMOD Record, 32(2),
June 2003.

[5] D. Barbará. Mobile Computing and Databases-A Survey. IEEE Trans-
actions on Knowledge and Data Engineering, 11(1), January/February
1999.

[6] H. Gökmen Gök and Ö. Ulusoy. Transmission of continuous query results
in mobile computing systems. Information Sciences, 125(1-4), 2000.

[7] S. K. Madria, M. K. Mohania and J. F. Roddick. A Query Processing
Model for Mobile omputing using Concept Hierarchies and Summary
Databases. Proc. Foundations of Database Organisation, FODO’98,
Kobe, Japan.

[8] T. Hara. Replica Allocation in Ad Hoc Networks with Periodic Data
Update. Proceedings of 28th VLDB Conference, Hong Kong, China, 2002.

[9] H. Garcia-Molina, J. D. Ullman and J. Widom, Database System Imple-
mentation. Prentice Hall, 2000.

[10] C. E. Perkins and E. M. Royer. Ad-hoc On-Demand Distance Vector
Routing. Proceedings of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, New Orleans, LA. February 1999, pp. 90–100.

[11] K.-L. Wu, P. S. Yu and M.-S. Chen. Energy-Efficient Caching for Wire-
less Mobile Computing. Proceedings of the 12th International Conference
on Data Engineering, 1996, pp. 336–343.

[12] S. Khurana, A. Kahol, S. K. S. Gupta and P. K. Srimani. An Efficient
Cache Maintenance Scheme for Mobile Environment. Proceedings of the
20th International Conference on Distributed Computing Systems, Taipei,
Taiwan, April 2000.

Jinbao Li received the BSc degree in electron engineering from Heilongjiang
University, China, and the MS degree in computer science from Heilongjiang
University, China. He is currently a PhD candidate in the Department of
Computer Science at Harbin Institute of Technology, China. His research
interests include sensor networks and ad hoc mobile wireless network. He has
published more than 20 technical papers in refereed journals and conference
proceedings.

Yingshu Li received the BSc degree in computer science from Beijing
Institute of Technology, China, and the MS degree in computer science from
University of Minnesota, USA. She is currently a PhD candidate in the
Department of Computer Science at University of Minnesota. Her research
interests include ad hoc mobile wireless network and sensor networks. She has
published 16 technical papers in refereed journals and conference proceedings
in the areas of wireless network.

My T. Thai received the BSc and MS degrees in computer science from
University of Minnesota, USA. She is currently a PhD candidate in the
Department of Computer Science at University of Minnesota. Her research
interests include ad hoc mobile wireless network. She has published more
than 5 papers in refereed journals and conference proceedings.

Jianzhong Li is a professor and the chairman of the Department of Computer
Science and Engineering at the Harbin Institute of Technology, China. He
worked in the University of California at Berkeley as a visiting scholar in
1985. From 1986 to 1987 and from 1992 to 1993, he was a staff scientist in
the Information Research Group at Lawrence Berkeley National Laboratory,
Berkeley, USA. He has also been a visiting professor at the University of
Minnesota at Minneapolis, Minnesota, USA, from 1991 to 1992 and from
1998 to 1999. His current research interests include data warehousing, data
mining, XML databases, bioinformatics, and sensor network data management
systems. He has authored three books, including Parallel Database Systems,
Principle of Database Systems, and Digital Library, and published more than
200 technical papers in refereed journals and conference proceedings in the
areas of parallel databases, science and statistical databases, XML databases,
sensor network data management systems, data mining and data warehousing.
He has delivered a number of invited presentations and participated in panel
discussions on these topics. His professional activities have included service
on various program committees, and he has refereed papers for varied journals
and proceedings.He is a member of the IEEE Computer Society and a member
of the ACM.

