
Data Caching with Incremental Update Propagation in

Mobile Computing Environments

H. Chung H. Cho

Department of Computer Engineering

Yeungnam University

Kyongsan, Kyongbuk 712-749, Republic of Korea

E-mail: hrcho@white.yeungnam.ac.kr

Abstract

Users of mobile computers will soon have online access to a large number of databases via wire-

less network. Because of limited bandwidth, wireless communication is more expensive than wire

communication. This implies that caching of frequently accessed data items will be an important

technique that will reduce contention on the narrow bandwidth wireless channel. In this paper, we

propose a new cache coherency scheme, named CCS-IUP (cache coherency scheme with incremental

update propagation), that allows incremental update and use of derived caches. CCS-IUP is novel

in the sense that it tries to avoid invalidating cached data; hence, the number of cache misses may

be reduced. Furthermore, in CCS-IUP, the server propagates only relevant fractions (increments)

of the modifications that affect the cached data, so that it can significantly reduce the amount of

data transmission over the wireless network.

Key Words and Phrases: mobile computing, data caching, materialized view, update propagation,

query processing

CR categories: H.2.4 (Database Systems), C.2.4 (Distributed Systems)

1 Introduction

Mobile computing - the use of a portable computer capable of wireless networking - will very likely

revolutionize the way we use computers (Forman and Zahorjan, 1994; Imielinski and Badrinath,

1994). In particular, the mobile computing environment will give users with low powered palmtop

machines capability of accessing databases over the wireless channels (Alonso and Korth, 1993;

Imielinski and Badrinath, 1993). For example, while on the road, passengers will access airline

schedules and weather information. Investors will access prices of financial instruments, salespeople

will access inventory data, and callers will access location dependent data.

Sending access-requests from the mobile computer to the online database server may be ex-

pensive due to the limited uplink bandwidth, and also due to the fact that sending messages is a

significant drain on the portable battery. This implies that each mobile user should access database

in a way that minimizes communication. Furthermore, access to an online database may be unavail-

able when the user is out-of-range of the wireless network. These two problems can be alleviated

by appropriate date caching , i.e., cache data in the local storage of mobile computers for later reuse

(Barbara and Imielinski, 1994; Huang, Sistla and Wolfson, 1994). Data caching may lead to overall

throughput improvement by making it possible to answer queries locally without competing for the

scarce wireless bandwidth. For example, if a user frequently reads a data item x and x is updated

infrequently, then it is beneficial for the user to cache a copy of x to his/her mobile computer. This

way the reads access the local copy, and do not require communication.

Data caching is not a performance panacea, however. Because of data caching, several copies of

a shared data item can exist in a database server and a number of mobile computers at the same

time. Hence, to incorporate data caching, cache coherency schemes (CCSs) should be provided

to guarantee that the cached data are maintained consistently. CCSs in mobile environments are

more complicated than those of conventional client-server DBMS (Delis and Roussopoulos, 1993;

Franklin, Carey and Livny, 1997). This is because (1) clients in mobile environments are often

disconnected for prolonged periods of time due to the battery power saving measures, and (2)

they are also frequently relocate between different cells and connect to different database server

at different times. As a result, the server may no longer know which clients are currently located

under its cell and which of them are active.

1.1 Motivation

In mobile computing environments, there are two approaches of CCSs: update invalidation (CCS-I)

and update propagation (CCS-P). In CCS-I, which was proposed by Barbara and Imielinski (1994),

cached data of each client are invalidated if the client is informed that the data were updated

by others. To inform clients, the server broadcasts a report (periodically or asynchronously) that

includes updated data items. This results from the fact that wireless medium provides an excellent

platform for broadcasting information to a massive number of users. In CCS-P, which was proposed

by Huang et al. (1994), the server propagates updated data to the client, if the client caches the

data. The propagation procedure can also be incorporated with the broadcasting mechanism.

We can compare the two approaches according to the number of bits that are transmitted in

the channel both ways: downlink (from the server to the clients), and uplink (from the clients to

the server). The tradeoff of two approaches is illustrated in Example 1.

Example 1 (Tradeoff of Two CCSs): Consider a communication scenario of a client and a

server shown in Figure 1. Initially the client starts off with an empty cache. When an application

of the client requests a query Q, it must be sent to the server due to empty cache. The server

executes Q and returns the result R to the client. Then the client caches R in its memory. Now,

suppose that some update operations are performed by the server and thus the result of Q is

changed to R′. At this time, CCS-I makes the server broadcast an invalidation report that contains

ID(R), where ID(R) is an identity of R. Whereas, in CCS-P, the server sends the entire contents

of R′. Since the size of ID(R) is usually smaller than that of R′, the amount of transmission in

downlink can be reduced in CCS-I. If the client requests Q again, the order is reverted. In CCS-I,

the client should send Q to the server since the cache was invalidated. Furthermore, the new result

of Q (i.e., R′) should be sent to the client again. In CCS-P, however, Q can be processed locally

since the client caches R′. As a result, CCS-I might suffer from a number of cache misses, which

result in increasing data transmission in uplink and downlink. 2

If the size of query result is small, the effect of invalidating the entire result or sending the

➀ Client requests a query Q

② Server returns a result R
➂ Someone updates
 data. The result of Q
 is now changed to R’.➃ Update notification messages➄ Invalidate R or

 propagate R’

⑥-1 If invalidated, issue Q again

⑥-2 If invalidated, returns R’

⑥ If propagated,
Q can be

 processed locally

C

L

I

E

N

T

S

E

R

V

E

R

Figure 1: Communication scenario between a client and a server (example)

new result may not be significant. In fact, both CCS-I and CCS-P assume that queries are simple

requests to read a numerical data item (stock data, temperature) or a textual data item (news).

However, there may be a number of applications where the assumption of simple query does not

hold. For example, salespeople could request catalog information for every household electrical

appliances supported by his/her company. Investors may request a list of stocks each of which

price has dropped during a week. In these applications, sending the entire query result must be

very expensive operation; hence it should be avoided as far as possible.

In this paper, we propose a CCS with incremental update propagation (CCS-IUP) that allows

incremental update and use of derived caches. Unlike CCS-I, CCS-IUP tries to avoid invalidating

cached data; hence, the number of cache misses may be reduced. Furthermore, CCS-IUP prop-

agates only relevant fractions (increments) of the modifications. This significantly reduces data

transmission over the network as the server only transmits the increments affecting the cached

data, compared with CCS-P where query results are continuously transmitted in their entirety.

The rest of the paper is organized as follows. Section 2 presents the model of caching and

broadcasting. Then we describe the broadcasting algorithm and the cache reconstruction algorithm

in Section 3 and Section 4, respectively. Section 5 presents optimization strategies that should be

addressed to improve the performance of CCS-IUP. Section 6 describes previous works that are

related to the paper. We conclude the paper in Section 7.

2 The Model

The database is a set of base relations Ri. Each relation consists of a number of records. To each

record of a relation Ri, a unique record identifier (RID) is assigned. Note that RID attribute may

be hidden to the end user. Assume we have a large number of clients (i.e., mobile users) residing

in a cell. Each client issues queries that may be selections, projections, or joins on base relations.

The intelligent user interface such as spreadsheets may shield the actual query formats. In this

case, there are lower level modules, called database drivers, that link the application to the actual

DBMS. Note that the result of such query may consist of a large number of records, unlike the

assumption of simple queries adopted in CCS-I and CCS-P. The clients exhibit a large degree of

data locality, querying a particular subset of the database repeatedly. We assume that the database

is updated only by the server. This assumption is not really necessary but it considerably simplifies

the description of our algorithms.

Clients can cache a portion of the database. They can do this in a disk (if they are equipped with

it), or any storage system that survives power disconnections, such as flash memories. We regard a

cached data as a materialized view that is created as a result of query issuing in the client. Queries

specify their target set of objects using query predicates, as in the WHERE clause of a SELECT-

FROM-WHERE SQL query. We allow general SELECT-PROJECT-JOIN queries over one or more

relations, with the restriction that RID attributes of all records of relations participating in a query

must include in the query result. We feel this is not overly restrictive, since a query posed by the

user that does not satisfy this constraint may optionally be augmented by a client to retrieve RID

attributes from the server. Possible performance benefits are then (1) records need not be stored in

duplicate, and (2) the materialized view may be self-maintainable (Gupta and Mumick, 1995) with

respect to deletions to base relations. The latter benefit is mostly desirable in the sense that views

can be maintained using only the materialized view (without base relations stored in the database

server).

The specification of the cached data can be formally described as follows: Let Ri and Rj be

two base relations maintained in the server database. Then the cached data can be one of the

views Vσ, Vπ, and V1 that are derived via relational operators selection σ, projection π, and join

1, respectively be:

selection view: Vσ(P) = σP (Ri)

projection view: Vπ(ω) = πω(Ri)

join view: V1 = Ri 1 Rj

where P implies the selection predicate and ω is an attribute list of the projection. The view

created by intersection, union, and difference can be maintained similarly with the join algorithm

and not included in this paper.

Figure 2 illustrates a stock trading database that consists of two base relations and three views

of the relations. Each view corresponds to Vσ, Vπ, and V1, respectively. In Figure 2, we assume

that the RID attribute of each view represents RID of the corresponding record of base relations.

This implies that a join view may include several RID attributes. In Figure 2, V3 has two RID

attributes, RIDC for “Company” relation and RIDS for “Stock” relation.

By regarding the cached data as a view, we can reconstruct the view if any records of base

relations are updated. The reconstruction procedure performs with three information: old view

that was cached, query that created the view, and information for updated records that were

broadcasted by the server. The detailed algorithm is shown in Section 4.

We assume that the server has no information about which clients are currently under its cell

and what are the contents of their cache. This assumption is well suited in mobile computing envi-

ronments due to the high frequency of disconnection and mobility of clients. The server therefore

should broadcast an update report that contains one or a number of updated records. There are

two alternative methods for broadcasting: asynchronous and synchronous (Barbara and Imielinski,

1994). In asynchronous method, the server broadcasts the update report immediately after changes

to the records of base relations occur. Whereas, synchronous method is based on periodic broad-

casting of the update report. Synchronous method is advantageous when a client is reconnected

after some periods of disconnection. Asynchronous method does not provide any latency guarantees

for the querying client; if the client queries a data item after the disconnection period then it either

has to wait for the next report (with no time bound on the waiting time) or has to submit the

query to the server (cache miss). In case of synchronous method, however, there is a guaranteed

Company

RID cname field capital

1

2

3

4

5

6

7

8

IBM

HANIL

DEC

SEOUL

UNIVAC

KIA

TAEGU

PUSAN

computer

bank

computer

bank

computer

car

bank

bank

300,000

20,000

100,000

30,000

50,000

70,000

10,000

10,000

Stock

RID sno cname price old-price

1

2

3

4

5

6

7

8

100

101

102

103

104

105

106

107

IBM

DEC

HANIL

SEOUL

UNIVAC

TAEGU

KIA

PUSAN

358.25

295.50

38.00

52.25

175.75

27.50

94.50

27.75

360.50

285.00

38.00

53.50

180.00

28.00

90.25

27.00

V1: (selection view)

select *

from Stock

where price < 100;

V1

RID sno cname price old-price

3

4

6

7

8

102

103

105

106

107

HANIL

SEOUL

TAEGU

KIA

PUSAN

38.00

52.25

27.50

94.50

27.75

38.00

53.50

28.00

90.25

27.00

V2: (projection view)

select sno, price

from Stock;

V2

RID sno price

1

2

3

4

5

6

7

8

100

101

102

103

104

105

106

107

358.25

295.50

38.00

52.25

175.75

27.50

94.50

27.75

V3: (join view)

select sno, cname, price

from Company, Stock

where Company.cname = Stock.cname

and Company.field = “bank”;

V3

RIDC RIDS sno cname price

2

4

7

8

3

4

6

8

102

103

105

107

HANIL

SEOUL

TAEGU

PUSAN

38.00

52.25

27.50

27.75

Figure 2: Stock trading database

latency due to the periodic nature of the synchronous broadcast. Hence we adopt the synchronous

broadcasting method.

In the synchronous broadcasting method, a client has to listen the update report first in order

to conclude whether its cache is valid. Note that this adds some latency to query processing. If

there are some update operations on the base relations, the cache should be reconstructed. The

answer to a query will therefore reflect any updates to the base relations during the interval in

which the query was posed. Note that this is the case even if the query predates the update during

the interval.

3 Broadcasting Algorithm

CCS-IUP consists of two algorithms for broadcasting and view reconstruction, respectively. The

broadcasting algorithm describes a communication protocol between a server and clients. The view

reconstruction algorithm specifies how each client can reconstruct its cached view. In this section,

we describe the broadcasting algorithm of CCS-IUP. The view reconstruction will be described in

the next section.

Queries involving base relations are transmitted to and processed initially by the server. When

the result of a query is cached into a view for the first time, this “new” view is bound to the base

relations used in extracting the result. For each view V, the client keeps the following four items

to record such binding:

• PR - the set of participating base relations of V

• ATT - the set of attributes of V

• COND - the applicable conditions on PR

• TS (V) - a timestamp

The notion of the binding is well matched to the semantics of SELECT-FROM-WHERE in

SQL statement. Specifically, the value of PR comes from the relation names in FROM clause, and

the attribute list of SELECT clause can be used to fill ATT . Similarly, the value of COND can be

collected from the WHERE clause. The condition is essentially the filtering mechanism that decide

what are the qualifying records for this client. The timestamp indicates that the view is correct at

time of the timestamp.

For example, suppose a client caches three views of Figure 2. Then the binding information

of each view can be set to as Figure 3. The value of COND of V2 is set to NULL, because the

WHERE clause is not defined. The value of ATT of V1 is set to ‘*’ that means the view includes

every attribute of base relation.

For each base relation participating to the cached view, the client maintains an update propa-

gation log and a timestamp. Let UPLi be the update propagation log of a base relation Ri. UPLi

View PR ATT COND TS

V1 {Stock} * price < 100 1,000

V2 {Stock} {sno, price} NULL 2,000

V3 {Company,Stock} {sno, cname, price} Company.cname = Stock.cname

and

Company.field = “bank”

3,000

Figure 3: Binding information of each view (example)

is partitioned as incremental deletion logs (Di) and incremental insertion logs (Ii). A modification

of a record is treated as a pair of a deletion and an insertion. Each record of Di is a pair of RID

and TS, where RID is an identifier of a deleted record and TS is a timestamp representing when

the record was deleted. On the other hand, each record of Ii includes every attribute of Ri and

one additional attribute for timestamping (TS). The timestamp of each relation indicates a time

of the last update propagation record. The value is initially set to 0.

The server broadcasts the update report periodically at times Tk. The update report consists

of information about records that have been changed in the last ∆ seconds. The value of ∆ is set

to an integral times of broadcasting period. Note that the choice of the value of ∆ has a significant

effect on the amount of data transmission. Intuitively, if the value of ∆ is too large then the size

of propagation report could increase, because the old update logs may be broadcasted a number of

times together with the new update logs. Furthermore, the large size of propagation report may

result in the increased processing overhead for the client to check the report. On the other hand, if

the value of ∆ is too small, the client could face an increasing number of cache misses when it tries

to reconnect. The detailed discussion about the size of ∆ can be found in Barbara and Imielinski

(1994).

The update report is defined formally as a list Φ of which element is a 4-tuple (Ri, RID , VAL,

TS) where

• Ri - the relation identifier that includes the record of RID

• RID - the record identifier that was inserted or deleted during the interval [Tk −∆, Tk]

• VAL - the value of record if it was inserted; otherwise (i.e., deleted) it is null

• TS - a timestamp indicating when the record was updated lastly

Upon receiving the list of Φ, the client compares Ri to its binding information to decide whether

to keep each Φ or not. Also the client has a list of queries Qi that have been issued in the interval

[Tk−1, Tk]. The client also keeps a variable Tl that indicates the last time it received a report. The

formal description of the broadcasting algorithm is now shown in Figure 4.

If the difference between the current report timestamp (Tk) and Tl is more than ∆, then the

client purges all the caches it maintained. This is because the client has been disconnected very

long time, and thus there may be some updates that are not broadcasted to the client and the

current report does not include them, too. If the difference is smaller than ∆, the client checks

whether Φ needs to be kept. The client can skip Φ if there are no views that correspond to Φ

or Φ has been reflected already. Otherwise, Φ is appended to the appropriate incremental logs of

the base relation. After checking all Φs, the client also updates Tl. Now the client can process its

queries that have been issued during the interval. If the result of the query is not cached, then it

should be forwarded to the server. Otherwise, the query can be processed locally. Before processing

the query, the cached view should be reconstructed if the participating base relations have been

updated. As a result of view reconstruction, the timestamp of the view is changed to the maximum

timestamp of base relations.

Example 2 illustrates the broadcasting procedure for the stock trading database of Figure 2.

Example 2 (Broadcasting Procedure of CCS-IUP): Suppose a client C caches three views

of Figure 2, and the binding information of each view is constructed as Figure 3. Furthermore, the

timestamp of both base relations at C are supposed to be 3900, which means that C keeps every

update log that has been made before 3900. Suppose that an update report is broadcasted to C at

4500 (i.e., Tk = 4500) and the report consists of the following four logs:

if (Tk - Tl > ∆) { drop entire cache } /* reconnected after long periods of disconnection */

else {
for every element (Ri, RID , VAL, TS) in Φ {

if (∃Vc such that the client caches Vc and Ri ∈ PRc) {
if (TS < TS(Ri)) { skip Φ } /* The log has been reflected already */

else {
if (VAL is null) Dc = Dc ∪ {(RID , TS)}
else Ic = Ic ∪ {(VAL, TS)}
TS(Ri) = TS /* increments the timestamp of base relation */

} } }
Tl = Tk /* Reset the timestamp of the client to the current time */

}
for every query Qi {

if (the result of Qi is not cached) /* cache miss */

{ request Qi to the server }
else {

Let Vi be the cached result of Qi

if (∃PRi such that Di 6= ∅ or Ii 6= ∅) { /* Base relation has been updated */

call view reconstruction

TS(Vi) = MAXR∈PRi(TS(R)) /* view’s TS is set to maximum TS of relations */

}
Use Vi to answer Qi

} }

Figure 4: Broadcasting algorithm of CCS-IUP

Φ1 : [Stock, 8, NULL, 4000]

Φ2 : [Stock, 8, (8, 107, ‘PUSAN’, 26.00, 27.00), 4200]

Φ3 : [Company, 2, NULL, 4300]

Φ4 : [Company, 2, (2, ‘HANIL’, ‘bank’, 25000), 4400]

In this case, C should keep every log of the update report. This is because (1) each log corresponds

to either ‘Stock’ relation or ‘Company’ relation both of which participate to the views cached in C,
and (2) the timestamp of each log is greater than that of base relation maintained in C. Since Φ1

and Φ3 are deletion logs, they are appended to the incremental deletion logs of ‘Stock’ relation and

‘Company’ relation, respectively. On the other hands, Φ2 and Φ4 are appended to the incremental

insertion logs of the corresponding base relation. As a result of the log appending, the timestamp

information is changed. Specifically, TS (Stock) is set to 4200, and TS (Company) is set to 4400.

The timestamp of C is also changed to 4500, which is the value of Tk. 2

A novel optimization strategy about the broadcasting algorithm is that it is possible not to drop

the entire cache even though the difference between Tk and Tl is more than ∆. This is achieved

by adopting the notion of update history window W, where W > ∆ (Wu, Yu and Chen, 1996;

Cai, Tan and Ooi, 1997). The basic idea is that the server also maintains update logs for as far

back as W seconds. If the disconnection time of a client (Tk − Tl) is between ∆ and W, then the

client may request missing logs to the server. After receiving the logs, the client can incrementally

reconstruct its cache. If the disconnection time is larger than W, then it implies that the client’s

cache is totally invalid and the query has to be processed from scratch. As a result, the cache miss

ratio can be reduced significantly if the server keeps update logs for large W.

4 View Reconstruction Algorithm

CCS-IUP reconstructs the cached view if all of the following three conditions are satisfied: (1) an

application of a client issues a query, (2) the result of the query is cached in the client, and (3)

some records of the participating base relations have been updated.

We first introduce some notations for incremental logs. Given Di and Ii of a base relation Ri,

let Dπ
i means πRID(σTS>TS(V∗)(Di)) and Iπ

i means πRID,V AL(σTS>TS(V∗)(Ii)), where V∗ represents

Vσ(P) or Vπ(ω), respectively. As a result, both Dπ
i and Iπ

i include only update logs that are not

reflected to the view. Now, we can reconstruct the selection view (Vσ(P)) and the projection view

(Vπ(ω)) as follows:

Vσ(P) = (Vσ(P) ªDπ
i) ∪ σP (Iπ

i)

Vπ(ω) = (Vπ(ω) ªDπ
i) ∪ πω(Iπ

i)

where R ª S = R − πR(R 1 S). For both cases of reconstructing Vσ(P) and Vπ(ω), we first remove

the records of Dπ
i found in the view, and then insert new (qualified) records of Iπ

i to the view. This

holds because the unary relational operators of selection and projection can be distributed over the

union operator.

Note that projection requires more work for processing both Ii and Di. For the insertions, the

incremental merge has to make sure that it does not generate any duplicates. For the deletions, it

must either eliminate a record or not, depending on the existence of duplicates of the record. In

CCS-IUP implementations, we recommend that each client caches every duplicate of a projection.

Then the duplicate is eliminated when the query result is returned to the user. This can simplify

both the structure and the incremental maintenance of client’s cached view.

Given Di and Ii of a base relation Ri, and Dj and Ij of a base relation Rj , we can re-

construct the join view (V1) as follows: Let Dπ
i means πRID(σTS>TS(V1)(Di)) and Iπ

i means

πRID,V AL(σTS>TS(V1)(Ii)).

V1 = ((Ri ªDπ
i) ∪ Iπ

i) 1 ((Rj ªDπ
j) ∪ Iπ

j)

= ((Ri 1 Rj)ª (Dπ
i ×Dπ

j)) ∪ ((Ri ªDπ
i) 1 Iπ

j) ∪ ((Rj ªDπ
j) 1 Iπ

i)

= (V1 ª (Dπ
i ×Dπ

j)) ∪ ((Ri ªDπ
i) 1 Iπ

j) ∪ ((Rj ªDπ
j) 1 Iπ

i)

Note that V1 cannot be reconstructed using the update propagation logs only. In other words,

the computation of V1 for Ri and Rj requires the contents of both base relations (due to the second

and third terms of the last equation). There are two alternatives for solving the problem: (1) to

invalidate V1 in case of updates, and (2) to cache both Ri and Rj together with V1. The alternative

(1) would result in less storage overhead and lower communication cost. However, it may suffer

from frequent cache misses, and thus V1 should be frequently transferred from the server. Note

that the size of V1 is usually much larger than Ri and Rj . In addition, if the client caches both Ri

and Rj , it can support other queries for the relations without communication to the server. This

is why we choose alternative (2). In Section 5, we describe special kinds of updates which do not

require base relations to reconstruct the join views.

Example 3 illustrates the view reconstruction procedures for the stock trading database of

Figure 2.

Example 3 (View Reconstruction Procedure of CCS-IUP): Like Example 2, a client C is

supposed to cache three views of Figure 2. Suppose that the update report of Example 2 is the

only one that was broadcasted after the creation of each view. Then the incremental logs of each

base relation may be constructed as follows:

DStock: [8, 4000]

IStock: [(8, 107, ‘PUSAN’, 26.00, 27.00), 4200]

DCompany: [2, 4300]

ICompany: [(2, ‘HANIL’, ‘bank’, 25000), 4400]

The reconstruction of V1 is rather simple. Since V1 is a selection view and it is defined on ‘Stock’

relation, both DStock and IStock need to be checked. Remember that TS (V1) is 1000 (see Figure 2).

So Dπ
Stock and Iπ

Stock are equal to DStock and IStock, respectively. Since V1 has a record with RID

8, the record is removed from V1 as a result of (V1 ªDπ
Stock). In case of Iπ

Stock, the value of ‘price’

attribute is smaller than 100. So the log of Iπ
Stock should be appended to V1. Figure 5(a) shows the

new V1 after the reconstruction.

The projection view V2 can also be reconstructed like to the selection view. In this case, a

record with RID 8 is removed first and then a new log from Iπ
Stock is inserted to V2. Figure 5(b)

shows the new V2 after the reconstruction.

As we have described previously, the join view V3 cannot be reconstructed without the base

relations. So in this example, we assume that C caches the base relations of V3 when V3 is created

(a) selection view

V1

RID sno cname price old-price

3

4

6

7

8

102

103

105

106

107

HANIL

SEOUL

TAEGU

KIA

PUSAN

38.00

52.25

27.50

94.50

26.00

38.00

53.50

28.00

90.25

27.00

(b) projection view

V2

RID sno price

1

2

3

4

5

6

7

8

100

101

102

103

104

105

106

107

358.25

295.50

38.00

52.25

175.75

27.50

94.50

26.00

(c) join view

V3

RIDC RIDS sno cname price

2

4

7

8

3

4

6

8

102

103

105

107

HANIL

SEOUL

TAEGU

PUSAN

38.00

52.25

27.50

26.00

Figure 5: The example views after reconstruction

in C. Then we can reconstruct V3 by (1) removing records of V3 that correspond to Dπ
Stock or

Dπ
Company, and (2) inserting the results of join operations on Company ′ with Iπ

Stock and Stock ′ with

Iπ
Company. Company ′ is created by deleting records of ‘Company’ that correspond to Dπ

Company.

Stock ′ can be created similarly with ‘Stock’ and Dπ
Stock. The reconstructed V3 is shown in Figure

5(c). 2

The view reconstruction algorithm is similar to the incremental access method (IAM) for views,

which was proposed by Roussopoulos (1991). IAM has been developed for implementing views in

a centralized relational DBMS. The main difference of IAM and view reconstruction algorithm of

CCS-IUP is the method of representing views. In IAM, each view is represented as a collection

of indices that point to the records of base relations required to materialize the view. While this

representation method is well suited in the centralized DBMS due to the low storage overhead

and smart handling of incremental updates, it must result in lots of data transmission in mobile

computing environments. If the cached view contains only pointers to actual records of base

relations (stored in server), materializing the view requires transmitting the actual records from

the server to the client. This reduces or diminishes the benefits of caching. Therefore, in CCS-IUP,

each view stores the actual result of a query as a snapshot. A previously constructed snapshot can

be retrieved directly without any data transfer.

5 Optimization

In this section, we consider optimization strategies about query processing and reducing downlink

transmission that should be addressed to improve the performance of CCS-IUP.

5.1 Query Processing

5.1.1 Cache Completeness

In CCS-IUP, queries are used to form predicates that describe the cache contents. Then the

subsequent query at the client may be satisfied in its local cache if we can determine that the

query result is entirely contained in the cache. This issue is often called cache completeness, which

was introduced firstly by Keller and Basu (1996) in the area of client-server DBMS. For example,

suppose a client caches a view V1 of Figure 2, and the client should process a query that selects

‘Stock’ relation each of which ‘price’ attribute is less than 50. Note that the query can be processed

with V1, since the condition of the query is more restrict than the condition attached to V1 (i.e.,

COND(V1)). This implies that queries with more restrict condition can be processed without

(expensive) wireless communication.

To achieve the cache completeness, we should be able to check whether a query can be processed

with local cached view. This problem may be translated into checking inclusion relationships

between a condition of a query and that attached to the view. One idea is to describe the condition

as a range of the maximum acceptable value (MAV) and the minimum acceptable value (MIV).

For two conditions C1 and C2 on the same attribute, C1 is included to C2 if MAV(C1) ≤ MAV(C2)

and MIV(C1) ≥ MIV(C2). The similar idea has been introduced for predicate locking used for

concurrency control in traditional database systems. However, predicate locking uses the notion

of the predicate by preventing two locks with intersecting predicates from being held concurrently.

In case of projection, it should also be checked whether the attribute list of a query is included

in that of a view. However solving this problem is rather simple, and thus we omit the detailed

description.

5.1.2 Join Processing with Partial Information

A view that takes the join of two or more relations (V1) is not self-maintainable with respect

to updates, i.e., the view cannot be maintained without requiring access to any base relations

(Gupta and Mumick, 1995). Since it may not be acceptable to invalidate V1 or to cache all

of the base relations, we should develop an optimized view maintenance plan that consumes both

network bandwidth and storage capacity as little as possible. The plan should address the following

subproblems: detection of irrelevant updates, (2) detection of autonomously computable updates,

and (3) re-definition of the view. The followings describe each subproblems in more detail.

An update operation into a base relation is irrelevant to a view if it causes no record to be

updated, inserted or deleted into the view (Blakeley, Coburn and Larson, 1989). Suppose a join

view V1 of which bound information is PR1 (the set of participating base relations of V1), ATT1

(the set of attributes of V1), and COND1 (the applicable conditions on V1). An update operation

of a record r into a base relation Ru ∈ PR1 is irrelevant to V1 if and only if COND1(r) is

unsatisfiable. For example, suppose a V1 is defined as πa,b,d(σd>30(A 1 B)) where the relation

schemes are A(a, b, c) and B(c, d, e). In this case, if a record (20, 20, 20) is inserted into B, then

it is irrelevant to V1 since the value of d is 20 which is not greater than 30. Note that irrelevant

updates are worth to be detected since they can be omitted in the procedure of view reconstruction

without resulting in any inconsistencies.

If an update operation is not irrelevant to a view, then some data from the base relations may

be necessary to update the view. An important case to consider is one in which all the required

data is contained in the view itself. Updates of this type is called as autonomously computable

updates (Blakeley et al., 1989; Tompa and Blakeley, 1988). For example, suppose a V1 is defined

as πb,c,d(σb>e(A 1 B)) where the relation schemes are A(a, b, c) and B(c, d, e). Suppose also the

V1 contains a record (45, c1, d1). If a record (a1, 50, c1) is inserted into relation A, we can infer

that the V1 should have the additional record (50, c1, d1). This inference can be made, using the

current view maintenance and the inserted record, by observing that if e1 is less than 45 then it is

also less than 50. As a result, the two base relations are not used and the insertion is autonomously

computable. Detecting autonomously computable updates is important since the new state of the

view can be computed solely from the view definition, the current state of the view, and the updated

record (i.e., without accessing base relations).

Even though the updated record is not irrelevant and not autonomously computable, it is

possible not to invalidate the entire view. Instead the definition of the view may be changed to

reflect that the view does not include the inserted view. For example, suppose a V1 is defined as

πa,b,d(A 1 B) where the relation schemes are A(a, b, c) and B(c, d, e), and the key of A is a. If a

record (20, 20, 20) is inserted into A, it is not irrelevant and not autonomously computable. In this

case, the definition of of V1 is changed as πa,b,d(σa6=20(A 1 B)). Now a query πa,b(σa>20(A 1 B))

can be executed with accessing V1 only.

5.1.3 Query Trimming

The performance of CCS-IUP can be further optimized for queries that cannot be processed with

local caches only. The basic idea is to reconstruct the WHERE clause of the query so that the server

sends only the query results that are not cached in the client. For example, in Figure 2, a query

on V1 with condition ‘price < 150’ may be reconstructed to a new query with ‘100 ≤ price < 150’.

Since the cached data are not sent again from the server, the amount of communication can be

reduced. However, sending only the new query from the client may result in database inconsistency

with regard to the concurrency control. This problem can be resolved simply by sending both the

original query and the new query to the server, and the server returns the result of the new query

while concurrency control is performed on the original query.

5.2 Reducing Downlink Transmission

We now consider the issue of reducing the amount of update reports broadcasted from the server.

The size of update report in CCS-IUP is larger than that in CCS-I, since CCS-IUP tries to propagate

updates to each client; in contrast, CCS-I just invalidates each client’s cache in case of updates.

To reduce the size of update reports, the server may keep track of each client’s cache information.

This is achieved by maintaining the queries requested from each client. In this case, the server need

not broadcast updates that do not affect any caches in all clients.

One novel idea about this issue is to relax the consistency of caches by allowing some degree of

value divergence from the data in the server. For example, if clients are caching stock information

of Figure 2, it may be perfectly acceptable to use values that are not completely up to date, as long

as they are within 0.5 percent of the true prices. This allows updates to be broadcasted from the

server to the clients more efficiently (e.g., when the server is lightly loaded, or by batching updates

together).

In this context, the notion of quasi-copies which was introduced by Alonso, Barbara and Garcia-

Molina (1990) may be considered. A quasi-copy is a cached value that is allowed to be deviate

from the central value in a controlled way. However, the quasi-copy should be guaranteed to meet

a certain predicate (named quasi-caching predicate). Several types of inconsistency predicate may

be defined: delay condition (e.g., the cache must not be more than one hour old than the central

value), and arithmetic condition (e.g., the cache’s value must not be off by more than 10 percents

of that of the central value). With regard to the delay condition, the update logs may not be

broadcasted promptly when the update is occurred. This implies that the server may broadcast

the update report so that it can use the communication bandwidth more efficiently and the server

bottleneck may be prevented. The notion of arithmetic condition allows the server to broadcast

an item only if it changes more than the prescribed limit. This will also reduce the number of the

update logs that should be broadcasted.

6 Related Work

Several techniques to provide incremental updates at clients have been recently investigated for

relational DBMSs with a central server and multiple clients connected through LAN (Delis and

Roussopoulos, 1993; Keller and Basu, 1996). In both techniques, query results (i.e., materialized

views) are cached into each client. Then a subsequent query at the client may be satisfied in its

cache if it is possible to determine that the query result is entirely contained in the cache. To

maintain each client’s cache consistently, they assume that the server keeps track of the cache

descriptions of each client; hence, the server can determine which clients should be informed the

updates of base relations. Furthermore, since the server and the clients are connected through

LAN, sending enough information for view derivation (Delis and Roussopoulos, 1993) or sending

recomputed view after invalidation (Keller and Basu, 1996) would not have prohibitive overhead.

Note that this assumption does not hold in the mobile computing environment because (1) there

may be a large number of mobile computers attached to the database server, (2) each mobile

computer is often disconnected or relocate, and (3) wireless communication is more expensive than

wire communication due to limited bandwidth.

In the mobile computing environment, Cai et al. (1997) have extended CCS-IUP proposed

in the previous version of this paper (Chung and Cho, 1996). They first proposed two criteria,

dissemination of update report and view reconstruction, for classifying the cache coherency schemes.

With regard to the dissemination of update report, there are two alternatives: update propagation

(UP) and update invalidation (UI). With regard to the view reconstruction, only the client may

perform the reconstruction (C), or both the server and the client can collaborate to reconstruct the

view (CS). According to the criteria, they propose the following four combinations: UP-C, UP-CS,

UI-C, UI-CS. Note that the basic idea of UP-C is similar to that of CCS-IUP. On the basis of the

simulation study, they conclude that CS-based schemes may perform better than C-based schemes

due to powerful processing capacity of the server and less downlink transmission. However, their

simulation results are not completely convincing in the sense that they did not consider any query

optimization strategies described in Section 5. Note that in C-based schemes there are more chances

to reduce uplink transmission with the query optimization strategies, since the client contains every

update log in C-based schemes. Furthermore, they did not consider the case where there are large

number of clients. In this case, the server may suffer from frequent query requests in CS-based

schemes.

7 Concluding Remarks

In this paper, we proposed a new cache coherency scheme, named CCS-IUP (cache coherency

scheme with incremental update propagation) for mobile computing environments. Unlike the pre-

vious approaches in mobile computing environments, where invalidating or propagating the entire

cache in case of updates, CCS-IUP allows incremental update and use of derived caches. As a

result, CCS-IUP can reduce the number of cache misses compared to the invalidating approach.

Furthermore, compared to the propagating approach, CCS-IUP can significantly reduce the amount

of data transmission over the wireless network, since the server transmits only the relevant fractions

(increments) of the updates that affect the cached data.

Any successful implementation must be based on a good conceptual structure and design. In this

paper, we have attempted to address some major conceptual and design issues. We are developing

an experimental testbed to evaluate the viability of our approach, using a prototype of a CCS-IUP

based mobile computing environment. Detailed design of our experiments is currently in progress.

Simulation studies to compare the performances of alternative caching schemes for large numbers

of clients and queries are also planned.

Apart from the planned performance studies, many other important issues remain unexplored

in this paper. Work currently in progress addresses implementation questions on suitable indexing

technique for conditions of queries and views, performance tuning, local index creation for cached

views, and effective transaction processing for the views. Development of analytical system models,

heuristics for effective conservative and liberal approximations of cache descriptions, and intelligent

query-containment algorithms for determining cache completeness are topics for future efforts.

References

ALONSO, R., BARBARA, D. and GARCIA-MOLINA, H. (1990): Data Caching Issues in an

Information Retrieval System, ACM Trans. on Database Syst., 15(3), September: 359-384.

ALONSO, R. and KORTH, H. (1993): Database System Issues in Normadic Computing, in Proc.

of ACM SIGMOD : 388-392.

BARBARA, D. and IMIELINSKI, T. (1994): Sleepers and Workaholics: Caching Strategies in

Mobile Environments, in Proc. of ACM SIGMOD : 1-12.

BLAKELEY, J.A., LARSON, P. and TOMPA, F.W. (1986): Efficiently Updating Materialized

Views, in Proc. of ACM SIGMOD : 61-71.

BLAKELEY, J.A., COBURN, N. and LARSON, P. (1989): Updating Derived Relations: Detect-

ing Irrelevant and Autonomously Computable Updates, ACM Trans. on Database Syst., 14(3),

September: 369-400.

CAI, J., TAN, K. and OOI, B.C. (1997): On Incremental Cache Coherency Schemes in Mobile

Computing Environments, in Proc. of 13th Int’l Conf. on Data Eng.: 114-123.

CHUNG, H. and CHO, H. (1996): Data Caching with Incremental Update Propagation in Mobile

Computing Environments, in Proc. of 1st Aust. Workshop on Mobile Computing, Database, and

Appl.: 42-52.

DELIS, A. and ROUSSOPOULOS, N. (1993): Performance Comparison of Three Modern DBMS

Architectures, IEEE Trans. on Softw. Eng., 9(2), February: 120-138.

FORMAN, G. and ZAHORJAN, J. (1994): The Challenges of Mobile Computing, IEEE Comput.,

27(4), April: 38-47.

FRANKLIN, M.J., CAREY, M.J. and LIVNY, M. (1997): Transactional Client-Server Cache Con-

sistency: Alternatives and Performance, ACM Trans. on Database Syst., 22(3), September: 315-

363.

GUPTA, A. and MUMICK, I.S. (1995): Maintenance of Materialized Views: Problems, Techniques,

and Applications, IEEE Data Eng. Bull., 18(2), June: 3-18.

HUANG, Y., SISTLA, P. and WOLFSON, O. (1994): Data Replication for Mobile Computers, in

Proc. of ACM SIGMOD : 13-24.

IMIELINSKI, T. and BADRINATH, R. (1993): Data Management for Mobile Computing, SIG-

MOD RECORD , 22(1), March: 34-39.

IMIELINSKI, T. and BADRINATH, R. (1994): Mobile Wireless Computing, Comm. ACM , 37(10),

October: 19-28.

KELLER, A. and BASU, J. (1996): A Predicate-Based Caching Scheme for Client-Server Database

Architectures, VLDB J., 5(1), January: 35-47.

ROUSSOPOULOS, N. (1991): An Incremental Access Method for ViewCache: Concept, Algo-

rithms, and Cost Analysis, ACM Trans. on Database Syst., 16(3), September: 535-563.

TOMPA, F.W. and BLAKELEY, J.A. (1988): Maintaining Materialized Views without Accessing

Base Data, Information Syst., 13(4), April: 393-406.

WU, K., YU, P.S. and CHEN, M. (1996): Energy-Efficient Caching for Wireless Mobile Computing,

in Proc. of 12th Int’l Conf. on Data Eng.: 336-343.

