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ABSTRACT

Modelling WSN data behaviour is relevant since it would allow to evaluate the capacity of an 

application for supplying the user needs, moreover, it could enable a transparent integration with 

different data-centric information systems. Therefore, this article proposes a data-centric UML profile 

for the design of wireless sensor nodes from the user point-of-view capable of representing the gathered 

and delivered data of the node. This profile considers different characteristics and configurations of 

frequency, aggregation, persistence and quality at the level of the wireless sensor nodes. Furthermore, 

this article validates the UML profile through a computer-aided software engineering (CASE) tool 

implementation and one case study, centred on the data collected by a real WSN implementation for 

precision agriculture and smart farming.
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INTRoDUCTIoN

The Agri-food sector plays a key role in the economy of almost every country in the world, not 

only for generating wealth and creating employment but also for the nutrition of the population in 

developed and developing countries (Lehmann, Reiche, & Schiefer, 2012; Ramirez-Villegas, Salazar, 

Jarvis, & Navarro-Racines, 2012). Different aspects, like increasing the sector profitability, adapting 

to the climate change, supplying the demands for emerging markets, or ensuring the products quality 

are currently challenging the Agri-food sector. Therefore, innovations as smart farming, precision 

agriculture or product tracking are vital for overcoming these challenges (Akanksha Sharma, Barbara 

Arese Lucini, Jan Stryjak, & Sylwia Kechiche, 2015; Lehmann et al., 2012; Plazas & Corrales, 2017; 

Ramirez-Villegas et al., 2012).

Such innovations rely on the intensive monitoring of the products and their environments, 

since the collected data allow for the detection of undesired situations, and the development of 

accurate information and forecasting systems. These complex systems are usually underpinned on 

complex simulation models calculated in real-time, which must rely on high-quality sensors data. 

Indeed, the advent of low cost sensors enabled the development of small sensing platforms with 
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wireless connection capabilities (sensor nodes), which can be gathered and deployed as Wireless 

Sensor Networks (WSN) to monitor areas where wired connections are difficult or inadequate to 

establish (Wang, Zhang, & Wang, 2006). These WSN are one of the most important Information 

and Communication Technologies (ICT) for smart farming and numerous other applications domains 

since they provide right-time crucial data from the monitored environment (Lehmann et al., 2012; 

Plazas & Corrales, 2017; Plazas, López, & Corrales, 2017).

However, handling agricultural collected data is challenging since the monitoring sensors can 

collect and stream large amounts of raw data (e.g. embedded in tractors) and must deal with limited 

and depletable resources (e.g. deployed on the crop fields) (Anisi, Abdul-Salaam, & Abdullah, 

2015; Jabeen & Nawaz, 2015). These big data heterogeneous streams must be correctly and timely 

processed in order to serve for the different applications aiming to improve the decision-making, 

control and definition of strategies in the Agri-food sector or any other domain, considering the 

end-user needs. Especially, WSN data processing and analysis is crucial in smart farming to handle 

complex agricultural applications, such as phenology monitoring, yield estimation or environmental 

risk assessment (Shao, Ren, & Campbell, 2018). Moreover, the deployment of such composite system 

using WSN, information systems, simulation models, etc., often leads to architectural complex ICT 

solutions, whose design, implementation and maintenance can be difficult and expensive.

Overcoming these issues is a challenging task. Therefore, an effective design of the WSN is 

the first mandatory step to grant a high-quality implementation of such complex systems according 

to decision-makers analysis needs. Hence, conceptual modelling has strong relevance and wide 

acceptance since it allows to build solutions for real complex tasks apart from the implementation 

problems and limitations (Abrial, 2010).

In this context, the Unified Modelling Language (UML) is one of the most powerful tools for 

formalizing conceptual models, a widespread extensible object-oriented standard that closes the gaps 

between designers, developers and final users (Bimonte, Schneider, & Boussaid, 2016). However, 

to the best of our knowledge, current approaches do not provide a complete and effective conceptual 

representation of Wireless Sensor node (WS) data, which makes difficult to design complex Agri-

food applications and reduces the applications’ capacity to completely supply the end-user needs 

(Marouane, Duvallet, Makni, Bouaziz, & Sadeg, 2017; Paulon, Fröhlich, Becker, & Basso, 2014; 

Prathiba, Sankar, & Sumalatha, 2016; Thang, Zapf, & Geihs, 2011; Uke & Thool, 2016).

Considering this scenario, in this work, we propose a data-centric UML profile for WS. Our 

profile enables the modelling of different WS implementations from the gathered/available data 

characteristics, allowing for the definition of ICT applications capable of answering the user 

requirements. Moreover, among the different sensors computation methods, in this paper, we focus 

on data aggregation since it is useful for complex applications and necessary for saving the battery 

life time of WSN. Though we have placed our profile in the Agri-food domain, considering smart-

farming applications, it is general enough to model the data behaviour of any Internet Protocol Smart 

Object (IPSO) -compliant sensing platform (‘Smart Object Interoperability,’ n.d.).

The remainder of this article is arranged as follows: the next section presents the main 

characteristics, configurations and types of data to consider for a WSN abstraction. Section 3 presents 

the state of the art, describing different types of aggregation in WSN and highlighting relevant works 

that could be leveraged alongside our profile in order to design and configure the most important 

layers of a WS-based application. Section 4 presents our data-centric meta-model, including the UML 

profile with some theoretical examples and its implementation in a CASE tool. Section 5 presents 

the profile validation within a real smart-farming WSN application. Finally, section 6 presents our 

conclusions and proposed future works.
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WIRELESS SENSoR NETWoRKS

In this section, we introduce the concepts of sensors, sensing probes, sensor nodes, and sensor 

networks. Furthermore, we state and describe some of the most important data characteristics and 

configurations for the definition of sensing applications.

A sensor can be any device capable of representing physical world conditions as measured data 

(Aqeel-ur-Rehman, Abbasi, Islam, & Shaikh, 2014). The basis for sensors are special materials that 

change their physical properties (e.g. their electrical resistance) with the environmental conditions 

(e.g. light, temperature). The most basic sensors (probes) simply leverage the properties of these 

materials to deliver an analogue signal (e.g. a voltage or resistance change) as a measurement that can 

be analysed to estimate the physical condition. Although, more advanced probes can deliver digital 

data of two or even more measured conditions.

These probes usually require software and hardware platforms to transform the raw signals into 

readable data. Current advances on low-cost hardware and easily-programmable microcontrollers 

have allowed for the development of small platforms capable of gathering data from various probes 

and delivering it through different communication protocols. Thereby, a sensor network consists of a 

set of interconnected sensor platforms (nodes) which can measure their environmental conditions. At 

the beginning, these sensor networks relied on wired technologies. Later, with the advent of wireless 

technologies, WSN started to be more and more used to monitor areas where wired connections are 

difficult, expensive or inadequate to establish (Wang et al., 2006).

Different WSN application domains, like smart farming or precision agriculture, require to deploy 

the nodes (WS) in non-accessible areas, placed in open and uncontrolled environments, and relying 

on batteries as their only source of power. Therefore, WS should consider the use of energy-efficient 

techniques like entering into Sleep Mode or reducing the transmitted data to avoid battery waste. 

Indeed, due to their deployment areas and/or their number, changing batteries of WS is not feasible. 

Thus, evolved energy saving methods must be considered based on the regulation of data gathering 

and delivering to make a balance between operational lifetime and data value. This should also be 

associated to some quality-checking techniques for the data reliability (Aqeel-ur-Rehman et al., 2014).

Moreover, other limited resources in WS are the memory and processing. Nowadays, the storage 

memory limitation can be solved by the use of microSD cards. However, the use of these kinds of 

memory has an energy cost. Moreover, resources associated to the microcontroller such as programing 

memory (i.e. RAM -Random Access Memory- and Flash) and processing (processor frequency) are 

still limited. These latter limitations are related to the need to reduce WS economic cost in order to 

enable the deployment of a large number of them. This is an economic philosophy adopted since the 

definition of the concept of WSN at the beginning of the 2000’s with, in an extreme case, a WS at the 

price of one USD (Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002). This is reinforced by the 

integration of WSN in the higher concept of the Internet of Things (IoT) where billions of electronic 

devices would be deployed and connected (Atzori, Iera, & Morabito, 2010). A synthetic definition 

of the IoT concept is as follows (Guillemin & Friess, 2009): “The Internet of Things allows people 

and things to be connected Anytime, Anyplace, with Anything and Anyone, ideally using Any path/

network and Any service.” In WSN, another limitation to consider is the communication range of 

the WS which has an impact in the deployment strategy and cartography.

The data collection and management considerations are very important for the definition of 

WSN applications, since they allow to assess the future effectiveness and efficiency of the network. 

Thus, in order to model the applications from the user point-of-view, we have selected some relevant 

characteristics and configurations for the WS data.
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Relevant Data Characteristics

• The measurement type

• The measured value (considering the unit)

• The measurement location

• The measurement time

• The measurement estimated quality

• The remaining battery (considering the unit)

• The measurement probe information (position and model)

• The link quality

• Separation between internal (unavailable) and external (available) data

These characteristics allow to describe the WS data beyond the sensed (measured) value. For instance, 

the spatio-temporal information enables a more accurate decision-making; energy and hardware 

information enables a dependability assessment; and the separation between node-internal (gathered) 

data and node-external (delivered) data allows to define operations (e.g. aggregation) over the gathered 

data that only modify the delivered data.

Relevant Data Configurations

• The frequency for delivering the measurements

• The duration of the delivering window

• The granule of the delivering frequency and window

• The amount of measurements delivered in a window

• The frequency for gathering the measurements

• The duration of the gathering window.

• The granule of the gathering frequency and window

• The amount of measurements gathered in a window

• The lifetime of each measurement.

• The granule of the measurements lifetime

These configurations make an important separation between the gathered data and the delivered 

data. Since the gathering, processing and delivering of the data have different energy costs, these 

operations should remain separated in the WS configuration. Moreover, since most agriculture-

oriented WS implement energy-efficient strategies like the Sleep Mode, the WS could define different 

working cycles to gather, process or deliver the data. Then, the Frequency indicates how often the 

node executes the operation. The Window duration indicates the working cycle of an operation. The 

Amount indicates how many times is the operation executed in one working cycle. Finally, the Granule 

is a unit of time that modifies the Frequency and Window. For example, for a Delivering operation 

with a Frequency of 10, a Window duration of 60, an Amount of 20, and a Granule of “minute”, the 

node will deliver the data at a rate of 10 times per minute for the first two minutes of the hour, and 

then stop delivering data for 58 minutes until a new 60-minutes Window starts.

Furthermore, data aggregation is a very important technique in WSN since it allows to reduce the 

transmitted data, the central storage space and the sensor noise (Anisi et al., 2015; Aqeel-ur-Rehman 

et al., 2014; Jesus, Casimiro, & Oliveira, 2017). Therefore, we also consider some configurations for 

the execution of aggregation functions in the WS.

Relevant Data Aggregation Configurations

• The aggregation function
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• The frequency for aggregating the measurements

• The granule of the aggregating frequency

• The length of the aggregating window

• The amount of measurements aggregates in a window

Since aggregation is a data processing operation, it can be configured in the same way than the 

gathering and delivering operations with the addition of the aggregation function (e.g. average, 

maximum, mode) configuration.

These data collection and management considerations help to model the data behaviour in 

agricultural WSN applications. However, they are not restricted to agriculture-oriented and smart-

farming applications; thereby, these WS data features could be used to model WSN applications for 

various domains outside the Agri-food context.

RELATED WoRKS

In this section, we identify the most relevant aggregation types for smart-farming applications from 

state of the art. Moreover, we search, classify, select and analyse the current research on WSN data 

modelling.

WSN Aggregation Types
Reducing the computational load in central servers, which process and analyse big data streams 

produced by (wireless) sensor networks in Agri-food-oriented smart-farming applications, could 

allow for faster and more accurate situation management. Considering the specific case of WSN 

(an interconnection of smart devices), they allow for a distributed processing, i.e. manage the WS 

limited but useful processing capabilities for analysing the gathered data in order to reduce the storage 

and computing overload in the central servers by delivering only highly-valuable data (Anisi et al., 

2015; Bonomi, Milito, Zhu, & Addepalli, 2012; Jabeen & Nawaz, 2015). This initial analysis can be 

achieved through different kinds of data aggregation.

Data aggregation is the process of summarising the gathered data for its statistical analysis, 

obtaining a small highly-valuable set of data through simple operations. In the context of precision 

agriculture, early data aggregation is important for saving resources and analysing relevant events 

occurring in different spatial and temporal scales sooner than in the central servers (Pozzani & 

Zimányi, 2010). Therefore, through a systematic mapping study based on (Petersen, Feldt, Mujtaba, 

& Mattsson, 2008), we identify the different aggregation types in the context of WSN (where the 

aggregation is performed in the WSN architecture and its scope). Then, we have identified four kinds 

of aggregation scopes:

• Spatial aggregation: when the aggregation is performed in order to reduce the amount of data 

produced by sets of sensor nodes located in different geographical (spatial) positions.

• Temporal aggregation: when aggregation is provided by only one node of the WSN and is realized 

using data in temporal windows.

• Spatial and Temporal: when spatial and temporal aggregations are performed.

• OLAP (On-Line Analytical Processing) (i.e. statistical) aggregation: when sensor data can be 

aggregated considering different spatio-temporal and thematic granularities.

Furthermore, the aggregation is performed in five different network levels:
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• Nodes, some aggregation is performed on each individual sensor allowing to provide sensor-

level data. This is the most relevant case for our research since analysing the data inside the WS 

reduce the resource waste by completely distributing the processing load.

• Central Nodes, these nodes are acting as cluster heads due to their increased capabilities. This 

aggregation cannot provide individual-sensor data.

• Base Station, these are the gateways or sinks harvesting the WSN data and transferring it to the 

Internet. Aggregating data in this level does not allow to provide individual-sensor data.

• Central Server, this is the central repository of the data. Though it allows to aggregate sensor-

level data, central processing quickly depletes the network resources.

• Network, where aggregation is used to reduce the signaling in the network. This case is irrelevant 

for our research since this level is not used for analysing the data.

Considering the results of our study, in this work we focus on the more elementary aggregation 

and its location implementation: nodes (WS) and temporal aggregation.

WSN Data Modelling
Moreover, the WSN data must meet the user and application requirements for a successful 

implementation. An accurate design in a direct-engineering process supported with conceptual 

metamodels (e.g. UML profiles) of the data processed by WSN could allow to seamlessly meet such 

requirements.

Thereby, we conducted a second systematic mapping study (Petersen et al., 2008) aiming to 

identify current advances on conceptual models for describing the data inside sensor nodes, considering 

the importance of temporal aggregation and UML representations (Table 1). Our study considered 

the following classification criteria:

1.  Domain: the conceptual model is used to represent a specific application or it is a generic model 

for WS applications.

2.  Meta-model: the conceptual model is described in terms of meta-model or not.

3.  Design Level: the conceptual model describes the data or other issues regarding WSN.

4.  UML profile: the conceptual model is represented as a UML profile with stereotypes, tagged 

values and OCL constraints.

5.  CASE tool implementation: the conceptual model is implemented in a Computer-Aided Software 

Engineering (CASE) tool.

6.  Sensors implementation: the conceptual model is implemented over existing sensor nodes.

The results for this study (Table 1) show that most researches relating sensors, data and UML 

are focusing on modelling applications using sensors or other kinds of models, rather than designing 

meta-models for describing the data in sensors or the sensors applications. Furthermore, less than 

the half of the identified models consider the problems and limitations of a specific domain; indeed, 

only one study focused on agriculture.

Such results (Table 1) evidence that formal standardized models for describing the sensors’ data 

and applications are scarce. Moreover, most of the identified UML profiles are designed for specific 

domains, without including agricultural applications like smart farming. Thereby, considering our 

research context (user-oriented WS applications), the most relevant works for the definition of a UML 

profile for temporal aggregation of data in WSN nodes are the ones reporting a meta-model or UML 

profile for the modelling of WSN data or applications (Marouane et al., 2017, 2016; Prathiba et al., 

2016; Thang et al., 2011; Thramboulidis & Christoulakis, 2016).

In the first place, Marouane et al. (2016) use UML to represent structural and behavioural 

information in sensor nodes for an Advanced Driver Assistance System (ADAS) application in order 
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to reduce the system design complexity. The paper also proposes some design patterns for sensing, 

processing and control of sensor data, and taking actions in ADAS applications.

Table 1. Classification of the identified research

Domain Paper Meta-

model

Design level UML 

profile

CASE tool 

Implementation

Sensors 

implementation

General (Uke & Thool, 2016) No Sensors 

Simulation

No Yes 

StarUML

No

(Prathiba et al., 2016) Yes Data No No No

(Firlej & Kresse, 2016) No Application No Yes 

Enterprise Architect

No

(Sicari, Grieco, Boggia, & Coen-

Porisini, 2012)

No Physical No Yes No

(Thang et al., 2011) Yes Application 

data

No Yes No

(Meyer, Sperner, Magerkurth, & 

Pasquier, 2011)

No Application No No No

(Hong, Lim, & Song, 2011) No Application 

service

No No No

(Gu, Zhu, Xiong, & Ding, 2010) No Application No No Yes

(Mohan, 2009) Yes Physical No Yes 

Enterprise Architect

No

(Idoudi, Duvallet, Sadeg, Bouaziz, & 

Gargouri, 2008)

Yes Physical service Yes Yes No

(Smuda, Gerhart, Shing, & Auguston, 

2006)

Yes Network No Yes 

Generic Modeling 

Environment

No

(Lee & Song, 2006) No Network No Yes 

Rhapsody

Yes

(Y. Zhang, Chen, Wei, & Huang, 

2006)

Yes Physical 

network

No Yes No

(Champeau, Dhaussy, Moitie, & 

Prigent, 2000)

Yes Physical No Yes 

Argo

No

Driver 

Assistance 

Systems

(Marouane et al., 2017) Yes Physical 

application

Yes Yes 

MagicDraw

No

(Marouane, Makni, Bouaziz, Duvallet, 

& Sadeg, 2016)

No Data No Yes 

MagicDraw

No

Industrial 

Systems

(Thramboulidis & Christoulakis, 

2016)

Yes Physical 

network 

application

Yes Yes 

Papyrus

No

Early 

Warning 

Systems

(Cama-Pinto et al., 2016) No Service No No Yes

Agriculture (Luvisi, Panattoni, & Materazzi, 2016) No Application No Yes Yes

Education (Tanik & Arkun-Kocadere, 2014) No Service No No No

Medicine (Machado et al., 2012) Yes Service No Yes 

Enterprise Architect

Yes

Military (Yu, Dong, & Feng, 2012) No Service 

Simulation

No Yes 

StarUML

No

(Rajanikanth, Narahari, Prasad, & 

Rao, 2003)

No Simulation No No No

Robotics (Mae, Takahashi, Ohara, Takubo, & 

Arai, 2011)

No Service physical No No Yes

(Wongwirat, Paelaong, & Homchoo, 

2009)

No Service No Yes Yes

Visual 

Surveillance 

Systems

(Kenchannavar, Patkar, & Kulakarni, 

2010)

No Service No Yes 

Visual Paradigm

No

Satellite 

Navigation 

Systems

(Jeong, Park, Lee, Lee, & Kim, 2008) No Service No Yes No
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Secondly, Marouane et al. (2017) propose an evolution of their previous work (Marouane et al., 

2016) with an extension of the standard UML profile for adding real-time definitions and constraints, 

proposing a more suitable profile for representing the structural and behavioural information of 

sensors in ADAS applications in a formal standardized language.

In the third place, Thramboulidis and Christoulakis (2016) provide a UML profile for OMA 

LWM2M (Lightweight machine-to-machine communication protocol) and IPSO standard IoT objects. 

The proposed profile constitutes an approach to automate the integration of mechatronic components 

in the IoT environment through the generation of the LWM2M layer, leveraging IoT protocols in the 

development process of manufacturing systems.

Later, Prathiba et al. (2016) gather existing approaches that address data quality in WSN, defining 

three different models:

• Dataflow-level, where the data comes from the data source through aggregation and fusion 

points to the data sink.

• Group-level, where the sensor nodes are grouped and modelled as a whole, considering 

communication and aggregation operators.

• Node-level, which defines different tasks (sampling, sending, fusion, aggregation, etc.) according 

to the role of the sensor node in the WSN topology.

Finally, Thang et al. (2011) propose a UML meta-model for developing WSN data-centric 

applications. This meta-model allows to sample data from the probes, receive and forward data from 

different nodes, and process the in-node data with different rules sets. The authors also define a 

rule-execution engine and mention a model-to-text transformation for the implementation in sensors.

These related works evidence that the advances on modelling sensor nodes are very important 

since they reduce the design and implementation complexity in different application domains like 

driver-assistance and automated cyber-physical systems. However, the existing models and meta-

models do not allow for a complete and discrete description of the sensed (unavailable) data and the 

delivered (available) data. Furthermore, the design of in-node data processing considering aggregation 

and quality for WSN monitoring applications (e.g. smart farming) is not supported by existing works 

(Jesus et al., 2017).

Therefore, since we have made special focus on agricultural WSN, we can conclude that our 

Data-centric Wireless-Sensor UML profile will have strong relevance in the definition of new smart-

farming applications aiming to improve the Agri-food sector processes. Although, it could also be 

relevant in different domains like environmental monitoring or early warning systems.

DATA-CENTRIC WIRELESS-SENSoR UML PRoFILE

In this section, we present our UML profile illustrated with different agriculture-oriented use examples 

(subsection 4.1), and its implementation in the commercial CASE tool MagicDraw (subsection 4.2).

The purpose of UML profiles is to allow customizing UML for particular domains or platforms 

by extending its meta-classes (class, property, etc.) (OMG, 2011). A profile is defined using three 

key concepts: stereotypes, tagged values and constraints. A stereotype extends a UML meta-class 

and is represented using the notation “stereotype-name” and/or an icon. For example, it is possible to 

create a stereotype “SpatialClass” that extends the UML meta-class “Class”. At the model level, this 

stereotype can be used on classes in UML diagrams to highlight spatial concepts. Tagged values are 

meta-attributes, i.e. they are defined as properties of stereotypes. Finally, a set of constraints should 

be attached to each stereotype, precisely defining its application semantics to avoid its arbitrary use 

by designers in models. For example, a constraint can be defined to guarantee that a “SpatialClass” 

class has a geometric attribute called “geom.”



International Journal of Agricultural and Environmental Information Systems
Volume 10 • Issue 2 • April-June 2019

29

Proposed UML Profile
In this subsection, we propose a Data-centric Wireless-Sensor UML profile based on the features 

described in Section 2, which will act as a framework for modelling the data behaviour in WS 

implemented on Agri-food-oriented ICT applications (e.g. smart farming) or even in different domains.

Our UML profile (Figure 1) is composed by 15 stereotypes (two for Packages, four for Classes, 

three for Operations and six for Properties), 24 tagged values (six in Classes, five in Properties and 

13 in Operations), three data types (enumerations), and a set of constraints. In the first place, we 

explain the three data types in our profile and how to use them. In the second place, we introduce our 

UML profile with the description of the central abstract Class stereotype, along with its five general 

Properties. In the third place, we describe the three implementable Class stereotypes with their three 

Operations and one specific Property. Moreover, we complement the exposition of these stereotypes 

with five examples centred in smart-farming applications. Finally, we present the constraints of our 

profile in three different levels, providing example OCL for each level.

Profile Data Types
The data types in our profile (Figure 1) help to define the tagged values, the three enumerations are:

• ConditionType: has two possible values (Gathering or Delivering) to indicate in which operation 

the tagged element was defined.

• QualityType: the WSN users, designers or engineers can use the different quality levels to define 

the how different aspects in their data affects the quality (e.g. battery level or link status) and 

which is the required dependability of the data. Based on Cantero et al. (2016), WSN data can 

have up to five quality values (these levels are for reference and their full use is not mandatory).

 ◦ Good is the best quality.

 ◦ Inconsistent means that some (few) characteristics of the data indicate a lower quality, but 

it can be used for non-sensible applications.

 ◦ Doubtful means that the data has low quality and should not be trusted.

 ◦ Erroneous means the data is not good for any application purpose.

 ◦ Missing means there is no data.

• GranuleType: defines seven granularities of time that go from second (the smallest granularity) to 

year (the biggest granularity). This data type is related to the granule tags in the three operations 

(Gather, Deliver and DeliverAggregated) and the LifeTime.

Profile Abstract Class Stereotype
The main root of our metamodel is the abstract Class Measure, it is intended to identify any 

measurement gathered, stored or delivered by the WS. The Measure must define a Type (e.g. 

temperature, humidity, radiation) and could have a ProbePosition (the spatial position of the measuring 

probe). This Class is composed by five Properties:

• The Value is the main Property for identifying a measurement. It has to be tagged with the 

measurement Unit.

• The TimeStamp represents a time associated to the measurement. It should have a tagged condition 

of ConditionType to indicate if it is the time at Gathering or at Delivering the measurement.

• The Location indicates the geometry (the spatial position of the WS) where the measurement is 

Gathered/Delivered using the ConditionType.

• The BatteryLevel is the remaining energy in the WS at the Gathering/Delivering using the 

ConditionType. It can be used for triggering low level alerts to indicate that the WS will stop 

working and the measurement could have lower quality.
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• The EstimatedQuality is a derived value that can be calculated in the sensor node in order to 

estimate the measurement quality. This estimation can consider the remaining energy of the node 

or the working range of the probe to classify the data in a QualityType.

Profile Implementable Class Stereotypes
The GatheredMeasure Class is a specification of the abstract Class Measure. It is intended to classify 

only measurements read through the probes and stored in the sensor node. Consequently, it can be 

tagged with:

• ProbeID: the identification of the measuring probe,

• ProbeModel: the specific hardware model of the measuring probe,

• LifeTime: the amount of time each measurement will survive in the node,

• LifeTimeGranule: the unit of time for the LifeTime. The time granularities can be from seconds 

to years, according to the GranuleType.

This Class is composed by one Operation called Gather, which gathers the data from the probe 

in order to store the measurements. It can be tagged with:

• Frequency: the amount of measurements gathered in a time granule,

• Granule: time unit specifying the Frequency and Window,

• Window: the length (duration) of the Operation’s work cycle in a time granule,

• Amount: maximum number of measurements gathered inside a Window.

Figure 1. Data-centric Wireless-Sensor UML profile from the user point-of-view
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Finally, as the data of this Class is not available for the application or the user (i.e. only exist 

inside the node), it belongs to the Unavailable Package. Example 1 presents an implementation of 

this class stereotype.

Example 1
The Class SoilMoisture0 (Figure 2) is an implementation example of the GatheredMeasure stereotype 

for a sensor node measuring the soil moisture in a crop field. It defines the ProbeID, ProbeModel 

and Type tags to indicate the node how to process the probe data. Furthermore, the ProbePosition 

tag allows to describe the measurements by indicating they are gathered from a probe “buried 15 cm 

into the ground”. The Class attributes show the gathered value is a moisture measured in Volumetric 

Water Content, and the node must consider the gathering time, the battery level (in Volts) and the 

estimated quality of each measurement. Finally, the sense operation defines the measurements are 

gathered at a frequency of 0.1 values per minute (one value each period of 10 minutes).

Table 2 contains an example of the data represented by SoilMoisture0 (Figure 2). This data 

model allows the sensor node to gather one Moisture measurement (recording Time, Quality and 

Battery) each 10 minutes.

Moreover, the ReadableMeasure Class is also a specification of the abstract Class Measure, 

which is intended to classify only measurements sent to the application or the user (i.e. available 

data); thus, it belongs to the Available Package. This Class is composed by one Property and one 

Operation: LinkStatus and Deliver. The LinkStatus Property is a network connection parameter useful 

for detecting bad quality in the network connectivity. While the Deliver Operation transmits the 

stored data to an accessible repository (e.g. a database), an application (e.g. an information or alert 

system), or the final user. The tags describing this operation are similar to the tags of the previously 

described Gather Operation: it can have a delivering Frequency, a Granule, a delivering Window and 

Figure 2. Example class implementing the GatheredMeasure stereotype
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an Amount. Example 2 presents an implementation of this class stereotype; furthermore, Example 3 

explains the usage of the GatheredMeasure and the ReadableMeasure in a simple hypothetical case 

study in smart farming.

Example 2
The Class 3SoilMoisture (Figure 3) is an implementation example of the ReadableMeasure 

stereotype for a sensor node delivering soil moisture measurements from a crop field. Its definition 

of ProbePosition and Type comes from the related GatheredMeasure (i.e. SoilMoisture0), indicating 

a Soil Moisture probe, “buried 15 cm into the ground”, is gathering the measurements. The Class 

attributes represent data accessible for the application or the final user. These attributes are related to 

the GatheredMeasure: the sensed-moisture value, the sensed-time timestamp, the estimated quality of 

the data, and the sensed battery level. This class also defines the sendTime timestamp for the delivery 

time. Finally, the send operation defines that data should be delivered 0.1 times per minute (once each 

10 minutes), but only a maximum amount of three values are delivered inside each 60-minutes window.

Table 3 contains an example of the data represented by 3SoilMoisture (Figure 3). This data model 

allows the node to deliver one Moisture measurement (including Times, Quality and Battery) each 

10 minutes, with a maximum of three measurements per hour. For example, data is delivered during 

the 22 hour at 22:03; 22:13 and 22:23.

Table 2. Example data for SoilMoisture0

Moisture Time EQuality Battery

20 25-10-17 22:03:16 Good 3.7

50 25-10-17 22:13:16 Inconsistent 3.6

21 25-10-17 22:23:16 Good 3.7

21 25-10-17 22:33:16 Good 3.7

13 25-10-17 22:43:16 Inconsistent 3.6

Figure 3. Example Class implementing the ReadableMeasure stereotype
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Example 3
These classes (Figure 2 and Figure 3) could represent a single-node application example (Figure 4), 

on which the hypothetical user (e.g. a farmer) needs to know the soil moisture of the crop field in 

order to decide if irrigation is needed. The user expects to receive no more than three inconsistent or 

better-quality information about the soil moisture per hour.

Tables 4 (Gathered) and 5 (Delivered) contain an example of the data represented by this model 

(Figure 4). These data show that the node gathers one Moisture measurement (recording Time, 

Quality and Battery) each 10 minutes. Furthermore, it delivers those measurements (including the 

delivering time) with the same frequency, but only a maximum of three Good- or Inconsistent-quality 

measurements per hour (Erroneous data is not delivered). For example, among 6 data values collected 

during the 16 hours, only three values are sent.

In this example, the application designers must define some rules for estimating the quality (e.g. 

with the battery) and avoiding the delivering of lower-quality data (Example 8). Moreover, they could 

have defined some rules to stop the WS from gathering data once the delivering operation stops.

Furthermore, the AggregatedMeasure Class is a specification of the ReadableMeasure Class. This 

Class also identifies available data. However, it is not the data gathered by the probes and stored by 

the node, it is an aggregate value. Delivering only aggregated data is important since it reduces the 

network load by transmitting highly meaningful data that enables the applications to work properly 

with a simple, yet complete, description of the sensed data (Zhang, Han, Cai, & Yin, 2017). Therefore, 

the AggregatedMeasure Class defines the DeliverAggregated Operation. This Operation is like 

Deliver, but it includes an additional step: aggregating the stored data inside the window through an 

AggregationFunction (tagged in the Operation). This allows the WS to make available only highly 

Table 3. Example data for 3SoilMoisture

SenseMoisture SenseTime SendTime EQuality SenseBattery

20 25-10-17 22:03:16 25-10-17 22:03:16 Good 3.7

30 25-10-17 22:13:16 25-10-17 22:13:16 Inconsistent 3.6

21 25-10-17 22:23:16 25-10-17 22:23:16 Good 3.7

25 25-10-17 23:03:16 25-10-17 23:03:16 Good 3.7

20 25-10-17 23:13:16 25-10-17 23:13:16 Inconsistent 3.6

25 25-10-17 23:23:16 25-10-17 23:23:16 Inconsistent 3.6

14 26-10-17 00:03:16 26-10-17 00:03:16 Inconsistent 3.5

Figure 4. UML model of a moisture WS data from the user point-of-view
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useful data. Example 4 presents an implementation of this class stereotype; furthermore, Example 5 

explains the usage of the GatheredMeasure and the AggregatedMeasure in a hypothetical case study 

requiring aggregation in a smart farming application.

Example 4
The Class AggregatedSoilMoisture (Figure 5) implements the AggregatedMeasure stereotype into an 

example of sensor node delivering aggregated (minimum) soil moisture measurements from a crop 

field. It defines the ProbePosition and Type tags from a related GatheredMeasure (e.g. SoilMoisture0, 

though the Class should define a LifeTime to indicate some data persistence), indicating a Soil 

Moisture probe, “buried 15 cm into the ground”, is gathering the data.

The attributes of AggregatedSoilMoisture (Figure 5) represent data accessible for the application 

or the final user. These attributes are related to the GatheredMeasure. However, unlike in the 

3SoilMoisture example (Figure 3), the delivered data is not the same gathered data. This Class 

will only deliver, every hour, the minimum moisture measurement, the timestamp of the minimum 

measurement and the timestamp for the transmission with the sendAgg operation.

Table 6 contains an example of the data represented by AggregatedSoilMoisture (Figure 5). This 

data model allows the node to deliver the minimum value of the measured Moisture (including the 

sense and send Time) each hour, since it includes the “Min” aggregation operation.

Example 5

Table 4. Example of the gathered data for the moisture WSN without aggregation

Moisture Time EQuality Battery

… … … …

30 03-12-17 15:45:21 Inconsistent 3.3

30 03-12-17 15:55:21 Inconsistent 3.3

31 03-12-17 16:05:21 Inconsistent 3.3

31 03-12-17 16:15:21 Inconsistent 3.3

30 03-12-17 16:25:21 Erroneous 3.2

31 03-12-17 16:35:21 Inconsistent 3.3

34 03-12-17 16:45:21 Erroneous 3.2

31 03-12-17 16:55:21 Inconsistent 3.3

42 03-12-17 17:05:21 Erroneous 3.2

35 03-12-17 17:15:21 Erroneous 3.2

30 03-12-17 17:25:21 Inconsistent 3.3

Table 5. Example of the delivered data for the moisture WSN without aggregation

SenseMoisture SenseTime SendTime EQuality SenseBattery

… … … … …

31 03-12-17 16:05:21 03-12-17 16:05:21 Inconsistent 3.3

31 03-12-17 16:15:21 03-12-17 16:15:21 Inconsistent 3.3

31 03-12-17 16:35:21 03-12-17 16:35:21 Inconsistent 3.3

30 03-12-17 17:25:21 03-12-17 17:25:21 Inconsistent 3.3
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Another application example (Figure 6) could leverage this stereotype: a hypothetical user (e.g. a 

farmer) needs to know when the soil of the crops is too dry in order to irrigate it. The user expects 

only good quality information about the minimum soil moisture once per hour. This application 

(Figure 6) is similar to the first one (Figure 4) with one important difference: the user only requires 

aggregated data.

This difference implies (as previously stated) the unavailable gathered data in SoilMoisture1 must 

persist until the aggregation is committed. Therefore, it defines a Lifetime of one hour. Moreover, 

AggregatedSoilMoisture class provides the user the required information by aggregating the data in 

SoilMoisture1 each hour with the function “Min” (Minimum) and delivering the aggregated value.

Tables 7 (Gathered) and 8 (Delivered) contain an example of the data represented by this model 

(Figure 6). These data show that the sensor node gathers one Moisture measurement (recording Time, 

Figure 5. Example Class implementing the AggregatedMeasure stereotype

Table 6. Example data for AggregatedSoilMoisture

MinMoisture SenseTime SendTime

41 03-12-17 06:20:00 03-12-17 06:59:59

40 03-12-17 07:00:00 03-12-17 07:59:59

38 03-12-17 08:40:00 03-12-17 08:59:59

38 03-12-17 09:10:00 03-12-17 09:59:59

Figure 6. UML model of a moisture WS data with aggregation from the user point-of-view
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Quality and Battery) each 10 minutes, storing up to six values that last one hour. Furthermore, the 

WSN delivers an aggregate (minimum) of the gathered moisture values (including the sense and send 

times) each hour, considering only Good-quality data for the aggregation. For example, among the 

6 values gathered at the 7 hour only the one with the minimum value (40) and Good quality is sent.

In this example, the application designers must define some rules for estimating the quality (e.g. 

with the battery) and avoiding the aggregation of data with non-Good-quality (Example 8).

Profile Constraints
Finally, our Data-centric Wireless-Sensor UML profile also defines a set of constraints, expressed 

using OCL:

Table 7. Example of the gathered data for the moisture WSN with aggregation

Moisture Time EQuality Battery

… … … …

42 03-12-17 06:50:00 Good 3.5

40 03-12-17 07:00:00 Good 3.5

42 03-12-17 07:10:00 Good 3.5

41 03-12-17 07:20:00 Good 3.5

41 03-12-17 07:30:00 Good 3.5

48 03-12-17 07:40:00 Erroneous 3.4

40 03-12-17 07:50:00 Erroneous 3.4

40 03-12-17 08:00:00 Good 3.5

39 03-12-17 08:10:00 Good 3.5

35 03-12-17 08:20:00 Erroneous 3.4

38 03-12-17 08:30:00 Good 3.5

38 03-12-17 08:40:00 Good 3.5

36 03-12-17 08:50:00 Erroneous 3.4

38 03-12-17 09:00:00 Good 3.5

38 03-12-17 09:10:00 Good 3.5

39 03-12-17 09:20:00 Good 3.5

… … … …

Table 8. Example of the delivered data for the moisture WSN with aggregation

MinMoisture SenseTime SendTime

… … …

41 03-12-17 06:20:00 03-12-17 06:59:59

40 03-12-17 07:00:00 03-12-17 07:59:59

38 03-12-17 08:40:00 03-12-17 08:59:59

38 03-12-17 09:10:00 03-12-17 09:59:59

… … …
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• Meta-model level constraints: these constraints are defined at the meta-model level and grant well-

formed class diagrams using the UML profile. Example 6 presents two OCL rules of this type.

• Semantic coherence constraints: these constraints are associated to particular elements of our 

UML profile and they are valid for each application. For example:

 ◦ the Frequency of Delivering (FD) must be equal or less than the Frequency of Gathering (FG);

 ◦ the LifeTime must be equal or greater than the Gathering period (1/FG);

 ◦ the Window (Win) on each operation must be equal or greater than the operation period (1/F);

 ◦ the total amount of stored measurements (ΣSM) cannot be greater than the total node 

storage (NS);

 ◦ when the Frequency is defined for an operation, the Granule must also be defined for that 

operation. Moreover, a Window cannot be defined without the Frequency and the Granule. 

And an Amount requires a Window (besides the Frequency and the Granule);

 ◦ when the LifeTime is defined, the LifeTimeGranule must also be defined, and vice versa. 

Example 7 implements this rule in OCL.

• User-defined constraints: Each model designer, according to the user and application requirements, 

should define other application-specific constraints, for example deliver only good quality data. 

Example 8 presents some OCL rules of this type for the hypothetical case studies of Examples 

3 and 4.

Example 6
In this example we present one meta-model level OCL constraint. In particular, the rule specifying 

that any class stereotyped with <<Measure>> (including ReadableMeasure, GatheredMeasure or 

AggregatedMeasure) must have one (and only one) attribute stereotyped with <<Value>> (Figure 7).

Example 7
In this example we present the OCL for some semantic coherence constraints; in particular for the 

last two examples: the frequency dependence (Figure 8) and the lifetime granularity (Figure 9).

This constraint (Figure 8) indicates that designers should define at least both the Frequency and 

the Granule tags for the Deliver operation if they want to use any of the operation tags, including 

Window and Amount. This constraint can be equally defined for the Gather and DeliverAggregated 

operations. Nevertheless, note that the AggregationFunction tag is mandatory in the DeliverAggregated 

operation, regardless the definition of Frequency and Granule.

This constraint (Figure 9) indicates that designers should define both the LifeTime and 

LifeTimeGranularity tags in the GatheredMeasure class if they want to have persistence in the 

gathered data.

Example 8
In this example we present some user-defined constraints. Considering the aforementioned application 

examples (Figure 4 and Figure 6), designers will need to define application-specific constraints in 

Figure 7. OCL for meta-model level constraints regarding the obligatoriness of a <<Value>> attribute in all the <<Measure>> classes
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OCL for each case. The first application (Figure 4) is required to deliver only inconsistent or better 

data; thus, it needs to identify the quality of the data and reject all the lower-quality values (Figure 10).

The first constraint in Figure 10 is the transmissionStandard, which imposes the delivering of only 

higher quality data (Good or Inconsistent). Moreover, the second constraint is the qualityStandard, 

which defines how the battery level affects the data quality in this example application (Good, 

Inconsistent or Erroneous).

The second application (Figure 6) requires only good-quality data. Thus, it needs to identify the 

quality of the data and include only good-quality values for aggregation (Figure 11).

The first constraint in Figure 11 is the aggregationStandard, which imposes the aggregation of 

only Good-quality data. Moreover, the second constraint is the qualityStandard, which defines how 

the battery level affects the data quality in this example application (Good or Erroneous).

These eight examples illustrate some of the most important stereotypes, tag and constraints 

of our profile, which allows for a better understanding of its implementation. Furthermore, since 

Figure 8. OCL for semantic-coherence constraints regarding the frequency dependence in the Deliver operation

Figure 9. OCL for semantic-coherence constraints regarding the granularity of lifetime in GatheredMeasure

Figure 10. OCL application-specific constraints for example 3
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the examples 3, 5 and 8 focus on two agriculture-oriented hypothetical case studies, specifically a 

smart-farming application for irrigation decision support, we can infer that our profile will improve 

the design phase of this kind of application, easing the meet of the user’s requirements from WSN, 

including (temporal) data aggregation and early quality assessment.

CASE Tool Implementation
In this subsection, we present the implementation of our UML profile using the CASE tool MagicDraw. 

MagicDraw is a CASE tool that allows defining UML profiles and OCL constraints defined at class 

and object levels. Moreover, MagicDraw also allows implementing the meta-model level and semantic 

coherence constraints. The implementation of our profile provides an automated evaluation of its 

correctness and consistency (Marouane et al., 2017). Moreover, this implementation allows to use 

our profile (with stereotypes, tags, and constraints) in the definition of new valid UML models for 

the WS data behaviour.

An example of the implementation of the OCL constraint of Example 6 (Measure-Value attribute 

- Figure 7) is shown in Figure 12.

In this example (Figure 12), we define an erroneous element using the ReadableMeasure 

stereotype. Thus, MagicDraw shows the element that presents the error (i.e. humidity class) and the 

details of the error (i.e. Message “one value measure”) according to the defined OCL rule. However, 

if an element is well-defined, the CASE tool must show nothing.

This CASE tool implementation of our UML profile in MagicDraw validates its correctness and 

consistency with the OCL constraints (Marouane et al., 2017). Hence, we deduce that our profile can 

be used to design new error-free, smart-farming WSN applications from the WS data, considering 

the final user’s need.

VALIDATIoN

In this section, we thoroughly validate our data-centric wireless-sensor UML profile in a real smart-

farming case study; therefore, we have modelled the data of the iLive network (Liu, Hou, Shi, & 

Guo, 2012) of Irstea (French National Research Institute of Science and Technology for Environment 

and Agriculture).

This iLive network is a result from a partnership between the Irstea institute and the LIMOS 

(Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes) laboratory. The goals 

of this experimentation was to evaluate the iLive wireless sensor, developed by the LIMOS, in an 

agricultural context. The LIMOS went, more precisely, to evaluate energy consumption and fault 

tolerant capability of their iLive solution for smart-farming applications. The iLive wireless sensors 

were deployed in the Irstea Montoldre research and experimental site. The description of the iLive data 

is relevant since this network is part of the projects with others in the topic of robotics that constitute 

Figure 11. OCL application-specific constraints for example 5
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an initial base for the Irstea AgroTechnoPôle, a project that looks towards the establishment of an 

innovation ecosystem for the European agricultural industry and academy (Irstea, 2016).

The iLive network is an experimental WSN composed of low-energy devices equipped with 

a ZigBee wireless communication module, two AA batteries, one air-humidity probe, one air-

temperature probe, one light probe (mostly used for laboratory tests), and support for three Decagon 

(part now of Meter Environment company) probes and four Irrometer Watermark probes; though 

not all these latter probes are connected to the nodes. For example, in this experimentation, nodes 

are only equipped with three Irrometer Watermark probes. The network consists of one coordinator 

node and 10 end-devices with a star topology, which are deployed in different fields of the Montoldre 

site (Figure 13).

Since the iLive nodes are not equipped with a renewable energy source (e.g. solar panel), they are 

in Sleep Mode most of the time (about 98%) to reduce energy waste. The nodes work continuously 

gathering and sending data for about one minute per hour. While the nodes are awake, they gather and 

deliver data from all their probes 0.111 times per second, which means they make seven measurements 

per hour.

For modelling and validation purposes, in this paper we analyse a small data subset delivered 

by one of the iLive nodes: the 91-BC (Table 9).

Based on the analysis of this data (Table 9), the network characteristics, and considering our 

profile, we propose the following UML model for the description of the data in node 91-BC of the 

iLive network (Figure 14).

The modelled node (Figure 14) gathers and delivers three types of measurements: Air Humidity in 

percentage of Relative Humidity (%RH), Air Temperature in degrees Celsius (°C), and Soil Moisture 

in centibars (cb) or kilopascal (kPa). The measures Air Humidity (Humidity) and Air Temperature 

(Temperature) are gathered in one irrelevant unknown position. While the Soil Moisture measures 

(Watermark 1, 2 and 3) are gathered in three relevant known positions (0.3, 0.6 and 1 meters into 

the ground).

Figure 12. MagicDraw implementation of our profile with OCL constraints
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For every gathered measure, the node delivers the measurement Value, TimeStamp and 

BatteryLevel. Consequently, all the measured data besides a Link Quality Indicator (LQI) and a 

Received Signal Strength Indicator (RSSI) for characterizing the link status are delivered to a database 

to be accessible for the final users.

Moreover, all the gathered measures have the same gathering frequency: 0.111 measurements 

per second, with a maximum of seven measurements in a 3600 seconds window. This frequency 

configuration indicates the node will gather measurements each nine seconds, but it will only be 

working for the first 63 seconds of each hour, collecting a total amount of seven measurements per hour.

Since the iLive nodes send the measurements as soon as they are gathered, the frequency 

configuration for the deliver operation of the readable measures is the same as the one of the gather 

one: only seven measurements per hour, delivering each measurement with a nine seconds time span.

Finally, the users can access all the available data (iLSentData). The air temperature and humidity, 

and different-depth soil moistures allow the farmers to monitor and control their crops. Furthermore, 

the battery level and link status data allow for technical maintenance of the node and the sensors 

network, besides the analysis of the data quality.

This model (Figure 14) allows to visualise the data behaviour inside one iLive end-node. Visual 

models like this one are very important on a system definition, since it allows users, designers, scientists 

and engineers to check and assess the system feasibility before its implementation. In this particular 

case, through the analysis of the model (Figure 14), and considering the capabilities of our profile, we 

infer that the amount of delivered measurements could have been reduced with aggregation functions 

Figure 13. Deployment of the iLive network in the Montoldre site
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like average, which helps to reduce the sensor noise and battery waste in the data transmission (Anisi 

et al., 2015; Jesus et al., 2017), and the storage requirements of the data-centre. Moreover, the quality 

of the gathered/delivered data could be estimated from the node from the battery level, link status 

and the change in the measured values of the same hour.

CoNCLUSIoN AND FUTURE WoRKS

In this paper, we have presented a UML profile for the design of data collected and managed in wireless 

sensor nodes from the user point-of-view. Our profile achieves a separation between the gathered 

(unavailable) data and the delivered (available) data of the node, while describing it with different 

characteristics and configurations of frequency, aggregation, persistence and quality.

The CASE tool implementation of our profile shows its correctness and consistency. Moreover, 

the validation on a real smart-farming case study evidences that our profile can be used for the 

description of data collected by real WS in real WSN applications with different energy-efficient 

configurations. Besides, the formal (UML) representation of the case study allowed us to conclude that 

the iLive network designers could have leveraged the aggregation and quality-checking capabilities 

of our profile in order to reduce the transmission costs and database storage, and to increase the user-

perceived value of the available data.

Therefore, this case study illustrates the importance of following a model-driven approach in 

the design and implementation of WSN applications. Indeed, the conceptual modelling allows for 

Table 9. Data subset for the analysis of the iLive network from the node 91-BC

Node Humidity Temperature Watermark 

1

Watermark 

2

Watermark 

3

Packet 

Time

Battery lqi rssi dbTime

91-BC 100.00 14.80 30.00 19.00 10.00 6/05/2014

10:01:35

2841 205.00 -83.00 6/05/2014

10:01:35

91-BC 100.00 14.70 30.00 19.00 10.00 6/05/2014 

10:01:43

2856 168.00 -83.00 6/05/2014 

10:01:43

91-BC 100.00 14.80 30.00 19.00 10.00 6/05/2014 

10:01:51

2871 141.00 -83.00 6/05/2014 

10:01:51

91-BC 100.00 14.70 30.00 19.00 10.00 6/05/2014 

10:02:01

2871 120.00 -83.00 6/05/2014 

10:02:01

91-BC 100.00 14.80 30.00 19.00 10.00 6/05/2014 

10:02:09

2841 105.00 -83.00 6/05/2014 

10:02:09

91-BC 100.00 14.80 30.00 19.00 10.00 6/05/2014 

10:02:18

2841 93.00 -83.00 6/05/2014 

10:02:19

91-BC 100.00 14.80 30.00 19.00 10.00 6/05/2014 

10:02:27

2841 84.00 -83.00 6/05/2014 

10:02:27

91-BC 100.00 13.60 29.00 18.00 10.00 6/05/2014

11:04:00

2856 205.00 -83.00 6/05/2014

11:04:00

91-BC 100.00 13.60 29.00 18.00 10.00 6/05/2014 

11:04:08

2841 168.00 -83.00 6/05/2014 

11:04:08

91-BC 100.00 13.60 29.00 18.00 10.00 6/05/2014 

11:04:17

2856 141.00 -83.00 6/05/2014 

11:04:17

91-BC 100.00 13.60 29.00 18.00 10.00 6/05/2014 

11:04:25

2856 120.00 -83.00 6/05/2014 

11:04:25

91-BC 100.00 13.60 29.00 18.00 10.00 6/05/2014 

11:04:33

2841 105.00 -83.00 6/05/2014 

11:04:33

91-BC 100.00 13.60 29.00 18.00 10.00 6/05/2014 

11:04:42

2841 93.00 -83.00 6/05/2014 

11:04:42

91-BC 100.00 13.70 29.00 18.00 10.00 6/05/2014 

11:04:50

2856 84.00 -83.00 6/05/2014 

11:04:50

91-BC 100.00 15.70 31.00 18.00 10.00 6/05/2014

12:06:25

2841 207.00 -82.00 6/05/2014

12:06:25
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an abstract and direct analysis of the system properties and behaviour in the design, which could 

improve the effectiveness and efficiency in the implementation (Abrial, 2010).

When compared with different state-of-the-art approaches, our UML profile lacks of specific 

analysis methods for evaluating the data quality and dependability in different network levels (Jesus 

et al., 2017; Prathiba et al., 2016), nor provides complex mechanisms for the execution of multiple 

data-processing operations in the network (Thang et al., 2011). Nevertheless, our profile sticks to 

the UML standard to design the data behaviour in the WS from the user point-of-view, with different 

configurations for the data gathering and delivering, also enabling the temporal aggregation and 

quality assessment of the data; altogether in a single model.

Different domains could leverage these advantages. For instance, in smart farming our profile 

could ease and formalise the definition and integration of the sensor-collected data into early warning 

systems that rely on dependable, aggregated measures (Plazas, Rojas, Corrales, & Corrales, 2016); or 

machine-learning implementations for the estimation of the crops’ yield and meteorological conditions 

(Plazas et al., 2017; Valencia-Payan & Corrales, 2017).

Figure 14. UML data model from the user point-of-view for the iLive case study, node 91-BC
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Hence, our meta-model becomes a first step in driving WSN into a Fog Computing paradigm 

through a model-driven approach. This change in traditional WSN will allow to improve the value 

of new Agri-food information systems, since it will reduce the computational and storage load in 

the central servers, and the communication load in the WSN, providing a faster and more accurate 

analysis of the monitored environments and extending the network life.

Thereafter, as future works we propose the definition of a joint between the measures that enables 

the spatial aggregation inside the same node (between probes with the same type of measure); the 

integration of mechanisms to overtake the memory constraint in some sensor platforms for the 

unlimited aggregation (distributive and algebraic, not holistic) of temporal data. Furthermore, we also 

propose an extension of our profile considering the data behaviour in all the WSN levels, including 

spatio-temporal aggregation mechanisms for inter-nodes data.
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