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Abstract. Cluster analysis deals with the automatic discovery of the
grouping of a set of patterns. Despite more than 40 years of research,
there are still many challenges in data clustering from both theoreti-
cal and practical viewpoints. In this paper, we describe several recent
advances in data clustering: clustering ensemble, feature selection, and
clustering with constraints.

1 Introduction

The goal of data clustering [1], also known as cluster analysis, is to discover the
“natural” grouping(s) of a set of patterns, points, or objects. Cluster analysis
is prevalent in any discipline that involves analysis or processing of multivariate
data. Image segmentation, an important problem in computer vision, is often
formulated as a clustering problem [2,3]. Clustering has also been used to dis-
cover subclasses in a supervised setting to reduce intra-class variability. Different
writing styles were automatically discovered by clustering in [4] to facilitate on-
line handwriting recognition. Contours of MR brain images are clustered into
different subclasses in [5]. Documents can be clustered to generate topical hier-
archies for information access [6] or retrieval. The study of genome data [7] in
biology often involves clustering – either on the subjects, the genes, or both.

Many clustering algorithms have been proposed in different application sce-
narios (see [8] for a survey). Important partitional clustering algorithms in the
pattern recognition community include the k-means algorithm [9], the EM algo-
rithm [10], different types of linkage methods (see [11]), the mean-shift algorithm
[12], algorithms that minimize some graph-cut criteria (such as [13]), path-based
clustering [14] and different flavors of spectral clustering [3,15]. However, a uni-
versal clustering algorithm remains an elusive goal. The fundamental reason for
this is the intrinsic ambiguity of the notion of natural grouping. Another dif-
ficulty is the diversity of clusters: clusters can be of different shapes, different
densities, different sizes, and are often overlapping (Figure 1). The problem is
even more challenging when the data is high-dimensional, because the presence
of irrelevant features can obscure the cluster structure. Above all, even for data
without any cluster structure, most clustering algorithms still generate spurious
clusters (see [16,17] for a discussion)! All these issues make clustering a dilemma
[18] for the user.
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(a) Input data
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(b) Clustering Results

Fig. 1. Diversity of clusters. The clusters in this data set, though easily identified by a
human, are difficult to be detected automatically. The clusters are of different shapes,
sizes and densities. Background noise makes the clustering task even more difficult.

In the rest of this paper, we shall describe some recent advances in clustering
that alleviate these limitations for partitional clustering. In Section 2, we exam-
ine how different data partitions in a clustering ensemble can be combined to
discover clusters with high diversity. Feature selection can be performed when
high dimensional data is to be clustered (Section 3). The arbitrariness of clus-
tering can be reduced by introducing side-information – notably constraints on
the cluster labels (Section 4). Finally, we conclude in Section 5.

2 Clustering Ensemble

In supervised learning, it is often beneficial to combine the outputs of multiple
classifiers in order to improve the classification accuracy. The goal of clustering
ensemble is similar: we seek a combination of multiple partitions that provides
improved overall clustering of the data set. Clustering ensembles are beneficial
in several aspects. It can lead to better average performance across different
domains and data sets. Combining multiple partitions can lead to a solution
unattainable by any single clustering algorithm. We can also perform parallel
clustering of the data and combine the results subsequently, thereby improv-
ing scalability. Solutions from multiple distributed sources of data or attributes
(features) can also be integrated.

We shall examine several issues related to clustering ensemble in this section.
Consider a set of n objects X = {x1, . . . , xn}. The clustering ensemble consists
of N different partitions of the data set X . The k-th partition is represented by
the function πk, where πk(xi) denotes the cluster label of the object xi in the
k-th partition, which consists of mk clusters.

2.1 Diversity

How can we generate each of the partitions in the ensemble? While the opti-
mal strategy is probably dependent on the problem domain and the goal for
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performing clustering, there are also some general procedures. One can apply
different algorithms (like k-means, complete-link, spectral clustering) to create
different partitions of the data. Some clustering algorithms like k-means require
initialization of parameters. Different initializations can lead to different clus-
tering results. The parameters of a clustering algorithm, such as the number of
clusters, can be altered to create different data partitions. Different “versions”
of the data can also be used as the input to the clustering algorithm, leading to
different partitions. For example, the data set can be perturbed by re-sampling
with replacement or without replacement. Different feature subsets or projection
to different subspaces can also be used.

Note that these strategies can be combined. For example, the k-means al-
gorithm with different number of clusters and different initializations is used to
create the clustering ensemble in [19].

2.2 Consensus Function

A consensus function is a mapping from the set of N partitions {π1, . . . , πN} in
the clustering ensemble to a consensus partition π∗. Different consensus functions
have been proposed in the literature (Table 1). In this paper, we shall present
two examples of consensus functions: consensus by co-association matrix [19],
and consensus by quadratic mutual information [20].

In consensus by co-association, we compute the n × n co-association matrix
C, whose (i, j)-th entry is given by

cij =
1
N

N∑

k=1

I
(
πk(xi) = πk(xj)

)
; i, j = 1, . . . , n. (1)

Here, I(.) is the indicator function, which is 1 if the argument is true and 0 oth-
erwise. Intuitively, cij measures how many times xi and xj are put in the same
cluster in the clustering ensemble. The co-association matrix can be viewed as a
new similarity matrix, which is superior than the original distance matrix based
on Euclidean distance. The consensus partition is found by clustering with C

Table 1. Different consensus functions in the literature

Method Key ideas
Co-association
matrix [19]

Similarity between patterns is estimated by co-association; single-
link with max life-time is used for finding the consensus partition

Mutual Infor-
mation [20]

Maximize the quadratic mutual information between the individual
partitions and the consensus partition

Hyper-graph
methods [21]

Clusters in different partitions are represented by hyper-edges; con-
sensus partition is found by a k-way min-cut of the hyper-graph

Finite mixture
model [20]

Maximum likelihood solution to latent class analysis problem in the
space of cluster labels via EM

Re-labeling and
voting [22]

Assuming the label correspondence problem is solved, a voting pro-
cedure is used to combine the partitions
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(a) Input data (b) Result of cluster ensemble

(c) Dendrogram based on co (d) Dendrogram based on Euclidean
distances computed in (a)

Fig. 2. Example of consensus partition by co-association matrix in [19]. The number
of clusters (2 in this case) is determined by the lifetime criteria. Note that the co-
association values lead to a much more clear-cut dendrogram than Euclidean distances.

as the similarity matrix. The single-link algorithm is used, because the “chain-
ing” behavior in C is often desirable. The number of clusters is determined by
maximizing the lifetime. The lifetime of a partition with K clusters is defined
as the range of threshold values on the dendrogram that leads to the identifica-
tion of the partition. The longer the lifetime, the more stable the partition upon
data perturbation. A simple illustration of this consensus function can be seen
in Figure 2. Additional experimental results can be found in [19].

One drawback of the co-association consensus function is its O(n2) memory
requirement. A consensus function that uses only O(n) memory was proposed in
[20]. It is based on the notion of median partition, which maximizes the average
utility of the partitions in the ensemble with respect to the consensus parti-
tion. Formally, we seek π∗ that maximizes J(π∗) =

∑N
k=1 U(π∗, πk)/N , where

U(π∗, πk) denotes a utility function. The utility function based on mutual infor-
mation is advocated in [20]. Define a random variable Xt that corresponds to
the cluster labels of the objects in πt. The joint probability p(Xt = i, Xs = j)
is proportional to the number of objects that are in the i-th cluster for the par-
tition πt and in the j-th cluster for πs. The similarity/utility between πt and
πs can be quantified by Shannon mutual information I(Xt, Xs): it takes the
largest value when πt and πs are identical, and the smallest value when πt is

ion
matrix

associat
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“independent” of πs. However, maximizing I(Xt, Xs) is difficult. Instead, the
qualitatively similar generalized mutual information is used:

Iα(Xt, Xs) = Hα(Xt) − Hα(Xt|Xs)

Hα(Xt) = (21−α − 1)−1

(
mt∑

i=1

P (Xt = i)α − 1

)
α > 0, α �= 1

(2)

Note that Hα(Xt) is the Renyi entropy with order α. When α = 2, the above
quantity is known as the “quadratic mutual information”, and it is proportional
to the category utility function proposed in [23]. Because of this equivalence, the
consensus partition that maximizes the sum of the quadratic mutual information
can be found by the k-means algorithm in a new feature space. Specifically, let yik

be a vector of length mk, where the j-th component of yik is 1 if πk(xi) = j, and
0 otherwise. A new feature vector for the object xi is obtained by concatenating
yik for different k. The new pattern matrix is then standardized to have zero
column and row means. Running k-means on this new pattern matrix gives us
the consensus partition that maximizes the quadratic mutual information. Note
that the number of clusters in the consensus partition π∗ is assumed to be known
for this consensus function. Empirical study in [20] showed that this consensus
function outperformed other consensus functions over a variety of data sets.

2.3 Strength of Components

Combining multiple partitions can lead to an improved partition. Is the im-
provement possible only when the individual partitions are “good” and close to
the target partition? Another way to phrase this question is: will the clustering
ensemble still work if the clustering algorithms used to generate the partitions
in the ensemble are “weak”, meaning that they give only a slightly better than
random partition? In [20], two different types of “weak” algorithms were consid-
ered. The first is to project the data randomly on a 1D space and run k-means
on the resulting 1D data set. The second is to split the data in the space of
given features into two clusters by a random hyperplane. Note that computing
a partition by these weak algorithms is very fast, and this allows one to create
a large clustering ensemble. It turns out that, despite the poor quality of each
of the partitions in the ensemble, the consensus partition is meaningful and can
even outperform the results of combining strong partitions [20]. A similar idea of
combining the clustering results by projecting to random subspaces was explored
in [24].

2.4 Convergence

Is the success of clustering ensemble purely empirical? In [25], a theoretical
analysis of the utility of clustering ensemble was performed. The analysis is based
on the premise that each partition in the ensemble is a “corrupted” version of
the true, but unknown, partition π̃. Two different partition generation models
were considered. In both cases, the consensus partition π∗ is more likely to be
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equal to π̃ than individual partitions in the ensemble, and π∗ converges to π̃ as
the number of partitions in the ensemble increases.

In the first model, a noise process F (.) first corrupts the labels of π̃ in an
identical and independent manner, followed by a process T (.) that permutes the
labels, in order to generate πk. The consensus function is plurality voting [22],
where the Hungarian algorithm is first applied to inverse T (.). The label of each
object in the consensus partition π∗ is found by voting on the cluster labels in
the ensemble. It can be shown that, as N goes to infinity, the probability that
π∗ is the same as π̃ goes to one, despite the fact that (i) plurality voting is used
instead of majority voting, and (ii) the Hungarian algorithm may undo the effect
of T (.) erroneously.

In the second model, a distance function d(πt, πs) on two partitions in the
space of possible partitions P is assumed. Note that d(πt, πs) needs not sat-
isfy the triangle inequality. Some example distance functions for two parti-
tions can be found in [26]. The observed partition πk is a corrupted version
of π̃, which is generated according to a probability distribution p(πk|π̃). Un-
der some mild assumptions on p(πk|π̃), the consensus by median partition,
π∗ = argminπ

∑N
k=1 d(π, πk), converges to π̃ at an exponential rate when N

goes to infinity.

3 Feature Selection in Clustering

Clustering, similar to supervised classification and regression, can be improved
by using a good subset of the available features. However, the issue of feature
selection in unsupervised learning is rarely addressed. This is in sharp contrast
with supervised learning, where many feature selection techniques have been
proposed (see [27,28,29] and references therein). One important reason is that
it is not at all clear how to assess the relevance of a subset of features without
resorting to class labels. The problem is made even more challenging when the
number of clusters is unknown, since the optimal number of clusters and the opti-
mal feature subset are inter-related. Recently, several feature selection/weighting
algorithms [30,31,32,33] for clustering have been proposed. We shall describe the
algorithm in [33], which estimates both the importance of different features and
the number of clusters automatically.

Consider model-based clustering using a Gaussian mixture. The algorithm in
[33] begins by assuming that the features are conditionally independent given the
(hidden) cluster label. This assumption is made regularly for models involving
high-dimensional data, such as naive Bayes classifiers and the emission densities
of continuous hidden Markov models. Formally, the density of the data y is
assumed to take the form p(y) =

∑k
j=1 αj

∏d
l=1 p(yl|θjl), where αj is the weight

of the j-th component/cluster and θjl is the parameter of the j-th component
for the l-th feature. The j-th cluster is modeled by the distributions p(yl|θjl)
with different l, and they are typically assumed to be Gaussians.

The l-th feature is irrelevant if its distribution is independent of the class la-
bels. In other words, it follows a common density q(yl|λl) which is parameterized
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by λl, and is the same irrespective of the value of j. The form of q(yl|λl) reflects
our prior knowledge about the distribution of the non-salient features, and it
can be assumed to be a Gaussian. Denote the saliency of the l-th feature by ρl.
The higher the saliency, the more important a feature is. With the introduction
of ρl and q(yl|λl), the density of y can be written as

p(y) =
k∑

j=1

αj

d∏

l=1

(
ρlp(yl|θjl) + (1 − ρl)q(yl|λl)

)
, (3)

where there are k clusters for the d-dimensional vector y. The saliencies of dif-
ferent features, together with the cluster parameters, can be estimated by max-
imizing the log-likelihood. Because of the need to estimate k automatically, the
minimum message length (MML) criterion [34] is adopted. The optimal param-
eters {αj, ρl, θjl, λl} can be found by an EM algorithm [33].

One key property of that EM algorithm is its pruning behavior, which can
force some of the αj to go to zero and some of the ρl to go to zero or one
during parameter estimation. Therefore, the algorithm is initialized to have a
large number (greater than the true number) of clusters. The redundant clus-
ters will be pruned by the algorithm automatically. This initialization strategy
(first proposed in [35]) can also alleviate the problem of poor local minimum.
Experimental results and further details on the algorithm can be found in [33].

4 Clustering with Constraints

In many applications of clustering, there is a preference for certain clustering
solutions. This preference or extrinsic information is often referred to as side-
information. Examples include alternative metrics between objects, orthogonal-
ity to a known partition, additional labels or attributes, relevance of different
features and ranks of the objects. The most natural type of side-information in
clustering is a set of constraints, which specifies the relationship between clus-
ter labels of different objects. A pairwise must-link (must-not-link) constraint
corresponds to the requirement that two objects should be placed in the same
(different) cluster. Constraints are naturally available in many clustering appli-
cations. For instance, in image segmentation one can have partial grouping cues
for some regions of the image to assist in the overall clustering [36]. Clustering
of customers in market-basket database can have multiple records pertaining to
the same person. In video retrieval tasks, different users may provide alternative
annotations of images in small subsets of a large database; such groupings may
be used for semi-supervised clustering of the entire database.

There is a growing literature on clustering with constraints (see [37] and
the references therein). We shall describe the algorithm in [37], which tackles
the problem of model-based clustering with constraints. Let Yc and Yu be the
set of data points with and without constraints, respectively. Clustering with
constraints is performed by seeking the cluster parameter Θ that explains both
the constrained and unconstrained data well. This is done by maximizing

J(Θ) = (1 − γ)L(Yc; Θ) + γL(Yu; Θ), (4)
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(a) Input Image (b) 1% and 5% sites in
constraints

(c) 10% sites in con-
straints

Fig. 3. Results of image segmentation. (a): input image. (b): segmentation result with
1% and 5% of sites in constraints. (c): segmentation result with 10% sites in constraints.

where L(Yc; Θ) and L(Yu; Θ) are the log-likelihood of the data points with and
without constraints, respectively, and γ is the tradeoff parameter. The term
L(Yu; Θ) is defined as in the standard mixture distribution. To define L(Yc; Θ),
a more elaborate distribution that considers the constraints is needed.

Let zi be the cluster label of the data yi. Let S and D be the set of must-link
and must-not-link constraints, respectively. The number of violations of must-
link and must-not-link constraints can be written as

∑
(i,j)∈S I(zi �= zj) and∑

(i,j)∈D I(zi = zj), respectively. By using the maximum entropy principle with
λ+ and λ− as the Lagrange parameters, one can arrive at a prior distribution
for the cluster labels z1, . . . , zm that participate in the constraints:

p(z1, . . . , zm) ∝ exp
(
−λ+

∑

(i,j)∈S
I(zi �= zj) − λ− ∑

(i,j)∈D
I(zi = zj)

)
. (5)

This prior distribution on zi, together with the component density p(yi|zi),
yields the log-likelihood L(Yc; Θ). A mean-field approximation is applied to the
posterior distribution of the cluster labels to keep the computation tractable. An
EM algorithm can be derived to find the parameter Θ that maximizes J(Θ). The
algorithm is fairly efficient, and is of similar computational complexity to the
standard EM algorithm for estimating a mixture distribution. Figure 3 shows
the results of applying this algorithm to an image segmentation task.

5 Conclusion

Data clustering is an important unsupervised learning problem with applications
in different domains. In this paper, we have reviewed some of the recent advances
in cluster analysis. Combination of data partitions in a clustering ensemble can
produce a superior partition when compared with any of the individual parti-
tions. Clustering of high-dimensional data sets can be improved by estimating
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the saliencies of different features. Side-information, in particular constraints on
cluster labels, can lead to a more desirable data partition. The research topics
presented here give a glimpse of the state-of-the-art in cluster analysis, and we
hope that this will stimulate the readers to investigate other problems in the
area of data clustering.
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