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Data Clustering using Memristor 

Networks
Shinhyun Choi*, Patrick Sheridan* & Wei D. Lu

Memristors have emerged as a promising candidate for critical applications such as non-volatile 

memory as well as non-Von Neumann computing architectures based on neuromorphic and machine 

learning systems. In this study, we demonstrate that memristors can be used to perform principal 

component analysis (PCA), an important technique for machine learning and data feature learning. 

The conductance changes of memristors in response to voltage pulses are studied and modeled with 

an internal state variable to trace the analog behavior of the device. Unsupervised, online learning is 

achieved in a memristor crossbar using Sanger’s learning rule, a derivative of Hebb’s rule, to obtain 

the principal components. The details of weights evolution during training is investigated over 

learning epochs as a function of training parameters. The effects of device non-uniformity on the 
PCA network performance are further analyzed. We show that the memristor-based PCA network 

is capable of linearly separating distinct classes from sensory data with high clarification success of 
97.6% even in the presence of large device variations.

�e von Neumann architecture, widely used in conventional computing systems, has become less opti-
mal in data-intensive tasks due to limited data transfer rates between the memory and the central pro-
cessing unit. Alternative computing systems such as neuromorphic or machine learning systems, have 
attracted increasing attention in dealing with “big data” problems such as pattern recognition from large 
amounts of data sets1,2. Principal component analysis3 is an important technique used in machine learn-
ing to discover orthogonal factors underlying multivariate data by examining the correlations among the 
set of input variables. �e technique can also be used to reduce the dimensionality of input data and is 
thus an important preprocessing step for many machine learning algorithms. Here we show that princi-
pal component analysis (PCA) can be e�ciently achieved in simple memristor-based crossbar networks 
with online learning capability, allowing this technique to be used to e�ectively classify sensory data.

�e two key factors that make memristor crossbar arrays attractive for neuromorphic or machine 
learning systems are 1) their ability to naturally implement matrix operations (e.g. dot-product): due 
to the resistive nature of the two-terminal device, the memristor crossbar array can directly convert an 
input voltage vector into an output current (or charge) vector, weighed by the memristor conductance 
at each matrix element, thus directly and e�ciently performing the matrix operation; and 2) their abil-
ity to achieve online learning with simple programming pulses: the weights of the memristor crossbar 
matrix - the device conductances, can be incrementally trained using simple voltage pulses4–5. Other 
properties such as high density, low power consumption, long cycling endurance and subnanosecond 
switching speed have also been demonstrated in memristor devices6–10. A typical memristor device con-
sists of a transition metal oxide layer such as TiOx, HfOx, WOx sandwiched by a pair of electrodes11–13. 
�e resistance of the memristor device can be adjusted by controlling the amount and distribution of 
oxygen vacancies, which modulate the local conductivity in the oxide layer14,15. Using an unsupervised, 
online learning rule, we show that crossbar arrays of memristors can learn the principal components 
from sensory data (e.g. database of breast cancer measurements) and e�ectively separate unlabeled data 
into clusters. A�er data clustering, a conventional supervised learning process can then be used to de�ne 
a decision boundary and e�ectively classify tumors as malignant or benign.
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Results
Memristor Behavior. �e analog switching behavior is obtained from a tantalum-oxide memristor 
based on a bilayer structure consisting of an oxygen-rich Ta2O5 layer and an oxygen-de�cient TaOx 
layer6,10,14,16. We have shown that such a memristor with the tantalum oxide layer doped with silicon 
atoms can show improved dynamic range and controllable analog switching behavior17. In this study, 
2 µ m ×  2 µ m devices and crossbar arrays were used following the processes discussed in Ref. 17. During 
measurements, the bias voltage was applied to the top electrode (TE) while the bottom electrode (BE) 
was grounded. Fig.  1a shows DC current – voltage (I- V) curve of a device showing typical bipolar 
resistive switching characteristics. In this system, an applied voltage can change the amount and distri-
bution of oxygen vacancies and modulate the conductive channels in the Ta2O5 layer which controls the 
conductance of the device14–17, as schematically shown in Fig. 1b.

To model the conductance change of the memristor, we introduce the internal state variable, w, which 
serves as an area index representing the number of conductive �laments or, equivalently, the area cov-
ered by the conductive channel as shown in Fig. 1b. �e dynamics of the state variable in response to 
the applied voltage is described by equation (1), where u() is the Heaviside step function, k, µ1, u2, are 
positive parameters determined by material properties such as ion hopping distance and hopping barrier 
heights13 (Supplementary Information).
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Figure 1. Memristor device and modeling. (a) DC I-V characteristics of a typical memristor device showing 
the bipolar switching e�ect. (b) Schematic of a memristor device. �e region with high oxygen vacancy 
concentration (bounded by the black lines) forms the conduction channel. (c) Calculated memristor 
conductance and the internal state variable w during the application of 100 potentiation pulses (− 1 V, 10 µ s) 
and 100 depression pulses (1.15 V, 10 µ s). (d) Measured (blue) and calculated (purple) conductance values 
measured by a read (0.2 V) pulse during 4 periods of 100 potentiation and 100 depression pulses.



www.nature.com/scientificreports/

3Scientific RepoRts | 5:10492 | DOi: 10.1038/srep10492

�e current through the device is described by equation (2) which consists of the term describing 
conduction through the channel area (�rst term) and the rest of the device (Schottky-dominated conduc-
tion, second term)13. �is equation clearly shows how the device conductance is regulated by the state 
variable, w. γ, δ, α, β are positive parameters determined by material properties such as the e�ective 
tunneling distance, tunneling barrier, the depletion width of the Schottky barrier region and Schottky 
barrier height13 (Supplementary Information). �e memristor model, consisting of the state variable 
dynamic equation (1) and I-V equation (2), was tested against experimental measurements. For example, 
in Fig. 1c, pulse programming conditions were simulated with the application of a train of one-hundred 
− 1 V, 10 µ s pulses followed by a train of one-hundred 1.15 V, 10 µ s pulses, with the device conductance 
monitored with a 0.2 V read pulse a�er each training pulse. With the application of a negative pulse, the 
memristor conductance gradually increases (purple curve), followed by the increase in the internal state 
variable value (blue curve). On the other hand, a positive pulse decreases the conductance following the 
decrease of the internal state variable value. �e experimental data measured form an actual memristor 
device and the simulation data were compared and plotted together in Fig. 1d, showing that the model 
can trace the experimental data precisely.

Neural Network Construction. To implement PCA, we adopted a neural network structure using a 
crossbar array of memristors as shown in Fig. 2, where the n input channels are connected to the rows 
and the m output channels are connected to the columns of the memristor crossbar network. In this 
study, a standard breast cancer data set from University of Wisconsin Hospitals, Madison was used as 
the input signal data18,19. �e data set consists of breast cell mass properties in 9 categories including 
clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithelial cell 
size, bare nuclei, bland chromatin, normal nucleoli and mitoses. �e sensory data were derived from a 
digitized image of a �ne needle aspirate (FNA) of a breast mass and each category has a range from 0 to 
10. In a feature learning test, the measurement results from the 9 categories of a given cell are fed to the 9 
inputs (n =  9) of the neural network, and the output is obtained from the 2 output channels (m =  2). �e 
input signals are implemented as voltage pulses with �xed amplitude (0.2 V) and variable pulse widths 
proportional to the measured values in the corresponding category. Each training cycle consists of one 
hundred randomly sequenced data points (50 points from benign class, 50 points from malignant class). 
A�erwards, the ability of the network to successfully cluster the data and classify a cell as either benign 
or malignant was tested using 583 data points (not included in the training set).

As discussed earlier, in this con�guration the output vector is determined by the dot-product of 
the input vector and the memristor weight matrix. Additionally, the network learns the principal com-
ponents by adjusting the memristor weights during training. In this study, starting from a memristor 

Figure 2. Schematic of the memristor network. �e inputs are connected to the rows and fed to the 
network. �e outputs are connected to the columns. �e memristor devices are located at the crosspoints 
in the network and the weights of the memristor devices associated with a given output form the principal 
components a�er training.
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network with randomly distributed weights, we employ Sanger’s rule (also known as the generalized 
Hebbian algorithm) to implement online learning to learn the principal components of the input data 
set. Sanger’s rule is derived from Hebb’s learning rule20,21 and these model learning rules have been widely 
adapted in arti�cial neural networks. Speci�cally, Sanger’s rule utilizes the weight (g), output response (y) 
and present input (x) as shown in equation (3).

∑∆ η= ( − )
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where η  is the learning rate and is typically a small positive value(< < 1), x i represents the input pulse at 
input (row) i and the value of the data is represented by the pulse width, and j =  1 or 2 corresponds to 
the primary principal component and the second principal component, respectively. gij is the weight at 
row i and column j in the network. Speci�cally, gij is de�ned as

= ( )–g w2 1 4ij ij

where wij is the state variable of the memristor device at row i and column j as discussed in Eq. (1). 
While w is positive only gij ranges from − 1 to 1 from the de�nition. Note no label is used in the learning 
process. A�er training, the weights in columns 1 and 2 form the (�rst and 2nd, respectively) principal 
components of the input data set21. Accordingly, outputs obtained from the trained network will be 
clustered and can be used in subsequent classi�cation analysis.

Speci�cally, with the application of an input xj, the amount of charge collected at the output in the 
memristor network can be obtained as:
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where the charge is assumed to be determined by the current (Eq. (2)) and linearly proportional to the 
applied pulse width (xi), and the constants in Eq. (2) have been lumped into constants A and B. �e 
output, yj, is then obtained from the charge Qj through the following equation:
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Plugging Eqs. (4–6) can be simpli�ed as:
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As expected, by properly choosing the output function (here linearly dependent on the charge, Eq. 6), 
the obtained output y corresponds to the vector product of the input and the weight matrix, as required 
by neural network algorithms.

During the training phase, the output is �rst obtained (by applying a 0.2 V read voltage with a pulse 
width proportional to the value of the training data at each column) from the memristor array using 
equation (6), and the desired weight update ∆g

ij
 is then calculated based on equation (3). Programming 

voltage pulses are then applied to the inputs to modify the memristor weights. �e programming pulses 
are determined by the polarity and magnitude of ∆g

ij
, with potentiation (− 1 V) pulses applied to the 

input for positive ∆g
ij
 and depression (1.15 V) pulses for negative ∆g

ij
, while the pulse widths are deter-

mined by the magnitude of ∆g
ij

. To account for the non-linear response of w with respect to training 

pulse (i.e. the e�ectiveness of weight change dw/dt depends on the device state w, as evidenced in Eq. 1 
and Fig. 1c-d), a compensation scheme is employed to ensure the desired conductance change. Speci�cally, 
the pulse width ∆t  is determined as

∆ ∆

∆

=
( − )







−

−
+

−






( )

+
( − )







−

+
+

+






(− )

( )

µ µ

µ µ

−
, ,

−
, ,

t
k e e g g

u

k e e g g
u

2 1

1

1

1
g

2 1

1

1

1
g

8

ij V V
ij after ij before

V V
ij after ij before

potentiation potentiation

depression depression

1 2

1 2

When applied to equation (1) and by noticing the relationship between w and g (eq. 4), equation (8) 
leads to the desired weight change in equation (3).

Figure 3a shows results of the 583 test data points before learning (e.g. when the memristor weights 
are random), with y1 at horizontal axis and y2 at vertical axis. Blue dots and purple dots represent 
benign and malignant cells (the ground truth), respectively. We note the labels were not used during 
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training and are only shown here to illustrate the e�ectiveness of the clustering process. It’s clear from 
Fig. 3a that before training the benign set and the malignant set signi�cantly overlap each other. In other 
words, the network before learning cannot e�ectively cluster the sets (with untrained, random weights). 
Results obtained a�er performing classical PCA calculations by directly calculating the eigenvectors and 
eigenvalues of the data covariance using matrix operations are shown in Fig. 3b. �e PCA calculations 
perform orthogonal transformation to identify the primary principal component in the direction of the 
largest variance, and subsequently the 2nd principal component, etc3. As expected, the data become clus-
tered a�er transforming the data along the �rst two principal components, as shown in Fig. 3b. Instead 
of directly calculating the principal components using matrix operations and existing data, the principal 
components can also be obtained through training in neural networks, as discussed earlier. Figure  3c 
shows results obtained from an idealized neural network using Sanger’s rule, using only equation (3) 
and equation (7) without considering the physical memristor device model. Successful clustering of 
the data set was also achieved in the neural network21. In this case, instead of computed from current 
data set, the principal components were learned using Sanger’s rule and are represented by the weights 
associated with speci�c outputs. More importantly, Fig. 3d shows the results obtained in the neural net-
work employing the physical memristor device model during training and feature extraction analysis. 
Successful clustering of the data, similar to the ones obtained from direct PCA calculations and learning 
with an ideal neural work, was also obtained in the memristor network, suggesting the potential of the 
memristor networks for feature learning tasks with online, unsupervised learning.

Figure 3. Results of principal component analysis. (a) Initial results of an untrained network. �e data 
are plotted based on their (y1,y2) values. Linear separation is not possible for the two classes. (b) Principal 
component analysis using traditional covariance matrix of the input data. (c) Principal component analysis 
using Sanger’s rule. (d) Principal component analysis using Sanger’s rule with the memristor physical device 
model.
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Figure 4 shows the primary and secondary principal components learned in the memristor network 
from the training process, represented by the two 9-dimentional weight vectors associated with the two 
outputs. �e training consists of 1000 training cycles. Since the application of Sanger’s rule automat-
ically normalizes the weights the Euclidean norm of the weights should converge to 1 a�er training 
(Supplementary Information). Indeed, the length of the weight vector for the primary principal com-
ponent was found to converge from 0.9 to 1.0005 and that for the secondary principal component was 
found to converge from 1.12 to 1.003. In practice, this normalization condition can be used to determine 
when the network has completed learning.

To examine how the weights change during learning, weight distributions for the �rst two principal 
components during training are plotted in Fig.  5. For the primary principal component (Fig.  5a), the 
weights change rapidly in the �rst 10 cycles and quickly become stabilized for the rest of the learning 
cycles. While for the secondary principal component (Fig.  5b) the weights change gradually and the 
distribution stabilizes at a much later time. �e reason for the di�erent behaviors lie in the fact that for 
the primary principal component, only y1 and gi1 need to be taken into account during weight update 
(equation (3)); however, for the secondary principal component, both y1, y2, and gi1 and gi2 need to be 

Figure 4. Weights constituting (a) the primary principal component and (b) the secondary principal 
component before (upper) and a�er (lower) the learning process.

Figure 5. Weight change as a function of training cycles for (a) the primary principal component, (b) the 
secondary principal component.
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considered so convergence of the secondary principal component is more di�cult and only happens a�er 
the primary principal component has stabilized.

�e e�ect of the applied voltage during learning and the learning rate are shown in Fig. 6. Figure 6a 
shows the histogram graphs of the number of pulses used during the training processes for di�erent 
pulse amplitudes, measured in 20 ns intervals. As expected, it can be seen that lower potentiation/depres-
sion voltages requires longer pulse widths in general, while faster learning can be obtained at higher 
voltages. Additionally, Fig. 6b shows the e�ect of the learning rate, η , on the training process. �e weight 
redistribution for the secondary principal component as a function of training is plotted. If the learning 
rate is too high (η = 0.1), weight update becomes too fast (Eq. 3) and can overshoot the optimal value. 
As a result, the weight distributions �uctuate during training and never fully stabilize, as shown in the 
top graph in Fig. 6b. On the other hand, if the learning rate is too small (η = 0.001), the weight updates 
becomes very slow and may not be able to overcome local minima, as shown in the bottom graph in 
Fig. 6b. A properly chosen learning rate (η = 0.01) balances learning speed and accuracy.

In the following, we discuss the e�ects of device-device variations in the network performance. 
Nanoscale devices such as memristors whose operations are essentially based on defects (e.g. oxygen 
vacancies) are intrinsically less reliable than conventional transistor devices. As shown in Fig. S1a and 
Fig. S1b, large device-device and cycle-cycle variations exist in the analog switching behaviors of mem-
ristors. �e variations in the memristor switching characteristics can be attributed to variations in device 
parameters such as the amount and distribution of oxygen vacancies in the conduction channel area, 
resistance variations of the TaOx base region, stoichiometric non-uniformity and �lm thickness varia-
tions. Figure 7a shows the conductance changes of 9 memristor devices in the network during the appli-
cation of 100 pulses of potentiation (− 1 V) and 100 pulses of depression (1.15 V). �e blue line represents 
the average value and the error bars represent the standard deviation of the measured conductance. 
�e relative standard deviation ranges from 10% to 23% for each point and are clearly substantial. To 
understand the e�ects of the device variations on the network performance, variations were introduced 
to the physical device parameters in Eqs. (1)-(2), and simulation results a�er incorporation of device 
variations are shown in Fig. 7b, capturing the same average value and standard deviation as the meas-
ured data. Details of the measured data and modeling can be found in the Supporting Information. �e 
learning and PCA classi�cation results of the memristor network, with and without considering device 
variations, are shown in Fig. 7c and 7d for comparison. Signi�cantly, even with substantial device-device 
and cycle-cycle variations (Fig. 7b), the network is still able to successfully learn the principal compo-
nents and classify the data sets into the 2 categories (Fig. 7d). �e training becomes slightly less optimal 
with the length of the weight vectors increased slightly to 1.05 and 1.06 for the primary and secondary 
principal components, respectively, compared to 1.0005 and 1.003 without considering device variations.

Figure 6. E�ects of potentiation/depression voltage amplitudes and learning rate. (a) Histograms of the 
applied pulse widths used in training as a function of potentiation/depression voltage amplitude. (b) �e 
weight evolutions as a function of learning rate.
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Finally, to quantitatively analyze the performance of the memristor network, logistic regression22 was 
used to analyze the clustered data to measure the e�ectiveness of the PCA analysis. �e linear decision 
boundaries obtained from logistic regression are shown as dotted lines separating the two clustered 
sets of data in Fig. 7c and 7d. Classi�cation based on linear decision boundaries on the clustered data 
obtained from di�erent approaches yielded essentially identical results (97.4% in Fig.  7c for the ideal 
case without considering device variations, and 97.6% in Fig. 7d for the case considering realistic device 
variations). �is result suggests that the memristor network can be inherently tolerant to device varia-
tions due to the distributed network structure, and systems based on such networks can lead to reliable 
operations despite the nanoscale devices being intrinsically unreliable.

Discussion
In conclusion, we show that memristor networks can e�ectively implement unsupervised learning rules 
and be trained to learn principal components from data sets. �e principal components learned during 
the training process can then be directly used to perform feature extraction (clustering) tasks using the 
same network. A realistic physical model was developed for the TaOx based memristor and used in the 
analysis. Sanger’s learning rule was utilized to implement online learning by adjusting the weights of each 
memristor in the crossbar network. A�er learning the principal components, the memristor network 
was successfully used to classify breast cancer data set as an example through �rst data clustering and 
then deriving a linear decision boundary. Signi�cantly, successful learning and classi�cation can still be 
obtained in the memristor network even in the presence of substantial device variations, demonstrating 
the reliability of the network structure and the learning algorithm. �e ability to achieve online learning 
and perform classi�cation tasks reliably in the presence of unreliable devices suggest this approach can 
be extended to larger networks and other machine learning algorithms for more complex data-intensive 
tasks.

Figure 7. E�ects of device variations. (a) Experimentally measured analog switching data from 9 memristors 
during 100 potentiation and 100 depression pulses. �e blue line and the error bars represent the average 
and the standard deviation, respectively. (b) Calculated analog switching behaviors a�er considering device 
variations in the model. (c) Results of the principal component analysis without device variability. (d) Result 
of the principal component analysis with realistic device variability captured by the model.
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Methods
Device fabrication and characterization. �e device fabrication starts with a highly p-doped Si/
SiO2 substrate with a 100 nm thermal SiO2 layer. �e bottom electrodes (BEs) were fabricated by photo-
lithography and li�o� with 5nm-thick NiCr and 40nm-thick Pd. �e 40 nm of oxygen-rich TaOx layer 
was sputtered by direct current (DC) reactive using a Ta metal target with Ar(97%)/O2(3%) gas mixture 
at 400 °C. Next, 5 nm of Ta2O5 switching layer was sputtered by 140 W radio frequency (RF) sputtering 
while p-doped Si was co-sputtered with Ta2O5 layer with 70 W DC sputtering at room temperature. �e 
top electrodes (TEs) with 40 nm of Pd and 20 nm of Au were fabricated by photolithography and li�o� 
to form a crossbar structure. �e electrical characterization were performed with a custom-built meas-
urement system in a probe station (Desert Cryogenics TTP4).

Simulation. Device model �delity was veri�ed using SPICE simulations and then translated to Python 
for network simulation integration. Array scale simulations were performed in a custom, multithreaded 
framework developed in Python. �e framework makes extensive use of the NumPy module23 for opti-
mized calculations and the Matplotlib module24 for data visualization.
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